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ABSTRACT 

The propagation of sound due to a line acoustic source in the 

mov~ng stream across a se~-infin~te vortex sheet which tra~ls from a 

rig~d plate is examined in a linear theory for the subsonic case. A 

solut~on for the transmitted sound field is obtained with the aid of 

multiple integral transforms and the Wiener-Hopf technique for both 

the steady-state (time-har.monic) and initial-value (impulsive source) 

s~tuations. The contour of inverse transform and hence the decomposi

tion of the functions are determined through causality and radiation 

condit~ons. The solution obtained satisfies causality and the full 

Kutta conditions. The transmitted sound f~eld is composed of two waves 

in both the steady-state and initial-value problems. One is the wave 

scattered from the edge of the plate which is associated with the bow 

wave and the instability wave. These bow waves and ~nstabil~ty waves 

exist in the downstream sectors. The other ~s the wave transmitted 

through the vortex sheet which is also associated with the instability 

wave. This instability wave ex~sts in a downstream sector, but if the 

line source is close to the rigid plate it is blocked by the plate and 

does not appear. The transmitted sound field can be divided into three 

regions. The first one is the region where the incident wave is shaded 

by the plate and only the wave scattered from the plate edge exists. 

In the second region there exist the waves transmitted through the 



vortex sheet ~ addit~on to the scattered waves from the edge of the 

plate. The third region is the trans~tion region between the two 

reg~ons Just descr~bed. In th~s reg~on the waves transm~tted through 

the vortex sheet can be heard partially depend~ng on its wave number. 

The asymptot~c nature of this reg~on is the same as that of the second 

reg~on. 
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CHAPTER 1 

INTRODUCTION 

The influence of a moving stream on the propagat~on of sound is a 

problem of some practical importance and has attracted a number of 

investigations in recent years. For the sake of analyt~cal s~mplicity, 

most theoret~cal investigat~ons related to this problem have been 

conf~ned to the model study of two inf~nite two-d~ensional, inv~scid 

fluid half-spaces in relative motion separated by a plane vortex sheet. 

Sound waves emitted from ~mpulsive (harmonic) line or po~nt sources 

will impinge on the vortex sheet and be reflected and transmitted to 

the two half-spaces as reflected and transmitted sound fields. 

For linearized theory, multiple-Fourier transform techniques are 

most conveniently used to obtain the analytical solut~ons for these 

sound fields. While it is almost trivial to find the transformed solu

tions, the comple~ties of inverse transforms present much difficulty 

in finding a solution in a form most su~table for practical applications. 

Jones and Morgan and their assoc~ates [1-5] in a series of papers 

investigated the problem of line and point sources. As they carried 

out inverse transform with respect to wave number f~rst along the real 

axis, their solutions did not satisfy causality. To satisfy causality, 

they had to add the homogeneous solution which corresponds to instability 

waves. Chao [6] has ~ndicated that if the inverse transform is carried 

out w~th respect to frequency first, the proper deformation of contour 
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wh~ch brings the causal solut~on ~s obv~ous and the ~nstabil~ty waves 

are automat~cally included in the solut~on obtained. 

In the real world a vortex sheet between two flu~ds in relat~ve 

motion can only exist downstream of a plate wh~ch separates them. The 

problem becomes a ~xed boundary value problem and the Wiener-Hopf 

technique [7-8] has to be used to f~nd the transformed solut~on. 

Orszag and Crow [9] have invest~gated this problem in which there are 

no external sound sources and the flow is incompress~ble. Cr~ghton [10] 

has extended their analysis to compress~le subsonic flow. Morgan [11] 

and Crighton and Leppington [12] have invest~gated the reflected sound 

f~eld produced by a line source near a semi-~nfin~te vortex sheet wh~ch 

tra~ls from a r~gid plate where a l~ne source is situated in the still 

fluid. 

All of these problems require the decomposit~on of a known funct~on 

~nto plus and ~nus funct~ons wh~ch are analyt~c ~n the lower and upper 

wave number plane, respectively. However, due to the fact that there 

are poles whose location is frequency-dependent ~n such a way that ~t 

w~ll move from lower half-plane to upper half wave number plane accord~ng 

to the value of frequency, the determination of a common reg~on of 

analyt~city and hence the contour of the inverse transform becomes a 

rather complicated matter and consequently requires additional assumptions 

to ascertain the des~red contour of the inverse transform. Morgan has 

enforced the condition that the slope as well as the displacement of the 

vortex sheet are assumed to be zero at the plate edge (full Kutta cond~t~on) . 
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Cr~ghton and Lepp~gton have decomposed the funct~on by ass~ng a 

large 1maginary part for the frequency. They both have shown that 

their assumptions require a deformation of the contour of the inverse 

transform and satisfy the criterion for causa11ty established by Jones 

and Morgan [13]. This criterion requires the analyticity of the solution 

in the upper half frequency plane for causality and has been used suc

cessfully by Morgan [14] and Munt [15] in the1r analysis of the cy11n

dr1cal vortex sheet problem. 

In Chapter 4 it is shown that the deformation of the contour, and 

hence the common reg10n of analyc1ty can be determined through causa11ty, 

exponential decay of the functions, and radiat10n condit10n. In all 

three of these approaches, the decomposition of the function is unique. 

In Chapter 5 we determine the value of the entire funct1on, 

assuming the edge condition that the component of the disturbed velocity 

in the stream direction is finite at the edge of the plate. Th1S 

assumption requires that the full Kutta condition be satisfied as a 

result. Howe [16] has found that for a very low Mach number flow case, 

the satisfaction of the Kutta condition requires that external forces 

be present 1n the v1cinity of the plate edge. Similar situations 

certainly would occur for the present problem. The existence of this 

external force probably can be traced to the viscous effect which should 

not be neglected due to the large velocity gradient ~n the v~c1n1ty of 

the plate edge. A detailed study of V1SCOUS mixing at a trailing edge 

by Daniels [17] suggests that the full Kutta condition is the logical 
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condition to apply at the plate edge. A further justification of the 

Kutta cond~t~on may be found in the experimental work by Bechert and 

Pf~zenmaier [18]. Their work suggests that the full Kutta condit~on ~s 

the correct cond~t~on to apply ~f the shear layer ~s th~n, wh~ch is the 

case ~n our problem. 

In Chapter 6 the solution is compared w~th that of the Sommerfeld 

half-plane d~ffract~on problem (without the flow). It is found that 

the ex~stence of the flow smooths the edge behav~or of the solution. 

In Chapter 7 the steady-state solut~on ~s calculated. The trans

~tted sound field can be d~v~ded ~nto three reg~ons depending on how 

the waves transm~tted through the vortex sheet are shaded by the r~g~d 

plate. In Reg~on 1, the inc~dent wave ~s shaded completely by the 

plate and only the waves scattered from the plate edge exist. In 

Region 2 the waves transmitted through the vortex sheet ex~st ~n add~t~on 

to the edge scattered waves. Region 3 ~s the trans~t~on region between 

the two where the part of the waves transmitted through the vortex sheet 

exist depend~ng on ~ts wave number. The existence of Reg~on 3 ~s the 

direct conclusion of the fact that the l~e source and observer are 

located ~n the d~fferent mediums. It is expected that a s~~lar situat~on 

will occur if the speed of sound is different between the two mediums 

even though the velocit~es of the flows in the two mediums are the same. 

In Chapter 8 the asymptotic evaluation of the transmitted sound 

field ~s carried out as far as possible. In the case where the l~ne 
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source is s~tuated close to the plate edge in comparison to the observer, 

the asymptotic nature of Reg~on 3 ~s similar to that of Region 2, and in 

the far field the boundary between Regions 2 and 3 van~shes. 

In Chapter 9, the solut~on for the ~n~t~al value problem ~s 

calculated. The wave fronts of the diffracted waves are obta~ned 

explic~tly. 
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CHAPTER 2 

FORMULATION OF THE PROBLEM 

Consl.der the problem l.n which a mOVl.ng flul.d l.n the half-space y < 0 

is separated by a rl.gl.d plate and a vortex sheet from a stl.ll medl.um l.n 

y > o. The rigl.d plate occupl.es the half-plane y = 0, x < 0, the vortex 

sheet OCCupl.es y = 0, x> 0 l.n a CarteSl.an coordl.nate system and it l.S 

assumed that the flow l.S l.n the direction of l.ncreaSl.ng x. A ll.ne source 

of unl.t strength l.S sl.tuated l.n parallel to the x-axl.S through (x ,y ) 
o 0 

in the movl.ng medl.um, so that y < 0 (Fl.gure 2-1). For the sake of 
o 

simplicity, the sound speed and densl.ty are assumed to be the same l.n 

both flul.ds. Because of the symmetry of the problem all quantl.tl.es are 

mdependent of z. 

y 

~ • Observer 

I 
I Medium (I) 
I 
I 

.. 
I : t Vortex Sheet.. x 

I 
I Yo 
I ~ Medium (II) 

io Source 

Riqid Plate 

I 

Fl.gure 2-1 Sketch of the Model Geometry 
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Let ~l and ~2 denote the veloc1ty potent1als of the small d1sturbed 

mot1ons 1n the two flu1d spaces. Due to the exc1tat10n of the 11ne 

source, the govern1ng different1al equat10ns for ~l and ~2 are: 

(y < 0) 

(2-1) 

(y> 0) 

where a is the speed of the sound and V is the velocity of the mov1ng flow. 

Define the Fourier transform of ~. as: 
1 

= 
<P (k, y ,Ul) 

1 

1 = --

co co 

II -i(kx~t) 
<P

1
(x,y,t)e dxdt 

Then Eqs. (2-1) reduce to the form: 

where 

2 
Y2 = 

2 
Yl = 

-l.kx 

-o(y-y)e 0 
o 

2 

(~ - Mk) 

( ~ )2 _ k2 

4
22 

'IT a 

_ k 2 
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V 
and M = 

a 
~s the Mach number of the lower medium. Let y = h(x,t) 

indicate the equat~on of the vortex sheet. The boundary cond~t~ons on 

the vortex sheet are the cont~nuity of pressure, g~v~ng 

(2-4) 

and the k~nemat~c cond~t~on of the cont~nu~ty of part~cle d~splacement 

wh~ch impl~es 

H(x,y,t) = o , 

where H(x,y,t) = y - h(x,t). L~near~z~g the equat~on, we have 

and 

ah V ah + a<P 2 ay = 
- at - ax ay ay 

We get: 

S~~larly, for medium (I) 

(y-h) o 

o • 
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(2-5) 

(2-5a) 

(2-5b) 



The boundary condl.tl.on for x < a l.S the vanl.shl.ng of the normal velocl.ty 

on the spll.tter plate whl.ch impll.es 

h= a . 

Define the half-range Fourl.er transforms of ~ and has: 
l. 

00 00 

1 
= -- If -i (kx-Wt) 

~l.(x,y,t)e dxdt 

-00 a 

00 00 

1 
= -- I I h(x,t)e-i(kx-wt)dxdt 

-00 a 

00 a 

~. (k,y,W) 
l.-

1 
= -- II -l. (kx-Wt) 

~i(x,y,t)e dxdt 

-00 -00 

00 a 

h (k,W) = -1:.... Ifh(x,t)e-l.(kx-wt)dxdt 
47T

2 
-00 -00 

Equatl.ons (2-4), (2-5a), (2-Sb), and (2-6) reduce to the form 

00 -

+ ~ f a~2 
l.W ~2+ 27T ax 

a 

- = 
a~2+ + Ll = ~l+ ' 

-l.kx 
(x,y,w) e dx = 

+ ik ! $2. -""'dx ] = ~1+ ' 

9 

(2-6) 

(2-7a) 

(2-7b) 

(2-7c) 

(2-7d) 

(2-8) 



where 

a=l_ Vk 
w 

L1 = - ~~ <P2 (X,y,W) I 

= 

= 

x,y=O 

00 

- iwh + lJ + 21T 

o 

ai1(x,y,w) 
ax 

= v - -ikx 

[ 

00 

- 1Wh+ + 2tt h e 1 

- iwa.h 
+ 

-ikx 
e dx 

+ 1k I h e-ikXdx] 

(2-9) 

Here, we use the condit~on hi = 'hI = 0, because at the edge of the 
x=O x=O 

plate, the vortex sheet must attach to the plate. S~~lar1y, 

a<Pl+ 
~Wh+ = -

ay 
(2-10) 

and 

a<p
1

_ a<p
2

_ 

0 h 0 ay- ay- = = . (2-11) 

Solutions to the set of the ordinary differential Eq. (2-3) can be 

eas~ly found as: 
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where H( ) is the Heav~side step function. The sign conventions of Y
l 

and Y
2 

are chosen such that the signs of their irnag~nary part are always 

pos~tive. Consequently, Al and A2 terms of the solut~on are f~nite at 

~nf~ity for all values of k and w. Bl and B2 must be set to zero. 

Using the relation 

a$'2 I 
ay 

y=0 y=0 

-i(kx +Y
2

Y ) 
o 0 

e 

4
22 

71" a 

and the boundary conditions (2-9), (2-10), and (2-11), we obtain 

= 
Wh 

= + 
<P1+ = - --- <Pl_ Yl 

y=O y=O 

(2-13) 

UXXh 
-i(kx +Y

2
Y ) 

i 
o 0 

;2+ 
+ 

$'2-
e =-- - + 

Y2 
2 2 

y=O y=0 
471" a Y

2 

Substitut~ng these ~nto Eq. (2-8) gives the W~ener-Hopf equation as: 

(2-14) 

where 

K = 
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If we can decompose K into plus and minus functions as: 

K 

we can rewr~te the Wiener-Hopf equat~on as: 

Wh K = K (0.'$2 I -+ + - -
y=O 

(2-15) 

The last term of Eq. (2-15) can be decomposed into the sum of plus and 

minus functions as: 

F = (2-16) 

where F+, F are g~ven as: 

F + (k) 
-1 f F(:\.) dA 

= --
21T~ :\.-k 

C 
+ 

(2-17) 

F (k) 
1 f F(A) dA = --

21T~ A-k • 

C 

The exponent~al decay of F (k) on the contour, since Imy 2 > 0 , Yo < 0 

ensures that these integrals exist and that F + (k) = 0 ( I k 1-1), F _ (k) = 0 ( I k 1-1) 

as Ikl + 00. The meaning of the plus and m~nus functions and the decompo-

s~tion will be discussed ~ the next chapter. 
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Subst~tut~ng Eq. (2-16) into Eq. (2-15) completes the decomposi-

t~on, to g~ve: 

WhK +F+ = 
+ + K (a'$ I - '$ I -L ) - F1 - 2- 1- 1 

y=O y=O 

= C (k) • (2-18) 

The function C(k) defined by Eq. (2-18) is an entire function of k and 

must be a regular funct~on of k in the whole k-p1ane. If C(k) is 

determined, wh+ is g~ven as: 

1 
=- (2-19) 

From Eq. (2-13) 

-C(k) + F 

Al 
+ 

= 
YIK+ 

-ikx 
(2-20) 

a [c (k) - F + ] 
i e 

0 

A2 = -- + cosY
2Yo 

• 
Y2K+ 2 2 

4'IT a Y
2 

The solutions in the transformed region are determined. 
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CHAPTER 3 

DECOMPOSITION OF THE FUNCTIONS 

First, let us construct the branch cuts of Y1 and Y
2 

in the k-p1ane. 

To do th~s, the sign of Imw has to be investigated. One of the ways to 

determine the s~gn of ImW is to cons~der the wave equation with 

damp~ng [8]. 

e: > 0 • 

Carry~ng out the Four~er transform, defined as: 

- 1 
<P =-

2rr 

Eq. (3-1) reduces to: 

2 
'12-;;: + w + ~we: -;;: = 

'I' 2 'I' 0, 
a 

(3-1) 

(3-2) 

(3-3) 

where w ~s assumed to be real. Alternat~vely, assuming w to be complex 

as w = wI + ~W2' where WI and W
2 

are real and ta]ung the wave equat~on 

which does not have damping, 

(3-4) 
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Carry1ng out the Fourier transform, we obta1n 

$=0. (3-5) 

Comparing Eq. (3-3) and (3-5), it is concluded that assuming w is real 

and considering the wave equation which includes damping is equivalent 

to assuming that w is complex and considering the wave equat10n without 

damping, if IIltl.l > o. Therefore we should assume IIltl.l > o. 

The sign of Imw can also be determined through the causality 

condition which requires that no disturbance should be present before 

time t=O. In order to satisfy this, the contour of inverse transform 

has to lie in the upper-half doma1n of the w-plane, wh1ch 1ndicates that 

IIltl.l > O. The causality condit1on will be d1scussed 1n Chapter 4. 

Cons1deration of the radiation condition gives another way to 

determine the sign of Imw. Consider the branch cuts of Y
l 

in the k-plane. 

For simplicity, assume ReW > O. IInYl must be positive according to the 

commitment made in Chapter 2. Two kinds of branch cuts are possible as 

shown in Figure 3-1. For the case Imw > 0, Rey 1 is posi ti ve on the real 

axis and considering the form of the inverse transform: 

(3-6) 

th1S indicates the outgoing wave in y-direction. On the other hand, for 

the case IIltl.l < 0, Rey 1 is negative on the real axis, which indicates the 

incom1ng wave in y-direction. Therefore IIltl.l should be positive. 
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Im.o> 0 IIOOl < 0 

@ 
'~~-k 

© w/a (}) 

~~+k' o -wI' 0 <D 
rn 2" -w/a [Q] [Q] E!l [Q] w/a [Q] 

~;+k ~;-k 

0 indicates the argument of f~+k 

D ~ndicates the argument of f~-k 

F~gure 3-1 Branch Cuts of Y
l 

in k-Plane 

In all these methods, the common ~dea is to set a direct~on in t~me 

space, from the past to the future. 

The poles of K are discussed in detail in Appendix A. The results 

are as follows: When 2 > M, there are two complex poles at: 

k = u(M)k (3-7) 
o 

and 

k=u(M)k =u*(M)k 
o 0 

where u(M) ind~cates the complex conjugate of u(M) and 

u(M) 

k w/a. 
o 

16 
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The poles k = u (M) k , k = u* (M) k are assocl.ated with l.nstabl.ll. ty of the 
o 0 

vortex sheet when M < 2/2 and play a prominent role in the solutl.on of 

the problem. They are therefore displayed explicl.tly by defining ~(k) by 

Y
I 

(k)Y
2

(k) 
K(k) = ------:=--~----

~(k) (k-u(M)k) (k-u*(M)k ) • 
o 0 

We seek the radiating acoustic solutions that decay ll.ke 

or 

-Imk Ixl 
o 

e 

-Imk Ixl/(l +M) 
o -

e 

(3-10) 

as x ~ ~oo. Thus, all plus functions, denoted by a subscript +, will be 

analytic in the region 

Imk 
Imk < __ 0 (3-11) 

l+M 

while all minus functions, denoted by a subscript - are analytl.c for k 

in the region 

Imk > - Imk 
o 

There l.S evidently a strip 

Imk 
__ 0_ > Imk > - Imk 
l+M 0 

(3-12) 

Region A (3-13) 

in which full-range transforms of $1' $2' and h are analytic functl.ons 

of k. 
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We cons~der the case M < 1. In this problem the branch cuts of y 1 

and Y2 should take the form as shown ~n F~gure 3-2 to sat~sfy the 

commitment that ImYl 
and ImY

2 
must be positive on the real axis. The 

branch cuts of Ik -Mk+k and v'k +k lie ~n Region B and the branch cuts 
o 0 

of Ik -Mk-k and Ik -k lie in Reg~on C even though w changes it value as 
o 0 

long as Imw > 0, where Region B and Region Care defl.ned as: 

Reg~on B: 

Reg~on C: 

Imk < - Imk 
o 

Imk 
Imk > 0 

l+M 

Region B 

Fl.gure 3-2 Branch Cuts and the Common Region of Analyticity 
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k=u(M)k in Region A 
o 

k=u*(M)k in Region C 
o 

k=u(M)k in 
o 

k=u*(M)k in 

w-plane 

k=u(M)k in Region C 
o 

k=u*(M)k in Region A 
o 

in Regl.on C 

l.n Region B 

Fl.gure 3-3 The position of the Poles l.n the k-Plane 
Accordl.ng to the Value in the w-Plane 
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The functions ~(k), Y
l

, Y
2 

are split 1nto two parts such that: 

From the branch cuts we made previously it is apparent that 

Y 1+ (k) (k -k) -1/2 
0 

Yl - (k) = (k +k) 1/2 
0 

(3-14) 

Y2+(k) = (k -Mk - k) -1/2 
0 

Y2-
(k) = (k -Mk + k) 1/2 

0 

The calculation of ~+(k) and ~_(k) is presented in Appendix B. The 

d1fficul ty ar1ses from the poles k = u (M) k and k = u* (M) k. As can be 
o 0 

seen in Figure 3-3, the position of the poles in the k-plane changes 

according to the value of W. As a result, we cannot determine whether 

the terms [k-U(M)k
o
], [k-U*(M)k

o
] work as a plus function or a minus 

function. 
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CHAPTER 4 

CAUSALITY AND RADIATION CONDITION 

The causality condit~on requ~res that no d~sturbance be present 

before time t = O. Let the transformed solution have two poles at 

k = u (M) k and k = u * (M) k , wh~ch ~s the case ~n our problem. F~rst, 
o 0 

consider the inverse transform w~th respect to w, ass~g that k is 

real. It is apparent that to satisfy causal~ty, the contour must lie 

above all the s~ngularit~es in the w-plane. In other words, the contour 

is deformed so that ~t always includes poles as shown in Figure 4-1. 

Then the branch cuts are constructed so that the radiat~on condit~on 

is sat~s~fed along ~ts contour; namely, 

Imy > a 
1 

Rew"Rey > a 
1 

k>O 

Contour 

-ak (M-l) 

along the real axis and the pos~t~on of the 
pole enclosed by the deformed contour, 

along the real axis and the posit~on of the 
pole enclosed by the deformed contour. 

ak 
W= u* eM) 

" ak 
w = u(M) 

k<O 

ak 

.~ ~ u(M) 

(M+l~ak ak 

" ak 
w = u* (M) 

Contour 

(M-l)' ak -'ak 

F~gure 4-1 Contour of Integration and Branch Cuts in w-Plane 
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The cond1tion (4-lb) indicates that the solution leads to outgoing waves 

in y > O. It is not easy to express the radiat10n condition for y < 0 

because of the moving flu1d. However, one can determine the branch 

cuts of y 2 in such a way that when M -+ 0 they coinc1de W1 th those of y 1 . 

These branch cuts are also shown in Figure 4-1. To obta1n the final 

result, 1ntegrat10n 1S carried out w1th respect to k along the real aX1S. 

Next, consider the 1nverse transform w1th respect to k, first 

assuming that W 1S real or has a very small posit1ve 1mag1nary part. 

/ 
= ikx 

f(x,w) = f(k,w)e dk. (4-2) 

C
k 

If we integrate it along the real axis, f(x,w) has singular1t1es 1n the 

w-plane when the poles k = u (M) k , k = u* (M) k hi t the contour as W changes 
o 0 

its value as can be seen in Figure 4-2. 

k = u(M)k 
o 

k = u* (M)k 
o 

Figure 4-2 Movement of the Poles as W Changes from -00 to 00 
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There is no proper contour ~n the w-plane which sat~sfies causal~ty because 

of these singularit~es. To overcome this, the contour C
k 

is deformed in 

such a way that after the pole hits the real ax~s in the k-plane, the 

contour always ~ncludes this pole as shown in F1gure 4-3 and as a 

result the s~ngular~t1es d~sappear. The branch cuts in the k-plane 

have already been made ~n Chapter 3 and along the real axis the 

cond1tions (4-1) are sat~s~fed. We have no cho1ce in mak1ng the branch 

cuts to satisfy cond1t~ons (4-1) at the pos1tion of the pole enclosed 

by the deformed contour except for the geometrical relation between 

the branch cuts and the poles. However, we have a choice in the defor

mation of the contour. The contour may be deformed to include the pole 

in the upper-half plane as shown in Figure 4-3(a) , or the contour may 

be deformed to include the pole in the lower-half plane as shown ~n 

F~gure 4-3 (b) • 

Contour 

(a) 

Rew>o 

=u(M)k 
o 

-k=u* (M)k 
o 

Contour 

(b) 

- k=u(M)k 
o 

k=u*(M)k 
o 

Figure 4-3 Contour of Integrat~on in k-Plane when Rew > 0 
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Cons~der the case Rew > O. The relation between the two branch 

cuts of Y
1 

and two poles is as Case I or Case II shown ~n F~gure 4-4(a). 

According to the branch cuts defined l.n Chapter 3 at the pole k = u(M)k 
o 

we have: 

Case I 

and 

e 
1/2 

arg(k - k) 
'IT a 

= - +-
2 2 o 

arg (k + k) 1/2 = eb 

o 2 

> > !. 'IT arg Y
1 

2 I 

Case II 

and 

1/2 
arg(k - k) 

o 

arg (k + k) 1/2 = 
o 2 

> > _ 'IT 
o arg Yl '2 . 

with 2!.>e >0 
2 a 

(4-3a) 

with (4-3b) 

(4-3c) 

(4-3d) 

(4-4a) 

(4-4b) 

(4-4c) 

(4-4d) 

Therefore at the pole k = u(M)k I cond~t~on (4-1a) is satisifed but (4-lb) 
o 

is not satisfl.ed in Case I, and condition (4-lb) is satisifed but (4-la) 

l.S not satisfl.ed in Case II. 
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Case I 

Case II 

(a) ReW > a 

k=u(M)k 
o 

k=u*(M)k 
o 

k=u(M)k 
o 

k=u*(M)k 
o 

ksu*(M)k Case I 

k-u(M)k 
o 

o 

k=u*(M)k 
o 

k=u(M)k 
o 

Case II 

(b) Rew < a 

Figure 4-4 Relation Between Branch Cuts and Poles 
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and 

At the pole k = u (M) *k , both Case I and Case II glove: 
a 

arg(k _ k) 1/2 'IT 8a 
= 

a 2 2 

arg(k + k) 1/2 
8b 

= , 
a 2 

'IT-8 -8 
a b 

arg Y = 
1 2 

~> arg Y
l 2 

> 0 . 

(4-5a) 

(4-5b) 

(4-5c) 

(4-5d) 

Therefore, at the pole k=u*(M)k
o

' Y
l 

satl.sfies both condl.tl.ons (4-la) 

and (4-lb). 

Next, consl.der the case ReW < O. The relation between the branch 

cuts and two poles is as shown l.n Fl.gure 4-4 (b) • Sl.milarly, according 

to the branch cuts defl.ned in Chapter 3 at the pole k = u* (M) k we have: 
a 

Case I 

and 

arg (k - k) 1/2 
a 

1/2 
arg(k +k) 

a 

8 -8 
d c 

arg Y = ---
1 2 

~ > arg Y
l 

> 0 , 

-8 c 

2 
Wl.th :! > 8 > 0 

2 c 
(4-6a) 

with (4-6b) 

(4-6c) 

(4-6d) 
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Case II 

and 

arg(k - k) 1/2 = 1T 
o 

arg(k +k)1/2 = 6
d 

o 2 

21T-6
c

+6
d 

arg Y
l 

= 2 

l 1T > arg y > 1T 
21· 

9 
c 

2 
(4-7a) 

(4-7b) 

(4-7c) 

(4-7d) 

At the pole k = u* (M)k , cond~t~on (4-la) is satisfl.ed but (4-lb) is not 
o 

sat~sfied in Case I, and condition (4-lb) is satisifed but (4-1a) l.S not 

satisifed l.n Case II. 

and 

At the pole k = u (M) k , both Case I and Case II give: 
o 

_ k) 1/2 
9

c 
arg(k = 

0 2 

arg(k +k) 1/2 
6

d 
= 1T --

0 2 

21T+6 c -6 d 

arg Y1 = 2 

> > :!!:. 1T arg y 1 2 

(4-8a) 

(4-8b) 

(4-8c) 

(4-8d) 

Therefore, at the pole k = U(M)k
o

' Y
1 

satisfies both conditions (4-1a) 

and (4-lb). 
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It 1S concluded that if we deform the contour so that all the 

poles are above the contour, radiat10n condit10ns (4-1) are satisf1ed at 

the posi t10n of the poles k = u (M) k , k = u* (M) k , as well as along the 
o 0 

real ax1S, whereas if we deform the contour so that all the poles are 

below the contour, radiat10n condit10ns are not sat1sfied. Therefore, 

the contour must be deformed to include all the poles above it. 

It is ObV10US that the contour obtained here 1S also valid for the 

inf1n1te vortex sheet problem and 1t 1S easily shown that the contr1bu-

tion from these poles coincides W1th the homogeneous solution obtained 

by Jones et al. [1-5]. 

The decomposition of the functions in the Wiener-Hopf techn1que 1S 

slightly changed. As the contour of inverse transform must lie 1n the 

common reg10n of analytic1ty, the common reg10n of analytic1ty has to be 

deformed 1n a similar way. Plus functions are defined as the funct10ns 

wh1ch are analytic below the contour and minus funct10ns are def1ned as 

the functions which are analytic above the contour. Then the de compo-

sition of K(k) is determined uniquely as follows: 

(4-9a) 

(4-9b) 
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CHAPTER 5 

THE CONDITIONS AT THE PLATE EDGE AND THE VALUE OF THE ENTIRE FUNCTION 

where 

The Wiener-Hopf equation is given in Chapter 2 as: 

Wh K + F 
+ + + 

ex = 1 
Vk 
W 

Vi 
21TW 

K = C(k) 

f2 (x,W) I . 
x=0,y=0 

(5-1) 

C(k) is the entire function of k and plus functions and minus functions 

are analy1:l.c below and above the contour determined in Chapter 4, 

respect~vely. Near the' edge of the plate at the origin.we assume: 

~l (x,w) + C
l 

(w) as x + -0 on y = +0 (S-2a) 

4>2 (x,W) + C
2 

(w) as x + -0 on y = -0 (S-2b) 

2 
~2(x,W) - ~2(0,W) = o (x 1) as x + +0 on y = -0 (S-2c) 

h(x,W) = 
2 

o (x 2) as x + +0 on y = +0 (S-2d) 

where 21 ~ l, 22 > O. In these cond~ tions, the express~on x + -0, y = +0, 

for example, means that x tends to zero through negat~ve value of x on 

the upper side of the plate. 

be known explicitly. 

The C. (w) are functions of W and need not 
~ 
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The th~rd cond~tion indicates that the x-component of the d~sturbed 

veloc~ty ~s f~~te below the vortex sheet at the edge. The fourth 

con~~on ~s the requ~rement that the vortex sheet should attach to the 

edge of the plate. 

Carry~ng out the half-range Four~er transform defined by Eq. (2-7), 

the asymptotic behav~or of the above functions can be calculated w~th 

the aid of the Abel~an theorem as: 

= 
<P

2
_(k,W) 

F + (k) , F (k) are given as follows: 

F (k) 
-1 f FO.) dA 

+ 2iTi A-k 

C+ 

F (k) = 2;~ J FeA) dA 
A-k 

C 

where 

F(A) = 

30 

as k ~oo ~n Imk > -Imk 
o 

as k ~oo in Imk > -Imk 
o 

Imk 
as k ~ 00 ~n Imk < 0 

l+M 

(S-3a) 

(S-3b-) 

(S-3c) 

(S-3d) 

(S-4a) 

(S-4b) 

(S-4c) 



since F C\) does not have a pole at A = u (M) k nor A = u* (M) k , the contour 
o 0 

C+ and C need not be deformed and lie in Reg10n A defined 1n Chapter 3. 

C + passes above A = k wh1le C passes below A = k. The exponent1al decay 

of F(A) on the contour, since ImY2 > 0, Yo < 0 ensures that these 

integrals eXl.st and that F + (k) = 0 (Ik 1-1 ), F _ (k) = 0 (Ik 1-1) as k -+00 in 

respect1ve reg10ns. The asymptot1c behavior of ~+(k), ~_(k) is calculated 

in Appendix Bas: 

as k -+00 
Imk 

in Imk < __ o_ 
HM 

as k -+00 1n Imk > - Imk 
o 

Therefore, the asymptotic behavior of the known functions 

Hopf equation can be estimated as follows: 

o (Ik 13/2) 
Imk 

K+(k) = as k-+ oo in Imk 
< __ 0_ 

l+M 

K (k) = o (Ik 11/2) as k-+oo in Imk > - Imk 

o(lkl-
l

) 
Imk 

F+(k) = as k -+00 1n Imk 
< __ 0_ 

1+M 

0 

F (k) = o (Ik 1-1) as k -+00 in Imk > - Imk 
0 
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(S-Sa) 

(S-Sb) 

in the Wiener-

(S-6a) 

(S-6b) 

(S-6c) 

(S-6d) 



F~rst we calculate the value of minus functions: 

Ll = - 2:~ ~2(0,w) I 0 
y= 

K (0;2_1 -;1-1 -Ll ) -F_ =K-I;2-1 -;1-1 +O(lkl-\)l 
y=O y=0 y=O y=0 

(5-7) 

-F 

( 
1/2-Q,1) 

= 0 I k I ' as k ~ 00 in Imk. > - Imk. • 
o 

(5-8) 

As Q,l ~ 1, the value of the ent~re function C(k) must be ~dent~cally 

zero because of L~ouville's theorem. Next, calculate plus funct~ons 

lmk. 

as k ~oo;n Imk.<-_o-
... l+M (5-9) 

In order to make C (k) equal zero, Q,2 > 1/2. If we set C (k) = 0, then 

which implies 

Imk 
o 

as k ~oo ~n Imk. < l+M ' 

as x ~ +0 on y = 0 , 

(5-10) 

(5-11) 

and as a result the slope of the vortex sheet becomes zero at the edge 

of the plate as well as the d~splacement of the vortex sheet (full Kutta 

condi tion) • 
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CHAPTER 6 

BEHAVIOR OF THE SOLUTION WHEN M TENDS TO ZERO 

The behav10r of the solution near the edge of the plate 1S different 

from that of the Sommerfeld half-plane d1ffract10n problem (W1thout the 

flow). Let us examine the y-component of the veloc1ty on the vortex 

sheet near the edge of the plate. 

(6-1) 

since 

11 + (k) (6-2) 

The asymptotic behav10r of l1_(k) is given in Appendix Bas: 

(6-3) 

Hence 

(6-4) 

The asymptotic behavior of F+(k) is given in Chapter 5 as: 

(6-5) 
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Therefore in our problem 

d:~+ , 0 {lk l-1
/
2 (l+Mlk 1+ M21k12r} (6-6a) 

d;~+ , 0 {Ik r 1
/
2 (l+Mlkl) (l+Mlk 1+ M21kl2r I (6-6b) 

Sl.nce 

(6-7a) 

and 

l.CtF+ 
=--

K+ 
(6-7b) 

Here the dependence of the asymptotl.C behavior on M 1.S dl.splayed 

expll.citly. If M is finite 

(6-8a) 

(6-8b) 
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Then the Abel~an theorem impl~es 

CliP
l 0(x3/2) x-++O on y = +0 (6-9a) Ty = as 

Cl~2 
o (xl/2) x -++0 on y =-0 (6-9b) ay = as . 

In the Sommerfeld problem 

(6-10) 

and 

CliPl CliP2 1/2 
o(x- ) Cly = Cly = as x -+ +0 on y = 0 • (6-11) 

In these express~ons the asymptotic behavior is calculated when k-+oo in 

the lower half-plane of the k-plane defined in each problem respect~vely. 

If M -+ 0 and Mk -+ 0, the asymptotic behavior of the two problems coincides. 

In other words, the existence of the flow smooths the edge behavior of 

the solution. In fact, for the small Mach number 

and 

u(M) 
l+i 
~M 

l-i 
U*(M)~M 

(k) (k) 
_
- (ko - k)-1/2 Yl + ~ Y2+ 

(k) ,... Y (k) _- (ko + k) 1/2 
Yl - - 2-

35 

(6-l2a) 

(6-l2b) 

(6-l3a) 

(6-13b) 

(6-13c) 



Hence 

~ (k) 

~ (k) :::::: 
+ 

F (k) = 
+ 

~1 (x,y,w) 

f 
c+ 

As M -+ 0 and Mk -+ 0 , 

a -+1 

and 

-i(AX
O

+Y2 (A)Y
O

)dA 
a(A)e 

2 
l+a -+ 2 • 

36 

(6-13d) 

(6-13e) 

(6-14a) 

(6-14b) 

(6-14c) 

(6-1Sa) 

(6-1Sb) 



We have 

dAdk • (6-16) 

The solution ~oincides with that of the Sommerfeld problem discussed in 

Appendix c. 
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CHAPTER 7 

TRANSMITTED SOUND FIELD 

The transm~tted sound field is formally g~ven by the equat~on 

ikx-~wthYlY 

e dkdw 

where C
k 

and Cw are the contours discussed ~n Chapter 4 and 

F+(k) 
-1 

= --

F(A) = 

f F C;\) dA 
A-k 

4
22 

1T a 

(7-1) 

(7-2a) 

(7-2b) 

where C + passes above A = k. If we change the contour of the integration 

so that C + passes below A = k, the contribution from the pole A = k must 

be added to the integration, wh~ch gives 

1 
F(k) - 21Ti 

= F(k) - F (k) 

38 

(7-3) 



The transm~tted sound field ~t due to F(k) ~s g~ven as 

If 
ikx-~wt+iYly-ikxo-iY2Yo 

<Pt 

~YI_Y2+11_(k)a.e 
dkdw = 

2 2 
C w Ck 

41T a ylK+ 

II 
~kx-iwt+~Yly-~kxo-iY2Yo 

~Cle 
dkdw , = 

2 2 2 
C

w 
C
k 

41T a (Y2+YlCl ) 

(7-4) 

which is exactly the same as the solution for a doubly inf~n~te vortex 

sheet problem w~thout a r~g~d plate as can be shown ~n Appendix D. 

Therefore, F_(k) ~s cons~dered to indicate the effect of a semi-~nfin~te 

plate on the doubly ~nfinite vortex sheet sound field. 

In this chapter we carry out the integration (7-1) w~th respect 

to k. The integration with respect to W is carried out in Chapter 9. 

The advantages of integrating with respect to k first are: 

(~) After the ~ntegrat~on with respect to k, the t~me harmon~c 

solut~on ~s obtained. The time harmonic factor ~s assumed 
-iwt 

to be e • 

(~~) The geometrical relation between the source and the 

observer ~s more clearly investigated as w~ll be shown 

later. 

Introducing the new parameters 

z.; = k/k 
o 

v = A/k , 
o 

39 

(7-5) 



the t~me harmonic solution of the transm~tted field can be written as: 

~l (x,y,w) =-

where wI (~), w2(~)' wl_(~)' w2+(~)' V+(~), and V_(~) are the counterparts 

of Y
l 

(k), Y
2

(k), Yl_(k), y
2
+(k), ~+(k), and ~_(k), respectively, and are 

defined as: 

(1_M
2
V

2
) IW

I 
(v) I 7T 

-1 arctan IW
2 

(V) I 2 

tnV_(I;) = - tnM (1 +1;) 1/2 -.!. 
7T 

f ------------- dV 

V-I; 
1 

M-l 

{ w 2 (~) +w 1 <1;;) (l-MZ:;) 2} v _ (z:;) 

(Z:;-U(M») (~-U*(M») 
(7-7) 

The branch cuts of wI (I;) lie from -1 to ~ and from 1 to 00 and the branch 

cuts of w
2

(1;) l~e from H:l to -0:> and from M!l to 00 in the ~-plane, wh~ch 

-is 
correspond to the branch cuts of Y (k) from -k to ooe 

1 0 

is ko -is 
roe , and the branch cuts of Y 2 (k) from M-l to ooe and 

in the k-plane, where 

13 = arg k • 
o 

40 

and from k to 
o 

ko is 
from 1 +M to ooe 

(7-8) 



Since this rotation of the branch cuts does not affect the radiation 

cond~t~ons as ~scussed in Chapter 4, this is pe~ssible. The contours 

of the integration Cv and C~ are shown in F~gure 7-1. In the following 

figures we draw two contours on the same plane because after the inte-

gration with respect to V, the pole V = ~ is the contour of the next 

integration and therefore the~r relation can be easily shown. 

Let 

x = 
0 

y = 
0 

r and e 
0 0 

r = 
0 

e = 
0 

_(1_M2)r cose 
o 0 

_(1_M2)1/2r sine 
o 0 

are g~ven as: 

2 2 
x Yo 0 

+--
(1_M2)2 2 

l-M 

arctan 
Y f l -

M2 
0 

x 
0 

. 

r > 0 
o 

1T > e > 0 . 
o 

• ~ = u (M) 

F~gure 7-1 Branch Cuts and Integration Paths 
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Deform the contour C
v 

1nto the curve Cv
l 

defined by 

cos(e +i1")-M 
V = ____ ~o~ __ ___ 

2 
I-M 

(7-11) 

where 1" is real and runs from -00 to 00. Th1S curve 1S a branch of a 

-=ieo 
hyperbola with asymptotes v=e and has a vertex at 

cose -M 
V = ___ o~_ 

I_M2 

Th1S vertex lies between the branch point V = -1 and V = l~M if 

cose > M2 + M - 1 • 
o 

(7-12) 

(7-13) 

Therefore, 1f Eq. (7-13) 1S sat1sifed, the contour can be deformed into 

the hyperbola W1thout cutting the branch lines and we restrict the 

pos1tion of the line source in this region. The region expressed by 

Eq. (7-13) depends on the Mach number M, and as 1S shown 1n F1gure 7-2, 

when M is small 1t covers almost all the moving flow and when M 

approaches 1 1t is restr1cted to a small region. 

y 

Vortex Rig1d 
Plate Sheet 

~~~-p~ .. ----~~----~~~~~x 

M=O.1 

F1gure 7-2 The Region Expressed by Eq. (7-13) 
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The contour of ~ntegra~on ~ is deformed ~n a s~m~lar way. Let 

x = rcose 

! (7-14) 
y = rsine 

with r > 0 and 'IT> e > O. Deform the contour <;; ~nto the curve Cl;l 

(7-15) 

where Tl is real and runs from -00 to 00. This curve is a branch of a 

tie 
hyperbola with asymptotes l; = e and has a vertex at 

l; = cose • 

Th~s vertex lies between the branch points l; = -1 and l; = l:M if 

If 

cose < 1 
l+M 

cose < 1 
l+M 

(7-16) 

(7-l7a) 

(7-l7b) 

the contr1bution from the branch cut must be added. In both deformations, 

no contr~bution occurs from'the linking arcs at infinity. Then on the 

contours the exponential part of the integration (7-6) becomes 

The ~ntegration takes a d~fferent form accord~ng to the geometr~cal 

relation between the position of the line source and the observer as 

follows. 
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e = 60° 
1 

0.6 

0.2 0 

o 

Vortex Sheet 

Source 

F~gure 7-3 Reg~on Expressed by Equation (7-21) 
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Region 1 

When 

cose -M 
cos e < __ 0;;;"2::0-

I-M 

Introduc~ng the real geometr~c angle and length defined by: 

X
o 

= -rlcose
l 

Yo = -r1
s inel 

Eq. (7-19) can be written as: 

where 

cose
l 

M 

cose2 = ---;=:::;:=:;:::::----::- - --2 • 
.. I 2 2 (l_M2) I-M ,1-M s~n e

l 

(7-19) 

(7-20) 

(7-21) 

(7-21a) 

The restrict~on of the angle (7-13) ensures that Eq. (7-21a) always has 

the root. The region expressed by Eq. (7-21) is shown in F~gure 7-3. 

If Eq. (7-19) is satisifed 

since 

cose > cose 

° 

cose 

° 

cose -M 
> __ 0.::.."._ 

I_M
2 

is satisfied identically and hence 

e < e . 
o 
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(7-23) 

(7-24) 



As 

case -M 
__ 0-;:-_ < _1_ 

l_M2 l+M 
(7-25) 

1S also sat1sf1ed 1dentically 

case < 1 (7-26) 
l+M 

and hence no contribution occurs from the branch cut. The relation of 

the two contours is as shown in Figure 7-4. 

The transmitted sound f1eld ~l 1S given as: 

~l (x,y,w) = ~d(x,y,W) 

where 

and 

. F (I;;) 
a 

-00 

ik rcoshT
l F (I;;)e a 

a 

(7-27) 

(7-28) 

(7-29) 

If C
Vl 

and Cl;;l intersect as shown in F1gure 7-4(b) , wh1ch may occur when 

e ~ e
2

, the contr1bution from the pole V = I;; must be added to g1ve: 

~l (x,y,w) = ~d(x,y,W) + ~s(x,y,w) (7-30) 
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(a) 

(b) 

Figure 7-4 Relation Between CZ;;l and C
V1 

8> 82 
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where 

and 

Let 

. ~ko(rcoshTl- Xo-w2(~)Yo) 
(l-M~)wl (I;;)e 

------~~~{7----------------~~---- dT1 4~2a2 w2(~)+wl (~) (1_M~)2} 

cos(e +~T)-M 
o 2 = cos(e+iT

l
) 

l-M 

(7-30a) 

(7-30b) 

(7-30c) 

~ 
As shown in Appendix A, e

3
='4' If e < e

3
, the contr1bution from the poles 

~ = u (M) and ~ = u* (M) must be added to g~ ve 

where 

~Pl 

ik (~x+wl (~)y) 
F (~)e 0 

o 

2 
2~a (~-u*)wl (l;;)w

2 
(~Jv (~) 

- + + 

~k (~x+wl (Oy) 
F (~) e 0 

o 
2 

2~a (~-u)wl (~)w2 (~)v (1;;) 
- + + 

~=u 

~=u* • 

(7-32) 

(7-32a) 

The relation between the poles and the contours is shown in Figure 7-5. 
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Reg~on 2 

When 

Figure 7-5 Relation Between the Poles 
and Contours 

e < e (7-33) 
o 

The region expressed by Eq. (7-33) is shown ~ Figure 7-6. If Eq. 

(7-33) ~s satisfied, then 

cose -M 
cose > ------o~2~ 

l-M 
(7-34) 

The relat~on between the two contours is as shown in F~gure 7-7. When 

we deform the contour C~ to C~l the two contours intersect and the pole 

~=v brings another sound f~eld ~t which ~s the same as the solut~on for 

the doubly infinite vortex sheet problem. In the calculation of ~t we 

are free to deform the contour if there ~s no contribution from the 

We l~nking arcs at infinity as long as C
Vl 

lies in the left of C~l' 

calculate ~t along the stationary path ~(a) which has its saddle point 
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e = 30° 
1 

Rigl.d 

e = 90° 
1 

M=O 

Vortex Sheet 

0.8 

All Values of M 

Source 

Figure 7-6 Region Expressed by Equatl.on (7-33) 
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F~gure 7-7 Relation Between C
Vl 

and C
sl 

8<8 
o 

1 ±84 
between -1 and l+M on the real axis and has its asymptotes s = e , 

where: 

_ <l_M2) 1/2y +y 
arctan _____ .;:;0_ 

x-x 
o 

The character of s(cr) is discussed in detail in [1]. Then 

00 

where 

Img(O) = 0 • 
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If ~(a) captures the poles u(M) and u*(M), another sound field ~P2 must 

be added. 

<PP2 = 

~=u 

ik (~x+wl(~)Y-~X-W2(~)Y ) 
(l-M~)e 0 0 0 

2 d { 2} 2TIa d~ w2(~)+wl (~) (l-M~) ~=u* . 

~P2 does not appear when 6
0 

< 6
5 

where 

cos (6
S
HT

S
)-M 

l_M2 
= u (M) • 

(7-37) 

(7-38) 

The relat~on between the contours and the poles ~s as shown ~n Figure 

7-8. If e < 6
6

, where 

(1+M) -1, 

the contr~ut~on from the branch cut ~bl must be added. 

6 >6 
o 5 

Figure 7-8 Relat~on Between the Poles and the Contours 
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(7-40) 

[f(l;)] = f(I',;+iE) - f(1',; - iE) is the discontinul.ty of f(l',;) across the 

branch cut. 

As a result, the transmJ.tted sound field ~l l.n Region 2 is given as: 

(7-41) 

where Q(M,x,y) is 1 when I',;(a) captures the poles and otherwise zero. 

~t' ~P2 are the solutions for the doubly infinite vortex sheet problem 

(without rigl.d plate) • 

Region 3 

When 

(7-42) 

Region 3 is between Region 1 and 2, and l.S shown l.n Figure 7-9. 

The relation between the two contours is as shown l.n Figure 7-10. The 

contribution from the pole ~tl partially appears. 

(7-43) 
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vortex 

Sheet 

Figure 7-9 Reg~on Expressed by Equat~on (7-42) 

F~gure 7-10 Relation Between C
V1 

and C~l 
e > e > e 

1 0 

As and A6 are the roots of Eq. (7-30b), and 

If 8 < 8
6

, the contribution from the branch cut <Pb2 must be added. 

(1-M~)w (~)e 0 0 0 
1 

[ 

~k (rcoshT1-~x -w2 (~)y )] 

(7-43a) 

(7-44) 

If 8 < i and 8
0 

> 8
S

' the contribut~on from the poles <PP2 appears. As a 

result, the transm~tted sound f~e1d <P1 in Region 3 ~s g~ven as: 

~1 =~d+H(i-8)~P1 +H(86-8)~b1 +~t1 +H(86-8)~b2+H(~-8)H(80-8s)~P2' 

(7-4S) 
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CHAPTER 8 

ASYMPTOTIC EVALUATION OF FAR FIELD 

The fields $d' $t' $tl' $bl' and $b2 can be evaluated asymptobcaUy 

under the assumption that k r » 1 and r » r. First cons~der the case 
o 0 

when 9> 9
6

, It is pernussible to change the order of integration ~n 

integrat~ng (7-28) and (7-29) because Tl and T are real. Now assuming 

ko is real and posJ.tive since 1"1 = 0 is the saddle point, a standard 

stationary phase method is used to evaluate the integration to give: 

Ok 1T ° 
1. r+-J. 

F (I;)e 0 4 
o 

(8-1) 
<Pd = r.:; 3/2 2 -

2v2 1T a (I;-u) (I;-u*)w
l 

(l;)w
2 

(I;)v (I;)/,k r 
+ + + 0 

l;=cos9 • 

If 9 < 9
6

, Cl;l must be deformed to enclose the branch cut as shown ~n 

Figure 8-1, and special care must be taken since w
2
+(I;), w

2
(1;), v+(I;) 

take the different values depending on from which side I; approaches to 

the branch cut. 

Figure 8-1 Deformation of Cr;l When 9 < 9
6 
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9 1k rcoshT
1 F (s)e 0 

1 ~d + ~bl = 
0 

dTl 2 2 
41T a (I;;-u) (I;;-u*)wl+ (l;;)w

2
+(I;;) v+ (I;;) 

-(Xl 

(Xl 
ik rcoshT

1 F (1;;)e 0 
0 +1 dT

1 
+0( lkorl-3/2) 

2 2 
0 

41T a (1;;-u) (l;;-u*)w
1

+(1;;)w
2

+(s)v+(1;;) 

1k r +~1 
F (I;;)e 0 4 

= ____ ~~~o~------ __ ------__ ___ 

41:2 1T
3
/

2
a

2
(I;;_u) (l;;-u*)w

1 
(1;;)1k:r 

+ 0 1;;=cos9 

I } + 0(l k
o

r l-3/2), 

1;;=+o+cos9 
(8-2) 

where for example, f(l;;) I means the value of f(l;;) when I;; approaches 
1;;=+O+ao 

a through pos1tive value on the upper slde of the branch cut. As a = 0 
o 

is the saddle point of 1ntegration (7-36), we have: 

~ = 
t 

ik g (a) +sgng" (a) i 1 
1 (l-MI;;) e 0 dl;; 

21:2 1T3/2a
2

{w2(1;;)+Wl (I;;) (l_MI;;)2} /kolg"(a) I da 
(8-3) 

a=o. 

Slnce we assume r » r
o

' Tl = 0 1S the saddle po1nt of 1ntegration (7-43) 

and the ma1n contribut10n to the 1ntegration comes from this p01nt. 

Therefore, asymptot1cally it is permissible to deform Cl;;l to I;;(a). We 

have 

(8-4) 
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It is concluded that Reg~on 2 and Reg~on 3 asymptot~cally have the same 

character. 

As we assume r » r
o

' both C~l and ~(a) have the same asymptotes 

and for small Mach number the poles are not included in the deformation 

from C
sI 

to sea) if 8 is not so close to i. Therefore, we have: 

(8-5) 

5']. 



CHAPTER 9 

THE IMPULSIVE PROBLEM 

In th~s chapter ~nverse transform w~th respect to w ~s carr~ed out 

to obta~n the solut~on for the ~mpuls~ve problem. ~l (x,y,t) ~s formally 

given as: 

00 

~l (x,y,t) I - -~wt 
~l (x,y,w)e dw (9-1) 

where integrat~on ~s carried out along the real ax~s ~n the w-plane. 

In Reg~on 1 we have 

(9-2) 

where the ~tegrat~on w~th respect to w has been performed. Th~s can be 

~ntegrated with respect to e~ther Ll or L, but the rema~n~ng integrat~on 

cannot be performed expl~citly. It ~s however clear that ~d van~shes 

for t~mes at < r - r Mcose + r. The arrival t~me of the wave front 
o 0 0 

becomes earl~er or later depend~ng on the pos~t~on of the l~ne source 

due to the term r Mcose and hence the existence of the flow in the 
o 0 

lower half-plane. 
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(9-4) 

It can be expressed in terms of the ultradistr~bution O(z), where z is 

complex, as: 

(9-5) 

The ultradistr~bution o(z) has the property that 

00 

o (z) = l: (i Im z) no (n) (Rez) In! (9-6) 

and since generalized function 0 (n) (Rez) vanishes for Rez ~ 0, <PPI indi-

cates the ~nstabil~ty waves and vanishes for 

at < r - Mr cose + Reux + Rewl(u)y . 
o 0 0 

(9-7) 

59 



It is easily checked that Reu, Reu*, Rew
l 

(u), and Rewl(u*) are all 

posit~ve and these ~nstabil~ty waves appear only ~ the downstream. 

Therefore ~Pl satisfies causal~ty. On the other hand, ~f we deform 

the contour ~n the k-plane so that the two poles are always below the 

contour as d~scussed ~n Chapter 4, ~Pl appears ~n the upstream and for 

the certa~n value of negat~ve x, ~Pl can be heard t < 0 and causal~ty ~s 

violated. 

In Reg~on 2 we have 

(9-8) 

~bl 

(9-9) 

~bl can be ~ntegrated once only, but ~t ~s clear that it vanishes for 

t~mes 

at < r - Mr cose + rcos (e
6

-6) . (9-10) 
o 0 0 

S~nce ~t is restr~cted to the reg~on e < 8
6

, it is also causal. As 

~ndicated ~n Chapter 7, ~t and ~P2 are the solut~on for the doubly 

~nf~nite vortex sheet problem (w~thout the rig~d plate) wh~ch ~s calcu-

lated exactly and d~scussed ~n deta~l ~n [6]. The only difference ~s 

that the ~ns tab~lity waves <l>P2 are blocked and do not appear when eo < e 5' 

In Reg~on 3 the ~ntegrat~on cannot be performed expl~c~tly for ~tl and 

~b2' However, as shown ~n Chapter 8, ~ts nature ~s asyrnptot~cally the 

same as that of Region 2. 
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CHAPTER 10 

CONCLUSIONS 

The transmitted sound field ~l sat1sfies the full Kutta condition 

and causality condit10n. 

The sound waves ~d' ~Pl' and ~bl can be heard first at the edge of 

the plate at the time 

t = (r - Mr cose ) /a 
000 

(10-1) 

which 1S the time that the emitted sound wave takes to travel from the 

source point to the plate edge in the moving flu1d. Th1S arr1val time 

becomes earlier or later depending on whether the source is in the 

upstream (eo <~) or 1n the downstream of the plate edge (eo >~). 

The field ~d represents the f1eld scattered from the edge of the 

plate and can be heard everywhere in y > O. The wave front clearly 

occurs on the circle 

r = at - r + Mr cose 
000 

(10-2) 

and the t1me t = (r + r - Mr cose ) /a is the time for a signal to travel, 
o 0 0 

via the edge, from the source to the observer. 

~bl is the bow wave associated W1th ~d and can be heard in the 

reg10n e < e
6

• Its wave front is expressed as: 

at = r - r cose + rcos (8
6
-8) . 

000 
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This ~s the straight line from x = (l+M) (at - r + Mr cos8 ), y = 0, to 
000 

the point of contact w~th the cyl~ndr~cal d~ffracted wave front. $Pl 

can be regarded as an ~nstab~l~ty wave triggered by the d~ffracted wave 

IT 
at the edge and is restr1cted to the reg~on 8 < '4' It ex~sts ~n the 

triangular reg~on bounded by the line x = y and Reux + Rew
l 

(u)y = 

at - r + Mr cos8 . 
000 

The transm~tted sound f~elds can be class~f~ed depend~ng on how 

~t wave ~s transm~tted. ~t and ~P2 are the transmitted waves through 

the vortex sheet and are ~dent~cal ~n the form to those found for the 

infin1te vortex sheet. 

In Reg~on 1, ~t is completely shaded by the r~gid plate. In 

Reg~on 2, ~t ~s fully transm~tted. Reg~on 3 ~s the trans~tion region 

between the two and ~t ~s part~ally transm~tted depend~ng on ~ts wave 

number. 

If the observer 1S close to Reg~on 1, ~t ~s mostly shaded and if 

the observer ~s close to Reg10n 2, ~t is mostly transmitted. If the 

observer ~s far from the plate edge, the nature of the sound f~eld ~s 

the same as that of Reg~on 2. 

~P2 ~s another ~nstabil~ty wave wh1ch occurs when ~(cr) captures 

the poles. If the source is close to the r1g~d plate (8
0 

< 8
5
), th1S 

wave 1S blocked by the plate and does not appear. 

If M tends to zero, the boundar1es of Regions 1, 2, and 3 approach 

the d1ffracted angle of the Sommerfeld problem (8
2 

-+- 8
1

, 8
0 

-+- 8
1
), 
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APPENDIX A 

POLES OF K 

The poles of K are given as the roots of the equation 

Introducing the parameter 

l; = ka/l; , 

Eq. (A-I) reduces to the form: 

{WI (1;) +W
2

(1;)} {1;2 +Wl (1;)W
2

(1;)} = 0 

where 

W~(1;) = 1-1;2 

w
2 

(1;) = (l-M1;) 2 _l;2 

(A-I) 

(A-2) 

(A-3) 

(A-4) 

and to satisfy the sign convention of y 1 and y 2' the imaginary part of 

their counterparts wI and w
2 

must have the same sign as ko along the 

real ax~s. Accordingly, the branch cuts in the 3-plane are as shown 

in Figure A-I. 

i) o (A-S) 

2 2 2 
1 - 1; = (l-Ml;) - l; 

(l - 1 + M3) (1 + 1 - M3) = 0 
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3-plane 

@ 
-1 11"0 

F~gure A-l(a) Branch Cuts of w
l 

(3) 

@11J @ 

Z; 0 

1 

M-l 

1 
1+M 

Figure A-l(b) Branch Cuts of w
2

(3) 

o 
D 

ind~cates the 
argo of )1-3 

1nd~cates the 
arg of 11+3 

O ~nd1cates the 
argo of Il-M3-3 

c=J ~nd1cates the 
arg. of Il-M3+3 

It is apparent that Z; = 0 is not the solution of Eq. (A-S). If M < 2, 

Z; = ~ is situated on the right of Z; = 1 and cannot be the solution of 

Eq. (A-S). 
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n) 

1; 

1; 

-M 
= 

± f M2 +4+4 VM
2 
+1 

2+2VM
2
+l 

M ± f M2 +4-4 VM
2 

+1 
= 

2Vl+M
2 

- 2 

2+2VM
2
+l 

1 
~s between 1; = 0 and 1; = l+M· 

(A-6) 

is between 1; = 0 and 1; = -1. These two are not the solution of Eq. (A-G). 

M±fM
2
+4-4VM

2
+l 

1; are the complex numbers which are situated above 
2Vl+M2 -2 

and below 1; = "~+l , respectively, when M < 21:2 and are the solution 

of Eq. (A-6). 

These two solutions can be written as: 

1; = cos ( i 7T :t. iT) (A-7) 

where T is the positive root of the equation 

CoshT = (A-8) 

65 



APPENDIX B 

CALCULATION OF ~+(k) AND ~_(k) 

As ~ (k) does not have any zeros, ~ (k) is defined by 

-1 
~n ~ (k) = ~n ~ (A) dA 

X-k 

where C
1 

passes below 1..= k. Introduc~ng the new parameters 

~ = k/k o 

v = A/k 
o ' 

Eq. (B-1) can be wr~tten as 

-1 
tn ~_(k) = 2'ITi 

~n ~(Vk ) 
____ 0_ dV • 

V-z;; 

(B-1) 

l (B-2) 

(B-3) 

The branch cuts of wl(V) l~e from -1 to _00 and from 1 to 00 and the 

branch cuts of w
2

(V) lie from M:1 to -~ and from M!l to ~ in the V-plane 

as shown in Figure B-1 where wI (V) and w
2

(V} are the counterparts of 

yl(k) and y
2

(k) and are defined by: 

2 = 1- V 

l (B-4) 

The contour C
2 

is distorted so that it is wrapped around the cut from 

-1 to -~. This process gives an addit~onal contribution from the 

semicircle of radius R. 
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V-plane 

8=arg. k 
o 

Figure B-1 Branch Cuts and Integration Paths 

As Ivl-+ oo in the upper half-plane, w
1 

= -iv + 0(1), w
2 

= 0 (Ivl) and so 

].l(k) 
-iM

2
V 

= -k- + 0(1) • (B-5) 

o 

In the lower half-plane W
1 

= iv + 0 (1), w
2 

= 0 (Iv I) and so 

iM
2
V 

].l(h) = -k- + 0(1) • (B-6) 

o 

It follows that the contribut10n from the semicircle is: 
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1 M2R (n) 
= - '2 9,n k + 0 "';R . 

o 

The d~scont~u~ty in 9,n~(k) across the cut is: 

w
2

(V+iE)+W
1 
(v+~E)a2 

9,n{~(k+J..E)/~(k-iE)}= 9,n ......;;;,---~---
w

2
(V-iE)+W

1 
(V_~E)a2 

-1 -1 arctan 
1 M2R 1 

f dV 1 I 9,n~ (k) = - - 9,n - - - V- I; - :rr - 2 k 2 
0 

-R 1 
M-l 
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(B-7) 

v <..l:- (B-B) 

M-l 

1 
--<V<-l. 
M-l 

(1_M
2
V

2
) IWll 

'IT 

IW21 2 

v-I; 
dv 



-1 

= _ Q, M(l+1;) 1/2 -!. f 
n k 1/2 'IT 

o 1 

M-l 

arctan 
'IT 

2 

The asymptotic behav~or 0 f ll_ (k) as I k I -.. co ~s easily found as 

(B-9) 

(B-10) 

The identity II (k) = ll(k)ll (k) can then be used to der~ve the corre-
+ -

spond~ng results for ll+(k) as follows: 

II (k) 
+ 

The asymptot~c beha~or of ll+(k) ~s 
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APPENDIX C 

SOLUTION FOR THE SOMMERFELD HALF-PLANE DIFFRACTION PROBLEM 

Cons~der the case ~n which there ~s no flow ~n y < o. The 

governing equat~ons are: 

a 241 

2v 2
<P 

2 = 0 (x - x ) o (y - y ) 0 (t) y< 0 ---
at

2 a 2 0 0 

a
2

<P 
1 ~2<P 0 y> 0 . --- a 1 = 

at
2 

Carrying out the Four~er transform def~ned by Eq. (2-2), Eq. (C-l) 

reduces to the form: 

where 

-ikx 
o 

k = w/a • 
o 

(C-l) 

(C-2) 

Solutions to the set of ord~nary different~al Eq. (C-2) can be easily 

found as: 
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~l 
loYIY -iYly 

Al(k,W)e +Bl(k,W)e 

(C-3) 

-iYly -iYly 
= A

2
(k,W)e +B

2
(k,W)e 

-lokx 

e 2 2
0 

sloly 1 (y-y )] H (y-y ). 
4TI L 0 0 a Y

l 

The sign convention of Y
l 

is chosen such that the sign of lots imaginary 

part is always poslotive and therefore Bl and B2 must be set to zero. 

The boundary conditJ.ons at y~ 0 are: 

a</>l a</>2 
x>o (continuity of pressure) (C-4a) at= at 

a<Pl 
a<P

2 
x>o (contlonuity of dl.splacement) (C-4b) at= at 

a </>1 a</>2 
0 x<o (rigid plate condition) (C-4c) 

ay ay = . 

To express these condl.tl.ons in the transformed region, carrying out 

the half-range Fourier transform defl.ned by Eq. (2-7) we obtal.n: 

"'" 
<P1+ = ~2+ 

a<P1+ a';2+ 
--ay=--ay 

a';l_ a';2_ 
ay-=ay-=o. 
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Using the relat~on 

e 
-~(kx +Y1Y ) o 0 

4
22 

'IT a 

(C-6) 

a4ll+ 
and el~minating all the unknown plus funct10ns except for -ay- , we 

obtain: 

-~ (kx
o 

+Y 1 Y) 
e 

4 
2 2 

'IT a 

(C-7) 

The branch cuts of Y
l 

are the same as those defined in Chapter 3. The 

common reg~on of analytic~ty is 

Imk > Imk > - Imk. (C-8) 
o 0 

and Imw ~s kept to be pos~tive. The funct~on Y
I 

~s split into two 

parts such that Y
l 

= YI-/Y
l
+ where 

(C-9) 

Y = (k + k) 1/2 . 
1- 0 

Plus funct~ons are analytic in the region Imk < Imk and m1nus functions 
o 

are analyt1c 1n the reg10n Imk > -Imk. The W1ener-Hopf Eq. (C-7) can 
o 

be rewr1tten as: 

(C-IO) 
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The last term of Eq. (C-IO) can be decomposed into the sum of plus 

and ~nus functions as: 

-i (kx +YIY ) 
o 0 

e 
~~2~2--- = F

l
+ (k) + F

l
_ (k) , 

4iT a "';ko-k 
(C-lla) 

where F
l
+, F

l
_ are g~ven as: 

Fl+(k) 
-1 / F(A) dA 

= --
2iT~ "A-k 

C+ 
(C-llb) 

F
l

_ (k) = 
2;i / 

F(A) dA 
A-k 

C-

The contours C and C lie in the common region (C-8) and C+ passes 
+ -

above A=k and C_ passes below A=k. The exponential decays of F(A) 

on the contour, since Imy 1 > 0 , Yo < 0, ensures that these integral 

exist and that Fl+(k) =0 (Ikl-l), Fl_(k) =0 (Ikl-l)as k+ oo in respechve 

reg~ons. 

The Wiener-Hopf equation now takes the form as: 

2 d~l+ 
-----+ 

"';ko -k dY 

C(k) • (C-12) 

The function C(k) ~s the entire funct~on of k and must be a regular 

function of k in the whole k-plane. At the plate edge, we assume: 
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a(ji 

a~+ + 0(x-
1/2

) as x + +0 on y= +0 (C-13a) 

(jil + C
l 

(w) as x + -0 on y= +0 (C-13b) 

(ji2 + C
2 

(w) as x + -0 on y = -0 . (C-13c) 

Carry~ng out the half-range Four~er transform def~ned by Eq. (2-7), 

the asymptot~c behav~or of the above funct~ons can be calculated w~th 

the a~d of the Abelian theorem as: 

aCPl+ 
o (Ik 1-1/2

) ay= 

4'1_ = o(lkl-
l

) 

= 
O(lk l-

l
) <1>2_ 

Hence from Eq. (C-12) 

C(k) = o (Ikl-l) 

C(k) = O(lk l-
1/2

) 

as k + CXl ~n 

as k + CXl ~n 

as k + CXl ~n 

IInk < IInk 
o 

IInk >-Irnk 
o 

IInk >-IInk 
o 

as k + CXl in IInk < IInk 
o 

as k + CXl in IInk > -IInk 
o 

(C-14a) 

(C-14b) 

(C-14c) 

(C-lSa) 

(C-1Sb) 

C(k) is regular ~n the whole k-plane and tends to zero as k tends to 

infinity in any direction. Hence from L1ouv1lle's theorem C(k) must be 

ident1cally zero. Therefore, we obta1n: 

_ ... /k - k F (k) 
V 0 1+ 

2 
(C-16) 
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Al (k,W) = ~J 
y=O 

I a~ _ I 

- ~YI ay 

. a~1 
- -~ + 
- Y

I 
ay 

iFI+(k) 
= --==---

2yko +k 

(C-17) 
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APPENDIX D 

THE SOLUTION FOR THE INFINITE VORTEX SHEET PROBLEM 

The govern~ng different~al equat~ons are the same as Eq. (2-1). 

The boundary cond~t~ons (2-4), (2-Sa), and (2-Sb) must be sat~sf~ed 

throughout the vortex sheet. Instead of the half-range Fourier trans-

form, us~ng the full-range transform, Eqs. (2-4), (2-Sa), and (2-Sb) 

can be wr~tten as: 

(D-l) 

(D-2) 

(D-3) 

From Eqs. (D-2) and (D-3) we obtain: 

(D-4) 

From Eq. (2-12) 
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22 

TI a 

Substituhng Eq. (0-5) into Eqs. (0-1) and (0-4) gives 

= -~Y A -
2 2 

-ikx 
a 

e cosY 2Yo 

4TI
2

a
2 

Finally, from Eq. (0-6), Al and A2 are determined as: 

-ux -iY y 

~a e 
a 2 a 

Al = 
2 2 2 

4TI a (Y
2

+a. Y
1

) 

-ikx 

(eiY2YO 
2 

e-iY2YO) i e 
a Y2 - a Y

1 
A2 = + 2 . 

2 2 
8TI a Y

2 
Y

2 
+a Y

l 
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