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Transmit Signal Design for Optimal Estimation of
Correlated MIMO Channels

Jayesh H. Kotecha, Member, IEEE, and Akbar M. Sayeed, Senior Member, IEEE

Abstract—We address optimal estimation of correlated mul-
tiple-input multiple-output (MIMO) channels using pilot signals,
assuming knowledge of the second-order channel statistics at the
transmitter. Assuming a block fading channel model and min-
imum mean square error (MMSE) estimation at the receiver, we
design the transmitted signal to optimize two criteria: MMSE and
the conditional mutual information between the MIMO channel
and the received signal. Our analysis is based on the recently
proposed virtual channel representation, which corresponds to
beamforming in fixed virtual directions and exposes the struc-
ture and the true degrees of freedom in the correlated channel.
However, our design framework is applicable to more general
channel models, which include known channel models, such as the
transmit and receive correlated model, as special cases. We show
that optimal signaling is in a block form, where the block length
depends on the signal-to-noise ratio (SNR) as well as the channel
correlation matrix. The block signal corresponds to transmitting
beams in successive symbol intervals along fixed virtual transmit
angles, whose powers are determined by (nonidentical) water
filling solutions based on the optimization criteria. Our analysis
shows that these water filling solutions identify exactly which
virtual transmit angles are important for channel estimation. In
particular, at low SNR, the block length reduces to one, and all the
power is transmitted on the beam corresponding to the strongest
transmit angle, whereas at high SNR, the block length has a
maximum length equal to the number of active virtual transmit
angles, and the power is assigned equally to all active transmit
angles. Consequently, from a channel estimation viewpoint, a
faster fading rate can be tolerated at low SNRs relative to higher
SNRs.

Index Terms—Conditional mutual information, correlated
MIMO channels, covariance feedback, majorization, minimum
mean square error, multiantenna systems, pilot-based channel
estimation, Schur-concavity, Schur-convexity, uniform linear
array.

I. INTRODUCTION

MULTIANTENNA communication systems are gaining
prominence due to the higher capacity and reliability

they can afford [2], [3]. Perfect knowledge of channel state is
often assumed in the analysis of such systems. However, in
practice, the channel has to be estimated, typically using pilot
symbols. Accurate and efficient channel estimation is of crit-
ical importance in the design of coherent communication sys-
tems. In multiple-input multiple-output (MIMO) channels, this
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problem is particularly challenging, due to the large number
of channel parameters to be estimated in general. Under the
idealized assumption of independent and identically distributed
(i.i.d.) channel coefficients, the solution is relatively straightfor-
ward due to the i.i.d nature of the coefficients [4], [5]. However,
this idealized assumption does not generally hold in practice,
and hence, a study of correlated channels is of interest. In this
work, we investigate transmit signal design for optimal estima-
tion of narrowband correlated MIMO Rayleigh fading channels,
assuming that the receiver and the transmitter1 have knowledge
of the second-order channel statistics.2 It is assumed that the re-
ceiver uses a minimum mean square error (MMSE) channel esti-
mator. The covariance feedback information is exploited by the
transmitter to design the transmit signal to minimize the channel
estimation error at the receiver. We assume a block flat fading
model, where the channel is constant over a block of transmitted
symbols but changes independently from block to block. We
design the transmit signal to optimize one of two criteria: min-
imization of the MMSE at the receiver or maximization of the
conditional mutual information (CMI) between the channel and
the received signal.

A MIMO channel with transmit and receive antennae has
a maximum of unknowns to be estimated. However, corre-
lated MIMO channels possess fewer degrees of freedom, and
hence, fewer than parameters need to be estimated. In view
of the large number of channel coefficients to be estimated, we
exploit this important fact to design efficient signalling schemes
for optimal channel estimation. We consider a general model
for correlated MIMO channels that exposes the true degrees of
freedom of the channel. Two important channel models are spe-
cial cases for our general model. The first example is the vir-
tual channel representation that was recently proposed in [7]
for uniform linear arrays (ULA) at both the transmitter and re-
ceiver. The second example is the channel where the correlation
in the transmit and receive arrays induce correlation in the rows
and columns of the channel matrix [8]–[10] and will be denoted
as the transmit and receive correlated model. The virtual rep-
resentation characterizes the channel in the spatial domain by
beamforming in the direction of fixed virtual angles determined

1This can either be estimated at the transmitter in TDD systems (due to reci-
procity of the uplink and downlink channels) or estimated by the receiver and
sent to the transmitter via a feedback channel, which is often called covariance
feedback.

2The rate at which channel statistics change depends on large-scale varia-
tions in the scattering environment and is typically low. The actual channel co-
efficients, on the other hand, can vary at a much faster rate due to the phase
variations induced by the relative motion between the transmitter/receiver and
scattering objects. Thus, in general, channel statistics vary much more slowly
and can be estimated more reliably, which allows for the possibility of covari-
ance feedback to the transmitter [6].
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by the spatial resolution of the antenna arrays and is analogous
to representing the channel in beamspace or wavenumber do-
main. An important characteristic of the virtual representation
is that the nonvanishing virtual coefficients are always approxi-
mately uncorrelated and represent the degrees of freedom in the
channel and, hence, the essential parameters to be estimated.
These degrees of freedom are governed by the scattering geom-
etry, the antenna spacings, and the number of antennae. Channel
estimation can now be viewed as the identification of this scat-
tering geometry and estimation of the corresponding nonvan-
ishing channel coefficients. In fact, the nonzero blocks in the
virtual matrix indicate the directions in which scattering clusters
are present and the couplings between the corresponding virtual
transmit and receive angles [7]. Our optimum channel estima-
tion design exploits this structure. The general model considered
in this paper exposes the true degrees of freedom in the eigen do-
main, which corresponds to the virtual domain in ULAs. Hence,
estimation of the channel can be equivalently performed in the
eigen or virtual domain. We note that in [11], optimal transmit
diversity precoder design is discussed for a multiple-input single
output (MISO) system to minimize channel estimation error ac-
cording to the two criteria used in this paper. Hence, the results
obtained there are a special case of our design.

We show that the optimal transmit signal is a block signal
consisting of beams transmitted in succession along the
active virtual transmit angles (or transmit eigen-directions),
corresponding to directions in which scatterers are present.
We assume that while the total transmit power in a block is
constant, the transmit power during each symbol transmission
may be different. The power transmitted along the beams
is determined by water filling solutions [12] resulting from
the two criteria. Equivalently, the scattering environment
is scanned along the virtual transmit angles one by one to
determine the presence of scattering clusters by measuring the
signals along the virtual receive angles for each transmitted
beam. In other words, the th transmitted beam is used at the
receiver to determine the th column of the channel matrix in
the virtual (or eigen) domain. Power is possibly assigned to a
beam only if the second-order statistics indicate the presence
of significant scattering in that direction. However, the power
assigned to the transmit beams depends on the signal-to-noise
ratio (SNR) as well. Our optimal signal design suggests that for
a given SNR, only those columns of the virtual channel matrix
should be estimated that are deemed dominant by the water
filling criteria. In essence, those channel coefficients whose
power is small compared with the background noise are not
important from a communication viewpoint, and the transmit
power is better utilized in channel coefficients that exhibit a
higher SNR. This important observation comes up in a variety
of related contexts, including noncoherent communication
scenarios, capacity-maximizing water filling solutions in the
case of imperfect channel state information [6], [13], [23], the
optimality of beamforming at low SNRs [6], and space-time
coding for correlated channels [14], all of which indicate the
importance of such dominant degrees of freedom.

Section II introduces the MIMO channel model. Section III
discusses MMSE estimation of the MIMO channel and mo-
tivates criteria for optimum signal design. In Section IV, we

obtain the optimum transmit signal using majorization theory.
Interpretation of the results and simulation examples are pre-
sented in Section V. Concluding remarks are presented in
Section VI.

Notation

For an integer , is a identity matrix. If is
a matrix, then its lowercase letter vec de-
notes the 1 vector obtained by stacking columns of .

denotes the Kronecker product [15]. , and de-
note the complex conjugate, transpose, and Hermitian transpose
of , respectively. The inverse, pseudo-inverse, trace, and de-
terminant of are denoted by , , tr , and det ,
respectively. diag is a diagonal matrix
with elements . denotes the expectation oper-
ator. . denotes the entry in the th
row and th column of .

II. MIMO CHANNEL MODEL

Consider a narrowband frequency nonselective MIMO
channel with transmit and receive antennae. With indi-
cating discrete time, if is the transmit vector of dimension

, then the -dimensional received signal can be written
as

(1)

where is the channel matrix coupling the trans-
mitter and receiver antennae. is the -dimensional noise
vector, which is assumed to be zero mean, complex white
Gaussian with covariance matrix . Assume the MIMO
channel to be block fading, i.e., for ,
and the channel is independent between different blocks of
symbols. Hence, we will suppress the index in . The
channel gain between the th receive and th transmit antenna
is the corresponding entry in the matrix denoted by .
The channel correlation is defined as , where

vec . In this paper, we assume that the channel matrix
can be expressed by the following canonical statistical model
[23]:

(2)

where and are the transmit and receive unitary ma-
trices, and the elements of are uncorrelated but not nec-
essarily identically distributed. and correspond to the
transmit and receive eigen-matrices (matrix of eigenvectors),
respectively, i.e., the columns of and are the eigen-
vectors of and , respectively. The corre-
lation of the elements of is given by a diagonal matrix

, where vec . Note that we can
write vec . and are related as

(3)

In the following, we show that two important channel represen-
tations can be expressed in the above form.
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Fig. 1. (a). Physical channel modeling and (b). Virtual channel representation.

A. ULAs and the Virtual Channel Representation

In [7], a virtual channel representation is proposed where
the transmitter and receiver consist of ULAs of antennae. The
virtual representation shows that for ULAs, the channel can
be written in the form of (2), where and are discrete
Fourier transform (DFT) matrices. In this section, we will elab-
orate on this a little more, but for details, see [7].

If and are the transmit and receive antenna spacings,
then can be related to the physical propagation environment
via the following array steering and response vectors:

(4)
where is the delay between the signals received at adjacent
elements in the array due to a point source at the physical angle

measured relative to a horizontal axis; see Fig. 1(a). If is
the wavelength of propagation, then . We will
interpret as a normalized angle. The vector represents
the signal response at the receiver array due to a point source
in the direction , whereas represents array weights
needed to transmit a beam focussed in the direction of . The
channel matrix for a widely used discrete path physical model,
which is illustrated in Fig. 1(a), can be written as

(5)

In the above model, the transmitter and receiver are coupled
via propagation paths with and as the spatial
angles seen by the transmitter and receiver, respectively,
and as the corresponding path gains. The matrices
are defined as ,

, and
diag . Thus, this discrete model is linear in path
gains but nonlinear in the spatial angles.

The linear virtual channel representation in [7] exploits the
finite dimensionality of the spatial signal space due to a finite
number of antennae and, hence, finite array apertures. Without
loss of generality, assume and to be odd and define

and . The virtual channel represen-
tation is given by

(6)

where and
are defined by the

fixed virtual angles and and are full rank. The virtual
channel representation is illustrated in Fig. 1(b). We assume
that the spatial virtual angles are uniformly spaced [7]. As a
result, the matrices and become DFT matrices and
are, hence, unitary. Note that the virtual model is linear and is
characterized by the virtual channel coefficients ( ) since
the spatial angles are fixed a priori (by the spatial resolution
of the arrays).

Using (6), we can write

(7)

and

(8)

An important property of the virtual representation is that the el-
ements of are approximately uncorrelated, and hence,
is approximately diagonal for any given channel correlation [7].
This shows that the virtual representation has the same form in
(2) with and .

B. Transmit and Receive Correlated Channel Model

In this channel model, it is assumed that the transmitter and
receiver antenna arrays have correlated elements. The channel
matrix can be written as

(9)

where the elements of are i.i.d. The matrices and are
the transmit and receive array correlation matrices. The model
was assumed in [1], [8], [9], and [16] and verified by measure-
ments under certain environments in [10] and [17]. Special cases
of the channel (only transmit correlation) are assumed in [6].

Denote the eigen value decompositions (EVD) of and
as and , respectively. Using (9), we can
write

(10)

where the second equality arises from the following two
observations. First, the elements of are still i.i.d.,
and second, the pre- and post-multiplication of diagonal
matrices and , respectively, makes the elements
of uncorrelated with diagonal
covariance matrix given by

(11)
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Fig. 2. Channel estimation in the virtual domain.

From (10), we can conclude that the transmit and receive cor-
related channel is a special case of our channel model with
given in (11). It is interesting to note that when and are
Toeplitz (which can be shown to be the case for ULAs [7]), then
it can be shown that and since DFT ma-
trices approximately diagonalize Topelitz matrices. This shows
that when and are Toeplitz, the model (9) is a special
case of the virtual channel model (6). We note that the virtual
representation provides the most general model for ULAs and
includes (11) as a special case. Recent measurement results indi-
cate that the product correlation in (11) may not be rich enough
in general, and thus, an arbitrarily diagonal may be needed
[18].

C. Equivalent Channel Estimation

From (2), we can write

(12)

which indicates that and are unitarily equivalent. This
implies that estimation of the MIMO channel can be equiv-
alently performed by obtaining estimates of . From (1) and
(2), we can write the received signal as

(13)

In the eigen or virtual domain

(14)

where and are the projections of the
received and transmitted signals onto the receive and transmit
eigen-matrices, respectively. Equation (14) provides an in-
teresting interpretation of transmission in the virtual domain,
which is illustrated in Fig. 2 for ULAs. Each element of
corresponds to a signal received from the eigen-directions
indicated by the receive eigen-matrix or the fixed virtual
angle in the case of ULAs. Similarly, each element of

corresponds to a signal transmitted in the eigen-directions
indicated by the transmit eigen-matrix or the fixed virtual
angles in the case of ULAs. The corresponding element
in indicates the channel gain associated with the transmit
and receive eigen-directions or virtual angles. Note that since

is unitary, is zero mean, white Gaussian with
covariance . In the sequel, we will obtain physical insights
from our analysis using the virtual representation in terms of
the transmit and receive angles. However, our mathematical
development applies to the general model in (2).

D. Block Fading Channel Model

Let be the two-sided Doppler spread of the MIMO channel
and be the symbol period. Then, the coherence block length
is defined as symbol periods. Hence, fast fading
channels will have smaller than slow fading channels. As-
sume the MIMO channel to be block fading, i.e.,
for , , and the channel is independent be-
tween different blocks of symbols. In addition, assume that
the channel is estimated using a block of symbols. In this
paper, we are concerned with the design of the block training
signal and estimating the optimal for a given SNR and .

In general, training blocks each of length symbol pe-
riods can be used to improve channel estimates by averaging the

training blocks at the receiver. The channel is estimated from
this averaged block, which exhibits an improved effective SNR
(effective SNR SNR ). We can apply our framework
at this effective SNR to determine the optimal and the cor-
responding transmit block signal. If data symbols are trans-
mitted during the coherence time, then , where

. The tradeoff between and could be investi-
gated along the lines of [19], in conjunction with this work.

Assuming that training symbols , are sent
in a block mode, and denoting , the block
fading model is given by

(15)

Stacking the columns of , we obtain

vec vec vec
(16)

where is a 1 vector, and we denote
. Using (16), we proceed with the estimation of

, which is a vector. Clearly, since the maximum number
of unknowns3 in is , we need to transmit a block of

symbols [19]. In the following discussion, we start by
letting take its maximum value , and we will see
that the optimal transmit signal design exactly identifies the true
block length for correlated channels by assigning zero power to
some of the transmit virtual angles.

III. MMSE AND MAP ESTIMATION

The model (16) is linear in and Gaussian. Hence, it can
be shown that the linear MMSE estimate, the MMSE estimate,
and the maximun a posteriori (MAP) estimate are identical [5].
In this paper, we assume that the covariance matrix

(or equivalently ) is known. We as-
sume that is full rank; however, this condition will be re-
laxed later (see remarks at the end of Section IV-A).

The linear MMSE estimator minimizes the error given by

MSE (17)

3The number of unknowns inh may be smaller in correlated channels. If the
prior variance of a given element of h is zero, then it implies that the element
is itself zero.
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Using the orthogonality principle, the resulting linear estimate
is

(18)

where is a matrix given by

(19)

The error covariance matrix is given by

(20)

The minimum MSE is

MMSE tr (21)

In fact, the posterior distribution of is Gaussian [5], i.e.,

(22)

The conditional mutual information (CMI) between the received
signal and the channel is given by

CMI

(23)

where denotes the mutual information between and ,
and denotes the entropy of [12].

IV. OPTIMUM SIGNAL DESIGN

In this section, we consider the design of the optimum
transmit block signal (or equivalently ) with respect to
two criteria: minimization of the MMSE (21) and maximiza-
tion of the mutual information (23) between the channel and
received signal conditioned on the transmitted block signal. We
state the two optimization problems as follows:

OP tr

s t tr (24)

and

OP

s t tr (25)

where is the total transmitted power, and is the
number of transmit antennae. Note that the constraint
tr is equivalent to the finite power constraint
tr tr since .

The MMSE estimate is optimal in the sense that it is also
the MAP estimate since the channel estimation problem here is
linear and Gaussian. One motivation for minimizing the MMSE
arises from [19], where optimal training is considered for es-
timation of MIMO channels, and it is shown that minimizing
the MMSE is optimal from the point of view of maximizing

capacity. Second, the impact of channel estimation on overall
bit error rate performance can be assessed, to a first approxima-
tion, by including the error variance (MMSE) in the background
noise variance; see, for example, [20].

While the MMSE criterion minimizes the trace of , the
CMI criterion is motivated by the minimization of the determi-
nant of . From (23), we have CMI

. Thus, while the MMSE criterion minimizes the
sum of the eigenvalues (trace) of , the CMI criterion mini-
mizes the sum of the log of the eigenvalues (logarithm of de-
terminant) of . The CMI criterion is motivated from an in-
formation-theoretic argument and suggests the maximization of
the mutual information between the unknown channel and re-
ceived signal as a function of transmitted training symbols. A
dual of this criterion is where the channel is assumed known at
the receiver while symbols are unknown. In this usual context,
the mutual information between the transmitted symbols and re-
ceived signal is considered from a coherent capacity perspec-
tive. Maximizing CMI is equivalent to minimizing the second
term on the right-hand side in (23), i.e., the entropy or uncer-
tainty in given by proper design of . In [11], these
two criteria are considered for the MISO case.

Note that the optimal problems posed in the virtual domain
are equivalent to formulating them in the antenna domain. This
is evident by noting that since and are unitarily equiv-
alent, the MMSEs are equal, i.e., MSE

, where is the equivalent linear estimate in the an-
tenna domain. In addition, denoting , one can write
CMI
implying equivalence for the CMI condition.

A. Structure of Optimal

We develop the transmit signal design using the singular
value decomposition (SVD) of the transmitted block ma-
trix. Denote the SVDs of and

, where , , , and
are unitary matrices, and and are diagonal matrices.
Since , it follows that ,

, and .
Lemma 1: The transmit block signal that optimizes OP

and OP has a structure given by .
Proof: Both the optimization criteria are a function of

through the error covariance matrix [see (21) and (23)], which
can be written as

(26)
where we have used the SVD of . This indicates that
is independent of , and hence, we can choose
without loss of generality, which proves the above claim.

Assuming this structure, we show in the following develop-
ment that the the optimal transmit signal diagonalizes the co-
variance of the channel. To prove this result, we use concepts
from the theory of majorization and Schur-convex functions,
which are discussed in the Appendix.

1) Minimizing the MMSE: We design the transmit signal to
minimize the MMSE by solving OP (24), which is only a
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function of and due to Lemma 1. We have the following
theorem.

Theorem 1: Consider the constrained optimization problem
OP in (24). It follows that the globally optimal solution
has a diagonal structure, that is

(27)

where , and the subscript denotes “MMSE
optimal.”

Proof: Using Lemma 1, we can write

tr tr

tr

Denote and the eigenvalues
of as , and let . Then,
the MMSE can be written as

tr (28)

Since s.t. is a convex
function, by virtue of Theorem 4 in the Appendix , is
Schur-convex. We invoke Theorem 3 in the Appendix to con-
clude that

(29)

where is the vector of diagonal elements of . The lower
bound in the above inequality is achieved when

or is a diagonal matrix. Clearly, this is true when
is diagonal. Since is a unitary matrix, it must be equal to the

eigen-matrix (matrix of eigenvectors) of or a permutation
thereof. Now, since is a diagonal matrix, its eigen-matrix is

. Thus, we can write , where is a permutation
matrix, and

tr

s t tr (30)

Without loss of generality, we can choose since a
permutation in would only change the ordering of . This
concludes the proof.

2) Maximizing the CMI: We now show that the optimal
transmit signal that maximizes CMI (OP in (25)) also has
a diagonal structure.

Theorem 2: Considering the constrained optimization
problem OP in (25), it follows that the globally optimal
solution has a diagonal structure. That is

(31)

where , and the subscript denotes “CMI op-
timal.”

Proof: Let , and denote the
eigenvalues and main diagonal elements of as and

. In addition, let and

. Then, the CMI can be written
as

(32)

Since is concave, is Schur-concave
due to Corollary 1 in the Appendix . As a result, from Theorem
3, we have

(33)

and the upper bound is achieved when . This is
true when is diagonal or
is diagonal, where we have used Lemma 1. This implies that

is diagonal, and using arguments similar to those in
proof of Theorem 1, we have and

tr (34)

This completes the proof.
Remark: Care must be taken when is rank deficient.

When is rank deficient, let such that is
small so that is not rank deficient. Then, the results in (20),
(23), (30), and (34) hold true for substituted instead of .
Once (30) and (34) are obtained with this substitution, we can
let due to the continuity of the functions involved.

B. Optimal Estimator Structure

Recall from Section IV-A that the SVDs of
and , together with imply
that , and . From
Lemma 1 and Theorems 1 and 2, the optimal transmit signal has

and , and satisfies (30) and (34). This
implies that and are optimal.

Now, the optimal transmit block signal
according to the MMSE (CMI) criterion. This implies that the
optimal according to MMSE (CMI) cri-
terion, where , and . We
will denote the power transmitted along the th virtual angle as

, . Using (30) and (34), we have

MMSE

(35)

and

CMI

(36)

subject to the constraint .
We can now conclude that the optimal transmit signal is a

block diagonal signal (in the virtual domain). The optimal signal
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Fig. 3. ”Diagonalizing” interpretation (in the virtual domain) of the optimal
estimator. The ith transmit beam is used to estimate the ith column of H .
Further, each element of the ith column is estimated independently.

structure specifies that during the block transmission, at each
time instant , the signal is transmitted along the
th virtual transmit angle, with the powers specified by

( ) according to the MMSE (CMI)
criterion.

We can make some more interesting observations. Due to
the diagonal structure of , the linear receive processor
(19) and the error covariance matrix (20) become diagonal,
which enables independent processing at the receiver. This is il-
lustrated in Fig. 3. Let denote or depending on the
criterion. Then the channel estimate can be written as

(37)

From this equation, note that the th transmission allows
us to estimate the elements in the th column of , i.e.,
( ). During the block transmission,
the scattering environment is scanned sequentially to estimate
each column of . This scanning of the virtual domain is
illustrated in Fig. 4. The individual error variance is given by

(38)

Remark: The MMSE and CMI optimization metrics mini-
mize the sum and product of the error covariances of the in-
dividual channel coefficients. We note that the theory of ma-
jorization can also be applied to ensure that all coefficients are
estimated with the same accuracy. However, the above results
show that not all channel coefficients are equally important. In
essence, those channel coefficients whose power is small com-
pared with the background noise are not important from a com-
munication viewpoint, and the transmit power is better utilized
in channel coefficients that exhibit a higher SNR.

Fig. 4. Physical interpretation of channel estimation . “Scanning” the
scattering environment in the virtual domain. The ith beam is used to estimate
the ith column of H .

C. Water Filling Solution

The constrained nonlinear optimizations in (35) and (36) are
the so called “water filling” problems and can be solved using
Langrange multipliers and using the Kuhn–Tucker conditions
to verify that the solutions are non-negative. However, for the
general case of transmit and receive antennae, we have not
been able to find a closed-form solution, and hence, it has to be
obtained numerically. In the following, we obtain approximate
closed-form solutions in the low SNR and high SNR regions to
obtain some insight. Subsequently, some special cases are also
considered, where we obtain closed-form solutions.

In the following discussion, the channel coefficient
is defined as active if for some prescribed

. Thus, the set of active elements can be determined
a priori by examining . In addition, a column of the
channel matrix is defined as an active column if it
contains at least one active element. Let
be the set of active columns. Then, for any , is
the number of active elements in the th column. We define
the transmit signal-to-noise ratio (TSNR) as the ratio of the
transmitted signal power to the noise power and the
per virtual angle pair received signal-to-noise ratio (RSNR)
as the ratio of the received signal power to the noise power
RSNR
between the th transmit and th receive angle pair for

; .
1) Limiting Solution in High RSNR Regime: Consider the

high RSNR case, where RSNR for the set of active
channel coefficients. Using Langrange multipliers, it is shown
in the Appendix that for high RSNR case, MMSE and CMI
criteria assign power according to

MMSE (39)

and CMI (40)

respectively. Thus, the CMI (MMSE) criterion assigns power to
the transmit beams in proportion to the sum (square root of the
sum) of the active elements they couple with at the receiver.
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Remark: In the extreme case, when all elements of
are active, then equal power is distributed to all transmit beams
for both criteria.

2) Limiting Solution in Low RSNR Regime: Consider the
low RSNR case, where RSNR , . Using Lan-
grange multipliers, it is shown in the Appendix that the MMSE
and CMI criteria assign all the power to the th transmit beam
such that

MMSE

(41)

and CMI

(42)

respectively. Thus, at low RSNR, the CMI (MMSE) criterion
assigns all the power to that virtual transmit angle for which
the sum (sum of squares) of the variances of the corresponding
virtual receive elements is maximum.

From the extreme cases, we conclude that the number of
transmit beams to be sent and, hence, the block length de-
pends on the SNR. For high SNR, is equal to the number of
active columns, whereas for low SNR, , and all the power
is transmitted in the strongest transmit direction. For medium
SNR, , and the powers will be determined by the
water filling criteria. In addition, note that for i.i.d. channels,
equal power will be assigned to all transmit beams, irrespective
of the SNR.

3) MISO ( ) Case: In this case, it can be shown using
Langrange multipliers that the power assignment is identical for
both criteria and is given by

(43)

It is evident from the above equation that for high RSNR, the
asymptotic equipower assignment in (39) and (40) is optimal.
Note that the sum of the second and third terms in (43) is nega-
tive for a particular transmit angle if the inverse of its RSNR is
greater than the average of the inverses of all the RSNRs. This is
illustrated in Fig. 5. Hence, as the total power is reduced, the
weakest angle will get no power, and the power will be assigned
among the remaining angles. Eventually, as decreases (which
will decrease the RSNR), power will be assigned to the highest
RSNR angle, as indicated in (41) and (42).

We note that in [21], an optimal transmit diversity scheme is
considered for a multiple transmit and single receive antenna
system, where each transmit antenna is allocated a distinct
CDMA code. The transmitted power is assigned to different
antennae to minimize the overall bit error rate for a BPSK
modulation scheme. It is observed that the optimal allocation
obtained is identical to (43). In [11], optimal transmit diversity
precoder design is discussed for a similar system. At the re-
ceiver, maximal ratio combining using the estimated channel is
used to maximize the SNR. It is suggested that accurate channel
estimates will make the MRC scheme effective, and hence,

Fig. 5. Illustration of power allocation in (43).

power assignment is considered from a minimum MMSE
criterion. Again, the optimal power assignment is identical to
(43). We should note, however, that the aim in this work is
optimal channel estimation, and our design is not motivated by
transmit diversity considerations.

Remark: A MIMO channel, for which only the diagonal
elements of are nonzero (a highly correlated channel), has
identical power assignment as the above MISO case.

4) Transmit and Receive Correlated Channel: For the
channel model in Section II-B, a closed-form solution exists for
the special case when either or is equal to for some

. In such a case, (35) and (36) reduce to having only one
summation, and the resulting closed-form solution is similar to
(43).

V. OPTIMAL SIGNAL DESIGN—
INTERPRETATION AND SIMULATIONS

The optimal signal is a block of length and has a
diagonal structure given by . The block repre-
sents beams transmitted in succession along the fixed virtual
transmit angles, with the powers given by the water filling ar-
guments (35) and (36) for the MMSE and CMI criteria, respec-
tively. Basically, the scattering environment is scanned along the
virtual transmit angles, one by one, and the presence of scat-
terers is determined by measuring the signal along the receive
virtual angles for each transmitted beam. In other words, the th
transmitted beam is used to estimate the th column of . De-
pending on and the SNR, power is assigned to the beams
by water filling, which identifies the set of virtual transmit an-
gles that couple strongly enough with receive angles. Hence,
the block length , which is exactly equal to the size of this
set, depends on the SNR and . In particular, for low SNR,

, whereas for high SNR has a maximum value equal
to the number of active columns determined from (which
has a maximum of ) and for medium SNR, . For
high SNR, the CMI (MMSE) criterion assigns the power to the
transmit angles in proportion to the sum ( ) of the active
elements with which they couple at the receiver. As the SNR
decreases further, the weakest transmit beam (as determined by
the water filling criteria) is dropped. As the SNR decreases, this
process continues until finally, the CMI (MMSE) criterion as-
signs all the power to the strongest transmit beam, that is, one
for which the sum (sum of squares) of the variances of the cor-
responding virtual receive elements is maximum.
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Fig. 6. Optimal power distribution for P = 2 and Q = 1.

Fig. 7. Optimal power distribution for P = 2,Q = 2, andR = R .

These interpretations of our analytical results are confirmed
by the numerical results presented in Figs. 6–9. In all the figures,
the total transmit power (in decibels) along the -axis is given by

, whereas the -axis shows the branch powers in
decibels given by . Powers are plotted for both
MMSE and CMI criteria, and the equal power assignment is also
plotted for comparison. Fig. 6 shows the power assignments for
the MISO case with , where the covariance matrix is given
by diag or, equivalently, for a MIMO case
with and diag , where the
first two components are the variances of the elements in the first
column of , and the next two are those of the second column.
The number of active elements in both the columns is one, i.e.,

. Observe that the second transmit beam gets
nonzero power only after the SNR increases to about 13 dB (this
behavior is similar in the next three figures too). For high SNR,
however, both transmit beams get equal power. The following
three figures are also for the MIMO case with . In
Fig. 7, we make the variance of the first element of the second
column of nonzero to get diag
so that the number of active elements in the two columns of

are and . Observe that for high SNR,
the second transmit beam gets 66% (58%) power according to
the CMI (MMSE) criterion. The powers are reversed in Fig. 8,
where diag so that now, we have

and . Finally, in Fig. 9, we have

Fig. 8. Optimal power distribution for P = 2,Q = 2, andR = R .

Fig. 9. Optimal power distribution for P = 2,Q = 2, andR = R .

diag and . Note that at high
SNR, both branches get equal power, as in Fig. 6. However, the
power assignment in the medium SNR range is different in the
two figures. In all cases, as the SNR decreases the weaker beam
is dropped, and the stronger beam gets all the power. The MSE is
plotted in Fig. 10 for the first and second cases, corresponding
to (Fig. 6) and (Fig. 7). As expected, the MSE de-
creases with increasing SNR. Note the change in MSE behavior
at approximately 13 dB when the second transmit angle starts
getting nonzero power. In case one, both criteria give identical
power assignments and, hence, have equal MSE. In case two,
however, the MMSE provides lower MSE than the CMI crite-
rion, as expected.

Remark: The coherence interval is determined by the
fading rate and is smaller for fast fading compared with slow
fading. Consider a fixed fraction of data symbols transmitted in
each block so that for some fixed . Since

, we can write . Let the
subscript and denote low and high SNRs, respectively.
Thus, for a constant fraction of data symbols, we have

(44)

Now, , and since a higher MSE can be tolerated
at low SNR, in general, . Then, (44) implies
that . Hence, we conclude that from a channel
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Fig. 10. Mean square error.

estimation viewpoint, for a given fixed fraction of data symbols
in each block, faster fading can be tolerated at low SNRs relative
to higher SNRs. Note that at lower SNR, the capacity of MIMO
systems is lower [6], [13], [23], and a higher bit error rate can be
expected. Hence, at lower SNRs, error control coding can be use
to attain a desired bit error rate at the expense of transmission rate.

VI. CONCLUSION

Knowledge of the second-order channel statistics at the
transmitter can be efficiently exploited to design the transmit
signal for optimal estimation of correlated MIMO channels. Our
analysis shows that the optimal transmit signal is a block signal
where the block length depends on both the SNR and the channel
correlation. The optimal transmit signal is a sequence of beams
transmitted along the transmit eigenvectors and sequentially
scans the scattering environment to identify the nonzero elements
of the virtual channel matrix. The powers of the transmitted
beams are determined by the water filling solutions arising from
minimum MSE and maximum CMI criteria. Water filling as-
signs nonzero power only along those directions (beams), where
significant scattering is present, as a function of the SNR. Thus,
the block length is equal to the number of transmit beams that are
assigned nonzero power. For high SNR, all directions (beams)
that have significant scatterers get nonzero power, whereas for
low SNR, only the direction (beam) with the strongest scatterers
gets all the power. For medium SNR, the number of beams with
nonzero power is between these two extremes. Consequently,
a higher fading rate can be tolerated at lower SNRs relative to
higher SNRs. The above observations are consistent with those
in [6] and [13], where the capacity analysis of a MIMO system
assuming covariance feedback shows that capacity depends on a
dominant subset of channel eigenvalues determined by the SNR.

APPENDIX

THEORY OF MAJORIZATION

We introduce the basic necessary concepts of majorization
that we require in the derivation of the optimal transmit signal.

For any , let denote
the components of in decreasing order.

Definition 1: For vectors , vector ma-
jorizes on if

The notation means is majorized by on , or
majorizes on .

Majorization makes precise the vague notion that the compo-
nents of a vector are less spread out or more nearly equal than
the components of vector .

Definition 2: A real-valued function defined on a set
is said to be Schur-convex on if

on (45)

The function is strictly Schur-convex if the inequality is strict
whenever but is not a permutation of . is Schur-
concave (respectively, strictly Schur-concave) if the inequality
in (45) is reversed. It follows that is Schur-convex on if and
only if is Schur-concave on .

Definition 3: A real-valued function defined on a set
is said to be symmetric on if for every permutation matrix

s.t.

(46)

It can be shown that every Schur-convex or Schur-concave func-
tion is symmetric.

Next, we recall a key theorem from [22, Th. 9.B.1], which
relates the diagonal elements of a symmetric matrix to it eigen-
values.

Theorem 3: If and are
vectors of the diagonal elements and eigenvalues of a symmetric
matrix, then .
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In fact, it can be shown that if , then there exists a
real symmetric matrix with diagonal elements and
eigenvalues .

A necessary and sufficient condition for a function to be
Schur-convex or Schur-concave is given in [22, Th. 3.A.4].
However, for purposes of this discussion, it suffices to recall
the following theorem [22, Th. 3.C.1].

Theorem 4: If is convex, then the symmetric
convex function is Schur-convex.

We immediately have the following corollary.
Corollary 1: If is concave, then the symmetric

concave function is Schur-concave.

Derivations for High and Low SNR Cases

We provide derivations for the MMSE criterion, whereas the
derivations for the CMI criterion can be obtained similarly.

1) High SNR–MMSE Criterion: Consider the high RSNR
case, where RSNR for the set of active channel coef-
ficients.

From (35), using
, we can write

subject to the constraint tr , where is the number
of active elements in the th column. Optimizing using Lan-
grange multipliers gives

(47)

The water filling solution for the CMI criterion can be ob-
tained similarly by noting that for
to get

(48)

2) Low SNR–MMSE Criterion: Consider the low RSNR
case, where RSNR , .

From (20) and (35), minimization of the MMSE can be
written as maximization of the second term in (20), i.e.,

(49)

(50)

subject to the constraint tr . The last equation is
a constrained linear optimization problem, and the solution as-
signs all the power to the th (virtual) transmit antenna such
that

(51)

The water filling solution for the CMI criterion can be ob-
tained similarly by noting that for small . All
the power to the th (virtual) transmit antenna is such that

(52)
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