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Abstract—The security of spatial modulation (SM) aided net-
works can always be improved by reducing the desired link’s
power at the cost of degrading its bit error ratio performance
and assuming the power consumed to artificial noise (AN)
projection (ANP). We formulate the joint optimization problem
of maximizing the secrecy rate (Max-SR) over the transmit
antenna selection and ANP in the context of secure SM-aided
networks. In order to solve this problem, we provide a pair
of solutions, namely joint and separate solutions. Specifically,
an accurate approximation of the SR is used for reducing the
computational complexity, and the optimal AN covariance matrix
(ANCM) is found by convex optimization for any given active
antenna group (AAG). Then, given a large set of AAGs, simulated
annealing mechanism is invoked for optimizing the choice of
AAG, where the corresponding ANCM is recomputed by this
optimization method as well when the AAG changes. To further
reduce the complexity of the above-mentioned joint optimization,
a low-complexity two-stage separate optimization method is also
proposed. Moreover, when the number of transmit antennas tends
to infinity, the Max-SR problem becomes equivalent to that of
maximizing the ratio of the desired user’s signal-to-interference-
plus-noise ratio to the eavesdropper’s. Thus, our original problem
reduces to a fractional programming problem and a significant
computational complexity reduction can be achieved. Finally, our
simulation results verify the efficiency of the proposed methods
in terms of the SR performance attained.

Index Terms—Spatial modulation, active antenna group selec-
tion, artificial noise, secure transmission, finite-alphabet input.
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AS a promising technique, spatial modulation (SM) [1]
invokes the more general index modulation (IM) concept

for the transmit antennas (TAs) to convey extra information
[2] [3], which has attracted tremendous attention over the
past decade. Recently, SM has shown advantages in terms
of its spectral efficiency versus energy efficiency in various
communication networks, including cooperative, full-duplex,
single/multi-user and cognitive radio systems. Therefore, SM
has become a popular candidate for next-generation systems
[4]–[9]. Due to the broadcast nature of radio propagation, its
security problem has to be considered, since various types of
wireless access devices may overhear the private messages.
Traditionally, the security of a communication system has
been ensured through cryptography and authentication in the
network layer, which often imposes additional computational
complexity for key generation and complex decryption al-
gorithms [10] [11]. However, the key distribution and man-
agement is challenging for large-scale wireless networks.
Nevertheless, physical layer security (PLS) [12]–[14] does not
require a key for ensuring security, where the fundamental
philosophy is to exploit the randomness of communication
channels. Then, the transmitter (Alice) aims for conveying
private information securely to the desired receiver and to keep
the illegitimate receiver as ignorant of the private information
as possible [15]–[17].

To improve the security against an eavesdropper, several
SM-based PLS schemes have been proposed. In [18], a full-
duplex receiver was employed at the desired receiver (Bob),
where Bob receives confidential messages and simultaneously
transmits artificial noise (AN) to corrupt the illegal receiver
(Eve). In [19] and [20], AN was transmitted along the null-
space of the legitimate channel for enhancing its security
without any prior knowledge of Eve’s location. A precoding-
aided SM scheme was proposed in [21] to exploit the index
of receive antennas to convey spatial information, where the
precoding matrix was designed for maximizing the signal-to-
noise ratio (SNR) at the desired receiver, whilst minimizing the
eavesdropper’s SNR. Another interesting proposal of Wu et al.
[22] was that of injecting AN in the null-space of the legitimate
channel to combat passive eavesdroppers. Additionally, several
time-varying mapping schemes were proposed in [23] [24]
to enhance the security of SM systems, where the time-
varying characteristic was the unique channel fading, which
was only known to transmitter and to the legitimate receiver.
Nevertheless, these researches have not considered the effect
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of a varying number of antennas on security.
When the number of TAs is not a power of two, selecting

an active antenna group (AAG) can be adopted to further
improve the security of SM systems [25]–[27]. Although the
AAG selection based on the minimum Euclidean distance
criterion and minimizing the bit-error-rate has drawn consider-
able attention in conventional SM systems [28]–[31], none of
these preceding contributions have considered the presence of
eavesdroppers. Recently, the AAG selection scheme was also
been highlighted as an efficient way of enhancing the security
and creating a secure SM (SSM) network. To be specific,
with the aid of AN, a leakage-based null-space projection
(NSP) method (LNSP) was proposed in [25] operating at
an extremely low-complexity, which achieved an acceptable
secrecy rate (SR) performance. As a powerful measure of
mitigating the computational complexity, the cut-off rate was
invoked in [32] for optimizing the mutual information (MI) or
the channel capacity of SM-based systems. Subsequently, the
authors proposed several low-complexity precoding schemes
for maximizing the cut-off rate and showed impressive perfor-
mance gains. Moreover, the authors in [26] proposed a set of
AAG selection schemes for maximizing the SR, in which the
cut-off rate based scheme shown almost the same SR profit as
that of exhaustive search (ES) over the original SR expression.
However, these AAG selection schemes only considered the
SR performance gain gleaned from channel diversity, which
causes a serious SR performance degradation in the high-SNR
region.

As mentioned, AN was used to improve the SR performance
by directly projecting into the null-space of the legitimate
channel, which was achieved by exploiting its closed-form
expression. However, this approach has its limitations, because
it only allows the AN avoid affecting the detection of the
desired receiver, but dispenses with more holistic considera-
tions. In addition, for circumventing that the size of the AAG
combinations grows exponentially upon increasing the number
of TAs, simulated annealing (SA) [33] [34] was invoked for
reducing the search complexity of this combinatorial opti-
mization problem. The key benefit of SA is that it avoids
convergence to local minima. In this context, we assume that
the rough channel state information (CSI) of the illegal channel
can be obtained at the transmitter, and then exploit the PLS of
an SSM system, where both TA selection and AN design are
invoked for enhancing the security. The main contributions of
this paper can be summarized as follows:

1) To enhance the security of SM systems, a joint AAG
selection and AN projection design problem is formu-
lated. Furthermore, for reducing the complexity of the
original SR expression involving multiple integrals, a
lower bound of the approximate MI (AMI) between
Alice and Bob as well as an upper bound of the
AMI between Alice and Eve are derived to formulate
a concave maximization problem over ANCM for any
given AAG.

2) In order to solve the intractable 0-1 combinatorial opti-
mization problem of AAG selection, the SA mechanism
is invoked for approaching the global optimum. A joint
SA-based maximization of the approximate SR (ASR)

(SA-Max-ASR) is proposed by repeatedly optimizing
the Max-ASR criterion for finding the optimal ANCM
once a new AAG is generated. Additionally, a low-
complexity two-stage separate SA-Max-ASR algorithm
is also proposed.

3) As the number of TAs is increased, the double sum-
mation operation in the ASR expression over the legit-
imate combination of TAs and modulated symbols is
eliminated and a simplified expression is derived. Cor-
respondingly, a low-complexity method of maximizing
the ratio between the signal-to-interference-plus-noise
ratio (SINR) at the desired receiver and that at the
eavesdropper is conceived for efficiently designing the
AAG and the ANCM.

The remainder of this treatise is organized as follows. In
Section II, an SSM system is described and the definition of
its average SR is given. Subsequently, a gradient descend (GD)
based method of optimizing the AN projection matrix (ANPM)
is proposed. In Section III, a closed-form ASR expression is
derived and a concave maximization problem is formulated.
Then an SA-based AAG selection scheme is presented. In
Section IV, a simple optimization objective function (OF) is
derived to replace the original function as the number of
TAs tends to a large value, and a low complexity scheme
is presented. In Section V, both the convergence and the
complexity of the proposed methods is analysed, followed by
our numerical results in Section VI. Finally, Section VII offers
our conclusions.

Notations: Vectors and matrices are represented in boldface.
b·c, ‖ · ‖2, Cnm denote the floor function, the Frobenius norm
and the binomial coefficient, respectively. The superscripts
(·)T and (·)H represent the transpose and the conjugate
transpose operations, respectively. Besides, tr(·), diag(·) and
det(·) denote the trace, the determinant and the diagonal of
a matrix, respectively. E(·) means the expectation operation.
Matrix IN refers to the N -by-N identity matrix. CN (µ, σ2)
implies a complex Gaussian distribution with µ mean and σ2

variance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the SSM system illustrated in Fig. 1, where Nt
transmit antennas (TAs) are employed at Alice, while both
Bob and Eve are equipped with a single antenna. Here, Eve
intends to intercept the confidential messages from Alice to
Bob.

Considering the fact that Nt is not always a power of two, it
becomes necessary to select an AAG choosing Ns = 2blog2Ntc

elements. In accordance with the concept of SM, Alice ac-
tivates one out of Ns antenna indices to convey blog2Ntc
bits of information. Then, blog2Ntc + log2M bits can be
transmitted per channel use in total, where M is the size of the
M-ary classic modulation constellation pointer. Additionally,
it can be observed that there are L = CNsNt possible AAG
combinations. Let us denote the set of all possible AAGs as
C = {C1, C2, · · · , CL}, where Cl (l = 1, · · · , L) denotes the
l-th AAG and each AAG contains Ns TAs.
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Fig. 1. A secure SM system model.

For a given AAG Cl, an SM symbol x associated with AN
is given by

x =
√
P1sji +

√
P2Tn

=
√
P1eibj +

√
P2Tn, (1)

where P1 and P2 represent the power associated with P1 +
P2 = Ps, and Ps denotes the total transmit power. Vector
ei represents the i-th column of INs , which implies that
the i-th (i = 1, · · · , Ns) TA of Cl is activated. Moreover,
bj ∈M = {b1, · · · , bM} is the j-th amplitude phase modula-
tion (APM) symbol in one M-ary constellation. Additionally,
n ∈ CN (0, INs) is the AN vector, and T is the ANPM with
E
(
TTH

)
= Q, where Q is the ANCM and satisfies tr(Q) = 1.

The corresponding signals received at Bob and at Eve are
respectively represented as

yB = hSlx + nB

=
√
P1hleibj +

√
P2hlTn + nB , (2)

yE = gSlx + nE

=
√
P1gleibj +

√
P2glTn + nE , (3)

where Sl is the AAG selection matrix, while hl = hSl ∈
C1×Ns and gl = gSl ∈ C1×Ns are the sub-channels of h and
g that depends on Cl. Furthermore, h ∈ C1×Nt and g ∈ C1×Nt

are the complex channel gain vectors spanning from Alice to
Bob and from Alice to Eve, respectively. Additionally, nB ∈
CN (0, σ2

B) and nE ∈ CN (0, σ2
E) are the independent complex

Gaussian noises at Bob and at Eve. Based upon the received
signal in (2) for a given Cl, the maximum likelihood (ML)

detector may be utilized by Bob to jointly detect the spatial
symbol and the conventional APM symbol, formulated as:

(̂i, ĵ) = arg min
S
|yB −

√
P1hleibj |2, (4)

where S = Cl × M is the super-alphabet set that contains
all possible combinations of the active antennas and the
conventional symbols. As a matter of fact, the joint ML
principle of (4) is the optimal detection since each component
of S has equal probability to be selected [35].

In this context, we assume that Alice has perfect CSI on the
main channel. An accurate CSI estimate of the channel from
Alice to Bob may be derived by using training sequences,
which is then sent back to the transmitter through dedicated
feedback links [17]. Additionally, it is also assumed that Alice
can obtain a rough CSI estimate of the eavesdropper’s channel,
which corresponds to the scenario that Eve is an active user
in wireless networks. According to [36] [37], the additive
uncertainty model for the CSI of Eve at Alice is given by

g = g̃ + ∆g, (5)

where g̃ is the estimated channel of g ∼ CN (0, I), and ∆g
is the corresponding estimation error, which is assumed to
be a zero-mean Gaussian random variable associated with the
covariance of σ2

e ∈ (0, 1), i.e., we have ∆g ∼ CN (0, σ2
eI). It

is worth mentioning that, we consider the worst case that g is
perfectly estimated by Eve. In the remainder of this treatise,
we will develop schemes of enhancing the security of such
SSM networks.

In general, the transmit symbol bj is equiprobably drawn
from a discrete M-ary constellation. For a specific channel
realization and fixed Cl, the MI between Alice and Bob can
be expressed as

I(x; yB) = log2NsM−

1

NsM

NsM∑
i=1

EnB

log2

NsM∑
j=1

exp

(
−fb,i,j

P2hlQhHl + σ2
B

) , (6)

where

fb,i,j = |
√
P1hl(xi − xj) + nB |2 − |nB |2, (7)

and x{·} represents a legitimate transmit symbol in the set S.
Similarly, we have the MI between Alice and Eve:

I(x; yE) = log2NsM−

1

NsM

NsM∑
m=1

EnE

{
log2

NsM∑
k=1

exp
(

−fe,m,k
P2glQgHl + σ2

E

)}
, (8)

where

fe,m,k = |
√
P1gl(xm − xk) + nE |2 − |nE |2. (9)

Notably, this work considers the worst case scenario that the
eavesdropper knows the mapping rule of both the modulated
symbols and TA indices, thus the maximal MI can be attained
by Eve. Combining (6) and (8) yields the ergodic SR defined
as

R̄s = Eh,g [I(x; yB)− I(x; yE), 0]
+
, (10)
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where [a]
+=max(a, 0) and R̂s = I(x; yB) − I(x; yE) is the

instantaneous SR for a specific channel realization. Similar
to [38], we adopt a lower bound on R̂s to formulate a
corresponding optimization problem in the face of having a
random CSI error of ∆g, where the lower bound is Rs =
I(x; yB) − E∆gI(x; yE). Since the number of TAs is not a
power of two, it is necessary to select an AAG and to design
AN for enhancing the security. The optimization problem of
maximizing the SR (Max-SR) can be cast as

max
sl,Q

Rs (11a)

s.t. tr(Q) = 1, (11b)
Q � 0, (11c)
Nt∑
i=1

si = Ns, (11d)

si ∈ {0, 1} , i = 1, · · · , Nt, (11e)

where si is the i-th element of the AAG vector s ∈ RNt×1.
Mathematically, Ns ’1’ elements are assigned to the diagonal
locations of a Nt×Nt matrix of zeros. For instance, we have
to select 4 TAs to form an AAG when Nt = 6. If the 5-th
AAG of say s5 = {1, 2, 4, 6}, has the optimal SR performance,
the corresponding AAG selection matrix becomes:

S5 = diag(s5)
∆
=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


T

. (12)

For a given Sl, the actual effective sub-channel spanning from
Alice to Bob is hl = hSl. Similarly, the sub-channel from
Alice to Eve is gl = gSl. Observe from (11) that the optimiza-
tion problem is a mixed integer programming problem, where
(11b) and (11c) are continuous constraints whereas (11d) and
(11e) are 0-1 integer constraints. More particularly, due to
the constraints (11d) and (11e), the optimization problem in
(11) is an NP-hard problem, hence it requires an excessive
search complexity to find the optimal subset of maximizing
Rs. Additionally, the OF is non-convex and it is not in closed-
form, thus it is a challenging task to solve problem (11).

III. AAG SELECTION AND AN DESIGN FOR MAXIMIZING
THE SR PERFORMANCE

In this section, a GD-based method is first presented to
design the ANPM, where ES is adopted to find the optimal
AAG. This scheme is used as our benchmark. Then, a joint
SA-Max-ASR scheme of AAG and ANCM is proposed to
achieve a high SR performance. However, to reduce the
complexity, a low-complexity separate SA-Max-ASR scheme
is also proposed at the cost of a slight performance loss.

A. GD-based design of AN projection matrix

Due to the non-convexity of the OF Rs, obtaining a closed-
form solution for (11) becomes intractable. However, it is
natural to adopt numerical algorithms to search for local
maxima of the OF such as GD. Given a fixed Sl, T can
be optimized first, and then averaged over all possible AAGs

Algorithm 1 Numerical search for maximizing SR (ES plus
GD)

1: List all possible Sl, l = (1, · · · , L).
2: For l = 1 : L
3: Initial T1 with constraint tr(T1TH1 ) = 1. Set step size µ

and minimum tolerance µmin.
4: Set k = 1, calculate Rs(k) = Rs(Sl,T1).
5: If µ ≥ µmin goto step 6, otherwise stop algorithm and

return Tk.
6: Calculate T′k = Tk + µ∇TkRs(Sl), and normalize T′k.
7: Calculate R′s = Rs(T′k).
8: If R′s ≥ Rs(Tk), update Rs(k+1) = R′s and Tk+1 = T′k,

then goto step 9; Otherwise, µ = µ/2 and goto step 5.
9: k = k + 1 goto step 6.

10: Storing R(l) = [Rs,k+1,Tk+1].
11: End
12: Output [S∗,T∗] = arg max

l
R(l).

to find the best Sl and T. The optimization problem can be
rewritten as

max
T

Rs (Sl) (13a)

s.t. tr(TTH) = 1. (13b)

Accordingly, the Lagrangian function can be directly written
as:

L (T, λ) = −Rs (Sl) + λ
[
tr(TTH)− 1

]
, (14)

where λ is the Lagrange multiplier. Then, the GD-based
method can be applied to solve this optimization problem and
its detailed process is illustrated in Algorithm 1. By taking the
gradient of Rs (Sl) with respect to T and setting it to zero,
we have

−∇TRs (Sl) + λT = 0, (15)

where ∇TRs (Sl) is shown in (16), and

κE =

NsM∑
k=1

exp

(
−fe,m,k

P2(g̃l + ∆gl)TTH(g̃l + ∆gl)H + σ2
E

)
,

(17)

κB =

NsM∑
j=1

exp

(
−fb,i,j

P2hlTTHhHl + σ2
B

)
. (18)

Next, by substituting (17) and (18) into (16), the ES plus GD
method shown in Algorithm 1 can be exploited to obtain Sl
and T numerically. Hence, Algorithm 1 can be guaranteed to
converge to a local optimum. Finally, a near-optimal S∗ and
T∗ may be obtained by repeating Algorithm 1 using a number
of distinct initializations.

B. Proposed joint SA-Max-ASR optimization of AAG and
ANCM

In the preceding subsection, the variables S and T were
obtained by numerical search algorithm, which involves a large
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∇TRs(Sl) =
1

ln2 ·NsM
×{

NsM∑
m=1

E∆gl,nE

(
1

κE

NsM∑
k=1

(
P2fe,m,k(g̃l + ∆gl)H(g̃l + ∆gl)T(

P2(g̃l + ∆gl)TTH(g̃l + ∆gl)H + σ2
E

)2
)

exp

(
−fe,m,k

P2(g̃l + ∆gl)TTH(g̃l + ∆gl)H + σ2
E

))

−
NsM∑
i=1

EnB

 1

κB

NsM∑
j=1

(
P2fb,i,jhHl hlT(

P2hlTTHhHl + σ2
B

)2
)

exp

(
−fb,i,j

P2hlTTHhHl + σ2
B

) (16)

number of SR evaluations and combinations, when Nt is large.
Hence, it only can be used as a performance benchmark for
small-scale scenarios. In what follows, we will present a lower
complexity algorithm for optimizing S and Q = E(TTH),
which has the capability to approach the SR performance
of Algorithm 1. Once the corresponding optimal solution is
obtained, the ergodic SR is evaluated by (10). We circumvent
the difficulty by avoiding the calculation of multiple integrals
in the SR expression, where the corresponding approximate
MI (AMI) is given by

IaB(Sl,Q) = ζ − log2

NsM∑
i=1

NsM∑
j=1

exp

(
−P1dHijhHl hldij

4
(
P2hlQhHl + σ2

B

)) ,
(19)

where ζ = 2log2NsM and dij = xi−xj . Similarly, the AMI
for Eve is given by

IaE(Sl,Q) = ζ − E∆gl log2

NsM∑
m=1

NsM∑
k=1

exp

 −P1dHmk (g̃l + ∆gl)
H

(g̃l + ∆gl) dmk
4
(
P2 (g̃l + ∆gl) Q (g̃l + ∆gl)

H
+ σ2

E

)
 , (20)

where dmk = xm−xk. For a similar derivation process please
refer to the Appendix A of [39]. Then, upon replacing Rs by
(19) and (20), the ASR with a given AAG becomes

Ras(Sl,Q) = E(Sl,Q)−B(Sl,Q), (21)

where

E(Sl,Q) = E∆gl log2

NsM∑
m=1

NsM∑
k=1

exp

 −P1dHmk (g̃l + ∆gl)
H

(g̃l + ∆gl) dmk
4
(
P2 (g̃l + ∆gl) Q (g̃l + ∆gl)

H
+ σ2

E

)
 ,

(22)

B(Sl,Q) = log2

NsM∑
i=1

NsM∑
j=1

exp

(
−P1dHijhHl hldij

4
(
P2hlQhHl + σ2

B

)) .
(23)

It is noteworthy that replacing (6) by the AMI (19) is an
efficient way of reducing the computational complexity [39].

Via applying Jensen’s inequality, (22) can be lower bounded
as

E∆glog2

NsM∑
m=1

NsM∑
k=1

exp −P1dHmk (g̃l + ∆gl)
H

(g̃l + ∆gl) dmk
4
(
P2 (g̃l + ∆gl) Q (g̃l + ∆gl)

H
+ σ2

E

)
 ≥

log2

NsM∑
m=1

NsM∑
k=1

exp

E∆g

 −P1dHmk (g̃l + ∆gl)
H

(g̃l + ∆gl) dmk
4
(
P2 (g̃l + ∆gl) Q (g̃l + ∆gl)

H
+ σ2

E

)
 . (24)

According to [40] and [41], the following effective approxi-
mation can be adopted:

E∆g
−P1dHmk (g̃l + ∆gl)

H
(g̃l + ∆gl) dmk

4
(
P2 (g̃l + ∆gl) Q (g̃l + ∆gl)

H
+ σ2

E

) ≈
−P1E∆g

(
dHmk (g̃l + ∆gl)

H
(g̃l + ∆gl) dmk

)
4
(
P2E∆g

(
(g̃l + ∆gl) Q (g̃l + ∆gl)

H
)

+ σ2
E

) . (25)

Then, E(Sl,Q) can be rewritten as

Ẽ(Sl,Q) =

log2

NsM∑
m=1

NsM∑
k=1

exp

−P1

(
dHmk(g̃Hl g̃l + σ2

eI)dmk
)

4
(
P2g̃lQg̃Hl + σ2

eP2 + σ2
E

)
 .

(26)

Next, let us define a closed-form expression for the ASR as
follows

RA(Sl,Q) = Ẽ(Sl,Q)−B(Sl,Q). (27)

Therefore, the optimization problem in (11) can be converted
into

max
Sl,Q

RA(Sl,Q) (28a)

s.t. tr(Q) = 1,Q � 0, (28b)
Nt∑
i=1

si = Ns, (28c)

si ∈ {0, 1} , i = 1, · · · , Nt. (28d)

However, (28a) is still a non-concave function of the contin-
uous optimization variable Q � 0 with a fixed Sl. Next we
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convert RA(Sl,Q) into a concave function, so that a unique
solution Q can be obtained.

To elaborate, we first derive a convex function as an upper
bound of B(Sl,Q). Due to the fact that the concave function
of

Bij(Sl,Q) =
−Aij

hlQhHl + b
(29)

can be upper bounded by its first-order approximation
B

(1)
ij (Sl,Q) , i.e., its tangent at point Q0, thus we have

Bij(Sl,Q) ≤ B(1)
ij (Sl,Q)

∆
=

−Aij
hlQ0hHl + b

+ tr

{
AijhHl hl(

hlQ0hHl + b
)2 (Q−Q0)

}
, (30)

where Aij = P1dHijhHl hldij/4P2 and b = σ2
B/P2. The in-

equality (30) holds due to Aij ≥ 0 and b > 0. Substituting the
above inequality into (23), we have the following inequality

B(Sl,Q) ≤ B̃(Sl,Q) = log2

NsM∑
i=1

NsM∑
j=1

exp
(
B

(1)
ij (Sl,Q)

)
,

(31)

where B(1)
ij (Sl,Q) is a linear function of Q. It is plausible that

B̃(Sl,Q) is convex and it is also an upper bound of B(Sl,Q).
At the same time, considering that B(Sl,Q) is always larger
than or equal to 0, B(Sl,Q) can be further upper bounded as

B(Sl,Q) ≤ B′(Sl,Q) = max
{
B̃(Sl,Q), 0

}
. (32)

In the following, a concave function related to the lower
bound of E(Q) is also derived. Firstly, we reformulate the
exponential function at a feasible point Q0, given by

exp

(
−Cmk

g̃lQg̃Hl + c

)
≥ E(1)

mk(Sl,Q)

∆
= exp

(
−Cmk

g̃lQ0g̃Hl + c

)(
1 +

Cmk

g̃lQ0g̃Hl + c
− Cmk

g̃lQg̃Hl + c

)
,

(33)

where

Cmk =
P1dHmk

(
g̃Hl g̃l + σ2

eI
)

dmk
4P2

, (34)

and c = σ2
e + σ2

E/P2. Explicitly, E(1)
mk(Sl,Q) is a concave

function of Q. Note that E(1)
mk(Sl,Q) can be negative, hence

we extend the domain of log2(x) to the field of real numbers,
given by

˙log2(x) =

{
log2(x), x > 0
−∞ , x ≤ 0

. (35)

Using the inequality (33), we rewrite Ẽ(Sl,Q) with the aid of
a lower bound as follows

Ẽ(Sl,Q) ≥ Ē(Sl,Q) = ˙log2

NsM∑
m=1

NsM∑
k=1

E
(1)
mk(Q). (36)

Meanwhile, upon considering that Ē(Q) is less than
2log2NsM and taking into account (36), we have

Ẽ(Sl,Q) ≥ E′(Sl,Q) = min
{
Ē(Sl,Q), 2log2NsM

}
,
(37)

where E′(Sl,Q) is a point-wise maximum of a concave
function and a constant, and thus it is also a concave function
of Q for a given Sl. By replacing E′(Sl,Q) and B′(Sl,Q) with
Ẽ(Sl,Q) and B(Sl,Q) respectively, a concave maximization
problem can be formulated for Q as follows:

max
Sl,Q

Rcs(Sl,Q) = E′(Sl,Q)−B′(Sl,Q) (38a)

s.t. tr(Q) = 1,Q � 0. (38b)

Then, the optimal Q for (38) can be obtained iteratively with
a random given feasible point.

Remark 1: Based upon (19)-(37), the OF in (11) has
been transformed into a concave function with respect to Q.
Generally, obtaining the optimal solution of (11) is infeasible,
since the SR cannot be performed in a closed form, when
finite-alphabet inputs are considered. To this end, we invoked
two approximations: firstly, we used the ASR for eliminating
the expectations over nB and nE , and secondly, we adopted
a loose approximation in (25) to circumvent the calculation
of the expectation over ∆g. Importantly, the efficiency of
using our ASR expression to substitute the SR term has been
demonstrated in [26] [39]. Moreover, the efficiency of the
loose approximation adopted has also been verified in [40]
[41]. Due to the approximation error, the bound derived in
(38a) is not tight, hence the solution obtained is suboptimal
for problem (11).

In the above section, we converted the continuous optimiza-
tion problem into a concave one, thus a unique solution Q can
be obtained for any given Sl (l = 1, · · · , L). Next we focus
our attention on solving the 0-1 programming problem for
AAG selection. As it is widely known, in contrast to GD, SA
explores the entire search space in a random guided fashion
by sometimes degrading the OF value in an attempt to avoid
getting trapped in local minima. In other words, the SA method
iterates by perturbing the current configuration and measuring
the change in cost. When the change in cost is positive, the
new AAG is automatically accepted, otherwise the probability
of accepting the OF reduction is calculated by evaluating the
so-called Boltzmann factor Ck. If this probability is higher
than a random number in the interval [0, 1), the new AAG
is accepted, otherwise, it is rejected. This acceptance rule,
namely the ’Metropolitan’, can be expressed as [33]

min
{

1, exp
(
Rcs(Sl,Q)−Rcs(Sol ,Q

o)

C0

)}
> η, (39)

where Sol is a random neighbour AAG of the current Sl and
Qo is the corresponding ANCM computed by (38), while C0

is the initial control parameter associated with C0 > 0 and
η ∈ [0, 1).

The proposed SA-based AAG selection scheme includes the
following procedures: 1) generate neighbour AAG to impose
a perturbation, 2) stochastic motion to avoid getting trapped
in local maxima, 3) reduce the mutation parameter Ck to
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Algorithm 2 Joint AAG selection and AN design for maxi-
mizing ASR (Joint SA-Max-ASR)

1: Given an initial AAG vector s ∈ C;
Initialization of simulation mutation parameters C0 >
Cf > 0;
Set an iterative counter k = 0 and give a sampling number
S.

2: Mutation process:
1). Generating a random solution s′ ∈ N(s), and evaluat-
ing 4R = Rcs(s′)−Rcs(s).
2). If ’Metropolis criterion’ is satisfied, i.e., min
{1, exp(4R/Ck)} > η ∈ [0, 1), then s = s′.
3). If ’Metropolis equilibrium’ under Ck is realized, then
go to 3; Otherwise, go to Step 2.1.

3: Integer sampling process:
1). Evaluate Rcs(s).
2). Give a temporary set V = s, and set Rcpre = Rcs(s).
3). Select a solution s′ ∈ (N(s)− V ) randomly, and V =
V ∪ {s′}; Evaluating 4R = Rcs(s′)−Rcs(s).
4). If 4R > 0, then s = s′.
5). If |V | = S, then go to Step 3.6; else go to Step 3.3.
6). If Rcs(s) > Rcpre, then go to Step 3.2; else go to Step
4.

4: Annealing process: reducing simulation mutation param-
eter Ck+1 = Ck −4Ck, 4Ck > 0.

5: If ’stop criterion’ is not satisfied, i.e., Ck > Cf , then
setting k = k+1, go to Step 2; otherwise, output: sopt = s.

6: End

increase the search precision. To elaborate a little further,
procedure 2) invokes the ’Metropolis equilibrium’ criterion to
terminate the stochastic motion, when a predetermined number
of perturbations is completed. Let us denote the set of optimal
points as

Sopt = {Sl = diag (sopt) : Rcs(sopt) ≥ Rcs(s), s ∈ C} , (40)

and N(s) ∈ C is the neighborhood of the solution s. Together
with (38), the proposed joint SA-Max-ASR scheme using SA
is listed in Algorithm 2, where Rcs(s) denotes Rcs(Sl,Q) for
simplicity.

More explicitly, Algorithm 2 combines the mutation process
and self-reproduction strategy into an evolutionary process
for approaching the optimum AAG. This search process is
performed repeatedly upon the self-reproduction processes
and annealing strategy, where the self-reproduction processes
search within the immediate neighborhood for an improved
solution. Algorithm 2 always starts with a random AAG
in reach for a local minimum and then escapes from the
suboptimal local ’traps’. To generate a random neighborhood
AAG vector s′ ∈ N(s) in Step 2.1 of Algorithm 2, the
neighborhood sampling technique of Procedure 1 is proposed.
The initial AAG vector s contains Ns ’1’ elements and Nt−Ns
’0’ elements, where the function Randint[n1, n2] means that
a uniformly distributed integer is randomly generated from
the interval [n1, n2]. Procedure 1 ensures that the number of
elements ’1’ of s′ equals to Ns.

Procedure 1 Generating neighborhood AAG vector

1: Given s = (s1, · · · , sNt) with
∑Nt
i=1 si = Ns.

2: Find the indexes with 1 elements and 0 elements of
s, and put them in I1 = (e1, · · · , eNs) and I0 =
(j1, · · · , jNt−Ns), respectively.

3: Setting r1 = Randint[1, Ns], r0 = Randint[1, Nt −Ns].
4: Setting sI1(r1) = 0 and sI0(r0) = 1.
5: s′ = (s1, · · · , sI1(r1), · · · , sI0(r0), · · · , sNt).
6: return

As shown in Algorithm 2, the implementation of the pro-
posed SA-based AAG selection scheme requires the design of
the following two distinct processes. The first is the process
of generating a new solution by Procedure 1, which exploits a
specific generation mechanism and compares the two solutions
in term of their cost. Then a decision is made as to whether
or not the new AAG could be accepted. The other process is
the evolution control strategy, which requires an initial value
of the mutation parameter and a decrement function of the
mutation parameter. Remarkably, the annealing process was
found to constantly decrease the mutation parameter Ck until
it reaches the ’stop criterion’, namely the optimum level Cf .

C. Separate optimization of AAG by SA and of the ANCM by
Max-ASR (Separate SA-Max-ASR)

Similar to [25], the following low complexity method is
proposed for separately optimizing Sl and Q. Considering
that MI is originated from the active TA indices and APM
symbols of the SM system, thus the AAG may be optimized
before designing Q. Once the AAG has been determined, the
corresponding Q is optimized by (38). According to [26], the
ASR in terms of the AAG is

Rss = Ise − Isb , (41)

where Ise is the approximate rate in terms of the AAG for Eve
on the face of a realistic channel estimation error, given by

Ise = log2

NsM∑
m=1

NsM∑
k=1

exp

(
−P1dHmk(g̃Hl g̃l + σ2

eI)dmk
4σ2

E

)
.

(42)

Similarly, the approximate rate of Bob can be expressed as

Isb = log2

NsM∑
i=1

NsM∑
j=1

exp

(
−P1dHijhHl hldij

4σ2
B

)
. (43)

In order to reduce the computational complexity, the repeated
calculations can be avoided by defining a pair of upper
triangular matrices, UB ∈ RNt×Nt and UE ∈ RNt×Nt , whose
(u, v)-th entry is respectively given by

bu,v =


∑

m,n∈M
exp

(
−P1|husm−hvsn|2

4σ2
B

)
, u < v∑

m 6=n∈M
exp

(
−P1|hu|2|sm−sn|2

4σ2
B

)
, u = v,m > n,

(44)
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eu,v =
∑

m,n∈M
exp

(
−P1|(|gu|2+σ2

e)sm−(|gv|2+σ2
e)sn|2

4σ2
B

)
, u < v∑

m 6=n∈M
exp

(
−P1(|gu|2+σ2

e)|sm−sn|2
4σ2
B

)
, u = v,m > n.

(45)

Upon UB and UE , the AAG associated with the highest SR
can be promptly found by utilizing the SA strategy, upon
replacing the OF Rcs(s) by

Rss = log2DE − log2DB (46)

in Algorithm 2, where DE and DB are the summations
of sub-triangular entries corresponding to the selected AAG,
respectively. Once the AAG is obtained, the corresponding
Q is designed by (38). The separate optimization scheme
dramatically reduces the complexity, because the procedure of
designing Q is avoided as the AAG changes. Our simulation
results will show that this decoupled design strategy strikes a
compelling performance versus complexity tradeoff.

IV. ASYMPTOTIC SIMPLE EQUIVALENCE OF SR IN
LARGE-SCALE SCENARIO AND ASSOCIATED OPTIMIZATION

The proposed joint and separate SA-Max-ASR optimization
schemes of Subsections III-B and III-C possess low com-
plexities compared to the direct of Max-SR optimization of
Algorithm 1. However, it may still be a complex task as Nt
tends to large values, because the computational complexity
of the iterative algorithm grows exponentially upon increasing
the number of TAs. With this motivation, we provide a new
method that removes the two-layer sum over the legitimate
transmit vectors of S, hence dramatically reducing the com-
putational complexity.

Theorem 1: As the number of TAs tends to a large scale,
the optimization problem of maximizing the SR of (27) can
be reduced to maximizing the ratio of the SINR at the desired
receiver to that at eavesdropper (Max-R-SINR) as follows

max
Q

R′L(Sl,Q) (47a)

s.t. tr(Q) = 1,Q � 0, (47b)
Nt∑
i=1

si = Ns, (47c)

si ∈ {0, 1} , i = 1, · · · , Nt, (47d)

where we have:

R′L(Sl,Q) =
‖hl‖2

(
P2g̃lQg̃Hl + σ′2E

)
(‖g̃l‖2 +Nsσ2

e)
(
P2hlQhHl + σ2

B

) . (48)

Proof: See Appendix A. �
Remark 2: Upon comparing R′L(Sl,Q) to (27), the key

benefit of using R′L(Sl,Q) to substitute (27) is that the double
summation of legitimate transmit symbols is removed from
the OF for large-scale SSM systems. This can be explained
as follows: Having a large number of independently fading
communication channels provides a high diversity gain, hence
the transmit symbols have a rather negligible effect on the re-
ceived energy of the desired receiver and of the eavesdropper.

As a result, the optimization problem can be translated into
an energy maximization problem that is only related to the
communication channels.

Noting that the OF in (47a) is a linear fractional function
and always non-convex, in accordance with the technique in
[42], the problem can be rewritten for a given Cl as

max
Q

SE(Q)− λSB(Q) (49a)

s.t. Q � 0, (49b)
tr(Q) = 1, (49c)

where

SE(Q) = P2g̃lQg̃Hl + σ′2E , (50)

SB(Q) = P2hlQhHl + σ2
B , (51)

and λ is an auxiliary variable, which is iteratively updated by

λ[t+ 1] =
SE(Q[t])

SB(Q[t]
, (52)

where t is the iteration index. It has been shown in [42] that the
convergence is guaranteed by alternatively updating λ using
(52) and solving it for Q with the aid of (49), because λ is
nondecreasing after each iteration.

Upon replacing Rcs(Sl,Q) by R′L(Sl,Q), the SA-based
AAG selection can solve the mixed integer optimization prob-
lem using Algorithm 2. Nevertheless, its complexity may still
be excessive, because Q is determined by a series of iterations
once the AAG changes, and the number of changes is always
high. In view of this, it is necessary to design a method that
can promptly find a potential AAG to improve the security.
Upon assuming Q∗l is the optimal ANCM for the l-th AAG,
we have

max
Sl

‖hl‖2
(
P2g̃lQ

∗
l g̃Hl + σ′2E

)
(‖g̃l‖2 + σ2

eNs)
(
P2hlQ∗l hHl + σ2

B

) =

max
Sl

‖hl‖2

(‖g̃l‖2 + σ2
eNs)

tr
(

(g̃Hl g̃l + ψEI)Q∗l
)

tr
(
hHl hl + ψBI)Q∗l

) , (53)

where ψE = σ′2E/P2 and ψB = σ2
B/P2. According to [42]

[43], (53) is non-convex and hence no closed-form solution
exists. However, such a trace ratio problem can be transformed
into a simpler ratio tracing problem by sacrificing some of the
accuracy. Then, it becomes equivalent to the determinant ratio
problem of [44],

‖hl|2

(‖g̃l‖2 + σ2
eNs)

 det
(

(g̃Hl g̃l + ψEI)Q∗l
)

det
((

hHl hl + ψBI
)

Q∗l
)


=
‖hl‖2

(‖g̃l‖2 + σ2
eNs)

det
(

(g̃Hl g̃l + ψEI)
)

det
((

hHl hl + ψBI
))
 (54)

=
‖hl‖2

(
ψNsE + ψNs−1

E ‖g̃l‖2
)

(‖g̃l‖2 + σ2
eNs)

(
ψNsB + ψNs−1

B ‖hl‖2
) . (55)
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Equation (54) holds as a result of det(AB) = det(A) ·det(B)
when the square matrices A and B have the same size. Thus
the optimization problem can be further reduced to

max
Sl

‖hl‖2
(
ψNsE + ψNs−1

E ‖g̃l‖2
)

(‖g̃l‖2 + σ2
eNs)

(
ψNsB + ψNs−1

B ‖hl‖2
) (56a)

Nt∑
i=1

si = Ns, (56b)

si ∈ {0, 1} , i = 1, · · · , Nt. (56c)

In this way, the AAG can be pre-determined before designing
Q, and the complexity will be dramatically reduced, hence
the algorithm can be applied in real-time situations. Once the
AAG is determined, the corresponding Q∗ is obtained by (49).

V. CONVERGENCE AND COMPLEXITY ANALYSIS

In this section, we investigate the convergence of the
proposed SA-based AAG selection scheme. It is noted that
the continuous optimization problem of Q is converted into a
concave form for any given AAG, thus Q is optimal during
the evolution process of AAG.

A. Proof of Convergence

As shown in Algorithm 2, the proposed SA-based AAG
selection algorithm can be viewed as a stochastic process,
where the outcome of each iteration strictly depends on the
outcome of the previous iteration. Hence, we model and
analyze the SA-based AAG selection method using the theory
of finite Markov chains.

In [45], the authors have demonstrated that the Markov
chain associated with our SA-based 0-1 programming problem
exhibits a strong Markov-like properties, and the condition of
asymptotical convergence in the homogeneous case of

∀s, s′ ∈ C,∃ p > 1,∃ s0, s1, · · · , sp ∈ C,with
s0 = s, sp = s′, and Gcsk,sk+1

> 0, k = 0, · · · , p− 1, (57)

where Gcss′ stands for the generation probability corresponding
to the integer sampling procedure of Algorithm 2.

Lemma 1. The generation probability of Gcs,s′ is equal to

Gcs,s′ =

{ 1
NsNt−N2

s
s′ ∈ C

0 s′ /∈ C
(58)

with s, s′ ∈ C.
Proof: A neighborhood AAG vector s′ ∈ N(s) of a given

AAG vector s ∈ C is close to s with

N(s) = {s′ ∈ C : s′ is constructed by randomly removing one
TA in I1 and meanwhile randomly activating
one silent TA in I0} , (59)

where I1 and I0 are the active TA index sets of the current
AAG and of the silent TAs, respectively. The integer neigh-
borhood sampling procedure randomly deactivates an active
antenna in I1, and randomly activates a silent antenna in I0 at
the same time. Therefore the size of neighborhoods is

|N(s)| = Ns(Nt −Ns), (60)

which completes the proof of Lemma 1. �
Theorem 2: The proposed SA-based AAG selection method

of maximizing Rcs(s) converges asymptotically to the globally
optimal sopt, where the generation probabilities Gcs,s′ given in
(58) asymptotically satisfy the condition in (57) from a global
viewpoint.

Proof: See Appendix B. �
For any Sl, the optimal solution Q of Rcs can be obtained as

a benefit of its concavity. Upon combining it with the proposed
SA-based AAG selection method, we can conclude that our
proposed joint Max-ASR scheme can approach the globally
optimal Sl and Q.

B. Complexity Analysis

In this subsection, the complexities of the different algo-
rithms are calculated in terms of the number of floating-
operations (FLOPs). For the direct solution in Algorithm 1,
the computational and search complexity is excessive because
a large number of sample points (Nsamp ≥ 500) for ∆gl, nB
and nE are required to evaluate the accurate SR. The total
number of FLOPs of the ES plus GD method of Algorithm 1
can be expressed as

OES plus GD = 3LNsampD1N
2
sM

2
(
4N3

s + 7N2
s +Ns + 6

)
,

(61)

where D1 is the number of iterations for Algorithm 1. It
is remarkable that L will become significantly large as Nt
increases.

For our proposed joint SA-Max-ASR in Algorithm 2, the
complexity is imposed by three parts: the annealing process,
solving the concave maximization problem and the sampling
procedure. The complexity of solving problem (38) each time
is [40]

CQ =2M2N2
s (3N3

s + 4N2
s ) +O

[
N4.5
s ln(1/ε)

]
, (62)

where the first term denotes the complexity of calculating
(38a). Therefore, the total complexity of the joint SA-Max-
ASR can be expressed as

OJoint SA-Max-ASR = KSD2

[
CQ + 2M2N2

s (2N3
s + 3N2

s )
]
,

(63)

where D2 denotes the number of iterations required for solving
(38), K is the number of mutations necessitated for reaching
the termination threshold Cf and S is the size of the samples
in Algorithm 2.

For the separate SA-Max-ASR scheme, the pair of matrices
DB and DE have to be calculated firstly, which requires about
M2

(
N2
t +Nt

)
FlOPs. Adding the above complexities and

including that of the SA algorithm for finding the AAG, the
total complexity of the separate SA-Max-ASR optimization is

OSeparate SA-Max-ASR = D2CQ +KSM2
(
N2
t +Nt

)
. (64)

Once DB and DE have been calculated, the SA-based al-
gorithm can be used for rapidly finding the optimal AAGs
because only some summation operations are required for the
sub-matrices. Moreover, the problem in (38) only has to be
solved once in the separate SA-Max-ASR scheme, thus the
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computational cost will be dramatically reduced. Based upon
the above complexity analysis, it can be observed that the
complexity of the proposed joint and separate SA-Max-ASR
optimization schemes are much lower than that of Algorithm
1 due to having Nsamp � Ns and L� KS.

For the large-scale SSM system, the optimization OF is
converted into the ratio of SINRB to SINRE . The complexity
of the Max-R-SINR optimization can be approximated as [46]

OMax-R-SINR ≈ nD3O(N3.5
s ) + 4KSNs, (65)

where D3 is the number of iterations required for solving (49).
Compared to the joint SA-Max-ASR, the complexity of the
separate SA-Max-ASR optimization reduced to the order of
O(N4.5

s ). In large-scale scenarios, our proposed Max-R-SINR
optimization method only requires about O(N3.5

s ) FLOPs
to optimize the variable Q, which dramatically reduces the
computational complexity.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, numerical simulation results are presented
for evaluating the SR performance of the proposed methods,
where the LNSP method of [25] and a generalized method
of [47], which aims for maximizing the ratio of the received
AN’s power of Eve to that of Bob, namely GMax-R-PAN
method, are used as our performance benchmarks. Specifically,
the system parameters are set as follows: Ps = Ns and Cf =
0.001, the termination condition for all algorithms is set to
ε = 0.001 and the initial mutation parameter C0 is computed
according to [48]. The noise levels at the desired receiver and
at the eavesdropping receiver are assumed to be identical, i.e.,
σ2
B = σ2

E . Additionally, the ergodic SR is averaged over 500
channel realizations according to (10).
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Fig. 2. Achievable SR versus SNR with Nt = 7, Ns = 4, and σ2
e = 0.25,

and the modulation scheme is QPSK.

Fig. 2 plots the achievable SR of the proposed joint and
separate SA-Max-ASR optimization methods versus the SNR
with σ2

e = 0.25. It can be seen from this figure that the
proposed methods achieve higher SR performance gains than
both the LNSP method of [25] and GMax-R-PAN method of

[47]. To be specific, the commonly-used NSP method imposes
a serious SR performance loss, because it only considers the
interference signal without giving cognizance to the entire
secure SM network as a whole. Moreover, the GMax-R-PAN
method ignores the effect of the phases of the legitimate
symbols on security, which thus results in a SR performance
degradation. Additionally, the SR performance of the joint
SA-Max-ASR optimization is close to that of ES plus GD
scheme, in which 5 random initializations of T are repeated for
Algorithm 1. Remarkably, the separate SA-Max-ASR performs
slightly worse than the joint method, while it has a much lower
complexity. Hence, it strikes a beneficial performance versus
complexity tradeoff.
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Fig. 3. Comparison of achievable SR versus SNR in the case of Nt = 15
and Ns = 8, where (a) σ2

e = 0.1 and (b) σ2
e = 0.5.

Fig. 3 shows the achievable SR of the proposed joint and
separate SA-Max-ASR optimization methods for Nt = 15 and
Ns = 8 with σ2

e = 0.1 and 0.5, respectively. Due to the
prohibitive complexity (L = 6435), we do not consider the
performance curve of Algorithm 1 in Fig. 3 for comparison.
It becomes evident from Fig. 3 (a) that the SR of our proposed
separate SA-Max-ASR optimization is close to that of the
joint SA-Max-ASR scheme. Additionally, Fig. 3 (b) shows
that the SR performance of our proposed methods is better
than that of the LNSP method regardless of the estimation
error of the illegitimate channel. Specifically, Fig. 4 shows the
evolution process of the achievable SR versus the number of
iterations for our proposed joint SA-Max-ASR optimization
both at SNR=0dB and 10dB, respectively. Observing the two
sub-figures, it follows that the SR performance of the joint
SA-Max-ASR optimization eventually converges to a stable
level exhibiting slight regional oscillations. In other words, the
convergence of the proposed joint SA-Max-ASR scheme can
be ensured as a benefit of having a probability of accepting a
new generated AAG upon decreasing Ck.

Let us now consider the SR performance of the proposed
Max-R-SINR optimization scheme. Fig. 5 (a) shows the
achievable SR versus SNR for Nt = 100 and Ns = 64 with
σ2
e = 0.25. In this case, we let the improvements along the
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Fig. 4. Evolution of the achievable SR upon increasing the number of
iterations at SNR=0dB and SNR=10dB, using the same configurations as in
Fig. 3 (a).
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Fig. 5. (a) Achievable SR versus SNR and (b) evolution of the SR with
respect to D3, where Nt = 100, Ns = 64, σ2

e = 0.25 and the modulation
scheme is QPSK.

gradients to reach the steepest descent (i.e., |V | = |N(s)|)
in SA. Observe that the proposed Max-R-SINR scheme is
capable of providing a significant SR performance benefit
over the LNSP scheme. In addition, the GMax-R-PAN method
achieves a similar SR performance to our proposed Max-
R-SINR scheme in the high-SNR region. As a matter of
fact, our proposed Max-R-SINR scheme can be approximated
by the GMax-R-PAN method, as σ2

B → 0 and σ2
E → 0.

However, the GMax-R-PAN is a heuristic scheme, which lacks
theoretical foundation. In particular, the SR performance of our
proposed Max-R-SINR scheme approaches log2NsM = 8 in
the high-SNR region. Correspondingly, Fig. 5 (b) illustrates the
evolution of the SR with respect to D3 for our proposed Max-
R-SINR method at the predefined SNRs of 5dB and 15dB. It
is worth mentioning that a few iterations are sufficient for a
near-optimal ANCM. The results in Fig. 5 verify the efficiency

of the proposed Max-R-SINR scheme.
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Fig. 6. Achievable SR versus the number of TAs for SNR=5dB and 20dB
with σ2

e = 0.5 and σ2
e = 0.8.

Finally, in Fig. 6, we evaluate the accuracy of the proposed
Max-R-SINR method for different number of TAs, where
Nt = 30, 60, 120, 200 are considered and the corresponding
number of active TAs is 16, 32, 64 and 128, respectively. We
observe from Fig. 6 that the SR performance of the proposed
Max-R-SINR is low for the LNSP scheme, when Nt = 30
and σ2

e = 0.8 at SNR=5dB. This is because Nt has to reach a
certain size to fully exploit the advantage of our proposed
Max-R-SINR scheme in terms of its SR. Additionally, it
can be seen that the SR performance of the Max-R-SINR
becomes better than that of the LNSP for Nt ≥ 60, and its
benefit becomes more apparent upon increasing Nt. Specially,
Fig. 6 underlines the merit of Max-R-SINR optimization in
terms of its SR when Nt = 200, albeit σ2

e increases from
0.5 to 0.8. On the other hand, our proposed Max-R-SINR
scheme has a consistently higher SR than the GMax-R-PAN
method, regardless of the specific situation. In summary, we
can conclude that the Max-R-SINR scheme efficiently reduces
the computational cost in large-scale SSM scenarios.

VII. CONCLUSIONS

In this paper, the joint AAG selection and ANCM design
were studied, when only rough partial CSI of Eve is obtained
at transmitter. Due to the high-complexity of the ES plus GD
method, both a joint and a separate SA-Max-ASR optimization
scheme was proposed for optimizing the AAG and ANCM.
Compared to the latter, the former achieves a better SR
performance which is close to that of the ES plus GD method,
while the latter has a lower complexity at the cost of a slight
SR performance loss. To mitigate the complexity of the Max-
ASR method when Nt tends to be large, we conceived the
Max-R-SINR scheme. Our simulation results have quantified
the SR performance gains of our proposed schemes compared
to both the existing LNSP method and GMax-R-PAN method,
and shown the tradeoff between the SR performance and the
complexity. Our future work will focus on optimizing the AAG
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selection matrix and ANCM in the face of both desired channel
and wiretap channel estimation errors.

APPENDIX A
PROOF OF THEOREM 1

Here, we investigate the characteristics of SSM system when
Nt tends to large values. For convenience, let us define the
matrices

ME =
P1(g̃Hl g̃l + σ2

eI)
P2g̃lQg̃Hl + σ′2E

, (66)

MB =
P1hHl hl

P2hlQhHl + σ2
B

. (67)

As Nt → ∞, the components of the channel vector can be
considered to obey the Gaussian distribution. Upon exploiting
that

dHmkMEdmk =

(
P1

P2g̃lQg̃Hl + σ′2E

)
uHDmku, (68)

where Dmk = dmkdHmk, and g̃Hl g̃l+σ2
eI = uuH since g̃Hl g̃l+

σ2
eI is symmetric and normalizing u as a standard Gaussian

distribution ū, we arrive at

(
P1

P2g̃lQg̃Hl + σ′2E

)
uHDmku =

P1tr(uuH)

P2g̃lQg̃Hl + σ′2E
ūHDmkū.

(69)

When m 6= k, the rank of Dmk = (xm − xk)(xm −
xk)H equals to 1 and then Dmk can be rewritten as
Dmk = UHmkdiag(λmk, 0, · · · , 0)Umk, where λmk represents
the unique nonzero eigenvalue of Dmk and Umk is the unitary
matrix whose columns are the eigenvectors of Dmk.

As a further step, the expression (69) may be shown to be
equivalent to

dHmkMEdmk =
P1tr(uuH)

P2g̃lQg̃Hl + σ′2E
λmku

H
ı uı, (m 6= k) , (70)

in which uı is the first element of the vector Umkū. The
components of Umkū still follow the Gaussian distribution
due to the fact that the vectors ū and Umkū have the same



13

statistics. When λmk 6= 0, as Nt(Ns)→∞, we have

lim
Ns→∞

1

Ns
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exp
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4
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uı
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4
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4π
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λmkP1tr(uuH)

. (72)

Upon exploiting that there are NsM possibilities of
dHmkMEdmk (m, k ∈ (1, · · · , NsM)) equal to 0, we can de-
rive expression (77), shown at the top of the previous page,
where λij is the eigenvalue of Dij = (xi − xj)(xi − xj)

H ,
and u is the first component of the vector Uij ū.

It can be inferred from (77) that maximizing RA(Sl,Q) in
(27) for our large-scale SSM system can be further reduced
to maximizing the ratio of SINRB at the desired receiver to
SINRE at the eavesdropper, where we have:

SINRB =
P1tr(hlhHl )

P2hlQhHl + σ2
B

, (78)

SINRE =
P1tr(g̃Hl g̃l + σ2

eI)
P2g̃lQg̃Hl + σ′2E

. (79)

This completes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

It can be seen from Procedure 1 that two components,
ei (i = 1, · · · , Ns) in I1 and jc (c = 1, · · · , Nt − Ns) in
I0 have to be chosen randomly to swap positions, i.e., ei → 0
and jc → 1. The probability for a neighborhood AAG to be
selected equals to 1/(NsNt −N2

s ), thus we have

∀s, s′ ∈ C,∃ p > 1,∃ s0, s1, · · · , sp ∈ C,with
s0 = s, sp = s′, and Gcs,s′ > 0, k = 0, · · · , p− 1. (80)

Consequently, the components of the stationary distribution
q(C) of the Markov chain ξ(C) satisfy

qs(C) = lim
k→∞

P {ξC(k) = s|ξC(0) = s′}

=
|N(s)|exp

(
−Rcs(s)
C

)
∑

s′∈C
|N(s′)|exp

(
−Rcs(s′)

C

) . (81)

Then,

lim
C→0

qs(C) = q∗s =

{ 1
|Sopt| s ∈ Sopt

0 s /∈ Sopt.
(82)

Finally, we have

lim
C→0

lim
k→∞

P {ξC(k) = s} = lim
C→0

qs(C) = q∗s , (83)

or

lim
C→0

lim
k→∞

P {ξC(k) ∈ Sopt} =
∑
s∈Sopt

q∗s = 1, (84)

which completes the proof of Theorem 2.
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