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SUMMARY 
Continuity conditions are derived for a fault modelled as a plane with isolated areas 
of slip. These slip areas are, for simplicity, taken to be such that their overall effect is 
that of a distribution of circular cracks; discontinuities in both normal and tangential 
components of displacement are allowed, depending on the internal conditions. Dry 
(gas-filled), partial or saturated liquid fill, or a fill of a weak visco-elastic solid are 
possible within the theory. The results are given in terms of the mean wave, which, at 
wavelengths long compared with the scale-lengths of the fault structure, is an accurate 
approximation to the displacement field. The continuity conditions that arise under 
this scheme are identical to those for a thin layer of visco-elastic material. However, 
unlike earlier, more empirical models of an ‘averaged’ fault, the parameters involved 
are directly related to the fault structure and include crack-crack interactions. It is 
clear from earlier work that a fault of this type is capable of supporting Stoneley waves. 
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1 INTRODUCTION 

It is well known that a fault is not a simple air- or fluid-filled crack. The faces of a fault are pressed together by the lithostatic 
stress corresponding to the depth of burial. Fault movement commences when the shear tractions on the fault surface are sufficient 
to overcome friction and non-conformities in the two faces, and, in general, takes the form of slip. On the other hand, while 
inactive as a radiator of seismic waves, a fault acts as a passive reflector, refractor and scatterer of seismic radiation. This is 
because, although pressed together, the two faces d o  not exactly conform and so, while in some areas there is effectively welded 
contact, in others the faces are separated and the space between filled with gas, liquid, fault gouge or a combination of all three. 

In order to  calculate the effect of such a structure on seismic waves we take, as a model of an extended fault, an infinite plane 
containing a random distribution of co-planar cracks. Outside the area of the cracks, the two sides of the plane are in welded 
contact, while the cracks are, by definition, regions where the displacements on either side of the plane are allowed to be 
discontinuous (see Fig. 1). Interior conditions for the cracks are a matter of choice, but for practical purposes they are limited to 
‘dry’ (gas-filled), fully or  partially liquid-filled and ‘cement-filled’, where the cement is a weak visco-elastic solid. (If the cement is 
strong, the faces are in effectively welded contact.) The gas is usually air and the liquid usually water, possibly with dissolved gas 
and salts. In all cases, however, we assume that the relationship between imposed stress and displacement discontinuity on the 
crack is linear. The ‘closed crack’, for instance, which can transmit compression but cannot sustain tension (Dundurs & Comninou 
1979) is not within the scope of this model. 

Clearly this model of partial bonding is highly idealized. However, any study which aims, as this one does, to  establish a 
direct relationship between overall properties and the microstructure (rather than introducing purely empirical parameters) must 
be specific about microstructure geometry. The representation of a fault as a plane distribution of cracks has been employed by, 
amongst others, Angel & Achenbach (1985), Schoenberg & Douma (1988) and Sotiropoulos & Achenbach (1988). [For a review 
of models of imperfect bonding, see Nagy (1992).] When two non-conforming surfaces are presented to each other, initial contact 
is made at isolated points and, as the pressure is increased, these contacts broaden out as a result of elastic and plastic deformation. 
Ultimately, contact will be achieved over most of the interface, leaving a relatively small number of open ‘cracks’. This is the state 
that we wish to analyse here. There is a variety of literature dealing with the initial contact stage (kissing bond), mainly using 
Hertz contact theory at  the points where the surfaces meet (Yoshioka 1994), but nothing that analyses the development of the 
later stage (partial bond) in which the interface is bonded over the major part of its area. 

In this paper, we shall assume that all wavelengths are large compared with the scale-sizes of the structure of the fault (the 
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Figure 1. The fault model: a plane distribution of cracks in an otherwise welded (hatched region) interface. 

diameter and spacing of the cracks) but are short compared with the overall length of the fault. It follows that an incoming wave 
will not ‘see’ the structure of the fault, which will behave as a uniform reflector. The effective boundary conditions at the fault 
form the main result. They contain parameters that depend directly on crack size and spacing length and on the interior condition 
on the cracks. 

The method used is the method of smoothing (Keller 1964), so the results for reflection and refraction correspond to the 
‘mean wave’. At long wavelengths, the mean wave is a good approximation to the actual displacements. At the same time, scattering 
from the microstructure will be negligible. In other circumstances, the mean wave may be interpreted as an average over the 
radiation recorded at a number of different locations at a fixed distance from the fault. 

The earliest attempt to model the structure of incomplete bonding appears to have been by Sezawa & Kanai (1940), who 
proposed a linear law of friction to represent the effect of a geological fault or block structure. In this, the traction and normal 
component of displacement are taken to be continuous across the bond, while the transverse component of displacement has a 
discontinuity whose rate of change is proportional to the transverse component of traction. Miller (1978) extended this model to 
allow for the non-linear dependence of the frictional force on the displacement discontinuity and its time derivative. This non- 
linear law is, however, approximated by a linear relation in order to obtain analytical results. The same interface condition of a 
discontinuity displacement proportional to transverse traction (where the constant of proportionality may depend on frequency) 
was employed by Newmark, Siess & Viest (1951) to represent incomplete bonding of composite beams. This was probably the 
first study in which the complex pattern of slip and weld was replaced by an averaged relation at the interface. Similar conditions 
were derived by Murty (1976) from consideration of a vanishingly thin layer of viscous fluid. Murty gives numerical results for 
the reflected and transmitted energy for an incident plane wave for either similar or different material properties either side of the 
fault. The transmission and reflection properties of a thin layer of fluid were also studied by Fehler (1982), specifically to interpret 
acoustic events from hydrofracture, and the effect of a thin, weak elastic layer was investigated by Jones & Whittier (1967), who 
considered the propagation of Stoneley waves along the interface. 

Schoenberg ( 1980) extended Murty’s ( 1976) model to include crack-opening displacements. The discontinuity in each 
component of displacement is taken to be proportional to the corresponding component of traction, and the constants of 
proportionality can all be different. Further generality was introduced by Tleukenov ( 1991), who considered thin layers filled with 
anisotropic elastic or linearly viscoelastic material, and also derived non-linear relations between displacement discontinuity and 
traction for thin layers of non-linearly viscoelastic and visco-plastic material. 

Schoenberg & Douma (1988) also extended the empirical model to allow for a general linear relation between displacement 
discontinuity on the fault plane and the traction. This relation is, naturally, governed by a second-rank tensor. The main purpose 
of the paper by Schoenberg & Douma (1988) was to model the properties of a material with a volume distribution of aligned 
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Transmission properties of a plane fault 561 

cracks or joints. The volume distribution was achieved by an extended sequence of parallel planes of cracks. By making a 
comparison with results for cracked or jointed material, the authors were, for the first time, able to relate the parameters of the 
linear slip interface to the microstructure of crack size and spacing. These relations were derived from results of Hudson (1981) 
and are correct to first order only where interactions between cracks can be neglected. 

In this paper we derive the fault conditions in a more direct way and include interaction between cracks. 
Schoenberg's ( 1980) continuity conditions were taken up by Pyrak-Nolte & Cook ( 1987), who showed that interface waves 

of Stoneley type may propagate along such a surface so long as the ratios of the properties of the materials on either side satisfy 
certain conditions. In particular, the Stoneley wave exists if the two materials are identical. 

2 THE METHOD OF S M O O T H I N G  

Following Keller (1964), we derive expressions for the mean displacement field (u) in material that consists of a uniform solid 
matrix permeated by a random distribution of co-planar cracks. We define the scattering operator ES" for the nth crack: if U" is 
the field incident on the crack, ES"U" is the scattered field. The parameter E is in some sense small and the method consists of an 
expansion in ascending powers of E .  In fact, E may be taken to be the crack number density vs multiplied by the square of the 
crack radius (Hudson 1980, 1981). This corresponds physically to an expansion where later terms refer to higher-order interactions 
between cracks, so that the zeroth term is the field in the absence of cracks, the first corresponds to scattering from individual 
cracks, the second to crack-crack interactions in pairs, and so on. This is expressed by the following equation (Hudson 1980): 

( u )  = uo+ c ( ~ " 1 ) ~ o  + &2 1 1 ( S " ~ S " Z ) ~ O  + 0 ( & 3 ) ,  ( 1 )  
n1 "1 n2#n1 

where uo is the field in the absence of cracks and ( ) implies the mean or expectation over a random ensemble. 
On the assumption that all cracks are similar, so that all the S" are the same except for the location of the crack, we obtain 

( u )  = u ~ + E ~ ( ~ 1 ) U ~ + E 2 ~ ( ~ -  i ) ) ( s ~ ) ~ o +  0 ( ~ 3 ) ,  ( 2 )  

where N is the total number of cracks and S', S2  correspond to two representative and non-identical cracks. This may be inverted 
by successive approximations to give uo in terms of ( u ) :  

UO = ( u )  - E N  ( ~ 1 )  ( u )  + & Z { N ~ ( S I  ) 2  - N ( N  - I ) ( s ~ s ~ )  1 ( u )  + 0 ( & 3 ) .  (3) 

The cracks are assumed to be randomly distributed over a plane surface 9'. If v'(x) is the number density of cracks per unit 
area, with x referring to the position of the centroid, the probability density for a single crack is v"/N.  Then, 

where s(x) is the mean scattering operator for a crack with centroid at x and integration is over all points r of the fault plane 9'. 
Similarly, 

r r  

where V ~ ( ~ ' I ~ ~ )  is the number density of cracks centred at r' given that there is a crack centred at r2. 
is assumed, for simplicity, to correspond to the scattering operator for a circular crack. It 

would be a simple matter to extend the analysis to a 'mean' elliptic crack. Other shapes would require the numerical solution for 
the displacement discontinuity on an isolated crack under arbitrary stress at infinity. 

The mean scattering operator 

3 EVALUATION OF THE SCATTERING OPERATOR 

We express the scattering operator in terms of the Green's function Gk(x, x') for the solid matrix: 

(Hudson 1980), where [Vl(& x') is the displacement discontinuity at points x' on the crack face C due to the incident field u; the 
crack is centred at < and is assumed to be plane with normal n. The Green's function satisfies 

{c$k[}  are the elastic stiffnesses, o is the angular frequency and po is the density of the solid matrix. 
Since the problem is linear, the discontinuity across the crack can be written as a linear functional U of the tractions t 
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produced on the crack face by the incident field: 

( 8 )  
a 

P 
[%1(5, x') = - u k i  x'); > 

where points on the crack face are designated by x' = 5 + X, a / p  is a scaling factor (Hudson 1980); a is the radius of a crack and 
p the modulus of rigidity of the solid matrix. Eq. (6)  now becomes 

and, if the crack is sufficiently smalI (smaller than the wavelength of the incident radiation), we may regard t and G as constant 
on C, which leads to 

where 

4 THE OVERALL EFFECT OF A FAULT 

It follows that the second term on the right-hand side of eq. (3) is 

This is the field due to displacement discontinuity 

where a( (u) ,  x) is the stress at the point x corresponding to displacements (u).  
Similarly, the third term on the right-hand side of (3) becomes 

where 

Once again this has the form of a field arising from a discontinuity in displacement: 

The mean field ( u )  can now be seen to be made up of an unperturbed field uo together with displacement discontinuities on 
the surface Y.  These are given by 

( 16) 

and may be regarded as a boundary condition on Y between ( u )  and the tractions ( t )  on ,Y associated with ( u ) :  

With this substitution, we have 
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Transmission properties of a plane fault 563 

The term 

vs(<)vs(xlc) - VS(<)VS(X) 

is effectively zero for < outside a region of scale-size equal to the intercrack spacing and centred on x. If ( u ) ,  and therefore ( t ) ,  

vary slowly on this scale, we may write the integral in eq. (18) approximately as 

If, in addition, vs is constant within the crack4rack spacing distance, this becomes 

where, with the replacement G(x, c)  = 9(6 - x), 

V"(XIX + X )  
ns(x, X )  = 

VS 

The effect of the surface distribution of cracks is, therefore, a discontinuity in the mean field across Y which is related to the 
tractions in the mean field by 

to second order. There is no discontinuity in traction on Y.  

5 EVALUATION OF 0 A N D  KJ 

The components uij are exactly those that appear in the expressions for a volume distribution of cracks, and expressions have 
been derived for them for the case of circular cracks under dry and fluid-filled conditions and for a weak viscoelastic solid filling 
(Hudson 1981), and also for partial saturation with liquid (Hudson 1988). 

Referring to Hudson (1980), we can evaluate eq. (20) for K",,,, in the long-wavelength limit: 

where a, /3 are the wave speeds in the solid, on the assumption that ns depends on X = (XI only and that n = (0,  0, 1). There is no 
singularity at the lower limit of integration since ns must be zero for X less than the diameter of a crack. Other components of 
q,"" are 

and otherwise zero. 
In order to evaluate the integral in (22) and (23), we need to specify ns. We have the constraints 

n s ( X ) - + l  asX-+co,  

v s ~ y ( l - n ' ( X ) ) d S = l ,  
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as well as the above condition that ns is zero for X less than a crack diameter. The precise choice of functional dependence of ns 
on X will not affect the result except for a numerical factor close to unity. We choose 

n s =  I--e~p[-(X--2n)~/P], X 2 2 a ,  

=0,  O < X < 2 a ,  

where a is a crack radius and L a parameter roughly equal to a crack spacing. The second of conditions (24) give 

1 
VS 
- = n P ,  

neglecting a term in a/. 
Substitution for ns in the integral gives 

approximately, neglecting terms in a// once more. We have 
s 1/2 s K",w = (V ) Xpruv ,  

where 

n 
Xbt." = 32 {6,"6,"(7 + b2/c4 - (6,d"" + 6p"6,")(1 - b2/."l ; p ,  t ,  u, v # 3 .  

n 
Xi3"" = - - (1 - B2/."6." = Xsu"33 = X;""3 = X L 3 "  ; u, # 3 , 8 

n 
&"3" = -(I  + B2/."6.,; 

Xi3"3 = - - ( 5  - b2/.2)6""; 

u, v # 3 ,  8 

7t 
u, v # 3 ,  8 

All other terms are zero. 

6 DISCUSSION 

Representation of a fault by a surface distribution of plane cracks leads to a linear relation between the displacement discontinuity 
and the tractions on the fault. Thus it is similar in form to most previous continuity conditions proposed for a loosely bonded or 
non-rigid interface. The relation here is stated in terms of the mean wave. In the absence of scattering (that is, at long wavelengths) 
the mean wave may be equated to the measured displacements. At shorter wavelengths, when the variance about the mean wave 
(the scattering) is significant, the mean wave is equivalent to an average displacement taken over a suitable array of measurements. 

A dry, fluid- or solid-filled circular crack gives rise to a diagonal form for {oij} with Dll = DZ2 if the normal to the cracks is 
in the 3-direction and if the matrix and fill materials are isotropic. So, for a fault lying parallel to the 12-plane, this means that 
the continuity conditions (21) reduce to 

where the non-dimensional parameters A and B are given by 

1 + (vsa2)3~2811q(3 7t - ~ ~ 2 / o r 2 ) } ,  

The second term in the brackets in each case corresponds to interactions between cracks. The relationship expressed by (28) is 
exactly that proposed by Schoenberg (1980), but here the coefficients A and B are directly related to the microstructure. 
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Transmission properties of a plane fault 565 

Schoenberg & Douma (1988) show how their empirical parameters may be related to a specific model of microstructure by 
comparing their formulae for a volume distribution of cracks with those of Hudson (1981), which are based on a specific model 
of aligned circular cracks. These relations correspond to eqs (29) exactly to first order in the crack number density. Schoenberg & 
Douma (1988) go on to say that crackxrack interactions can be taken into account by using higher-order terms from Hudson 
(1980) which are proportional to the square of the number density. However, crackxrack interactions on a single fault generate 
a term in number density to the power (5/2). It is clear therefore that, at this level of accuracy, the response of a volume distribution 
of cracks cannot be constructed simply from a sequence of faults, although it can be done when working to first order only. This 
is not surprising: taking crackxrack interactions into account for a sequence of faults will involve interactions between the faults, 
unless they are widely spaced. 

We can simplify this expression further by using expressions for Dl1 and o,, for a crack filled with material with bulk 
modulus IC‘ and rigidity p’ = pI + iwq, where pf is an elastic rigidity (which may be zero) and q(w) a viscosity: 

where 1 and p are the Lame parameters of the matrix solid, and (Hudson 1981) 

where c/a is the aspect ratio of the crack. 
Writing 

4c d = -  
3 

for the mean thickness of the crack, and 

r = vsaa2 

for the relative area of fracture on the fault, we get 

to the same order of accuracy as before. 
The form of (34) is identical to that for a uniform thin layer, of thickness d ,  containing material with shear modulus 

3adp 
16a 

p’ + -(3 - 2p2/a2) 

and bulk modulus 

(32) 

(33) 

(35) 

(Jones & Whittier 1967), except that the magnitudes of the displacement discontinuities are reduced by a factor r ,  the relative area 
of slip. 

Thus the elastic rigidity of the crack infill is increased by the presence of the crack edges whereas its bulk modulus is decreased. 
However, the resistance of the layer to both tension and shear is increased. 

These results are, of course, always subject to the constraint that the full scale of interaction between cracks is not taken into 
account and the formulae are not reliable anywhere near r = 1; that is, when slip occurs over almost the whole fault. 

The reflection and refraction of plane waves at a model fault of this type depend on the values taken by A and B, which in 
our case depend on the parameters chosen for crack size, spacing and infill. This quantification is important as it may permit 
some information about cracks or fault parameters to be inferred from seismic observations. Earlier studies, in which A and B are 
purely empirical, show curves of reflection and refraction coefficients for a variety of values (Murty 1976; Schoenberg 1980). In 
addition, it has been shown (Jones & Whittier 1967; Pyrak-Nolte & Cook 1987) that it is possible for interface waves of Stoneley 
type to propagate along the interface. If A and B are real, such waves are non-attenuating. 

A 2-D version of the fault model analysed here was studied by Sotiropoulos & Achenbach (1988), who gave expressions for 
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the reflection of a plane wave a t  normal incidence. On the theory constructed here, the reflection coefficient for a plane P wave is 

J .  A. Hudson, E .  Liu and S .  Crampin 

where 

to first order in the crack 

(36) 

number density v"u2. If we write V as the integral of the displacement discontinuity over a n  individual 
crack as a result of an  incident wave of unit displacement amplitude, we have 

and so 

vs u2 q=--v. 
2 

Eqs (36) and (37) are  precisely the formulae given by Sotiropoulos & Achenbach (1988), although they take I, t o  be the 
integrated crack-opening displacement for a representative crack, taking all the other cracks into account, whereas u,, is calculated 
for a single crack on  its own. Clearly the two theories agree t o  first order. Sotiropoulos & Achenbach (1988) approximate the 
effect of surrounding cracks by introducing a dipole source on  either side of the crack o n  which V is calculated. Here we give 
expressions that are  exact t o  the next higher order in (v"u2). 

ACKNOWLEDGMENTS 

We thank John Queen and Bill Rizer of Conoco Inc. for their advice on the construction of the theoretical model studied in this 
paper. The work was supported by Conoco (UK) Ltd through Contract No. 2.343 and the Natural  Environment Research Council 
and is published with the approval of Conoco Inc. and the Director of the British Geological Survey. 

REFERENCES 

Angel, Y.C. & Achenbach, J.D., 1985. Reflection and transmission of 
elastic waves by a periodic array of cracks, J.  appl. Mech., 52, 33-41. 

Dundurs, J. & Comninou, M., 1979. Interface separation caused by a 
plane elastic wave of arbitrary form, Wave Motion, 1, 17-23. 

Fehler, M., 1982. Interaction of seismic waves with a viscous liquid 
layer, Bull. seism. Soc. Am., 72, 55-72. 

Hudson, J.A., 1980. Overall properties of a cracked solid, Math. Proc. 
Camb. Phil. Soc., 88, 371-384. 

Hudson, J.A., 1981. Wave speeds and attenuation of elastic waves in 
material containing cracks, Geophys. J .  R .  astr. Soc., 64, 133-150. 

Hudson, J.A., 1988. Seismic wave propagation through material con- 
taining partially saturated cracks, Geophys. J .  R .  astr. Soc., 92,33-37. 

Jones, J.P. & Whittier, J.S., 1967. Waves at a flexibly bonded interface- 
elastic layer, J.  appl. Mech., 34, 904-909. 

Keller, J.B., 1964. Stochastic equations and wave propagation in 
random media, Proc. Symp. appl. Math., 16, 145-170. 

Miller, R.K., 1978. The effects of boundary friction on the propagation 
of elastic waves, Bull. seism. Soc. Am., 68, 987-998. 

Murty, G.S., 1976. Reflection, transmission and attenuation of elastic 
waves at a loosely-bonded interface of two half-spaces, Geophys. 
J. R .  astr. SOC.. 44, 389-404. 

Nagy, P.B., 1992. Ultrasonic classification of imperfect surfaces, 
J .  Nondestr. Eval., 11, 127-139. 

Newmark, N.M., Siess, C.P. & Viest, LM., 1951. Tests and analysis of 
composite beams with incomplete interaction, Proc. Soc. Esp. Stress 
Anal., 9, 75-92. 

Pyrak-Nolte, L.J. & Cook, N.G.W., 1987. Elastic interface waves along 
a fracture, Geophys. Res. Lett., 14, 1017--1110. 

Schoenberg, M., 1980. Elastic wave behaviour across linear slip 
interfaces, J .  acoust. Soc. Am., 68, 1516-1521. 

Schoenberg, M. & Douma, J., 1988. Elastic wave propagation in media 
with parallel fractures and aligned cracks, Geophys. Prospect., 36, 

Sezawa, K. & Kanai, K., 1940. A fault surface or a block absorbs 
seismic wave energy, Bull. Earth Res. Inst. Tokyo, 18, 465-482. 

Sotiropoulos, D.A. & Achenbach, J.D., 1988. Reflection of elastic 
waves by a distribution of coplanar cracks, J.  acoust. Soc. Am., 

Tleukenov, S.K., 1991. Contact conditions of elastic media with a thin 
interlayer, J.  Sou. Math., 55, 1763--1766. (First published in Russian 
in 1988.) 

Yoshioka, N., 1994. Elastic behaviour of contacting surfaces under 
normal loads: a computer simulation using three-dimensional surface 
topographies, J .  geophys. Res., 99, 15 549-15 560. 

571-590. 

84, 752-759. 

0 1996 RAS, G J I  125, 559-566 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/125/2/559/647755 by U

.S. D
epartm

ent of Justice user on 16 August 2022


