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Abstract

The major contribution of this thesis is on the problem of transmit beamforming to

multiple cochannel multicast groups. Two viewpoints are considered: i) minimizing to-

tal transmission power while guaranteeing a prescribed minimum signal-to-interference-

plus-noise ratio (SINR) at each receiver; and ii) a “fair” approach maximizing the overall

minimum SINR under a total power budget. The core problem is a multicast general-

ization of the multiuser downlink beamforming problem; the difference is that each

transmitted stream is directed to multiple receivers, each with its own channel. Such

generalization is relevant and timely, e.g., in the context of the emerging WiMAX and

UMTS-LTE wireless networks. The joint multicast beamforming problem is in general

NP-hard, motivating the pursuit of computationally efficient quasi-optimal solutions.

In chapter 1, it is shown that semidefinite relaxation coupled with suitable random-

ization / cochannel multicast power control yield computationally efficient high-quality

approximate solutions.

The multicast beamforming problem is revisited in chapter 2 for the important spe-

cial case when the channel vectors are Vandermonde. This arises when a uniform linear

antenna array is used at the transmitter under far-field line-of-sight propagation con-

ditions, as provisioned in 802.16e and related wireless backhaul scenarios. It is shown

that for Vandermonde channel vectors it is possible to recast the optimization in terms

of the autocorrelation sequences of the sought beamvectors, yielding an equivalent con-

vex reformulation. This affords efficient optimal solution using modern interior point

methods. The optimal beamvectors can then be recovered using spectral factorization.

Robust extensions for the case of partial channel state information, where the direction

of each receiver is known to lie in an interval, are also developed. Interestingly, these

also admit convex reformulation.
iv



Chapter 3 considers the joint scheduling, admission, and power control problem under

quality-of-service (QoS) constraints and a general formulation that incorporates multi-

casting, cochannel or orthogonal transmission modalities, and access point selection.

Several special cases are well-known to be NP-hard, yet important for QoS provisioning

and bandwidth-efficient operation of existing and emerging cellular and overlay / un-

derlay networks. Approximate solutions to the original problem are generated following

a disciplined approach. The general problem is first concisely formulated as constrained

optimization. A geometric programming approximation is then developed, which forms

the core of a heuristic, yet well-motivated centralized algorithm.

Chapter 4 considers the throughput maximization problem in the context of wireless

networks. One is given a directed multi-hop network between a source and a destination,

with edge capacities that are a function of transmission powers. Each node may split

its aggregate incoming flow to multiple outgoing flows, and the objective is to select

flows to maximize the end-to-end flow from source to destination. Power control can be

used to obtain a favorable ‘topology’ from the throughput maximization viewpoint. This

suggests a joint max-flow power control problem that is basic, yet has not been considered

in the cross-layer network optimization literature. Alternatively, power control may

be coupled with dynamic routing by means of differential queue lengths information.

Both approaches are sketched and convex approximations, in the high SINR regime, are

provided for these cross-layer power control problems.

v
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Chapter 1

Transmit Beamforming to

Multiple Cochannel Multicast

Groups

The problem of transmit beamforming to multiple cochannel multicast groups is con-

sidered, when the channels are known at the transmitter. Two viewpoints are consid-

ered: i) minimizing total transmission power while guaranteeing a prescribed minimum

signal-to-interference-plus-noise ratio (SINR) at each receiver; and ii) a “fair” approach

maximizing the overall minimum SINR under a total power budget. The core prob-

lem is a multicast generalization of the multiuser downlink beamforming problem; the

difference is that each transmitted stream is directed to multiple receivers, each with

its own channel. Such generalization is relevant and timely, e.g., in the context of the

emerging WiMAX and UMTS-LTE wireless networks. The joint problem also contains

single-group multicast beamforming as a special case. The latter (and therefore also

the former) is NP-hard. This motivates the pursuit of computationally efficient quasi-

optimal solutions. It is shown that Lagrangian relaxation coupled with suitable random-

ization / cochannel multicast power control yield computationally efficient high-quality

approximate solutions. For a significant fraction of problem instances, the solutions gen-

erated this way are exactly optimal. Extensive numerical results using both simulated

and measured wireless channels are presented to corroborate the main findings.



1.1 Introduction 2

1.1 Introduction

The proliferation of streaming media (digital audio, video, IP radio), peer-to-peer ser-

vices, large-scale software updates, and profiled newscasts over the wireline Internet has

brought renewed interest in multicast routing protocols. These protocols were originally

conceived and have since evolved under the “wireline premise”: the physical network

is a graph comprising point-to-point links that do not interfere with each other at the

physical layer. Today, multicast routing protocols operate at the network or application

layer, using either controlled flooding or minimum spanning tree access.

As wireless networks become ever more ubiquitous, and wireless becomes the choice

for not only the “last hop” but also suburban- and metropolitan-area backbones, wireless

multicasting solutions are needed to account for and exploit the idiosyncracies of the

wireless medium. Wireless is inherently a broadcast medium, where it is possible to

reach multiple destinations with a single transmission; different cochannel transmissions

are interfering with one-another at the intended destination(s); and links are subject to

fading and shadowing, in addition to cochannel interference.

The broadcast advantage of wireless has of course been exploited since the early

days of radio. The interference problem was dealt with by allocating different frequency

bands to the different stations, and transmission was mostly isotropic or focused towards

a specific service area.

Today, the situation with wireless networks is much different. First, transmissions

need not be “blind”. Many wireless network standards provision the use of transmit

antenna arrays. Using baseband beamforming, it is possible to steer energy in the

direction(s) of the intended users, whose locations (or, more generally, channels) can

often be accurately estimated. Second, the push towards higher capacity and end-

user rates necessitates cochannel transmission which exploits the spatial diversity in the

user population (spatial multiplexing). Third, quality of service (QoS) is an important

consideration, especially in wireless backhaul solutions like 802.16e. Finally, due to

cochannel interference, wireless multicasting cannot be dealt with in isolation, one group

at a time; a joint solution is needed.

The problem of transmit beamforming towards a single group of users was first
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considered in the Ph.D. dissertation of Lopez [28], using the averaged (over all users in

the group) received signal-to-noise ratio (SNR) as the design criterion. The solution boils

down to a relatively simple eigenvalue problem, but no SNR guarantee is provided this

way: some users may get really poor SNR [34]. This is not acceptable in multicasting

applications, because it is the worst SNR that determines the common information rate.

QoS (providing a guaranteed minimum received SNR to every user) and max-min fair

(MMF) (maximizing the smallest received SNR) designs were first proposed in [33, 34],

where it was shown that the core problem is NP-hard, yet high-quality approximate

solutions can be obtained using relaxation techniques based on semidefinite programming

(SDP). The latter is a class of convex optimization problems which can be solved in

polynomial time by powerful interior point methods.

In this chapter a new and interesting problem is formulated: transmit beamforming

for multicasting to multiple cochannel groups under QoS and MMF criteria. The joint

design problem is considered, since designing a transmit beamformer separately for each

multicast group can be far from optimal, due to intergroup interference. By simulta-

neously serving several cochannel groups, the spectral efficiency is much higher than in

the single-group case. The extension is nontrivial in many ways:

• The multigroup QoS problem can be infeasible.

• The QoS and MMF versions are different, unlike the single-group case.

• The approximation step is much more involved: randomization is coupled with

multicast power control, which is of interest in its own right.

Two solid and well-motivated (Lagrange dual) algorithms are proposed. In addition

to semidefinite relaxation (SDR) ideas, the proposed solutions entail a cochannel mul-

ticast power control component, which can be viewed as a generalization of multiuser

power control ideas for the cellular downlink (see, e.g., [14] and references therein). It

is important to note that the problem formulation considered here contains as special

cases the single-group multicasting (broadcasting) problem [34], as well as the multiuser

downlink beamforming problem (see, e.g., [2, 11] and references therein), where each

multicast group consists of a single receiver. Extensive numerical results, including ex-

periments with measured channels, are presented and show that in the multigroup case



1.2 System Model 4

as well, the proposed SDR-based algorithms work remarkably well.

Notation Boldface uppercase and lowercase letters denote matrices and column vec-

tors, respectively. Integer sets are denoted by calligraphic uppercase letters, whereas

constrained optimization problems are referenced with sans serif uppercase letters. The

superscripts (·)∗, (·)T , and (·)H denote complex conjugate, transpose, and Hermitian

(conjugate) transpose matrix operators, respectively. tr(·), rank(·), | · |, and ‖ · ‖2 denote

the trace, the rank, the absolute value, and the Euclidean norm operators, respectively.

By W º 0 we denote that W is a Hermitian positive semidefinite matrix. Finally, IN

and 1G denote the N ×N identity matrix and the G× 1 all ones vector.

1.2 System Model

Consider a communication scenario where an access point employing an antenna array

of N elements is used to feed content, simultaneously and over the same frequency

channel, to K single-antenna1 receivers. Let hk denote the N × 1 complex vector that

models the propagation loss and phase shift of the frequency-flat quasi-static channel

from each transmit antenna to the receive antenna of user k ∈ K := {1, . . . , K}. Each

receiver listens to a single multicast stream i ∈ G := {1, . . . , G}, where 1 ≤ G ≤ K is

the total number of multicasts. Each multicast group, denoted by Gi, is formed by the

indices of the participating receivers. These sets are non-overlapping and collectively

contain all the users; thus, Gi ∩ Gj = ∅, i 6= j, ∪iGi = K, and, denoting Gi := |Gi|,
∑G

i=1 Gi = K. Note that G = 1 corresponds to the case of (selective) broadcasting [34],

whereas G = K corresponds to the case of individual information transmission to each

receiver (the multiuser downlink problem, see, e.g., [2, 11].

Let w∗
i ∈ CN denote the beamforming weight vector applied to the N transmitting

antenna elements to generate the spatial channel for transmission to group i (see Fig.

1.1). Then the signal transmitted by the antenna array is equal to
∑G

i=1 w∗
i si(t), where

si(t) is the temporal information-bearing signal directed to receivers in multicast group

i. If each si(t) is zero-mean, temporally white with unit variance, and the waveforms
1Single-antenna receives are assumed for brevity of exposition; the designs can be generalized to

account for multi-antenna receivers.
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{si(t)}G
i=1 are mutually uncorrelated, then the total power radiated by the transmitting

antenna array is equal to
∑G

i=1 ‖wi‖2
2. The signal received by receiver k ∈ Gi is equal to

rk(t) = si(t)wH
i hk +

G∑

j=1
j 6=i

sj(t)wH
j hk + ηk, (1.1)

where the three terms comprising the sum account for the useful signal, interference and

noise, respectively.

�

N

1

2G

GG

1G

�

*
1 1( )s t w

*
2 2( )s t w

*( )G Gs t w

�

N

1

2G2G

GGGG

1G1G

�

*
1 1( )s t w

*
2 2( )s t w

*( )G Gs t w

Figure 1.1: Cochannel multicast beamforming concept (note that groups need not be

spatially clustered)

1.3 Quality of Service Multicast Beamforming

The joint design of transmit beamformers can be posed as the constrained optimization

problem of minimizing the total radiated power subject to meeting a prescribed SINR

constraint γk for each receiver k ∈ K

Q

min
{wi∈CN}G

i=1

G∑

i=1

‖wi‖2
2

s.t. :
|wH

i hk|2∑G
j=1
j 6=i

|wH
j hk|2 + σ2

k

≥ γk ∀k ∈ Gi ∀i ∈ G.
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When formulating the QoS problem of interest Q, it is assumed that all channel

vectors {hk}K
k=1 and corresponding noise variances {σ2

k}K
k=1 are accurately known at the

transmitter. Contrary to the single-group case [34], problem Q can be infeasible due

to interference, if the SINR requirements are too stringent and / or the channels of

users listening to different multicasts are highly correlated. Then, in order to render the

problem feasible it is necessary to loosen some of the QoS thresholds or deny service

to some users in the specific frequency tone / time slot, by means of proper admission

control [30]. Beyond feasibility concerns, it is important to note that each beamformer

must serve multiple users listening to the same information. When a feasible solution

exists, at least one SINR constraint per group will be satisfied with equality at the

optimum, whereas the others may be inactive (i.e., over-satisfied); this is contrary to

the case of independent information transmission, where all SINR constraints are tight

at the optimum [2].

Using the fact that the denominator of the SINR is positive, problem Q is equivalently

reformulated to

Q

min
{wi∈CN}G

i=1

G∑

i=1

wH
i wi

s.t. : γk

G∑

j=1
j 6=i

wH
j hkhH

k wj −wH
i hkhH

k wi + γkσ
2
k ≤ 0 ∀k ∈ Gi ∀i ∈ G.

Problem Q is a quadratically constrained quadratic programming (QCQP) problem. It

is seen that the constraints are nonconvex, since all quadratic terms comprising the sum

are convex, apart from the last term (corresponding to the useful signal power) which

is added with a negative sign.

Problem Q contains as a special case the associated broadcasting problem (G = 1),

which was proved to be NP-hard in [34]. Hence, it immediately follows that

Claim 1. Problem Q is NP-hard.

Claim 1 reveals the fundamental difference of the general multicast QoS problem to

its other special case, i.e., when G = K. The QoS multiuser downlink beamforming

problem can be optimally solved in polynomial time by the alternating power control /
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beamforming algorithm of [11]. Moreover, it admits an equivalent convex; specifically,

second order cone programming (SOCP) reformulation [2]. Note that there exist more

special cases of problem Q that are not NP-hard, e.g., a restriction to Vandermonde

channel vectors enables convex reformulation [24, 25]. Optimal and efficient solutions

for this case will be presented in Section 2.2. Claim 1 motivates (cf. [16]) the pursuit of

sensible approximate solutions to the QoS problem Q.

1.3.1 Semidefinite Relaxation

The first step in the pursuit of approximate solutions is to change the optimization

variables to {Wi := wiwH
i }G

i=1. Note that for some wi ∈ CN

Wi = wiwH
i ⇔





Wi º 0,

rank(Wi) = 1.
(1.2)

Defining {Hk := hkhH
k }K

k=1 and using that tr(AB) = tr(BA) for matrices A,B of

compatible dimensions, the signal power user k receives by multicast i can be expressed

as

|wH
i hk|2 = hH

k wiwH
i hk = tr(hH

k wiwH
i hk) = tr(hkhH

k wiwH
i ) = tr(HkWi). (1.3)

Likewise, the power of each beamforming vector can be written as

‖wi‖2
2 = wH

i wi = tr(wH
i wi) = tr(wiwH

i ) = tr(Wi). (1.4)

It follows that due to (1.2), (1.3), and (1.4) problem Q can be equivalently reformulated,

with respect to the variables {Wi}G
i=1, to

Q

min
{Wi∈CN×N}G

i=1

G∑

i=1

tr(Wi)

s.t. : γk

G∑

j=1
j 6=i

tr(HkWj)− tr(HkWi) + γkσ
2
k ≤ 0 ∀k ∈ Gi ∀i ∈ G,

Wi º 0 ∀i ∈ G,

rank(Wi) = 1 ∀i ∈ G.
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Note that if the instantaneous channel vectors {hk}K
k=1 are unknown, the channel cor-

relation matrices can be used instead as input parameters {Hk}K
k=1. However, in this

case the resulting design can only guarantee average received SINR’s.

Problem Q consists of a linear objective function and linear inequality, positive

semidefinite, and rank constraints. Positive semidefinite constraints are convex [4], but

rank constraints are not, since the sum of two rank-1 matrices has generic rank 2. Hence,

the reformulation of problem Q with respect to the variables {Wi}G
i=1 has allowed us

to pin down the source of nonconvexity. Disregarding the problematic rank constraints,

problem Q is relaxed to

Qr

min
{Wi∈CN×N}G

i=1

G∑

i=1

tr(Wi)

s.t. : γk

G∑

j=1
j 6=i

tr(HkWj)− tr(HkWi) + γkσ
2
k ≤ 0 ∀k ∈ Gi ∀i ∈ G,

Wi º 0 ∀i ∈ G.

The resulting problem Qr is convex; specifically, an SDP problem [4]. SDR Q → Qr is

well-motivated, since it is the tightest relaxation, in the Lagrangian sense, for QCQP

problems [29,34,44].

Modern SDP solvers, such as SeDuMi [35] and SDPT3 [40], use interior point meth-

ods to efficiently find an optimum solution to problem Qr, if it is feasible; otherwise,

they return a certificate of infeasibility. The SDP problem Qr has G matrix variables of

size N×N , and K linear constraints. Interior point methods will take O(
√

GN log(1/ε))

iterations, with each iteration requiring at most O(G3N6 + KGN2) arithmetic opera-

tions [48], where the parameter ε represents the solution accuracy at the algorithm’s

termination. Actual runtime complexity will usually scale far slower with G, N , and K

than this worst-case bound, as observed during the preparation of the numerical results

presented in Section 1.5.

1.3.2 Approximate Solution

Problem Q may not admit a feasible solution, but if it does, the aforementioned approach

will yield a solution to problem Qr. However, due to the relaxation, this solution will
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not, in general, consist of rank-1 matrices. This is because the convex feasible set of

Qr is a superset of the nonconvex feasible set of Q. In addition, the optimum objective

value of Qr is merely a lower bound on the transmission power required by the rank-1

transmit beamforming scheme. An approximate solution to the original QoS problem

Q can be found using a randomization technique (see, e.g., [13, 49]). The idea is to

generate candidate sets of beamforming vectors {w̃i}G
i=1 from the optimum solution

matrices {Wopt
i }G

i=1 of problem Qr and choose the one that can be scaled to satisfy the

SINR constraints of problem Q with the minimum total power cost.

The Gaussian randomization method (see, e.g., [13,49]) is proposed for the generation

of the candidate beamformers, motivated by its successful application in related QCQP

problems and especially in the single-group multicast beamforming problem [29, 34].

Initially, the eigenvalue decomposition Wopt
i = UiΣiUH

i of each optimal solution matrix

is calculated. Then, the respective candidate beamformers are generated as w̃i :=

UiΣ
1/2
i u, where u ∈ CN ∼ CN (0, I), so that E[w̃iw̃H

i ] = Wopt
i . The main difference

relative to the broadcasting case considered in [34], is that here we cannot simply “scale

up” the candidate beamforming vectors to satisfy the SINR constraints of problem Q.

The reason is that, in contrast to [34], we herein deal with an interference scenario,

and boosting the beamforming vector of one group also increases interference to nodes

in other groups. Whether it is feasible to satisfy the constraints for a given set of

candidate beamforming vectors is also an issue here.

Let αk,i := |w̃H
i hk|2 denote the signal power user k receives when beamvector w̃i

is used to serve multicast stream i. Let βi := ‖w̃i‖2
2 denote the power of the candi-

date beamvector for multicast stream i and pi the respective sought power boost (or

reduction) factor. Then the following multicast power control (MPC) problem emerges

in converting the candidate beamforming vectors to a candidate solution of problem Q.

PQ

min
{pi≥0}G

i=1

G∑

i=1

βipi

s.t. :
αk,ipi∑G

j=1
j 6=i

αk,jpj + σ2
k

≥ γk ∀k ∈ Gi ∀i ∈ G.

Since the denominator of the SINR is positive, problem PQ can be equivalently
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reformulated to

PQ

min
{pi≥0}G

i=1

G∑

i=1

βipi

s.t. : γk

G∑

j=1
j 6=i

αk,jpj − αk,ipi + γkσ
2
k ≤ 0 ∀k ∈ Gi ∀i ∈ G.

PQ is a linear programming (LP) problem with G real nonnegative variables and K

linear inequality constraints. For a feasible instance of the MPC problem PQ, interior

point methods can generate an ε-optimal solution in O(
√

G log(1/ε)) iterations, each

requiring at most O(G3 + KG) arithmetic operations [48]. Otherwise, they yield an

infeasibility certificate. This is a useful property in determining the feasibility of a

candidate beamforming configuration. The simplex method could also be used and it

will typically be more efficient for small problem sizes.

As noted already, for G = K (independent information transmission to each receiver),

problem Qr is in fact equivalent to (not a relaxation of) problem Q, see [2]. Likewise,

problem PQ reduces to the well-known multiuser downlink power control problem, which

can be solved using simpler means (see, e.g., [14]): matrix inversion and iterative descent

algorithms. In this special case, (in)feasibility can be determined from the spectral radius

of a certain “connectivity” matrix. Similar simplifications for the general instance of

MPC are perhaps possible, but nontrivial. In fact, an iterative MPC algorithm based on

the concept of interference functions was proposed in [15]. However, the power iterations

advocated therein are only guaranteed to converge when the problem is feasible. Keeping

in mind that the MPC problem emerges in the context of randomization, it is clear that

effective detection of infeasibility is an important issue. Furthermore, even when the

problem is feasible, it is not clear whether the power iterations in [15] require smaller

overall complexity to find an optimum solution than the available LP routines, which

are highly efficient.

The overall algorithm for generating an approximate solution to the original QoS

problem Q can be summarized as follows:
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1. Relaxation: Solve the SDP problem Qr and denote the solution {Wopt
i }G

i=1.

2. Randomization / Power Control Loop: Generate candidate beamform-

ing vectors using the Gaussian randomization technique. If, for some i ∈ G,

rank(Wopt
i ) = 1, then use the principal component instead. Next, feed the re-

sulting set of candidate beamforming vectors {w̃i}G
i=1 into the MPC problem PQ

and solve it using an LP solver. If the particular instance of problem PQ is in-

feasible or yields larger objective value than the previously checked candidates,

discard the proposed set of candidate beamforming vectors; else, record the set of

beamforming vectors, the associated power factors {pi}G
i=1 and the objective value.

Repeat for a predetermined number Nrand of randomizations.

Assuming that the randomization / power control loop yields at least one feasible so-

lution, let {w̃opt
i , popt

i }G
i=1 denote the recorded beamvectors and power factors at al-

gorithm’s termination. Then, the approximate solution of problem Q is given by

{
√

popt
i w̃opt

i }G
i=1.

The overall complexity of this solution is that of solving the SDP problem Qr once

and the LP problem PQ Nrand times. The choice of Nrand is a trade-off between the

extent of suboptimality of the final solution and the overall complexity of the algorithm.

The quality of the approximate solution to problem Q can be measured by the ratio

of the minimum objective value of problem PQ, attained in the randomization / power

control loop, to the lower bound on the transmission power, obtained by the solution

of problem Qr. The numerical results reported in Section 1.5 show that a few hundred

randomizations are adequate, in most scenarios considered, to yield a solution which is

at most 3–4 dB away from this lower bound; hence, even less from the (NP-hard to find)

optimum. The lower bound obtained by solving problem Qr can be further motivated

from a duality perspective; that is, the aforementioned relaxation lower bound is in fact

the tightest lower bound on the optimum value of problem Q attainable via Lagrangian

duality [4]. This follows from arguments in [44] (see also the single-group case in [34]),

due to the fact that Q is a QCQP problem. For theoretical a priori bounds on the

extent of the suboptimality of the solution in [34] for the single-group case see [29].
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1.4 Max-Min Fair Multicast Beamforming

In this section, we consider the related problem of maximizing the minimum SINR,

received by any of the K intended users, irrespective of the multicast group they belong

to, subject to an upper bound P on the total transmission power. Actually, a more

general problem is considered, in which each received SINR is scaled by a predetermined

positive real constant weight factor 1/γk, to account for the possibility of different classes

of service. The joint weighted MMF multicast beamformer design can be formulated as

the constrained optimization problem

F

max
{wi∈CN}G

i=1

min
i∈G

min
k∈Gi

1
γk

|wH
i hk|2∑G

j=1
j 6=i

|wH
j hk|2 + σ2

k

s.t. :
G∑

i=1

‖wi‖2
2 ≤ P.

This problem formulation is important for systems required to comply with a strict

upper bound on the total transmission power, e.g., due to regulation. It is straightfor-

ward to see that the power bound will be met with equality at the optimum. Otherwise,

if there is power budget left, one could distribute it evenly, i.e., multiply all beamformers

by a constant c > 1, thereby increasing the minimum SINR (note that σ2
k > 0), thus

contradicting optimality. We may therefore focus on the equality constrained problem

and denote this as F from now on. Introducing an auxiliary positive real variable g to

lower bound the worst-case scaled SINR, problem F can be equivalently rewritten as

F
max

{wi∈CN}G
i=1, g≥0

g

s.t. :
1
γk

|wH
i hk|2∑G

j=1
j 6=i

|wH
j hk|2 + σ2

k

≥ g ∀k ∈ Gi ∀i ∈ G,

G∑

i=1

‖wi‖2
2 = P.

The design criterion seeks to maximize the worst-case scaled SINR, so as to ensure

weighted fairness among the received multicasts. Let g := [γ1, . . . , γK ]T . Obviously,

equal fairness is a special case that corresponds to the choice of g = 1K . Contrary to
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the QoS approach, discussed in Section 1.3, problem F always admits a feasible solution,

apart from the trivial case of zero channel vectors. Denoting as gopt the optimum value

of F, the optimum beamformers guarantee SINR levels equal to goptg. Interpreting the

weight factors g as target SINR’s, these are achieved, with total transmission power

P , if and only if gopt ≥ 1. In this sense, MMF is more flexible formulation than QoS

and it can be used to determine whether, in a power-constrained system, it is possible

to satisfy a specific set of SINR targets g. Moreover, it determines the exact level of

(under-)over-satisfaction gopt.

Formulation F is a generalization of the respective MMF multiuser downlink beam-

forming problem (see, e.g., [32, 43] and references therein). As in the QoS case, not

all SINR inequalities will be in general tight at the optimum. Regarding complexity,

problem F contains as special case the respective broadcasting problem (G = 1), which

is NP-hard [34]. Hence, it immediately follows that

Claim 2. Problem F is NP-hard.

As for problem Q, there exist special cases of problem F that are not NP-hard, e.g.,

for independent data transmission (G = K) it can be reformulated as a generalized

eigenvalue problem [43]. Furthermore, for Vandermonde channel vectors an efficient

solution, by means of bisection over SDP problems, will be presented in Section 2.3

[24, 25]. Claim 2 motivates the pursuit of sensible approximate solutions to the MMF

problem F.

1.4.1 Relation to QoS Problem

Before proceeding in proposing an algorithm to find such an approximate solution, let us

have a closer look at the relation between problem formulation F and Q. For a given set

of channels and noise powers, F is parameterized by g and P . We will use the notation

F(g, P ) to capture this dependence, and, with slight abuse of notation2, g = F(g, P )

to denote the associated optimum value (maximum worst-case scaled SINR). Likewise,

Q is parameterized by the vector g of QoS constraints; we will use the notation Q(g)

to account for this, and P = Q(g) to denote the associated optimum value (minimum

power).
2The meaning will be clear from context.
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Generalizing the respective results for the two extreme cases of the multicast beam-

forming problem (G = K [43] and G = 1 [34]), we have the following result:

Claim 3. The QoS problem Q and the MMF problem F are related as follows:

g = F(g,Q(gg)) (1.5)

P = Q(F(g, P )g) (1.6)

Proof: Contradiction can be used to prove (1.5). Let {wQ
i }G

i=1 and PQ denote

an optimal solution and the associated optimal value to a feasible instance of problem

Q(gg), where gg are the required SINR targets. Consider the problem instance F(g, PQ).

The set {wQ
i }G

i=1 is a feasible solution with objective value g. Assume the existence of

another feasible solution {wF
i }G

i=1 with associated optimal value gF > g. Then, it is

possible to find a constant c < 1 to scale down this solution set, while still fulfilling the

SINR constraints of problem Q(gg). The resulting set {cwF
i }G

i=1has smaller objective

value (total transmission power) than PQ, which contradicts optimality of {wQ
i }G

i=1.

A similar procedure can be used to prove (1.6). Specifically, let {wF
i }G

i=1 and gF

denote an optimal solution and the associated optimal value to a problem instance

F(g, P ). Consider the problem instance Q(gFg). The set {wF
i }G

i=1 is a feasible solution

with objective value P . Assume the existence of another feasible solution {wQ
i }G

i=1

with associated optimal value PQ < P . As noted before, this contradicts optimality of

{wF
i }G

i=1 for F(g, P ), since the power budget P − PQ can be distributed evenly to yield

an objective value larger than gF. ¥

Another useful property of both formulations is the following

Claim 4. The optimum objective values of the QoS problem Q(gg) and the MMF problem

F(g, P ) are monotonically nondecreasing in g and P , respectively, for given g.

Proof: The feasible set of Q(gg) is decreasing in g. For F(g, P ), any additional power

can be evenly distributed, thereby increasing all SINR’s, provided that {σ2
k > 0}K

k=1. ¥

Corollary 1. A solution to F(g, P ) can be found by iteratively solving Q(gg) for varying

values of g. Claim 3 guarantees optimality of the solution for P = Q(gg) and Claim 4

enables the use of a simple one-dimensional bisection search for the sought g (see [43] for
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the special case of multiuser downlink beamforming). Similarly, bisection of g = F(g, P )

over P can be used to solve Q(gg).

Corollary 1 suggests a solution to the MMF problem, provided that the QoS problem

can be solved optimally. However, Q is NP-hard and we can only find an approximate

solution, as proposed in Section 1.3.2. Due to this, and keeping in mind that F is

NP-hard (Claim 2), we again pursue a respective sensible approximate solution.

1.4.2 Approximate Solution

Using the notation of Section 1.3.1 and following similar steps as for the relaxation

Q → Qr, the following relaxation of the original MMF problem F is obtained by dropping

the nonconvex rank constraints, associated with the matrices {Wi}G
i=1.

Fr

max
{Wi∈CN×N}G

i=1, g≥0
g

s.t. : gγk

G∑

j=1
j 6=i

tr(HkWj)− tr(HkWi) + gγkσ
2
k ≤ 0 ∀k ∈ Gi ∀i ∈ G,

G∑

i=1

tr(Wi) = P,

Wi º 0 ∀i ∈ G.

At first glance, problem Fr may seem to be of the same form as Qr of Section 1.3.1, except

for the extra linear equality constraint on the total transmission power, the nonnegativity

constraint on g, and the different (yet still linear) objective function. However, contrary

to Qr, Fr does not admit an equivalent SDP reformulation, because the K inequality

constraints on the received SINR’s are nonlinear (note that g is a variable).3

Claim 5. The relaxed QoS problem Qr and the relaxed MMF problem Fr are related as

follows:

g = Fr(g,Qr(gg)) (1.7)

P = Qr(Fr(g, P )g) (1.8)
3In the single-group multicast beamforming case, Fr is an SDP problem [34].
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Proof: Verbatim to the proof of Claim 3, denoting the problem solutions as {Wi}G
i=1

instead of {wi}G
i=1. ¥

Claim 6. The optimum objective values of the relaxed QoS problem Qr(gg) and the

relaxed MMF problem Fr(g, P ) are monotonically nondecreasing in g and P , respectively,

for a given g.

Proof: Verbatim to the proof of Claim 4. ¥

Corollary 2. Due to Claims 5 and 6, the relaxed problem Fr(g, P ) can be solved by a

one-dimensional bisection search over g, to attain P = Qr(gg).

Specifically, let gopt = Fr(g, P ). A feasible solution of Fr(g, P ) that is at most ε > 0

away from gopt can be generated as follows. Let [L,U ] be an interval containing gopt. Due

to the nonnegativity of gopt, the lower bound is initialized as L = 0. Assuming that the

total available power is directed towards a single group and using the Cauchy-Schwartz

inequality, the upper bound is initialized as U = min
k∈K

P‖hk‖2
2

γkσ
2
k

. Given [L,U ], the SDP

problem Qr(gg) is solved at the midpoint g := (L + U)/2 of the interval. If it is feasible

for the given choice of g and its objective value is lower than P , the solution is stored and

L := g; otherwise U := g. The use of interior point SDP solvers, such as SeDuMi [35]

or SDPT3 [40], is useful in this context, because they do not only yield an efficient

solution to problem Qr(gg) when it is feasible, but they otherwise provide a certificate

of infeasibility. The aforementioned steps are repeated until U − L ≤ ε. Since in each

iteration the interval is halved, the algorithm requires only Niter = dlog2((U − L)/ε)e
iterations. In practice, 10–12 iterations are usually enough for typical problem setups.

Building on [43], a similar bisection search algorithm was also proposed in [15].

When the algorithm terminates, the resulting matrices {Wopt
i }G

i=1 are an ε-optimal

solution of Fr(g, P ). The associated optimal value, which is approximately equal to

gopt, is merely an upper bound on the scaled SINR that can be guaranteed to every

user, for the specific power budget P . This bound can only be met when all matrices

{Wopt
i }G

i=1 are rank-1, so that their principal components can be chosen as optimum

beamforming vectors. However, due to the relaxation, this is generally not the case.

As in the QoS approach, post-processing of the relaxed solution is needed, when the

solution matrices {Wopt
i }G

i=1 are not all rank-1, to yield an approximate solution to
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the original MMF problem F. This can be accomplished by a combined randomization

/ power control procedure, similar to the one described in Section 1.3.2. Specifically,

Gaussian randomization may be used in a first step to create candidate sets of beam-

forming vectors {w̃i}G
i=1 in the span of the respective transmit covariance matrices (the

optimum solution matrices {Wopt
i }G

i=1 of problem Fr). In a second step, the total avail-

able transmission power P is optimally allocated to the candidate beamforming vectors,

by means of an appropriate MPC problem, as explained in the rest of this section.

The set {w̃opt
i , popt

i }G
i=1 of beamforming vectors and respective power boost (or back-off)

factors, that yields the highest objective value is chosen among all solutions generated

this way. The approximate solution to the original MMF problem F is then equal to

{
√

popt
i w̃opt

i }G
i=1.

Given a candidate set of beamforming vectors {w̃i}G
i=1, the power budget P can be

optimally allocated among them by solving the following MPC problem

PF

max
{pi≥0}G

i=1, g≥0
g

s.t. :
1
γk

αk,ipi∑G
j=1
j 6=i

αk,jpj + σ2
k

≥ g ∀k ∈ Gi ∀i ∈ G,

G∑

i=1

βipi = P,

where the coefficients αk,i and βi have been introduced in Section 1.3.2.

Unlike PQ, PF does not admit an equivalent LP reformulation, because the K in-

equality constraints are nonlinear; this can be easily seen by multiplying both sides of

the inequalities with the SINR denominator and remembering that g is a variable.

Claim 7. The QoS MPC problem PQ and the MMF MPC problem PF are related as

follows:

g = PF(g, PQ(gg)) (1.9)

P = PQ(PF(g, P )g) (1.10)

Proof: Verbatim to the proof of Claim 3, denoting the problem solutions as {pi}G
i=1

instead of {wi}G
i=1. ¥
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Claim 8. The optimum objective values of the QoS MPC problem PQ(gg) and the MMF

MPC problem PF(g, P ) are monotonically nondecreasing in g and P , respectively, for a

given g.

Proof: Verbatim to the proof of Claim 4. ¥

Corollary 3. Due to Claims 7 and 8, the MMF MPC problem PF(g, P ) can be solved

by a one-dimensional bisection search over g, to attain P = PQ(gg).

The bisection algorithm, described earlier in this section, can be used again to obtain

a solution to problem PF(g, P ). The search interval is bounded below by L = 0, as

before. However, the upper bound may now be further restricted to U = gopt (the

optimal objective value of Fr(g, P )). The difference is that for each iteration (value of

g), the LP problem PQ(gg) is solved instead of the SDP problem Qr(gg).

The overall complexity of finding an approximate solution to the original MMF

problem F is that of solving Niter times the SDP problem Qr and NrandN
′
iter times

the LP problem PQ, where Niter and N ′
iter denote the number of bisection iterations

required for the solution of Fr and PF, respectively and Nrand is the number of Gaussian

randomization trials. The quality of the final approximate solution to problem F can

be measured by the ratio of the upper bound obtained by the solution of the relaxed

problem Fr to the maximum value of problem PF attained in the randomization / power

control loop.

Note that PF also admits the following equivalent reformulation

PF

max
{pi≥0}G

i=1, g≥0
g

s.t. :
G∑

j=1
j 6=i

γkαk,jgpj + γkσ
2
kg ≤ αk,ipi ∀k ∈ Gi ∀i ∈ G,

G∑

i=1

βipi ≤ P.

Since all optimization variables are nonnegative, problem PF is a standard form geo-

metric programming (GP) problem, i.e., maximizing a monomial subject to posynomial

upper bounded by monomial inequality constraints [5, 7]. It is straightforward to bring
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it to convex form by means of logarithmic change of variables and hence efficiently solve

it in one step, using modern interior point methods, bypassing the need for bisection

over LP problems. However, the number of bisection steps is rather small in general (at

most 12 in all cases considered in the results reported in Section 1.5), so this does not

appear to be a big issue.

1.5 Monte-Carlo Simulation Results

In Section 1.3.2, a two-step polynomial-time algorithm has been proposed to generate

an approximate solution to the joint QoS multicast beamforming problem Q. The first

step of the proposed algorithm consists of the SDR Q → Qr. Problem Q may or not be

feasible; if it is, then so is problem Qr. If Qr is infeasible, then so is Q. The converse

is generally not true; i.e., if Qr is feasible, Q need not be feasible. In order to establish

feasibility of Q in this case, the randomization / power control loop should yield at least

one feasible solution. This is most often the case, as verified by the numerical results

presented in the sequel. If the randomization / power control loop fails to return at

least one feasible solution, then the (in)feasibility of Q cannot be determined. There is,

therefore, a relatively small proportion of problem instances for which (in)feasibility of Q

cannot be decided using the proposed approach. It is evident from the above discussion

that feasibility is a key aspect of problem Q and its proposed solution via problem Qr

and the randomization / power control loop. Feasibility depends on a number of factors;

namely, the number of transmit antenna elements, the number and the populations of

the multicast groups, the channel characteristics, the noise variances, and the sought

SINR targets.

Beyond feasibility, there are two key issues of interest. The first has to do with

cases when the solution of the relaxed problem Qr yields an optimum solution to the

original problem Q. This happens when the solution matrices {Wopt
i }G

i=1 turn out all

being rank-1. Then, the associated principal components solve optimally the original

problem Q, i.e., in such a case Qr is not a relaxation after all. It is interesting to find the

frequency of occurrence of such an event, whose benefit is twofold: the problem is solved

optimally and at a smaller complexity, since the randomization step and the repeated
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solution of the ensuing MPC problem PQ is avoided. The second issue of interest is the

quality of the final approximate solution to problem Q. A practical figure of merit is the

power ratio discussed in Section 1.3.2.

We first consider the standard i.i.d. Rayleigh fading model, i.e., the elements of

each channel vector are i.i.d. circularly symmetric zero-mean complex Gaussian random

variables of variance 1. The results presented in this section are obtained by averaging

over 300 different channel snapshots, using 300 Gaussian randomization samples in each

Monte-Carlo run. Tables 1.1 and 1.2 summarize these results, for number N of transmit

antenna elements set to 4 and 8, respectively. The proposed two-step algorithm is

tested for a variety of choices for the total number K of single-antenna receivers and

the number G of multicast groups, which index the rows in the tables (columns 1 and

2, respectively). The users are considered to be evenly distributed among the multicast

groups, i.e., {Gi = K/G}G
i=1. For each such configuration, the same SINR targets are

requested for all users (in the 6–20 dB range, see column 3). The noise variance is set

to 1 for all channels.

The percentage of the 300 Monte-Carlo runs for which Qr is feasible is shown in col-

umn 4. Column 5 reports the percentage of feasible solutions to problem Qr, for which

the solution matrices turn out all being essentially rank-1; defined by the second largest

eigenvalue being smaller than 10−3 of the sum of all eigenvalues. Column 6 reports

the percentage of problem instances for which, once a feasible solution to problem Qr

is found, the proposed randomization / power control loop yields at least one feasible

solution to the original problem Q. Columns 7 and 8 hold the mean and the standard

deviation of the ratio of the total transmission power corresponding to the final approx-

imate solution over the lower bound obtained from the SDR solution. This ratio equals

1 when the relaxation is tight, and the reported statistics depend on the frequency (see

column 5) of this event. In order to obtain additional insight on the quality of the

approximation step, conditional statistics are also reported in columns 9 and 10 after

excluding optimum solutions from the calculation. The Qr feasibility percentages, stored

in column 4 of Tables 1.1 and 1.2, are also plotted in Figs. 1.2 and 1.3, respectively.

In all configurations considered, the higher the target SINR, the less likely it is that Qr

is feasible, which is intuitive. Furthermore, Qr is getting more difficult to solve as the
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number G of multicast groups increases and/or as more users are added in each group,

since in both cases interference is higher. Finally, it is seen that increasing the number of

transmit antenna elements improves service, i.e., higher received SINR can be attained

by more users in more multicast groups.

The Qr optimality percentages are also plotted in Figs. 1.4 and 1.5, for the case of

4 and 8 transmit antennas, respectively. The most interesting observation is that the

optimality percentage increases as the number of users per multicast group decreases;

percentages are significant especially when the number of users per group is smaller

or equal to the number of transmit antennas. This can be seen in two ways: either

by holding the number of groups fixed while decreasing their populations, or by fixing

the total number of users and distributing them in more multicast groups. Trying to

interpret this fact, note that in both cases the problem is pushed towards the multiuser

(independent information) downlink problem, where each user forms a multicast group

by itself. The latter is known to be convex, and the associated SDP relaxation has been

shown to be tight [2]. In addition, the Qr optimality percentage also increases with

target SINR. It seems as if rank-1 solutions are more likely when operating close to

infeasibility boundary.

Regarding the approximation step of the proposed algorithm, we can distinguish two

cases. In most of the scenarios considered, the number of users per multicast group was

kept smaller or equal to the number of transmit antenna elements, so that a realistic

value of the received SINR could be guaranteed, for a significant fraction of the different

channel instances. There, the randomization / power control loop yields a feasible

solution with a probability higher than 90% in most cases where Qr is feasible, as shown

in Fig. 1.6 which illustrates the contents of column 6 of Table 1.2. The approximate

solution entails transmission power that is under two times (3 dB from) the possibly

unattainable lower bound, on average. The actual numbers for each configuration depend

on the number of the Gaussian randomization samples; 300 have proved adequate for

most configurations. However, when a (relatively low) target SINR is to be guaranteed

to a number of users per group larger than the number of antennas, the feasibility of

the approximation decreases and the power penalty increases. This can be appreciated

by looking at the lowest sub-matrices of Tables 1.1 and 1.2. Using 1000, instead of



1.5 Monte-Carlo Simulation Results 22

300, Gaussian random samples for these configurations, a small improvement has been

observed in the quality of the approximation.

The Monte-Carlo simulations have been repeated, under the same setup, in order to

validate the performance of the MMF algorithm presented in Section 1.4. The results

are very similar to the ones presented so far for the QoS case and are therefore skipped

for brevity. The sole difference is that feasibility is not an issue in the MMF case. Specif-

ically, there is a considerable percentage of problem instances for which the proposed

relaxation is tight, so that the optimum solution is found. For all other instances, the

proposed algorithm finds a high-quality approximate solution at manageable complexity

cost. An interesting observation is that the quality of the approximation for the multi-

group case is consistently better than the respective single-group case [34] and that it

becomes better as a given number of users is distributed among a larger number of

multicast groups; again, moving closer to the multiuser downlink problem.
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Figure 1.2: Qr feasibility; 300 MC runs, 4 Tx antennas
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Figure 1.3: Qr feasibility; 300 MC runs, 8 Tx antennas
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Figure 1.4: Qr optimality; 300 MC runs, 4 Tx antennas
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Figure 1.5: Qr optimality; 300 MC runs, 8 Tx antennas
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Figure 1.6: Approximation feasibility; 300 MC runs, 300 randomizations, 8 Tx antennas
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Table 1.1: MC simulation results (Rayleigh); 4 Tx antennas

feas. opt. feas. all solutions appr. solutions

K G SINR Qr Qr appr. mean std mean std

6 3 6 90 100 - 1 0 - -

6 3 8 70 100 - 1 0 - -

6 3 10 45 100 - 1 0 - -

6 3 12 27 100 - 1 0 - -

6 3 14 14 100 - 1 0 - -

6 3 16 7 100 - 1 0 - -

8 2 6 98 80 98 1.06 0.17 1.29 0.30

8 2 8 91 84 99 1.08 0.38 1.54 0.83

8 2 10 73 83 98 1.19 1.81 2.27 4.54

8 2 12 52 86 99 1.20 2.12 2.55 5.84

8 2 14 32 89 100 1.01 0.06 1.11 0.15

8 2 16 16 90 96 1.04 0.19 1.67 0.44

8 2 18 9 93 100 1.02 0.07 1.22 0.19

8 2 20 3 89 100 1.05 0.16 1.49 0

12 2 6 42 49 79 1.69 1.89 2.82 2.73

12 2 8 10 81 94 1.19 0.51 2.39 0.47

12 2 10 1 100 - 1 0 - -
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Table 1.2: MC simulation results (Rayleigh); 8 Tx antennas

feas. opt. feas. all solutions appr. solutions

K G SINR Qr Qr appr. mean std mean std

12 2 6 100 37 95 1.18 0.25 1.30 0.27

12 2 8 100 36 96 1.17 0.24 1.28 0.25

12 2 10 100 35 95 1.17 0.23 1.27 0.24

12 2 12 100 41 96 1.15 0.21 1.26 0.22

12 2 14 100 43 95 1.15 0.22 1.27 0.23

12 2 16 100 45 94 1.13 0.20 1.25 0.21

12 2 18 100 48 96 1.12 0.23 1.25 0.28

12 2 20 100 53 95 1.10 0.18 1.23 0.21

12 3 6 100 79 98 1.04 0.11 1.19 0.17

12 3 8 100 79 98 1.04 0.11 1.19 0.18

12 3 10 99 81 99 1.05 0.14 1.25 0.24

12 3 12 95 85 98 1.04 0.15 1.31 0.29

12 3 14 79 88 99 1.06 0.29 1.52 0.74

12 3 16 52 93 99 1.02 0.11 1.38 0.26

12 3 18 31 94 99 1.03 0.14 1.53 0.37

12 3 20 18 98 100 1.01 0.04 1.29 0

12 4 6 100 93 100 1.01 0.03 1.11 0.08

12 4 8 87 98 100 1.00 0.04 1.24 0.17

12 4 10 42 98 100 1.01 0.06 1.32 0.33

12 4 12 12 97 100 1.01 0.06 1.36 0

12 4 14 3 100 - 1 0 - -

16 2 6 100 10 93 1.88 1.63 1.99 1.69

16 2 8 100 12 91 2.00 2.27 2.14 2.40

16 2 10 100 15 87 1.88 1.32 2.06 1.38

16 2 12 99 23 88 1.70 1.57 1.94 1.76

16 2 14 95 32 88 1.80 2.30 2.24 2.78

16 2 16 73 46 92 1.71 3.86 2.42 5.40

16 2 18 54 59 93 1.33 1.04 1.91 1.56

16 2 20 33 65 94 1.27 0.82 1.86 1.31

24 2 6 99 0 44 6.79 8.74 6.84 8.76

24 2 8 61 4 30 4.87 6.23 5.53 6.52

24 2 10 12 14 34 3.64 5.20 5.53 6.30
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1.6 Experiments with Measured Channel Data

The performance of the proposed multicast beamforming algorithms has also been tested

on measured channel data courtesy of iCORE HCDC Lab, University of Alberta, Edmon-

ton, Canada. Measurements had been carried out using a portable 4× 4 multiple-input

multiple-output (MIMO) testbed that operates in the 902–928 MHz (ISM) band. The

transmitter (Tx) and the receiver (Rx) were equipped with antenna arrays, each com-

prising 4 vertically polarized dipole antennas spaced λ/2 (≈ 16 cm) apart. The chip rate

used for sounding was low enough to safely assume that the channel is not frequency

selective. More details on the testbed configuration and the procedure used to estimate

the channel gains of the MIMO channel matrix can be found in [19]. Datasets and a de-

tailed description of many measurement campaigns in typical propagation environments

are available at the iCORE HCDC Lab website (http://www.ece.ualberta.ca/∼mimo/).

The most pertinent scenario is the stationary outdoor one, called “Quad” and illustrated

in Figure 1.7. Quad is a 150 by 60 meters lawn surrounded by buildings with heights

from approximately 15 to 30 meters. The Tx location was fixed, whereas the Rx was

placed in 6 different locations (no measurements are actually provided for location 4)

as indicated in Figure 1.7. For every Rx location, 9 different measurements were taken

by shifting the Rx antenna array on a 3 × 3 square grid with λ/4 spacing. Each mea-

surement contains about 100 4 × 4 channel snapshots, recorded 3 per second; thus for

each location there are about 900 MIMO channel gain matrices available. The multicast

groups are formed by considering each receive antenna at each location as a separate

terminal, and grouping terminals in 1–3 locations. The results reported in Tables 1.3–1.5

for the QoS problem were obtained by averaging over the 900 channel instances. Tens of

different configurations have been tried and only representative results are presented for

each scenario considered. All channel gains are normalized before use by the same con-

stant (average amplitude over all channels and all snapshots), in order to facilitate the

comparison with the simulated Rayleigh case. Note that this normalization maintains

the differences in path loss. 300 Gaussian samples are employed in the randomization

/ power control loop. The main findings regarding the performance of the proposed

algorithms when applied to the measured channel data can be summarized as follows:
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• For 2 multicast groups and number of users per group equal to the number of Tx

antennas (N = 4), the SDR Q → Qr is tight very frequently (70–100%) and the

power penalty paid by the approximation step very small. These hold irrespective

of the distribution of the users of each multicast group in 1, 2, or even 3 locations

(see Table 1.3).

• For 2 multicast groups of 6 users each, evenly distributed in 2 locations, the SDR

Q → Qr is tight for more than half of the occasions (see Table 1.4). There exist

channel instances for which SINR up to 14 dB can be guaranteed; such high SINR

values are unattainable under the corresponding i.i.d. Rayleigh fading scenario.

The quality of approximation is good, even though the number of users per group

is larger than the number of transmit antenna elements. When the 6 users of each

group are evenly distributed in 3 locations, the problem is feasible only up to about

10 dB and the feasibility of the approximation step can drop < 80%.

• For 3 multicast groups (see Table 1.5) of 3 collocated users each, the SDR Q → Qr

is almost always tight (> 90%) and feasible up to SINR of 10 dB. For 4 users per

group it becomes infeasible for SINR values larger than about 8 dB.

Figure 1.7: Wireless channel measurement scenario from University of Alberta



1.6 Experiments with Measured Channel Data 29

Table 1.3: Measured channel results; 2 multicast groups of 4 users each

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (4 at L5) & Group 2 (4 at L7)

6 98 82 98 1.05 0.19 1.30 0.39

8 91 84 88 1.05 0.23 1.33 0.53

10 82 87 98 1.04 0.21 1.40 0.53

12 50 92 99 1.04 0.29 1.61 0.95

14 19 91 98 1.02 0.08 1.23 0.19

16 9 94 100 1.01 0.06 1.16 0.22

18 3 92 96 1.00 0.00 1.01 0

Group 1 (2 at L2 & 2 at L6) & Group 2 (2 at L5 & 2 at L7)

6 100 81 99 1.05 0.18 1.29 0.34

8 100 81 99 1.05 0.18 1.30 0.33

10 96.1 86 99 1.04 0.17 1.32 0.36

12 83 90 99 1.04 0.26 1.43 0.80

14 57 93 99 1.15 2.89 3.73 12.10

16 31 93 99 1.02 0.12 1.36 0.33

18 14 95 99 1.01 0.07 1.31 0.21

20 6 92 100 1.03 0.18 1.44 0.53

Group 1 (1 at L1, 1 at L3 & 2 at L6)

Group 2 (1 at L2, 1 at L5 & 2 at L7)

6 100 72 98 1.12 0.54 1.45 0.98

8 99 75 98 1.09 0.31 1.39 0.55

10 93 80 97 1.18 2.71 2.03 6.44

12 73 87 97 1.05 0.25 1.44 0.63

14 44 89 98 1.07 0.71 1.78 2.19

16 23 93 99 1.03 0.18 1.52 0.59
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Table 1.4: Measured channel results; 2 multicast groups of 6 users each

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (3 at L1 & 3 at L3) & Group 2 (3 at L2 & 3 at L6)

6 100 73 98 1.19 1.50 1.76 2.91

8 90 68 94 1.39 2.45 2.38 4.49

10 61 66 92 1.33 1.06 2.15 1.73

12 18 72 92 1.33 1.15 2.56 2.12

Group 1 (2 at L1, 2 at L2 & 2 at L6)

Group 2 (2 at L3, 2 at L5 & 2 at L7)

6 70 24 82 2.25 3.51 2.78 4.06

8 33 41 81 2.02 3.58 3.08 4.90

10 7 48 65 1.18 0.45 1.67 0.69

Table 1.5: Measured channel results; 3 multicast groups of 3 or 4 collocated users each

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (3 at L1), Group 2 (3 at L2) & Group 3 (3 at L3)

6 72 98 100 1.01 0.10 1.36 0.66

8 37 99 100 1.00 0.01 1.10 0.07

10 14 100 - 1 0 - -

Group 1 (4 at L1), Group 2 (4 at L2) & Group 3 (4 at L3)

6 29 95 99 1.02 0.11 1.36 0.40

8 8 100 - 1 0 - -
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1.7 Conclusions

The transmit beamforming problem has been considered for the general case of multiple

cochannel multicast groups, under two design criteria: QoS, in which we seek to min-

imize the total transmission power while guaranteing a prescribed minimum SINR at

all receivers; and a fair objective, in which we seek to maximize the minimum received

SINR under a total power constraint. Both formulations contain single-group multicast

beamforming as a special case, and are therefore NP-hard [34]. Computationally efficient

quasi-optimal solutions have been proposed by means of SDR and a combined random-

ization / power control loop. Extensive numerical results have been presented, using

both simulated (i.i.d. Rayleigh) and measured outdoor wireless channel data, showing

that the proposed algorithms yield high-quality approximate solutions at a moderate

complexity cost. Interestingly, the numerical findings indicate that the solutions gen-

erated by the proposed algorithms are often exactly optimal, especially in the case of

measured channels. In certain cases this optimality can be proven beforehand, and al-

ternative convex reformulations of lower complexity can be constructed [24, 25]; this is

the topic of the subsequent chapter. In other cases, a theoretical worst-case bound on

approximation accuracy can be derived, and shown to be tight; on this issue, see [29].



Chapter 2

Far-field Multicast Beamforming

for Uniform Linear Antenna

Arrays

The problem of transmit beamforming to multiple cochannel multicast groups is con-

sidered for the important special case when the channel vectors are Vandermonde. This

arises when a uniform linear antenna (ULA) array is used at the transmitter under far-

field line-of-sight propagation conditions, as provisioned in 802.16e and related wireless

backhaul scenarios. Two design approaches are pursued: i) minimizing the total trans-

mit power subject to providing a prescribed received SINR to each intended receiver; and

ii) maximizing the minimum received SINR under a total transmit power budget. It has

been seen in the previous chapter that these problems are NP-hard in general; however,

it is proven here that for Vandermonde channel vectors it is possible to recast the opti-

mization in terms of the autocorrelation sequences of the sought beamvectors, yielding

an equivalent convex reformulation [24,25]. This affords efficient optimal solution using

modern interior point methods. The optimal beamvectors can then be recovered using

spectral factorization. Robust extensions for the case of partial channel state informa-

tion (CSI), where the direction of each receiver is known to lie in an interval, are also

developed. Interestingly, these also admit convex reformulation. The various optimal

designs are illustrated and contrasted in a suite of pertinent numerical experiments.
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2.1 Introduction

As network technology evolves towards seamless interconnection and triple-play1 ser-

vices, multicasting techniques become increasingly important in delivering batch updates

and streaming media content. Multicasting is a network layer issue for wired and optical

networks, where multicast routing has received considerable attention, and associated

tools (e.g., MBONE) have long been available for the Internet.

In recent years, there is a clear trend and emerging consensus that wireless is the

access method of choice for the last hop, or even the last few hops. This is partially

due to accessibility and cost issues, but, perhaps more importantly, for ease of use

and mobility considerations. This is evident in the proliferation of wireless local area

and wireless backhaul solutions, in addition to the convergence of cellular phones and

wireless-enabled handheld computers.

Wireless is an inherently broadcast medium, thus opening the door to multicasting

at the physical layer, in addition to multicast routing at the network layer. Access points

nowadays are typically equipped with antenna arrays. Baseband beamforming can be

used to create suitable beampatterns to serve multiple multicast groups simultaneously

over the same bandwidth. Physical layer multicasting can yield significant rate, en-

ergy, and latency advantages over network layer multicast routing, in which duplicate

transmissions are unavoidable. However, wireless multicasting requires some level of

physical CSI to be effective, and it obviously cannot be employed over the optical or

wired backbone. Thus, physical layer multicasting and network layer multicast routing

are complementary techniques.

The general problem of jointly designing beamformers for several cochannel multi-

cast groups has been considered in the previous chapter under QoS and MMF criteria.

These problems are NP-hard in general; however computationally efficient, high-quality

approximate solutions have been proposed using SDR coupled with randomization and

multicast power control [23, 26]. Interestingly, extensive numerical experiments have

shown that the proposed algorithms attain close to optimal performance for both sim-

ulated and measured channel data. These numerical findings suggest that, for Vander-
1Voice, Internet, video on-demand, video broadcasting / multicasting.
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monde channel vectors, exact solutions are often generated with remarkable consistency.

Vandermonde channel vectors arise when a ULA is used at the transmitter under far-

field, line-of-sight propagation conditions. Such conditions are quite realistic in wireless

backhaul scenarios, such as the line-of-sight mode of 802.16e. In this chapter, it is proven

that, indeed, the aforementioned design problems are convex (and thus “easy” to solve

exactly) under such conditions. Then, the assumption of perfect CSI is loosened to the

pragmatic case that the user angles are known only within a certain tolerance. Robust

design problems are formulated under both QoS and MMF service criteria and are shown

to be convex. Hence, they can be optimally and efficiently solved using modern interior

point methods. The chapter is concluded with several illustrative simulation results for

all proposed formulations.

2.2 Quality of Service Multicast Beamforming

When the transmitter employs a ULA under far-field line-of-sight propagation condi-

tions, the N ×1 complex vectors that model the phase shift from each transmit antenna

element to the receive antenna of user k ∈ K are Vandermonde

hk = v(θk) := [1 ejθk ej2θk · · · ej(N−1)θk ]T , (2.1)

where the angles θk are given by θk = −2πd sin(φk)/λ. Here, d denotes the spacing

between successive antenna elements, λ is the carrier wavelength, and the angles φk

define the directions of the receivers.

In such a propagation scenario, it was observed from the simulation results of [23,26]

that there exist receiver configurations for which the optimal solution blocks {Wopt
i }G

i=1

of the relaxed problem Qr turn out all being rank-1. Then, the second step of the

algorithm proposed in Section 1.3.2 (comprising the randomization / multicast power

control loop) is no longer needed and the set of optimum beamforming vectors {wopt
i }G

i=1

can be formed by the principal components of the blocks {Wopt
i }G

i=1. In such an occasion,

problem Qr is equivalent to, and not a relaxation of, the original problem Q. In Section

2.2.1, this fact is proven to hold for any feasible configuration, in the case of Vandermonde

channel vectors, and it suggests that the original problem Q is no longer NP-hard,

but may be equivalently posed as a convex optimization problem. A suitable convex
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reformulation, in terms of the autocorrelation of the beamforming vectors, is developed

in Section 2.2.2.

2.2.1 Tightness of Semidefinite Relaxation

Claim 9. The SDR Q → Qr is always tight for Vandermonde channels, i.e., if Qr is

feasible, then it always admits an equivalent solution whose blocks are all rank-1.

Proof : Let Wopt
i ∈ CN×N be one of the G blocks comprising the optimal solution

of the relaxed problem Qr. Let ρi ≥ 1 denote the rank of Wopt
i , and consider the outer

product decomposition2 Wopt
i =

∑ρi

`=1 wopt
i,` (wopt

i,` )H . The signal power user k receives

from multicast i can then be written as

tr
(
Wopt

i Hk

)
= tr

(
Wopt

i hkhH
k

)

= tr

[
ρi∑

`=1

wopt
i,` (wopt

i,` )HhkhH
k

]

=
ρi∑

`=1

tr
[
wopt

i,` (wopt
i,` )HhkhH

k

]

=
ρi∑

`=1

tr
[
hH

k wopt
i,` (wopt

i,` )Hhk

]

=
ρi∑

`=1

∣∣∣hH
k wopt

i,`

∣∣∣
2

=
ρi∑

`=1

∣∣∣v(θk)Hwopt
i,`

∣∣∣
2
,

(2.2)

using the linearity of the trace operator and the property that tr(AB) = tr(BA), for

any matrices A and B of appropriate dimensions. The last equality comes from the

assumption that channel vectors are Vandermonde, cf. (2.1).

The result of (2.2) is a real-valued complex trigonometric polynomial, which is non-

negative for any value of θk ∈ [0, 2π). Thus, according to the Riesz-Féjer theorem [36],
2Such decomposition is not unique, but this is irrelevant for our purposes; we simply use one such

decomposition.
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there exists a vector wopt
i ∈ R× CN−1 that is independent of θk, such that for all θk

ρi∑

`=1

∣∣∣v(θk)Hwopt
i,`

∣∣∣
2

=
∣∣∣v(θk)Hwopt

i

∣∣∣
2

= tr
(∣∣∣hH

k wopt
i

∣∣∣
2
)

= tr
[
wopt

i (wopt
i )HhkhH

k

]

= tr
(
W̄opt

i Hk

)
,

(2.3)

where W̄opt
i := wopt

i (wopt
i )H . Combining the results of (2.2) and (2.3), we obtain

tr
(
Wopt

i Hk

)
= tr

(
W̄opt

i Hk

)
, (2.4)

which shows that for every optimum (generally high-rank) beamforming matrix Wopt
i ,

there exists a rank-1 positive semidefinite matrix W̄opt
i , which is equivalent with respect

to the power received at each node. Therefore, the blocks {W̄opt
i }G

i=1 form a feasible

solution set of problem Qr.

Integrating out θk in the first equality of (2.3) yields (cf. Parseval’s theorem)

ρi∑

`=1

∥∥∥wopt
i,`

∥∥∥
2

=
∥∥∥wopt

i

∥∥∥
2
⇔

tr

[
ρi∑

`=1

wopt
i,` (wopt

i,` )H

]
= tr

[
wopt

i (wopt
i )H

]
⇔

tr
(
Wopt

i

)
= tr

(
W̄opt

i

)
.

(2.5)

Hence, the feasible set of rank-1 blocks {W̄opt
i }G

i=1 is an optimum solution of the problem

Qr, since it has the same objective value as {Wopt
i }G

i=1. ¥

2.2.2 Convex Reformulation

In this section, the nonconvex quadratic inequality constraints of the original QoS mul-

ticast beamforming problem Q (cf. Section 1.3) are reformulated with respect to the

autocorrelation of the beamforming vectors. Towards this end, the signal power received

at each user k by multicast i can be equivalently written, for Vandermonde channel vec-
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tors (2.1), as

∣∣wH
i hk

∣∣2 =
(
wH

i hk

) (
hH

k wi

)

=
N∑

n=1

w∗i,nhk,n

N∑

m=1

wi,mh∗k,m

=
N∑

n=1

N∑

m=1

wi,mw∗i,nhk,nh∗k,m

=
N∑

n=1

N∑

m=1

wi,mw∗i,nejθk(n−1)e−jθk(m−1)

=
N∑

n=1

N∑

m=1

wi,mw∗i,ne−jθk(m−n)

=
N∑

m=1

m−N∑

`=m−1

wi,mw∗i,m−`e
−jθk`

=
N−1∑

`=−(N−1)

min(N+`,N)∑

m=max(1+`,1)

wi,mw∗i,m−`e
−jθk`

=
N−1∑

`=−(N−1)

ri,`e
−jθk`,

(2.6)

where

wi := [wi,1 wi,2 · · · wi,N ]T and

hk := [hk,1 hk,2 · · · hk,N ]T .

(2.7)

In (2.6), we have denoted ` := m− n and for all ` ∈ {−N + 1, . . . , N − 1}

ri,` :=
min(N+`,N)∑

m=max(1+`,1)

wi,mw∗i,m−`. (2.8)

It is easy to see that ri,` is conjugate-symmetric about the origin, which allows us to

rewrite the received signal power in terms of {ri,`}N−1
`=0 only

∣∣wH
i v(θk)

∣∣2 = ri,0 +
N−1∑

`=1

(
ri,`e

−jθk` + ri,−`e
jθk`

)

= ri,0 +
N−1∑

`=1

(
ri,`e

−jθk` + r∗i,`e
jθk`

)

= ri,0 + 2
N−1∑

`=1

Re
[
ri,`e

−jθk`
]

= Re
[
v(θk)H Ĩri

]
,

(2.9)
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where we have defined the autocorrelation vectors ri ∈ R× CN−1 ∀i ∈ G as

ri := [ri,0 ri,1 · · · ri,N−1]T , (2.10)

and the N ×N diagonal matrix

Ĩ =


 1 0

0 2IN−1


 , (2.11)

where IN−1 denotes the (N − 1)× (N − 1) identity matrix. Furthermore, note that for

` = 0 (2.8) yields ri,0 =
∑N

m=1 wi,mw∗i,m = ||wi||22.
It therefore follows that problem Q can be equivalently reformulated, with respect

to the optimization variables {ri}G
i=1, to

VQ

min
{ri∈R×CN−1}G

i=1

G∑

i=1

ri,0

s.t. :
Re

[
v(θk)H Ĩri

]

∑G
j=1
j 6=i

Re
[
v(θk)H Ĩrj

]
+ σ2

k

≥ γk ∀k ∈ Gi ∀i ∈ G,

ri is an autocorrelation vector ∀i ∈ G.

Each of the K inequality constraints can be written as

Re
[
v(θk)H Ĩri

]
− γk

∑G
j=1
j 6=i

Re
[
v(θk)H Ĩrj

]
≥ γkσ

2
k ⇔

Re
[
v(θk)H Ĩ

(
ri − γk

∑G
j=1
j 6=i

rj

)]
≥ γkσ

2
k ⇔

Re
[
v(θk)H ĨAkr

]
≥ γkσ

2
k ⇔

v(θk)H ĨAkr + jξk ≥ γkσ
2
k,

(2.12)

where the fact that the denominator is nonnegative was taken into account in the first

step. In the third step, the N × GN matrix Ak = ak ⊗ IN was introduced, where

ak = (γk + 1)eT
i − γk1T

G is the 1×G vector whose ith element is equal to 1, whereas all

others are set to −γk. Here, 1G is the G×1 all-1 vector, ei is the G×1 vector indicating

the multicast group i that user k belongs to, and ⊗ denotes the Kronecker product.

Furthermore, the autocorrelation vectors are stacked in the GN×1 optimization variable

vector r = [rT
1 · · · rT

G]T . In the fourth step, the real “slack” variables {ξk}K
k=1 were
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inserted to compensate the terms Im
[
v(θk)H ĨAkr

]
. Apparently, the last inequality in

(2.12) is linear.

Each of the G autocorrelation constraints admits an equivalent linear matrix in-

equality representation (see, e.g., [1, 8]). Note that (2.8) can be rewritten ∀` ∈ N :=

{0, . . . , N − 1} as

ri,` =
N∑

m=1+`

wi,mw∗i,m−` = wH
i E`

Nwi = tr
[
E`

NwiwH
i

]
= tr

[
E`

NWi

]
, (2.13)

where Wi is a rank-1 positive semidefinite matrix by definition, cf. (1.2), and E`
N is

the N ×N Toeplitz matrix with ones in the `th upper sub-diagonal and zeros elsewhere

(note that E0
N = IN ). Remarkably, it is proven in [1] that the result of (2.13) holds

even when the associated rank constraint on the auxiliary matrix is relaxed. Specif-

ically, {ri,`}N−1
`=0 belongs to the set of finite autocorrelation sequences if and only if

{
ri,` = tr

[
E`

NWi

]}N−1

`=0
for some positive semidefinite matrix Wi. Thus, introducing an

N×N auxiliary matrix Wi for each autocorrelation vector ri, the G autocorrelation con-

straints are equivalently converted to GN linear equalities and G positive semidefinite

constraints.

Replacing the constraints of problem VQ, with the equivalent representations of

(2.12) and (2.13), the QoS multicast beamforming problem for Vandermonde channels

is reformulated to

VQ

min
{ri∈R×CN−1, Wi∈CN×N}G

i=1, {ξk∈R}K
k=1

G∑

i=1

ri,0

s.t. : v(θk)H ĨAkr + jξk ≥ γkσ
2
k ∀k ∈ Gi ∀i ∈ G,

ri,` − tr
[
E`

NWi

]
= 0 ∀` ∈ N ∀i ∈ G,

Wi º 0 ∀i ∈ G.

Problem VQ is an SDP problem; it can therefore be efficiently solved by means

of interior point methods. Problem VQ consists of G vector variables of size N × 1,

G matrix variables of size N × N , and K + GN linear constraints. Interior point

methods will take O[
√

GN log(1/ε)] iterations, with each iteration requiring at most

O[G3N6 +(K +GN)GN2] arithmetic operations [48], where the parameter ε represents
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the desired solution accuracy at the algorithm’s termination. Actual runtime complex-

ity will usually scale far slower with G, N , and K than this worst-case bound3. The

optimum autocorrelation sequences {ropt
i }G

i=1 are obtained solving VQ; then, the respec-

tive optimum beamforming vectors {wopt
i }G

i=1 can be found using spectral factorization

techniques (see, e.g., [45]).

The QoS multicast beamforming problem for Vandermonde channels can thus be

solved equivalently in two distinct ways. First, by the principal components of the

optimum solution blocks of the SDP problem Qr, when these turn out all being rank-1.

Second, by spectral factorization of the optimum autocorrelation sequences solving the

SDP problem VQ. However, problem Qr is not guaranteed to consistently yield rank-1

solutions for Vandermonde channel vectors; Claim 9 only proves the existence of such

a solution, and counter-examples in which SDP yields higher-rank solutions do arise

in practice. Post-processing via spectral factorization is needed in such cases in order

to obtain an equivalent rank-1 solution. The first approach (via Qr) is computationally

cheaper when general-purpose interior point SDP software is used, because VQ involves a

higher number of optimization variables and associated constraints. However, the dual

of VQ involves significantly fewer variables and can be solved via application-specific

interior point methods which can drop the arithmetic operations per iteration by two

to three orders of magnitude (see, e.g., [1]). Finally, and perhaps most importantly, the

reformulation of the QoS constraints in terms of autocorrelation sequences as inequalities

on (the real part of) trigonometric polynomials, cf. (2.12), enables us to extend the

multicast beamforming problem to the case where there is partial knowledge of the

angles {θk}K
k=1 determining the Vandermonde channel vectors. The respective robust

design is considered in Section 2.4.1.

2.3 Max-Min Fair Multicast Beamforming

This section treats the related multicast beamforming problem of maximizing the mini-

mum (weighted) received SINR, subject to an upper bound P on the total transmission

power. The general MMF problem has been considered in Section 1.4; the important
3This is true for all problems considered here.
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special case when a ULA is used at the transmitter under far-field line-of-sight propaga-

tion conditions is studied here. In such a scenario, the channel vectors are Vandermonde,

cf. (2.1), and Claim 9, proved in Section 2.2.1 for the QoS formulation, holds for the

MMF formulation too, i.e., the relaxation F → Fr is always tight. The proof is similar

to the QoS case; specifically, using (2.4) and (2.5), it is seen that the set of rank-1 blocks

{W̄opt
i }G

i=1 forms a feasible solution of problem Fr with the same objective value as the

(generally higher-rank) optimum solution set {Wopt
i }G

i=1.

In the following, an approach similar to Section 2.2.2 is followed in order to formulate

the MMF multicast beamforming problem for the case of Vandermonde channels. Using

the representation of (2.9) for the signal power received by user k from multicast i,

problem F may be equivalently written, in terms of the autocorrelation of the sought

beamforming vectors, as

VF

max
{ri∈R×CN−1}G

i=1, g≥0
g

s.t. :
1
γk

Re
[
v(θk)H Ĩri

]

∑G
j=1
j 6=i

Re
[
v(θk)H Ĩrj

]
+ σ2

k

≥ g ∀k ∈ Gi ∀i ∈ G,

G∑

i=1

ri,0 = P,

ri is an autocorrelation vector ∀i ∈ G.

The optimization problem VF consists of a linear cost function and K inequality, 1

equality, and G autocorrelation constraints. The latter can be replaced by linear matrix

inequalities, with the introduction of G auxiliary positive semidefinite matrices, as in

Section 2.2.2. Hence, the interest is focused on the inequality constraints; the remainder

is an SDP problem. Following the same steps as in (2.12) and replacing every occurrence

of γk by the term gγk, the inequalities can be equivalently written as

v(θk)H ĨAk(g)r + jξk ≥ gγkσ
2
k ∀k ∈ Gi ∀i ∈ G. (2.14)

The fundamental difference of (2.14) to (2.12) is that the auxiliary matrices Ak(g) are

not constant factors anymore but variables, since they depend on g. Hence, contrary to

the QoS case, the inequalities (2.14) are nonlinear.
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This difficulty can be tackled by appreciating two key observations: i) by fixing g

the inequalities (2.14) become linear in the remaining variables; and ii) the objective of

VF is to maximize g. It follows that VF can be solved by bisection over SDP problems.

Specifically, let [L,U ] denote the interval containing the optimum value gopt of problem

VF. Due to the nonnegativity of gopt and the Cauchy-Schwartz inequality, we may

set L = 0 and U = min
k∈K

PN

σ2
k

for the lower and the upper bound, respectively. Given

[L,U ], the SDP feasibility problem Ff , shown in the box below, is solved at the midpoint

g := (L + U)/2 of the interval. If problem Ff is feasible for the given choice of g, set

L := g; otherwise U := g. Thus, in each iteration the interval is halved. The algorithm

terminates when the interval length becomes smaller than the desired accuracy.

VF
f

find x

s.t. : v(θk)H ĨAk(g)r + jξk ≥ gγkσ
2
k ∀k ∈ Gi ∀i ∈ G,

ri,` − tr
[
E`

NWi

]
= 0 ∀` ∈ N ∀i ∈ G,

G∑

i=1

ri,0 = P ,

Wi º 0 ∀i ∈ G.

In VF
f , x denotes the optimization vector

x := [ξT rT vec(W1)T · · · vec(WG)T ]T , (2.15)

where ξ := [ξ1 · · · ξK ]T . The solution vector obtained by the last feasible iteration of

the algorithm contains the optimum autocorrelation sequences {ropt
i }G

i=1. The sought

beamforming vectors {wopt
i }G

i=1 can then be found using spectral factorization techniques

(see, e.g., [45]).

In every iteration, the algorithm tries to find a solution to the SDP feasibility problem

VF
f . Problems of this form can be efficiently solved by general-purpose interior point

SDP solvers. The use of interior point methods is convenient, because they not only

yield a solution to problem VF
f when the latter is feasible, but also provide a certificate

of infeasibility otherwise. Similar to problem VQ, problem VF
f consists of G vector

variables of size N × 1, G matrix variables of size N × N , and K + GN + 1 linear

constraints. Computing an optimal solution of tolerance ε using an interior point method



2.4 Robust Multicast Beamforming 43

will have an overall iteration count of O[
√

GN log(1/ε)], with each iteration costing

O[G3N6 + (K + GN)GN2] in the worst case [48].

As for the QoS problem considered in Section 2.2, the MMF multicast beamforming

problem for Vandermonde channels can be solved optimally by two algorithms, both

employing bisection over SDP problems. Again, going through Fr entails lower com-

plexity when a general-purpose interior point solver is used, but the solution matrices

are not guaranteed to be rank-1 . On the other hand, the dual of VF
f is cheaper to

solve using custom interior point methods developed specifically for problems involving

autocorrelation constraints (see, e.g., [1]). Furthermore, problem VF
f forms the basis for

the robust extension considered in Section 2.4.2.

2.4 Robust Multicast Beamforming

In the multicast beamforming problems presented so far, the beamformers are designed

under the assumption that full CSI is available at the transmitter. For the case of Van-

dermonde channel vectors, considered throughout this chapter, accurate CSI boils down

to exact knowledge of users’ directions {φk}K
k=1 (equivalently, of the angles {θk}K

k=1). In

a more realistic scenario, only partial CSI is practically available at the design center,

due to errors in the estimation of the angles {θk}K
k=1. It is often reasonable to assume

that errors are bounded, e.g., due to quantization, in which case each θk lies in some

interval [αk, βk]. In the following, robust formulations for the QoS and MMF multicast

beamforming problems are presented, using a worst-case approach, i.e., the constraints

account for all possible channel vectors.

2.4.1 Robust QoS Formulation

A robust extension of the QoS multicast beamforming problem VQ, considered in Sec-

tion 2.2.2, would be to jointly design the beamforming vectors so that for every user

k ∈ K the received SINR target γk is met for all possible values of the angle θk ∈ [αk, βk]

that determines the Vandermonde channel vector. In such a scenario, each of the K

SINR constraints are posed, cf. (2.12), as

Re
[
v(θk)H ĨAkr

]
≥ γkσ

2
k ∀θk ∈ [αk, βk]. (2.16)
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An interpretation of (2.16) is that it requires (the real part of) certain trigonometric

polynomial to be nonnegative over a segment of the unit circle. As proved in [8], con-

straints of this form can be equivalently reformulated to the linear matrix inequality

constraints

ĨAkr + jξke1 − γkσ
2
ke1 = y(Yk) + z(Zk; αk, βk), (2.17)

where Yk ∈ CN×N º 0, Zk ∈ C(N−1)×(N−1) º 0, ξk ∈ R are auxiliary variables, and e1

denotes the N × 1 indicator vector whose first element is 1 and all others are 0. The

vector y(Y) := [y1 y2 · · · yN ]T ∈ R× CN−1 is defined [8] by the equations

y1 :=
〈
E0

N ,Y
〉
,

y`+1 := 2
〈
E`

N ,Y
〉

∀` ∈ {1, . . . , N − 1},
(2.18)

where 〈A,B〉 := tr
(
AHB

)
denotes the inner product between two (generally complex)

matrices A and B. The vector z(Z;α, β) := [z1 z2 · · · zN ]T ∈ CN is defined [8] by the

equations

z1 := d1(α, β)
〈
E0

N−1,Z
〉

+ d∗2(α, β)
〈
E1

N−1,Z
〉
,

z`+1 := 2d1(α, β)
〈
E`

N−1,Z
〉

+ d2(α, β)
〈
E`−1

N−1,Z
〉

+ d∗2(α, β)
〈
E`+1

N−1,Z
〉

∀` ∈ {1, . . . , N − 3},

zN−1 := 2d1(α, β)
〈
EN−2

N−1,Z
〉

+ d2(α, β)
〈
EN−3

N−1,Z
〉

,

zN := d2(α, β)
〈
EN−2

N−1,Z
〉

,

(2.19)

where, for given α, β ∈ [0, 2π), the vector d(α, β) = [d1(α, β) d2(α, β)]T ∈ R × C is

defined by

d(α, β) :=


 cosα + cosβ − cos(β − α)− 1

[1− exp(jα)] [exp(jβ)− 1]


 . (2.20)

Hence, introducing the auxiliary matrices {Yk ∈ CN×N , Z(N−1)×(N−1)
k }K

k=1 and

replacing the conservative SINR constraints of (2.16) with the representation of (2.17),

the robust version of the QoS multicast beamforming problem VQ is equivalently written

as
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RQ

min
{ri, Wi}G

i=1, {Yk, Zk, ξk}K
k=1

G∑

i=1

ri,0

s.t. : ĨAkr + jξke1 − y(Yk)− z(Zk; αk, βk) = γkσ
2
ke1 ∀k ∈ Gi ∀i ∈ G,

ri,` − tr
[
E`

NWi

]
= 0 ∀` ∈ N ∀i ∈ G,

Wi º 0 ∀i ∈ G,

Yk º 0 ∀k ∈ K,

Zk º 0 ∀k ∈ K.

Problem RQ consists of a linear cost and KN + GN linear equality, and G + 2K

positive semidefinite constraints; it is therefore an SDP problem. An ε-optimal solution,

by means of general-purpose interior point methods, entails O[
√

(G + 2K)N log(1/ε)]

iterations, each of complexity O[(G+2K)3N6+(K+G)(G+2K)N3] [48]. More efficient

solutions, of significantly lower complexity, can be found by means of application-specific

interior point methods (see, e.g., [1]). The optimum beamforming vectors {wopt
i }G

i=1 can

be computed from the solution of problem RQ using spectral factorization techniques

(see, e.g., [45]).

It is interesting to note that the original QoS multicast beamforming problem VQ

and its robust counterpart RQ are convex (specifically, SDP) problems. The price paid

for the extension to the partial CSI case is higher computational complexity due to the

larger number of the optimization variables and constraints.

2.4.2 Robust MMF Formulation

A robust extension of the MMF multicast beamforming problem VF can be found in a

manner similar to the respective QoS problem considered in the previous section. Each

of the K SINR inequality constraints that must be fulfilled are now posed as

Re
[
v(θk)H ĨAk(g)r

]
≥ gγkσ

2
k ∀θk ∈ [αk, βk], (2.21)

where, as noted in Section 2.3, Ak(g) depends on the variable g. Exactly as for (2.16),

inequalities (2.21) can be equivalently reformulated [8] to

ĨAk(g)r + jξke1 − gγkσ
2
ke1 = y(Yk) + z(Zk; αk, βk). (2.22)
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Fixing the value of the variable g, (2.22) represents linear matrix inequality constraints.

Thus, as with the MMF multicast beamforming problem VF in Section 2.3, the robust

version can be efficiently solved, by means of bisection over the following SDP feasibility

problem RF
f . The optimization variables of RF

f are stacked in the vector

x̃ := [xT vec(Y1)T · · · vec(YK)T vec(Z1)T · · · vec(ZK)T ]T , (2.23)

where x is defined by (2.15).

RF
f

find x̃

s.t. : ĨAk(g)r + jξke1 − y(Yk)− z(Zk; αk, βk) = gγkσ
2
ke1 ∀k ∈ Gi ∀i ∈ G,

ri,` − tr
[
E`

NWi

]
= 0 ∀` ∈ N ∀i ∈ G,

G∑

i=1

ri,0 = P ,

Wi º 0 ∀i ∈ G,

Yk º 0 ∀k ∈ K,

Zk º 0 ∀k ∈ K.

Feasibility problem RF
f is an SDP problem comprising KN + GN + 1 linear equality

and G + 2K positive semidefinite constraints. As in the QoS case, it has the same form

as the original (full CSI) problem VF
f , but higher dimensionality. An ε-optimal solution,

by means of general-purpose interior point methods, entails O[
√

(G + 2K)N log(1/ε)]

iterations, each of complexity O[(G+2K)3N6+(K+G)(G+2K)N3] [48]. The complexity

can be significantly reduced with the use of application-specific interior point methods

(see, e.g., [1]). Again, the optimum beamforming vectors {wopt
i }G

i=1 can be computed

using spectral factorization techniques (see, e.g., [45]).
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2.5 Numerical Results

In this section, we provide some representative numerical results illustrating and con-

trasting the various multicast beamformer designs for Vandermonde channels presented

in Sections 2.2–2.4. For each design, the resulting optimized transmit beam pattern

in the plane of the ULA is plotted in linear scale. All patterns are symmetric with

respect to the vertical axis, due to the inherent radiation symmetry of the ULA. The

Vandermonde channel vector of each user is calculated by plugging the respective angle

in (2.1). The directions of the users comprising each multicast group are shown in the

caption of each plot, for ease of reference. The noise variance of all channels is set to

1, except for the scenario in Fig. 2.8. The basic parameters for all simulation configu-

rations considered are gathered in Table 2.1. Columns 2, 3, and 4 contain the number

N of transmit antenna elements (spaced d = λ/2 apart), the total number K of users

served, and the number G of multicasts, respectively. Column 5 stores the SINR values

in dB, which are input parameters for the QoS problems in Figs. 2.1–2.6 and attained

objective values for the MMF problems in Figs. 2.7–2.9. Column 6 reports the total

transmission powers, which are objective values and input parameters for the QoS and

MMF problems, respectively. Finally, column 7 lists the time in seconds spent on a typi-

cal desktop computer to solve the core SDP problem for each design, using SeDuMi [35].

The reported values are averages values over 10 problem instances.

In the simplest configuration considered (Fig. 2.1), the transmit ULA consists of 6

antenna elements and 30 intended receivers are clustered in 3 multicast groups. For the

first multicast group, 10 users are evenly distributed in the range 26◦–62◦ at 4◦ apart.

This is henceforth compactly denoted as {26◦ : 4◦ : 62◦}. The users of the second group

are placed at {−18◦ : 4◦ : 18◦}, while the third group is the reflection of the first, with

respect to the horizontal axis. Exact knowledge of all user directions is assumed at the

design center (the transmitter). A SINR threshold of 10 dB is prescribed for all users.

This is a typical scenario (the angles of the users listening to the same multicast are close

and the number of transmit antenna elements is small) under which each beamvector

forms a single main lobe to serve all users in the respective multicast group. Then, it

is natural to expect that the optimum solution blocks of Qr will be rank-1, and this
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is indeed the case. The algorithm proposed in Section 1.3.2 (principal components of

the optimum rank-1 solution blocks of the SDP problem Qr [23, 26]) and the algorithm

developed in Section 2.2.2 (spectral factorization of the autocorrelation sequences that

solve problem VQ [24, 25]) yield equivalent solutions, i.e., the beam pattern of Fig. 2.1.

It is apparent from the shape of the beams in Fig. 2.1, that the SINR constraint

is over-satisfied for all users except the ones on the edges of the lobes. Note that, in

such scenarios, the important design parameter is the direction span of each multicast

group and not the actual number of users in the group. More subscribers can be added

within the span of a given group without modifying the design. Repeating the design

with the same parameters but this time using N = 12, the resulting beam pattern is

plotted in Fig. 2.2. Due to the extra degrees of freedom, far less power is wasted in

over-satisfying the constraints in the middle of the lobes. For proper interpretation of

the results, it is important to note that the scale of the polar plots varies from figure

to figure for better visualization. The same SINR threshold is guaranteed to all users

with smaller cost in terms of total transmit power (cf. lines 1 and 2 of Table 2.1), at the

expense of additional hardware and complexity, because of the larger number of design

variables. Fig. 2.3 plots the robust QoS design (presented in Section 2.4.1) for the same

parameters and N = 12. The tolerance in the user directions is δ = 1◦. Compared to

Fig. 2.2, the beams are broader in Fig. 2.3, where higher total transmission power is

required to assure the same minimum SINR level to wider ranges of directions. The

runtime is also higher due to the additional auxiliary variables and constraints.

A more challenging scenario is considered in Figs. 2.4–2.6. The are 2 multicast groups

and the users in each group are split in two separate direction spans. Furthermore,

the SINR threshold is 10 and 6 dB for the users listening to the first and the second

multicast, respectively. Figs. 2.4 and 2.5 depict the optimum beam patterns for N equal

to 6 and 12, respectively and perfect CSI. Due to the interleaving of direction spans of

the two groups, two main lobes are formed to serve each group. As expected, more

power is transmitted towards the users of the first group which demand higher assured

SINR. Again, the availability of more antenna elements at the transmitter results in less

total radiated power. The respective robust design for N = 6 and maximum ambiguity

δ = 0.5◦ is illustrated in Fig. 2.6. A comparison with Fig. 2.4 supports the findings
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discussed in the previous scenario.

Figs. 2.7–2.9 illustrate an example of the equally-fair max-min beamformer design

for N = 8, G = 2, and two clusters of users per multicast group. The power budget is

set to 10 and the relative accuracy of the bisection to 10−3, resulting in 13 iterations.

Figs. 2.7 and 2.8 show the optimized beam patterns of the MMF problem (presented

in Section 2.3) under the assumption of perfect CSI. In Fig. 2.8, the noise variance is

set to 2 for the users in directions ≥ 40◦. Note that more power is transmitted towards

the users that suffer from larger noise variance (or, equivalently, from larger path loss)

to ensure fairness. The respective robust design (presented in Section 2.4.2) for δ = 2◦,

is shown in Fig. 2.9. Relative to Fig. 2.7, the SINR level assured to all users is smaller

(cf. lines 7 and 9 of Table 2.1), since wider direction spans are served with the same

power budget.

Table 2.1: Simulation Parameters

Fig. N K G P γ [dB] Time [s]

1 6 30 3 28.32 10 0.26

2 12 30 3 10.44 10 0.52

3 12 30 3 12.35 10 12

4 6 44 2 9.56 10/6 0.31

5 12 44 2 6.03 10/6 0.45

6 6 44 2 10.82 10/6 3.3

7 8 22 2 10 9.45 0.20

8 8 22 2 10 7.97 0.26

9 8 22 2 10 7.49 2.34
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Figure 2.1: QoS, γ = 10 dB, N = 6; G1 = {26◦ : 4◦ : 62◦}, G2 = {−18◦ : 4◦ : 18◦},
G3 = {−62◦ : 4◦ : −26◦}
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Figure 2.2: QoS, γ = 10 dB, N = 12; G1 = {26◦ : 4◦ : 62◦}, G2 = {−18◦ : 4◦ : 18◦},
G3 = {−62◦ : 4◦ : −26◦}
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Figure 2.3: Robust QoS, δ = 1◦, γ = 10 dB, N = 12; G1 = {26◦ : 4◦ : 62◦}, G2 = {−18◦ :

4◦ : 18◦}, G3 = {−62◦ : 4◦ : −26◦}
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Figure 2.4: QoS, γ = {10, 6} dB for {G1,G2}, N = 6; G1 = {−60◦ : 2◦ : −40◦, 10◦ : 2◦ :

30◦}, G2 = {−30◦ : 2◦ : −10◦, 40◦ : 2◦ : 60◦}
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Figure 2.5: QoS, γ = {10, 6} dB for {G1,G2}, N = 12; G1 = {−60◦ : 2◦ : −40◦, 10◦ : 2◦ :

30◦}, G2 = {−30◦ : 2◦ : −10◦, 40◦ : 2◦ : 60◦}
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Figure 2.6: Robust QoS, δ = 0.5◦, γ = {10, 6} dB for {G1,G2}, N = 6; G1 = {−60◦ : 2◦ :

−40◦, 10◦ : 2◦ : 30◦}, G2 = {−30◦ : 2◦ : −10◦, 40◦ : 2◦ : 60◦}
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Figure 2.7: MMF, P = 10, N = 8; G1 = {−60◦ : 5◦ : −40◦, 5◦ : 5◦ : 30◦}, G2 = {−30◦ :

5◦ : −5◦, 40◦ : 5◦ : 60◦}

  5

  10

  15

  20

  25

30

210

60

240

90

270

120

300

150

330

180 0

MMF Multicast Beamforming

N = 8 antenna elements; K = 22 users in G = 2 groups

Figure 2.8: MMF, P = 10, N = 8; G1 = {−60◦ : 5◦ : −40◦, 5◦ : 5◦ : 30◦}, G2 = {−30◦ :

5◦ : −5◦, 40◦ : 5◦ : 60◦}; σ2 = 2 for directions other than {−30◦ : 30◦}



2.5 Numerical Results 54

  5

  10

  15

  20

30

210

60

240

90

270

120

300

150

330

180 0

Robust MMF Multicast Beamforming

N = 8 antenna elements; K = 22 users in G = 2 groups

Figure 2.9: Robust MMF, δ = 2◦, P = 10, N = 8; G1 = {−60◦ : 5◦ : −40◦, 5◦ : 5◦ : 30◦},
G2 = {−30◦ : 5◦ : −5◦, 40◦ : 5◦ : 60◦}
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2.6 Conclusions

The problem of far-field multicast beamforming has been considered, under line-of-sight

propagation conditions, for transmitters employing ULA arrays. Both QoS and MMF

design criteria have been adopted and the Vandermonde structure of the channel vec-

tors has been exploited to derive equivalent convex reformulations, which are amenable

to exact and efficient solution using modern interior point methods. Therefore, it has

been proved that, whereas the general multicast beamforming problem, presented in

the previous chapter, is NP-hard, the important special case considered here is not. In

addition, it has been shown that the natural (Lagrange bi-dual) SDR of the problem is

tight in the case of Vandermonde channel vectors. The key tool behind these develop-

ments is spectral factorization and the representation of finite autocorrelation sequences

via linear matrix inequalities. Departing from the idealized assumption of perfect CSI

knowledge at the transmitter, a more realistic situation has also been considered, where

the receiver directions are only known to lie in a certain interval. Robust SDP-based

designs have been proposed for this case, under both QoS and MMF criteria, that yield

exact solutions. The proposed designs have potential for practical use in a number of

current and emerging wireless systems.



Chapter 3

Quality of Service Scheduling,

Admission and Multicast Power

Control

The joint scheduling, admission, and power control problem is considered under QoS

constraints, and a general formulation that incorporates multicasting, cochannel or or-

thogonal transmission modalities, and access point selection. Several special cases are

well-known to be NP-hard, yet important for QoS provisioning and bandwidth-efficient

operation of existing and emerging cellular and overlay / underlay networks. Recog-

nizing this, there have been several attempts to develop reasonable heuristics for joint

scheduling and power control; e.g., [9, 27, 42]. A more disciplined approach has been

followed in this contribution. The general problem is first concisely formulated as con-

strained optimization, whose objective combines the scheduling, admission, and power

control components. The formulation also allows for multicasting. A GP approximation

is then developed, which forms the core of a heuristic, yet well-motivated centralized

algorithm that generates approximate solutions to the original NP-hard problem. Nu-

merical results against an enumeration baseline and a state-of-art joint scheduling and

power control algorithm [27] illustrate the merits of the approach.
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3.1 Introduction

Consider a wireless network comprising K single-antenna receivers. In a general multi-

cast scenario, there are 1 ≤ G ≤ K distinct data streams to be carried over the network.

Each receiver is interested in a single stream, but in multicast mode several receivers may

request the same stream. The two extreme values of G are of particular interest: when

G = 1 all receivers are interested in the same content (i.e., the broadcast scenario), and

when G = K each receiver is interested in its own stream (e.g., the multiuser downlink

scenario). Let Gi denote the index set of the receivers forming the ith multicast group,

i.e., listening to the ith multicast stream. Under this setup, the multicast groups are

mutually exclusive and partition the entire set of receivers, i.e., Gi ∩ Gj = ∅, j 6= i and

∪iGi = K := {1, . . . ,K}.
Regarding the transmissions, it is assumed that there are N degrees of freedom in the

network. Specifically, each multicast stream can be transmitted in one or more (up to

N) different dimensions. As dimensions we refer to access points located spatially apart

but transmitting in the same channel, or to orthogonal dimensions, such as disjoint time

slots or frequency bands. Let p
(n)
i denote the transmission power of multicast stream

i ∈ G := {1, . . . , G} in dimension n ∈ N := {1, . . . , N} . The allowed or available

transmission power is upper bounded by P
(n)
i , due to regulatory or power amplifier

limitations. For every receiver k ∈ Gi, let α
(n)
i,k and α

(n)
j,k denote the corresponding power

gain of the direct and coupling links, respectively, in the nth dimension. The link gains

include the effects of propagation loss, shadowing, and fading, as well as beamforming

and coding gains if any. They are considered known to the design center.

Due to the broadcast nature of the wireless medium and the cochannel transmissions,

there is interference which must be accounted for. The quality of communication that

receiver k ∈ Gi experiences, when tuned in the nth dimension, is measured by the

received SINR

SINR(n)
k =

α
(n)
i,k p

(n)
i

∑
j 6=i

α
(n)
j,k p

(n)
j +

∑
m6=n

G∑
i=1

α
(m)
i,k p

(m)
i + σ2

k

(3.1)

where σ2
k denotes receiver’s noise variance. Interference consists of two terms: the first

accounts for the interfering multicasts received in the same dimension, and the second for
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all the transmissions from the other dimensions. Note that even the stream of interest is

included in the second term, due to incoherent combining; for orthogonal scenarios, the

inter-dimension (i.e., ∀m 6= n) coupling gains α
(m)
i,k are 0 and the second term vanishes.

The multicast stream can be decoded successfully by the kth receiver when the received

SINR is equal to or greater than a threshold γk, determined by application requirements,

and the modulation and coding scheme. A receiver k is considered assigned in the nth

dimension when SINR(n)
k ≥ γk, and served or admitted when its QoS requirement can

be guaranteed, i.e., when it is assigned in any dimension.

3.2 Joint Problem Formulation

The QoS problem of interest is to find the optimum i) schedule, i.e., assignment of

receivers in dimensions, (including a “void” assignment that accounts for admission

control); and ii) transmission powers, in order to maximize the number of admitted

receivers and minimize the total transmission power required to serve them. Let us

introduce the auxiliary binary variables {s(n)
k ∈ {0, 1}}n∈N

k∈K , one per degree of freedom

and receiver. The role of the binary variable s
(n)
k is to determine whether the kth

receiver can be assigned in the nth dimension. Using these auxiliary variables, the joint

QoS scheduling, admission, and multicast power control problem can be written as the

constrained optimization

min
{p(n)

i }n∈N
i∈G ,{s(n)

k }n∈N
k∈K

ε
G∑

i=1

N∑

n=1

p
(n)
i + (1− ε)

K∏

k=1

N∏

n=1

1

1 + s
(n)
k

(3.2)

s. t. : 0 ≤ p
(n)
i ≤ P

(n)
i ∀i ∈ G ∀n ∈ N , (3.3a)

SINR(n)
k ≥ γks

(n)
k ∀k ∈ Gi ∀i ∈ G ∀n ∈ N , (3.3b)

s
(n)
k ∈ {0, 1} ∀k ∈ K ∀n ∈ N , (3.3c)

N∑

n=1

s
(n)
k ≤ 1 ∀k ∈ K, (3.3d)

(3.3e)

where the left-hand term of (3.3b) is defined in (3.1).
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As per (3.3b), N SINR constraints (one per available dimension) are a priori de-

fined for every receiver. Focusing on the (k, n)th inequality of (3.3b), it is seen that

the auxiliary variable s
(n)
k multiplies the SINR threshold γk. The value of the binary

variable determines whether the respective SINR constraint is accounted (or not) in the

power control part of the joint problem; thus, s
(n)
k can be interpreted as a switch that

activates (or not) the inequality. Specifically, for s
(n)
k = 1, the constraint is enforced on

the transmission powers, so that SINR(n)
k is requested to be at least equal to γk. On the

contrary, for s
(n)
k = 0, the respective inequality (3.3b) is reduced to the trivial nonneg-

ativity constraint for the transmission power p
(n)
i , which is already included in the left

part of (3.3a); hence, no further constraint is actually imposed. Note that when no re-

ceiver of the ith multicast group is assigned in the nth dimension (i.e., s
(n)
k = 0 ∀k ∈ Gi),

then, the optimization problem (3.2)–(3.3) zeroes the respective transmission power (i.e.,

p
(n)
i = 0). This is because p

(n)
i counts solely as interference in this case, since it appears

only in the denominator of “active” SINR constraints (3.3b) and the left term of the

objective function (3.2) minimizes the total transmission power. Hence, there is no need

to explicitly account for the non-transmitted multicast streams in the denominator of

SINR(n)
k (cf. (3.1)) in (3.3b).

The inequalities in (3.3d) constrain each receiver to be assigned in at most one di-

mension. Since QoS is already guaranteed to a receiver when just one out of N respective

constraints (3.3b) is “active”, multiple assignments solely increase the interference in the

wireless network. In case there are extra degrees of freedom (i.e., other feasible assign-

ments), the system would rather utilize them to serve more receivers or decrease the total

transmission power. Note that by letting the sum in (3.3d) take values smaller than 1

(actually 0), admission control is included in the joint optimization problem (3.2)–(3.3).

When there are not enough resources, the system is allowed to deny service to any re-

ceiver, say k, (setting s
(n)
k = 0 ∀n ∈ N ) in order to ensure service to the remaining

ones. If the inequalities (3.3d) were replaced with equalities, the resulting joint problem

would be a restriction of (3.2)–(3.3), since the set of feasible solutions would then be

a subset of the original one. The restricted problem becomes infeasible when it is not

possible to admit all receivers. On the contrary, inequalities (3.3d) imply the following

result.
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Claim 10. Optimization problem (3.2)–(3.3) is always feasible.

Proof: A trivial feasible solution, i.e., satisfying the constraints (3.3), is {s(n)
k = 0}n∈N

k∈K

and any {p(n)
i }n∈N

i∈G conforming to (3.3a). ¥

However, this trivial solution is the worst possible from a QoS perspective, since

none of the K receivers is served. As noted before, the primal design goal of the joint

QoS problem of interest is to maximize the number of receivers served, which, by virtue

of (3.3d), equals to the value of the auxiliary variables’ total sum. For this reason, apart

from the total power minimization, a second term has been included in the objective

function (3.2), which is pertinent to the scheduling / admission part of the joint problem.

This term is a function that favors the value 1 for the binary variables, by increasing the

penalty when they take the value 0 instead. Specifically, focusing on any receiver, say k,

the objective function term of the scheduling / admission problem is
∏N

n=1 1/(1 + s
(n)
k ).

The associated cost for assigning the receiver in any dimension, say n, is 2−1 (s(n)
k = 1

and s
(m)
k = 0 ∀m 6= n) and 1 for not admitting it (s(n)

k = 0 ∀n ∈ N ). From (3.2), the

total assignment cost is the product of the individual ones; hence, it is equal to 2−K̂ ,

where K̂ ∈ {0,K} is the number of receivers served. When all receivers are served, the

assignment cost is equal to 2−K and doubles for every receiver that is not admitted.

Observe that the assignment cost is discrete-valued with minimum step size of 2−K that

doubles for every step.

The overall cost of the joint QoS problem (3.2)–(3.3) is the weighted sum of the

power and the assignment cost. The power is continuous and upper bounded by

G∑

i=1

N∑

n=1

p
(n)
i

(3.3a)

≤
G∑

i=1

N∑

n=1

P
(n)
i ≤ GNP, (3.4)

where P ≥ max
i∈G,n∈N

P
(n)
i . The weighting factor ε ∈ [0, 1] is chosen so that service is

denied to some receivers only if this event cannot be avoided. Adapting the ruler analogy

argument in [30] to a logarithmic scale, ε is chosen so that the minimum penalty paid

for denying service to a receiver is higher than the maximum potential gain from the

total power minimization, i.e.,

(1− ε)2−K > εGNP ⇔ ε <
2−K

GNP + 2−K
. (3.5)
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Claim 11. For ε < 2−K

GNP+2−K , optimization problem (3.2)–(3.3) maximizes the number

of admitted receivers and minimizes the total transmission power required to serve them.

Proof: Let
{
{p̆(n)

i }n∈N
i∈G , {s̆(n)

k }n∈N
k∈K

}
denote an optimal solution of problem (3.2)–(3.3).

Assume the existence of another feasible solution
{
{p̃(n)

i }n∈N
i∈G , {s̃(n)

k }n∈N
k∈K

}
which serves

1 receiver more than the optimal solution, i.e.,

K∑

k=1

N∑

n=1

s̃
(n)
k =

K∑

k=1

N∑

n=1

s̆
(n)
k + 1. (3.6)

Then, it holds that
K∏

k=1

N∏

n=1

1

1 + s̃
(n)
k

=
1
2

K∏

k=1

N∏

n=1

1

1 + s̆
(n)
k

(3.7)

and
K∏

k=1

N∏

n=1

1

1 + s̃
(n)
k

≥ 2−K (3.7)⇒
K∏

k=1

N∏

n=1

1

1 + s̆
(n)
k

≥ 2−K+1. (3.8)

The cost of the feasible solution is

ε
G∑

i=1

N∑

n=1

p̃
(n)
i + (1− ε)

K∏

k=1

N∏

n=1

1

1 + s̃
(n)
k

(3.4), (3.7)

≤

εGNP + (1− ε)
1
2

K∏

k=1

N∏

n=1

1

1 + s̆
(n)
k

=

εGNP + (1− ε)
K∏

k=1

N∏

n=1

1

1 + s̆
(n)
k

− (1− ε)
1
2

K∏

k=1

N∏

n=1

1

1 + s̆
(n)
k

(3.8)

≤

(1− ε)
K∏

k=1

N∏

n=1

1

1 + s̆
(n)
k

+ εGNP − (1− ε)2−12−K+1

︸ ︷︷ ︸
<0 (3.5)

<

(1− ε)
K∏

k=1

N∏

n=1

1

1 + s̆
(n)
k

≤

ε

G∑

i=1

N∑

n=1

p̆
(n)
i

︸ ︷︷ ︸
>0 (3.3a)

+(1− ε)
K∏

k=1

N∏

n=1

1

1 + s̆
(n)
k

.

Hence, it is smaller than the minimum objective value, which contradicts optimality

of
{
{p̆(n)

i }n∈N
i∈G , {s̆(n)

k }n∈N
k∈K

}
for problem (3.2)–(3.3). Thus, solution of (3.2)–(3.3) serves

the maximum number of receivers possible under the constraints in (3.3). Given the

optimum schedule {s̆(n)
k }n∈N

k∈K , the joint QoS problem (3.2)–(3.3) reduces to a feasible

multicast power control problem, with respect to the variables {p(n)
i }n∈N

i∈G , which min-

imizes the total transmission power, while ensuring the QoS targets of the admitted

receivers. ¥
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The joint QoS problem (3.2)–(3.3) is nonconvex, since the auxiliary variables are

binary. The computationally intensive components of the problem are the scheduling

and admission control. Due to its combinatorial nature, the optimization with respect

to the variables {s(n)
k }n∈N

k∈K has exponential complexity; it can be proven that problem

(3.2)–(3.3) is NP-hard. Given an assignment, the joint problem (3.2)–(3.3) reduces to

the multicast power control problem, which is an LP optimization, with respect to the

variables {p(n)
i }n∈N

i∈G , see, e.g. [26, 42].

3.3 Relaxation to Geometric Programming

The binary constraints (3.3c) on the auxiliary variables are nonconvex. They can be

equivalently written as

s
(n)
k (s(n)

k − 1) = 0 ∀k ∈ K ∀n ∈ N or (3.9)





s
(n)
k (s(n)

k − 1) ≤ 0

s
(n)
k (s(n)

k − 1) ≥ 0
∀k ∈ K ∀n ∈ N . (3.10)

The quadratic inequalities on the upper branch of (3.10) are convex, whereas the others

on the lower are not. Discarding the nonconvex ones, the auxiliary variables {s(n)
k }n∈N

k∈K

are merely allowed to take any value in the interval [0, 1], which is obviously convex. An

immediate consequence of this relaxation is that the auxiliary variables lose their strict

functionality of taking “yes” or “no” decisions for the scheduling and admission control

problems. Now, they merely measure the ratio of SINR target satisfaction in (3.3b).

Hence, the motivation for introducing constraint (3.3d) does not hold anymore and it

can be discarded as well.

The relaxation of the feasible set for the auxiliary variables has the side effect that

the right-hand term of the objective function (3.2) does not take discrete values anymore.

Furthermore, due to the absence of (3.3d), it now tries to push all auxiliary variables as

close as possible to 1, i.e., it tries to assign every receiver to all dimensions. Note that

the denominator of the right-hand term of the objective function consists of all possible

cross-products of the auxiliary variables. Since all variables are positive and smaller than

or equal to 1, the smallest term in the denominator, dominating the cost, is the product
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of the highest order, i.e., the one involving all variables. Thus, the denominator may

be well approximated by this term. The resulting objective function term has simpler

form: it is a monomial. It upper bounds the original objective function term and has

essentially the same functionality, i.e., it penalizes severely the values of the auxiliary

variables close to 0.

After the aforementioned relaxations, the joint QoS problem (3.2)–(3.3) reads

min
{p(n)

i }n∈N
i∈G ,{s(n)

k }n∈N
k∈K

ε
G∑

i=1

N∑

n=1

p
(n)
i + (1− ε)

K∏

k=1

N∏

n=1

1

s
(n)
k

(3.11)

s. t. 0 ≤ p
(n)
i ≤ P

(n)
i ∀i ∈ G ∀n ∈ N , (3.12a)

∑

j 6=i

α
(n)
j,k p

(n)
j +

∑

m6=n

G∑

i=1

α
(m)
i,k p

(m)
i + σ2

k ≤ α
(n)
i,k p

(n)
i (γks

(n)
k )−1

∀k ∈ Gi ∀i ∈ G ∀n ∈ N ,

(3.12b)

0 ≤ s
(n)
k ≤ 1 ∀k ∈ K ∀n ∈ N . (3.12c)

The relaxed problem (3.11)–(3.12) is a posynomial minimization subject to posynomial

upper bound inequality constraints. Hence, it is a GP problem in standard form [5,7]. It

can be readily transformed into convex form, by a logarithmic change of variables, and

efficiently solved by means of interior point methods. In fact, there exist freely available

MATLAB toolboxes, e.g., GGPLAB [31] and CVX [21], that accept as input GP problems

in standard form.

3.4 Applications

The introduction, in Section 3.2, of the auxiliary variables {s(n)
k }n∈N

k∈K has enabled us to

approach a general class of cross-layer QoS problems jointly with the single-step con-

strained optimization (3.2)–(3.3), which is intractable, due to its combinatorial nature.

The relaxation, in Section 3.3, of the binary constraints (3.3c) to the intervals (3.12c)

has lead, on one hand, to the convex approximation (3.11)–(3.12) of the problem of

interest. On the other hand, convexity is obtained at a considerable cost; the strict

functionality of the auxiliary variables has been sacrificed in favor of the relaxation.

However, the GP problem (3.11)–(3.12) is still useful; it can used as the core component
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of heuristic algorithms to find approximate solutions to the original joint QoS problem.

In the following, two iterative algorithms are presented for respective problems, which

take scheduling and admission decisions by pruning degrees of freedom in each iteration.

3.4.1 Access Point Assignment, Admission & Multicast Power Control

Consider a multicast scenario, where G streams are provided by N sources on the same

channel. The sources can be either GN single-antenna access points (AP’s) (each trans-

mitting a single stream) or N multi-antenna AP’s (each spatially multiplexing the G

multicasts by means of beamforming). Let Gi,n ⊆ Gi denote the set of receivers, inter-

ested in the ith multicast, which are tentatively tuned in the nth dimension. Using these

sets, the GP problem (3.11)–(3.12) is equivalently rewritten as

min{
{p(n)

i },{s(n)
k }k∈Gi,n

}n∈N
i∈G

ε
G∑

i=1

N∑

n=1

p
(n)
i + (1− ε)

N∏

n=1

G∏

i=1

∏

k∈Gi,n

1

s
(n)
k

(3.13)

s. t. 0 ≤ p
(n)
i ≤ P

(n)
i ∀i ∈ G ∀n ∈ N , (3.14a)

∑

j 6=i

α
(n)
j,k p

(n)
j +

∑

m6=n

G∑

i=1

α
(m)
i,k p

(m)
i + σ2

k ≤ α
(n)
i,k p

(n)
i (γks

(n)
k )−1

∀k ∈ Gi,n ∀i ∈ G ∀n ∈ N ,

(3.14b)

0 ≤ s
(n)
k ≤ 1 ∀k ∈ Gi,n ∀i ∈ G ∀n ∈ N . (3.14c)

As noted in Section 3.2 for problem (3.2)–(3.3), when no receiver of the ith multicast

group is assigned in the nth dimension, i.e., Gi,n = ∅, the optimization (3.13)–(3.14)

yields p
(n)
i = 0. Moreover, it is important to take into consideration a peculiarity of the

QoS multicast power control problem. The power of each multicast stream is controlled

by one variable, but many SINR constraints (one for each receiver of the respective

multicast group) need to be fulfilled at once. Typically, for a feasible instance of the

problem, optimization yields SINR values which are greater than the targeted thresholds,

for all but one receivers per multicast group.

The following algorithm initially assumes that all receivers can be tuned to all AP’s

that transmit the multicast stream of interest. Then, it iteratively rejects possible

AP assignments in order to decrease the interference level, until (if possible) a single

assignment is preserved per receiver that satisfies the requested QoS target.
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Algorithm 1

1. Initialization: Gi,n = Gi ∀n ∈ N ∀i ∈ G.

2. Solve the GP problem (3.13)–(3.14), denote the solution
{
{p̆(n)

i }, {s̆(n)
k }k∈Gi,n

}n∈N

i∈G
,

and calculate the SINR(n)
k ∀n ∈ N ∀k ∈ K.

3. If there exist receivers with multiple assignments, whose SINR target is reached

by more than one AP,

then find among them the receiver-AP pair {k̃, ñ} with the largest SINR over-

satisfaction, preserve assignment of receiver k̃ only to AP ñ (when k̃ ∈ Gĩ then

Gi,n = Gi,n − k̃ ∀n 6= ñ ∀i 6= ĩ), and go to 2,

else go to 4.

4. If there exist receivers with multiple assignments, whose SINR target is reached

by a single AP,

then find among them the pair {k̃, ñ} with the largest SINR, preserve assignment

of receiver k̃ only to AP ñ, and go to 2,

else go to 5.

5. If there exist receivers with multiple assignments, whose SINR target is not

reached by any AP,

then find among them the pair {k̃, ñ} with the largest SINR, preserve assignment

of receiver k̃ only to AP ñ, and go to 2,

else go to 6.

6. If there exist receiver(s) whose SINR target is not reached,

then find among them the pair {k̃, ñ} with the smallest SINR, drop assignment

of receiver k̃ to AP ñ (when k̃ ∈ Gĩ then Gĩ,ñ = Gĩ,ñ − k̃), and go to 2,

else the sets {Gi,n}n∈N
i∈G contain a feasible assignment {{s̆(n)

k = 1}k∈Gi,n}n∈N
i∈G and

the solution {p̆(n)
i }n∈N

i∈G determines the minimum power levels required for service.

Note that in each iteration, the number of variables and constraints (hence, the com-

plexity) of the core GP problem decreases. The overall worst-case complexity of the

algorithm is O((KN)4.5).
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Figure 3.1: Wireless network instance with fixed transmitters’ locations

The performance of the algorithm is evaluated on a 1km×1km network topology,

an instance of which is depicted in Fig. 3.1. 2 multicast streams are transmitted, each

by 2 dedicated transmitters located on the anti-diagonal vertices of the square. There

are K receivers requesting service, randomly distributed within the network, forming

2 equally-sized multicast groups. Receivers are assumed stationary and the direct link

gains account only the propagation loss with an attenuation exponent of 4, whereas the

coupling gains are further reduced by a factor equal to 8. This setup can refer to a

CDMA network of 4 different single-antenna AP’s, each transmitting a single stream,

where the coupling reduction is due to spreading. Alternatively, the antenna pairs on

the left and right (or the upper and lower) side of the square may be viewed as separate

AP’s, each spatially multiplexing the 2 multicasts. Then, the difference in the values of

the direct and coupling link gains of each receiver-AP pair is due to beamforming. All

receivers ask for a SINR threshold of 10 dB and have a noise power level of 10−13 W.

The transmission power per stream is upper bounded by 10 W.

Simulations were performed for K = {4, 6, 8, 10} and 50 network instances. The

network size has been kept small, to enable comparison with a brute-force approach, i.e.,

enumeration over all possible AP assignments, including the “void” one for admission
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control, and solution of QoS multicast power control. The toolboxes GGPLAB [31] and

CVX [21] were used to solve GP and LP optimizations, respectively. The average number

of receivers admitted, versus the number of receivers requesting service, is plotted in Fig.

3.2. Focusing on the case of K = 10, Fig. 3.3 depicts the number of admitted receivers

versus the network instance. It is observed that on 60% of the occasions the algorithm

serves the maximum possible number of receivers, and on nearly all others it serves just

1 receiver less. The total transmission power, averaged over the 30 network instances

that the admission control problem is solved optimally, is reported in Fig. 3.4. For

K = 10, the total power for these network instances is shown in Fig. 3.5. It can be seen

that in 70% of those, the algorithm solves optimally the joint QoS problem.
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Figure 3.2: Receivers admitted on average
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Figure 3.3: Receivers admitted
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Figure 3.4: Total transmission power on average
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Figure 3.5: Total transmission power

3.4.2 Scheduling, Admission and Power Control

Consider a unicast scenario, where K active links of a wireless network carry different

data streams. The transmissions can take place in any of N available non-overlapping

time slots. Let Kn ⊆ K denote the set of links tentatively scheduled in time slot n ∈ N .

Under this setup, the GP problem (3.11)–(3.12) is rewritten as

min
{p(n)

k , s
(n)
k }n∈N

k∈Kn

ε
N∑

n=1

∑

k∈Kn

p
(n)
k + (1− ε)

N∏

n=1

∏

k∈Kn

1

s
(n)
k

(3.15)

s. t. 0 ≤ p
(n)
k ≤ P ∀n ∈ N ∀k ∈ Kn, (3.16a)

∑

` 6=k

γkα
(n)
`,k p

(n)
` s

(n)
k + γkσ

2
ks

(n)
k ≤ α

(n)
k,kp

(n)
k ∀n ∈ N ∀k ∈ Kn, (3.16b)

0 ≤ s
(n)
k ≤ 1 ∀n ∈ N ∀k ∈ Kn, (3.16c)

where the middle term of left-hand side in (3.12b) representing the inter-dimension

interference disappears in (3.16b). The following algorithm initially assigns all links in

all slots and then iteratively balances the interference level, preserving at most 1 slot

assignment per link.
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Algorithm 2

1. Initialization: Kn = K ∀n ∈ N .

2. Solve the GP problem (3.15)–(3.16) and denote the solution {p̌(n)
k , š

(n)
k }n∈N

k∈Kn
.

3. If there exist links whose SINR target is reached in more than 1 slot,

then find among them the link-slot pair {k̃, ñ} requiring the minimum transmis-

sion power for service, schedule link k̃ only in slot ñ (Kn = Kn − k̃ ∀n 6= ñ), and

go to 2,

else go to 4.

4. If there exist links with multiple assignments whose SINR target is reached in a

single slot,

then find among them the pair {k̃, ñ} requiring the minimum transmission power

for service, schedule link k̃ only in slot ñ, and go to 2,

else go to 5.

5. If there exist links with multiple assignments, whose SINR target is not reached

in any slot,

then find among them the pair {k̃, ñ} yielding the minimum SINR, remove link k̃

from slot ñ (Kñ = Kñ − k̃), and go to 2,

else go to 6.

6. If there exist links whose SINR target is not reached,

then find among them the pair {k̃, ñ} yielding the minimum SINR, remove link k̃

from slot ñ, and go back to step 2,

else the sets {Kn}n∈N contain a feasible schedule {š(n)
k = 1}n∈N

k∈Kn
and the solution

{p̌(n)
k }n∈N

k∈Kn
determines the minimum power levels required for service.

Steps 3–5 and 6 are pertinent to the scheduling and admission part, respectively, of

the joint QoS problem. Note that in each iteration, the complexity of the GP problem

(3.15)–(3.16) decreases, because the number of variables involved decreases (from 2KN

to 2K̂).
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The performance of the Algorithm is evaluated on a 100m×100m network topology.

The transmitting and receiving nodes are randomly located within this square. A sample

topology instance with K = 12 links is shown in Fig. 3.6. The nodes are assumed

stationary for the duration of the N = 2 time slots and the direct link gains account only

the propagation loss with an attenuation exponent of 3 (α(n)
k,k = d−3

k,k ∀n ∈ N , where

dk,k is the distance among the transmitter and the receiver of the kth link). Spreading

with factor 64 is used to decrease the interference level and the corresponding spreading

process gain is included in the coupling link gains along with the propagation loss (α(n)
`,k =

d−3
`,k/64 ∀n ∈ N ). The noise power is the same for all receivers (σ2

k = σ2 ∀k ∈ K),

and the transmission powers are normalized with it and upper bounded by P/σ2 = 108.

A common SINR threshold of 10 dB is requested by all links (γk = 10, ∀k ∈ K). Fig.

3.7 reports, as a histogram, the number of links served when Algorithm 1 is executed for

100 different network instances. As a baseline, we use Algorithm B, developed in [27] for

a somewhat more general context, but represents the state-of-art in our present context.

Admission control is not included in [27]; iterations stop and the problem is declared

infeasible when a link cannot be scheduled. We use a slightly modified version here,

which continues the iterations until the maximum possible number of links is scheduled.
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3.5 Conclusions

A disciplined convex approximation approach was developed for a wide class of cross-

layer network optimization problems. The formulation is general enough to account for

interfering cochannel transmissions, unicast, broadcast, or multicast modalities, admis-

sion control, and base station selection. The nonconvex and NP-hard joint optimization

problem is approximated by a suitable geometric program, which is relatively easy to

solve. This approximation forms the core of an iterative algorithm that generates ap-

proximate solutions to the original problem. While heuristic, this algorithm has a solid

footing, and this shows in numerical experiments.



Chapter 4

Maximum Throughput Power

Control

The throughput maximization problem has been thoroughly studied in the context of

wired networks (cf. the celebrated max-flow min-cut theorem [12]). One is given a di-

rected multi-hop network between a source and a destination, with fixed edge capacities.

Each node may split its aggregate incoming flow to multiple outgoing flows, and the ob-

jective is to select flows to maximize the end-to-end flow from source to destination.

This is an LP problem, which can be efficiently solved using a variety of centralized and

distributed algorithms, including custom solutions using the max-flow min-cut theorem

and related insights (see, e.g., [3]). The situation is very different in wireless networks,

due to fading and mutual interference. Edge capacities are randomly time-varying and

depend on interfering node transmission modalities (e.g., transmission powers) as well.

In the following, we consider the case when time-variation due to fading is slow. Edge

capacities are then a function of transmission powers, and power control can be used

to obtain a favorable ‘topology’ from the viewpoint of maximizing flow. This suggests

a joint max-flow power control problem that is basic, yet has not been considered in

the cross-layer network optimization literature. Alternatively, power control may be

coupled with dynamic routing by means of differential queue lengths information. Both

approaches are sketched and convex approximations, in the high SINR regime, are pro-

vided for these cross-layer power control problems.
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4.1 System Model

Consider a wireless ad-hoc network consisting of N nodes, located at fixed positions.

The topology of the network is represented by a directed graph (N ,L), where N :=

{1, . . . , N} and L := {1, . . . , L} denote the set of nodes and links, respectively. Each

link ` ∈ L corresponds to an ordered pair of nodes (i, j), where i, j ∈ N and i 6= j. Let

Tx(`) and Rx(`) denote the transmitter and the receiver of link `, i.e., when ` = (i, j),

then Tx(`) = i and Rx(`) = j. Let p` denote the power transmitted on link ` and

G`k the path loss among the transmitter and the receiver of link ` and k, respectively.

Every node except the destination can potentially transmit to any other node except the

source, including transmission to more than one nodes simultaneously. All transmissions

are concurrent and cochannel; hence, communication is interference-limited. The nodes

are assumed capable of receiving and transmitting at the same time. In such a scenario,

a common, often implicit, assumption that is adopted here too is that the transmissions

of a node are not accounted as interference at its receiver. The reason is that since self-

transmissions are known, they can therefore be canceled, at least in theory. Cancelation

will not be perfect in practice, but so-called near-end crosstalk (NEXT) effects can be

mitigated. Then, for each link ` ∈ L, the set of potentially interfering links can be

defined as I(`) := L − {`} − {m|Tx(m) = Rx(`)}.
Under this setup, the SINR experienced at the receiver of link ` is equal to

γ` =
G``p`

1
G

∑
k∈I(`)

Gk`pk + V`

, (4.1)

where V` is the additive noise power and G accounts for potential gain due to physical

layer processing, such as beamforming, spreading, or coding for known interference. In

the following, for notational convenience, G is absorbed by the coupling factors Gk`, k 6=
`.

The data flow traversing link ` ∈ L is denoted f` and it is upper bounded, according

to information theory first principles, by the maximum achievable rate

c` = log(1 + γ`), (4.2)

i.e., each link is viewed as a single-user Gaussian channel with Shannon capacity. It

is well known that capacity may be achieved by Gaussian signalling and infinite-length
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coding; however, for practical modulation schemes and in particular coding with limited

block size, the actual maximum achievable rate is (sometimes significantly) smaller. This

loss can be modeled introducing in (4.2) a constant factor, say 0 < c < 1, that scales the

SINR. Note that this modification does not alter the mathematical properties of (4.2).

Inserting (4.1) into (4.2), the capacity of link ` is written as

c` = log


1 +

G``p`∑
k∈I(`)

Gk`pk + V`


 = log




∑
k∈I(`)

Gk`pk + V` + G``p`

∑
k∈I(`)

Gk`pk + V`




= log

(
∑

k∈{`, I(`)}
Gk`pk + V`

)
− log

(
∑

k∈I(`)

Gk`pk + V`

)
.

(4.3)

It is seen that, c` is a function of all the powers transmitted in the network. In contrast,

the capacity of a link in an (interference-free) wired network is determined solely by the

average power available at the transmitter of that link.

The curvature of function (4.3) is not constant throughout its support, because the

logarithm of an affine expression is concave, but the difference of concave functions is,

in general, neither convex nor concave [20]. Hence, problems involving optimization of

{c`}`∈L with respect to {p`}`∈L are in general difficult. However, for high SINR, i.e.,

γ` À 1, (4.2) is approximated by

c` ≈ log(γ`)
(4.1)
= log(G``p`)− log

(
∑

k∈I(`)

Gk`pk + V`

)
. (4.4)

Expression (4.4) can be reformulated to a concave function, by means of a logarithmic

change of variables [6]. Specifically, defining the auxiliary variables

p̃` := log p` ∀` ∈ L, (4.5)

expression (4.4) is equivalently rewritten as

c` ≈ G̃`` + p̃` − log

(
∑

k∈I(`)

eG̃k`+p̃k + eṼ`

)
:= c̃`, (4.6)

where the factors G̃k`
:= log(Gk`

) and Ṽ` := log(V`) have been defined merely to compact

the writing. The logarithm of a sum of exponentials is convex [7], the negative sign

reverts the curvature, and addition with an affine expression preserves curvature; hence,

(4.6) is a concave function of {p̃`}`∈L.
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4.2 Max-Flow Power Control

Consider a single unicast session1, where traffic inserted at node 1 (the source) is relayed

by the intermediate nodes of the network and eventually reaches node N (the destina-

tion). The problem of interest is to jointly adjust the transmission powers and determine

feasible flows for all cochannel links, with the goal of maximizing session’s throughput.

The joint max-flow power control problem can be formulated as

max
{f`≥0, p`≥0}`∈L

∑

` : Tx(`)=1

f` (4.7)

s.t. :
∑

` : Tx(`)=i

p` ≤ Pi ∀i ∈ N − {N}, (4.8a)

∑

` : Rx(`)=i

f` =
∑

` : Tx(`)=i

f` ∀i ∈ N − {1, N}, (4.8b)

f` ≤ c` ∀` ∈ L, (4.8c)

where it assumed that the source (destination) can only transmit (receive). The flow

conservation constraints (4.8b) ensure that nothing is lost in the network, thus the

total flow emanating from the source reaches the destination. The objective function

(4.7) and flow conservation constraints (4.8b) come directly from the classical max-

flow problem for wired networks. The total power at which node i can transmit, due

to regulation or physical limitations, is upper bounded by Pi (4.8a). The difficulty

of formulation (4.7)–(4.8) is due to the flow bounds (4.8c); obviously, the remainder

is a LP problem. Note that inequalities (4.8c) are convex if and only if their right-

hand side is a concave function of the optimization variables [20]. However, the link

capacities {c`}`∈L of the wireless network are functions of {p`}`∈L, that do not have

fixed curvature throughout their support, cf. (4.3). Nonconvexity is a serious difficulty

that is sometimes mistakenly interpreted as intractability. Yet appropriate reformulation

often reveals hidden convexity, thereby allowing exact and efficient solution.

In the high SINR regime, the link capacities can be closely approximated by {c̃`}`∈L,

defined in (4.6), which are concave functions of the logarithmic powers {p̃`}`∈L. Then,

problem (4.7)–(4.8) is written as
1A single session is considered for simplicity of exposition; generalization to multicommodity networks

is straightforward.
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max
{f`≥0, p̃`∈R}`∈L

∑

` : Tx(`)=1

f` (4.9)

s.t. : log

(
∑

` : Tx(`)=i

ep̃`

)
≤ log(Pi) ∀i ∈ N − {N}, (4.10a)

∑

` : Rx(`)=i

f` =
∑

` : Tx(`)=i

f` ∀i ∈ N − {1, N}, (4.10b)

f` ≤ G̃`` + p̃` − log

(
∑

k∈I(`)

eG̃k`+p̃k + eṼ`

)
∀` ∈ L, (4.10c)

where inequalities (4.10c) are now convex. The side effect of the logarithmic change

of variables (4.5) is the reformulation of linear inequalities (4.8a) to (4.10a). Luckily,

(4.10a) are convex, since, as noted before, the logarithm of a sum of exponentials is a

convex function. In fact, the sum of exponentials, resulting from the direct application of

(4.5) into (4.8a), is already convex; the logarithm is taken merely to increase the accuracy

of the numerical solution in practice. It can be easily seen that problem formulation

(4.9)–(4.10) conforms to the disciplined convex programming (DCP) ruleset [20]; hence,

not only it is convex by definition, but it can be readily solved efficiently, by means of

interior point methods, when inserted in this form to the software package CVX [21].

4.3 Back-Pressure Power Control

Consider a system slotted with unit time slots, indexed by t ∈ N+. A deterministic

amount of traffic, say X, is generated at the source in every slot. Contrary to the setup

of Section 4.2, the nodes are assumed to have buffering capabilities; let Wi(t) denote the

traffic queue length of node i at the end of slot t. Then, the differential backlog [37] of

link ` = (i, j), at the end of slot t, is defined as

D`(t) :=





max{0,Wi(t)−Wj(t)}, j 6= N

Wi(t), j = N.
(4.11)

Traffic flows through the links in each slot, based on the link capacities resulting

from the power selections at the particular slot. The powers for the next slot, t + 1, can

be determined by solving the optimization problem [17]
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max
{p`≥0}`∈L

L∑

`=1

D`(t)c` (4.12)

s.t. :
∑

` : Tx(`)=i

p` ≤ Pi, ∀i ∈ N . (4.13)

The objective function (4.12) that is sought to be maximized is a weighted sum of the

capacities of all network links, where the differential backlogs serve as weighting factors.

The optimization problem (4.12)–(4.13) aims to maximize the throughput of the network

by favoring the links whose receiver is less congested than the transmitter. Note that, due

to the upper branch of (4.11), the links destined to more congested nodes have differential

backlog 0 and consequently they are not included in the objective function (4.12). The

transmission powers corresponding to such links are only accounted as interference and

the optimization pushes them to 0 in order to increase the capacities of all other links.

In fact, this is a scheduling decision that could have been taken beforehand, i.e., when

D`(t) = 0, set p`(t + 1) = c`(t + 1) = 0; however, problem formulation (4.12)–(4.13)

yields the same result without requiring any explicit information (on the definition of

the SINR). Inequalities (4.13) upper bound the total transmission power of each node.

In the high SINR regime, approximation (4.6) is valid and problem (4.12)–(4.13) can

be formulated, with respect to the auxiliary variables defined in (4.5), as

max
{p̃`∈R}`∈L

L∑

`=1

D`(t)c̃` (4.14)

s.t. : log

(
∑

` : Tx(`)=i

ep̃`

)
≤ log(Pi) ∀i ∈ N . (4.15)

The objective function (4.14) is concave, since {c̃`}`∈L are concave functions of {p̃`}`∈L,

cf. (4.6), and {D`(t)}`∈L are nonnegative, cf. (4.11). Moreover, inequalities (4.15) are

convex, as noted before for (4.10a). Hence, optimization problem (4.14)–(4.15) is convex,

since a concave function is maximized over a convex feasible set. The importance of this

result is that the global optimum solution can be found with polynomial worst-case

complexity, by means of modern interior point methods. The logarithmic change of

variables (4.5) rings the bell of GP problems. Indeed, formulation (4.14)–(4.15) may be

seen to belong to the wide class of Extended GP problems [7].
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4.4 Simulation Results

A simulation experiment has been performed on a random network topology. N = 6

nodes are uniformly placed on a 100×100 square, the network has L = 21 directed links,

the link gains equal to the path losses with exponential factor 4, and the processing gain

is equal to 64. Each problem instance is solved using the CVX toolbox for MATLAB [21],

in approximately 5 seconds on a typical modern workstation. Complexity is manageable

when the number of variables is in the order of a few tens. However, for larger networks,

e.g., N > 10, the number of variables exceeds 100, assuming fully connected topologies,

and optimization is cumbersome. In such scenarios, receiver neighborhoods have to be

defined for each node, in order to reduce the number of variables and ensure that the

SINR of each link is high, so that the approximation (4.4) is valid.

Simulation results are displayed for three different amounts of input traffic per slot.

Specifically, the three figure pairs correspond to traffic 9, 10.7, and 12, respectively. The

first plot of each pair shows the evolution of the relays’ backlogs with time. The second

one depicts the power values resulting from optimization (4.14)–(4.15) for some typical

links. It is seen that for the first two values of traffic the queues are stabilized after a

few tens of iterations; actually, 10.7 is approximately the largest traffic for which this

is true. As seen by the third simulation, higher traffic cannot reach destination and

all backlogs grow to infinity with time. It is interesting that for stable setups, when

the transitional phase is over, the optimized link powers are periodic and have a small

number of feasible states.
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Figure 4.1: Relays’ Backlogs; underflow
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Figure 4.2: Typical resulting link powers; underflow
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Figure 4.3: Relays’ Backlogs; maxflow
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Figure 4.4: Typical resulting link powers; maxflow
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Figure 4.5: Relays’ Backlogs; overflow
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Figure 4.6: Typical resulting link powers; overflow
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