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Transmitter Precoding Aided Spatial Modulation

Achieving Both Transmit and Receive Diversity
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Abstract—We propose and investigate a precoding-aided spa-
tial modulation (PSM) scheme, which can simultaneously achieve
transmit and receive diversity and, hence, is referred to as
the TRD-PSM scheme. In TRD-PSM systems, information is
transmitted jointly using an amplitude-phase modulation (APM)
and a receive antenna based space-shift keying (SSK) modulation.
We consider two types of linear precoders, namely transmitter
zero-forcing (TZF) and transmitter minimum mean-square error
(TMMSE), so as to facilitate low-complexity signal detection. In
order to satisfy the different requirement for complexity and
reliability, we introduce/propose a range of detection algorithms,
which include joint maximum likelihood detector (JMLD), sim-
plified JMLD, successive MLD (SMLD), simplified SMLD, and
ratio threshold test assisted MLD (RTT-MLD). We address the
principles, characteristics, complexity and performance of these
detection algorithms. Furthermore, we analyze the average bit er-
ror probability (ABEP) of the TZF- and TMMSE-assisted TRD-
PSM systems employing respectively the JMLD and simplified
JMLD and at both small- and large-scale. Finally, numerical and
simulation results are provided to demonstrate and compare the
achievable performance of TRD-PSM systems employing various
precoding and detection algorithms, as well as to validate the
formulas derived.

Index Terms—Multiple-input multiple-output (MIMO), spatial
modulation, precoding, precoding assisted spatial modulation,
diversity, average bit error probability, asymptotic analysis.

I. INTRODUCTION

I
N order to attain low-complexity and energy-efficient

multiple-input multiple-output (MIMO) systems, various

space-relied modulation schemes have been proposed and

investigated in recent years, as witnessed by [1–4] and the

references therein. With one or a fraction of transmit/receive

antennas being activated to modulate information in the spatial

domain, spatial modulation (SM) schemes have the capabil-

ity to relax the requirement for inter-antenna-synchronization

(IAS), to mitigate inter-channel-interference (ICI), to reduce

the number of radio frequency up-conversion chains, or to

achieve lower complexity detection, in contrast to the conven-

tional MIMO schemes. Owing to these advantages, SM has

been studied from different perspectives, again, as shown in

[1–4] and the references therein.
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In literature, there are various SM schemes. As some

examples, in [5–8] the authors have proposed to use the indices

of transmit antennas for information modulation, forming the

space-shift keying (SSK) scheme. In the general form of

spatial modulation (SM) [5–7, 9–13], information is jointly

transmitted by an amplitude-phase modulation (APM), such

as, phase-shift keying (PSK), quadrature-amplitude modula-

tion (QAM), etc., and a SSK modulation. In [14], a space-time

shift keying (STSK) modulation has been proposed, which

conveys information by jointly making use of the degrees of

freedom provided by the space and time domains, as well

as the conventional APM constellations. Furthermore, in [10],

SM has been integrated with orthogonal frequency division

multiplexing (OFDM) for information delivery.

Corresponding to the various SM schemes, different types

of detectors have been proposed, in order to achieve a good

trade-off between reliability and complexity, as seen, e.g., in

the above-mentioned references and [11, 15, 16]. Furthermore,

the performance of SM systems with various detection ap-

proaches has been studied. Specifically, in [17], the authors

have analyzed the error performance of the SSK modulated

systems, when assuming communications over correlated and

non-identical Nakagami-m fading channels. The asymptotic

error performance of SM systems has been analyzed in [18],

when assuming a Nakagami-m fading channel model. In [19],

the authors have analyzed the error performance of the SM

systems communicating over generic fading channels, which

provides a comprehensive framework for analyzing the average

bit error probability (ABEP) of SM systems.

As a counterpart to the SM, a precoding aided spatial

modulation (PSM) scheme has been introduced in [20], which

uses the indices of receive antennas for delivery of extra

information. Based on the principles of PSM, different PSM

schemes have been proposed and investigated, and some

of them are referred to as the receive spatial modulation

(RSM) [21–25]. In more detail, by introducing the RSM to

the multi-user MIMO, the authors of [21] have proposed

and investigated a multistream RSM scheme. With the aid

of the high signal-to-noise ratio (SNR) approximation, the

asymptotic error performance of the multistream RSM systems

has been analyzed in [22], where both small- and large-

scale fading are taken into account. The authors of [23] have

analyzed the symbol error rate, diversity order, and the coding

gain of the RSM-assisted MIMO systems, when assuming

shadowing broadcast channels. In order to enhance the spectral

efficiency of the MIMO spatial multiplexing (SMX) system, a

dual-layered transmission scheme has been proposed in [24],

where RSM is applied to a joint spatial and power-level



2

domain. In [25], a hybrid SM-assisted relay scheme has been

composed, where a RSM is implemented for the source-to-

relay transmission, and a SM is used for supporting the relay-

to-destination transmission. The generalization of PSM, i.e.,

GPSM, has been addressed in [26]. Instead of activating one

receive antenna in the PSM, the GPSM activates multiple

receive antennas during each symbol duration for attaining

a higher data rate. Subsequently, the capacity and achievable

rate of the GPSM systems have been analyzed, when the joint

optimal detection and the decoupled sub-optimal detection are

respectively employed [27]. By transplanting the philosophy of

GPSM into internet-of-things architectures, in [28], the author

has proposed a network topology modulation scheme, which

enables the simultaneous energy and data transmission for

the internet of magneto-inductive things. In the PSM/GPSM

schemes, typically, liner precoding has been employed for

activating the intended receive antenna(s) [20–22, 24–27, 29].

By contrast, in [30], a non-linear precoding aided GPSM

scheme has been proposed and studied, which is capable of

further enhancing the error performance of the GPSM.

While the SM schemes can readily attain receive diversity in

the case that multiple receive antennas are employed, achiev-

ing transmit diversity in SM schemes is not straightforward.

In [31–35], by assuming CSI at transmitter (CSIT), transmitter

preprocessing aided SM schemes have been proposed, in order

to simultaneously achieve both transmit and receive diversity.

By contrast, according to the principles of PSM/GPSM (or

RSM), transmit diversity is always available, provided that

the number of transmit antennas is higher than the number

of receive antennas. However, to the best of the authors’

knowledge, there are rarely prior works in PSM, which have

considered to employ additional receive antennas for achieving

receive diversity. In [29], the author has proposed a PSM

scheme for operation in the scenario, where the number of

receive antennas is more than the number of transmit antennas.

In order to implement the original PSM [20] in this case,

a subset of receive antennas1 are selected based on the full

channel state information (CSI) known to the transmitter.

Explicitly, this PSM transmission scheme is capable of at-

taining receive selection diversity. However, implementing the

propose PSM scheme with optimal detection requires that

both the transmitter and receiver have to employ full CSI,

which is highly challenging in practice. Moreover, in order

to select an optimum subset of receive antennas, a search

algorithm involving matrix inversion has to be conducted over

all possible antenna combinations for subsets. This results

in extreme complexity and possibly high latency, especially,

when the number of receive antennas is high.

Against the background, in this treatise, we propose a PSM

scheme, which may achieve both transmit(T)- and receive(R)-

diversity (D), and hence is referred to as the TRD-PSM system.

In the TRD-PSM system, a subset of receive antennas are

fixed for encoding the spatial information, while the remaining

receive antennas are utilized for providing receive diversity. In

contrast to the PSM scheme proposed in [29], which demands

1The number of receive antennas in the subset should not exceed the number
of transmit antennas in order to implement linear precoding.

full CSI for the transmitter to dynamically choose a subset

of receive antennas, in our TRD-PSM system, the transmitter

only expects the part of CSI required for carrying out precod-

ing, as seen in our forthcoming discourses. In the TRD-PSM

system, the transmitter is not required to dynamically identify

a subset of receive antennas for encoding spatial information.

Hence, the complexity of the TRD-PSM transmitter can be

significantly lower than that of the PSM transmitter in [29].

Furthermore, the TRD-PSM scheme imposes no constraint on

the relationship between the number of transmit antennas and

the number of receive antennas, provided that the system has

multiple transmit antennas and multiple receive antennas, i.e.,

is a MIMO system. In this case, for any given number (> 1)

of transmit antennas, an appropriate subset of receive antennas

is always available for implementing a PSM with, e.g., linear

precoding. After the selection, the remaining receive antennas

can be exploited to achieve receive diversity, which enhances

error performance, or can be used to trade for a higher

rate APM. Owing to its merits, the TRD-PSM scheme may

be flexibly implemented with various MIMO scenarios, e.g.,

uplink or downlink, provided that the required CSI is available

for the transmission and detection.

In addition to the above-mentioned, the other novelty and

main contributions of the paper can be summarized as follows.

• A TRD-PSM system is proposed, in which a subset of re-

ceive antennas are used for implementing the PSM, while

the other receive antennas are exploited for achieving

receive diversity. In addition to the receive diversity, the

TRD-PSM system can also attain transmit diversity, if the

number of receive antennas in the subset is less than the

number of transmit antennas. In our TRD-PSM system,

transmit diversity is achieved with the aid of precoding

in the principles of, e.g., zero-forcing (ZF) or minimum

mean-square error (MMSE), which are referred to as

TZF or TMMSE for convenience. By contrast, receive

diversity is obtained through the employment of high-

efficiency detection algorithms, as noted below.

• In order to meet different levels of requirement for

reliability and complexity, a range of detectors are in-

troduced. In detail, we first introduce the joint maximum

likelihood detector (JMLD), which achieves the best error

performance, but also demands the highest complexity for

implementation. Second, by assuming TZF or TMMSE,

we reduce the JMLD to a simplified JMLD, which has

slightly lower complexity than the JMLD. Third, in order

to further decrease the detection complexity, we propose

a successive MLD (SMLD) and also reduce it to the

simplified SMLD. This simplified SMLD is in fact a de-

tector widely employed in the SM/PSM systems proposed

in references, e.g., in [10, 11, 15, 16, 26]. However, our

studies in this paper show that this simplified SMLD is

inefficient and yields significant performance degradation,

when it is operated in the PSM systems, where only a

subset of receive antennas are used for SSK modulation.

Finally, for the sake of achieving a best possible trade-off

between error performance and complexity, we propose

a ratio threshold test assisted MLD (RTT-MLD). In the



3

RTT-MLD, a search space having significantly smaller

size than that of the JMLD is first identified based on

the principles of RTT [36–39]. Then, the information

conveyed by the SSK and APM is jointly detected using a

MLD operated in the identified search space. Our studies

and performance results show that both the SMLD and

RTT-MLD are high-efficiency detection schemes in terms

of the trade-off between complexity and reliability.

• In order to gain the insight into the TRD-PSM system’s

characteristics and its performance limit, we analyze

the ABEP of TRD-PSM systems employing respectively

the JMLD and simplified JMLD. In our analysis, both

small- and large-scale TRD-PSM systems are considered.

For the small-scale TRD-PSM systems, the approxi-

mate ABEP expressions are derived by analyzing the

union-bound with the aid of the Gamma approximation

(Gamma-Ap). By contrast, for the large-scale TRD-PSM

systems, we derive the asymptotic ABEP formulas by im-

posing the large-scale approximations. All the analytical

expressions are validated by simulation results. As our

studies and performance results show, the approximate

and asymptotic ABEP expressions derived in this paper

are general, which are suitable for the PSM systems

without using diversity antennas at receiver. This can

be achieved simply by letting the number of diversity

antennas equal to zero.

The remainder of the paper is structured as follows. In

Section II, we describe the TRD-PSM systems employing

TZF and TMMSE. This is followed by proposing a range

of detectors in Section III. Section IV analyzes the ABEP

of the TRD-PSM systems employing respectively the JMLD

and simplified JMLD. Our performance results and related

discussions are provided in Section V. Finally, we summarize

the main observations in Section VI.

Notations: Boldface upper-case and lower-case letters repre-

sent matrices and vectors, respectively. E[·] and Tr(·) denote

respectively statistical expectation and square-matrix’s trace.

AAAH , AAAT , AAA∗ and AAA−1 stand for Hermitian transpose, trans-

pose, conjugate and inverse of matrix AAA. IIIM is a (M ×M)
identity matrix. ℜ{x} and |x| take respectively the real part

and modulus of x. ‖aaa‖ denotes the Euclidean norm of vector

aaa, while Pr{·} denotes the statistical probability calculator.

II. SYSTEM MODEL

The TRD-PSM system considered is a point-to-point PSM-

modulated MIMO system, whose transmitter and receiver are

equipped with N > 1 and M > 1 antennas, respectively. Let

the (N×M) channel matrix of this PSM system be expressed

as HHH = [hhh0,hhh1, · · · ,hhhM−1], where hhhm, m ∈ {0, 1, . . . ,M −
1}, is an N -length column vector containing the channel gains

from the N transmit antennas to the mth receive antenna. We

assume that the transmitter is capable of acquiring the CSI

required for carrying out precoding, while the receiver has the

required CSI for detection. In literature, almost all the existing

PSM-related research works assume that all receive antennas

are exploited to bear spatial information. In this paper, we

relax this constraint and assume that a part of receive antennas

are utilized to encode spatial information, while the remaining

receive antennas are used to attain receive diversity.

Let M1 = 2k1 out of the M receive antennas be used

for information delivery, while the other Md = (M − M1)
receive antennas be used for achieving receive diversity. In

order to carry out linear transmitter precoding, such as the

TZF, TMMSE, etc. [20], and to achieve transmit diversity,

we assume that M1 ≤ N . Correspondingly, the (N × M1)
channel matrix is expressed as HHH1 = [hhh0,hhh1, · · · ,hhhM1−1],
which are constituted by the M1 columns of HHH chosen

according to a given optimization strategy. Therefore, HHH1 is

not necessarily constituted by the first M1 columns of HHH .

However, for convenience of description, we simply assume

that the first M1 receive antennas are used for information

configuration based on the M1-ary SSK (M1-SSK), while

the rest Md receive antennas are used to achieve receive

diversity. Let the transmitter precoding matrix designed based

on HHH1 be expressed as PPP = [ppp0, ppp1, · · · , pppM1−1], which is an

(N×M1) matrix and is normalized to satisfy Tr(PPPPPPH) = M1.

Let m1 ∈ M1 = {0, 1, · · · ,M1 − 1} be an integer de-

termined by k1 binary bits delivered by the M1-SSK, and

x ∈ X = {X0, X1, · · · , XM2−1} be an M2-ary APM (M2-

APM) symbol, such as PSK, QAM symbol, determined by

another k2 = log2 M2 binary bits. Furthermore, we assume

that the signals in X satisfy E{|Xi|2} = 1. Then, following

the principles of PSM as shown in [20], we can write the

discrete signals transmitted from the N transmit antennas as

sss = pppm1
x (1)

which conveys (k1 + k2) bits per symbol.

When sss is transmitted over the MIMO channels defined by

HHH , the received observation at the mth receive antenna is given

by

ym = hhhT
msss+ nm = hhhT

mpppm1
x+ nm,

m = 0, 1, . . . ,M − 1 (2)

and the observations from the M receive antennas can be

expressed as

yyy =HHHTpppm1
x+nnn (3)

where, by definition,

yyy = [y0, y1, · · · , yM−1]
T

nnn = [n0, n1, · · · , nM−1]
T

(4)

In (4), nnn obeys the complex Gaussian distribution with zero

mean and an (M × M) covariance matrix of σ2IIIM , where

σ2 = 1/γs = [(k1 + k2)γb]
−1 with γs and γb denoting the

average signal-to-noise ratio (SNR) per symbol and per bit,

respectively.

Furthermore, let us express HHH = [HHH1,HHHd], where HHHd is an

(N × Md) channel matrix from the N transmit antennas to

the Md diversity antennas. Correspondingly, when we divide

yyy and nnn into yyy = [yyyT1 , yyy
T
d ]

T and nnn = [nnnT
1 ,nnn

T
d ]

T , we have

yyy1 =HHHT
1 pppm1

x+nnn1 (5)

yyyd =HHHT
d pppm1

x+nnnd (6)
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where yyy1 contains the observations from the M1 receive an-

tennas used to identify the M1-SSK symbol, while yyyd contains

the other observations from the Md diversity antennas, which

serves the purpose of performance enhancement.

As shown in [20], when the TZF-assisted TRD-PSM

(TZF/TRD-PSM) is applied, the precoding matrix is given by

PPP = βHHH∗
1

(

HHHT
1HHH

∗
1

)−1
(7)

where β =
√

M1/Tr((HHHT
1HHH

∗
1)

−1). By contrast, when the

TMMSE-assisted TRD-PSM (TMMSE/TRD-PSM) is em-

ployed, we have

PPP =β′
(

HHH∗
1HHH

T
1 +M1σ

2IIIN
)−1

HHH∗
1 (8)

=β′HHH∗
1

(

HHHT
1HHH

∗
1 +M1σ

2IIIM1

)−1
(9)

where, corresponding to (8) and (9), we have

β′ =
√

M1/Tr((HHH∗
1HHH

T
1 +M1σ2IIIN )−2HHH∗

1HHH
T
1 ) and

β′ =
√

M1/Tr((HHHT
1HHH

∗
1 +M1σ2IIIM1

)−2HHHT
1HHH

∗
1),

respectively. From (7), (8) and (9) we can know that the

transmitter only requires the CSI of HHH1 for implementation of

the PSM, instead of the whole CSI of HHH as in [20]. Therefore,

given the constraints on the implementation complexity and

on the resource available for a transmitter to acquire CSI, we

have the flexibility to choose the number of receive antennas

for PSM in the design of a TRD-PSM system. This flexibility

may provide us a best trade-off among the implementation

complexity, overhead and the achievable performance.

When the TZF/TRD-PSM is employed, and upon substitut-

ing (7) into (5), we can obtain

yyy1 =βeeem1
x+nnn1 (10)

where eeem1
is the m1th column of IIIM1

. In more detail, (10)

gives

ym1
= βx+ nm1

,

ym = nm, m = 0, 1, . . . ,M1 − 1 and m 6= m1 (11)

In the context of the TMMSE/TRD-PSM, let in (8) PPP =
β′P̃PP , where P̃PP = [p̃pp0, p̃pp1, · · · , p̃ppM1−1]. Then, upon submitting

PPP = β′P̃PP into (5), we obtain the M1-length decision variable

vector

yyy1 = β′HHHT
1 p̃ppm1

x+nnn1 (12)

which can be expressed individually as

ym1
= β′hhhT

m1
p̃ppm1

x+ nm1
,

ym = β′hhhT
mp̃ppm1

x+ nm,

m = 0, . . . ,M1 − 1, and m 6= m1 (13)

Furthermore, from (8), we can derive for m = 0, 1, . . . ,M1−1
that

p̃ppm =
(

HHH∗
1HHH

T
1 +M1σ

2IIIN
)−1

hhh∗
m (14)

Substituting it into (13), the M1 decision variables generated

by the TMMSE/TRD-PSM can be written as

ym1
= β′hhhT

m1

(

HHH∗
1HHH

T
1 +M1σ

2IIIN
)−1

hhh∗
m1

x+ nm1
,

ym = β′hhhT
m

(

HHH∗
1HHH

T
1 +M1σ

2IIIN
)−1

hhh∗
m1

x+ nm,

m = 0, 1, . . . ,M1 − 1, and m 6= m1 (15)

Equation (15) shows that the decision variable matching to

the transmitted symbol contains both the desired signal and

the Gaussian noise, while the other decision variables con-

tain the Gaussian noise and the interference resulted from

the TMMSE precoding. According to [40], after the pro-

cessing in MMSE principles, the resultant interference can

be closely approximated as Gaussian noise. Therefore, let

β = β′hhhT
m1

(HHH∗
1HHH

T
1 +M1σ

2IIIN )−1hhh∗
m1

. Then, we can express

the equations in (15) in the same forms as those in (11) for

the TZF/TRD-PSM, i.e.,

ym1
= βx+ nm1

,

ym = nm, m = 0, 1, . . . ,M1 − 1 and m 6= m1 (16)

where nm for m 6= m1 is an interference plus Gaussian

noise signal, which is approximately Gaussian distributed

with zero mean and a variance of σ2
I = |β′hhhT

m(HHH∗
1HHH

T
1 +

M1σ
2IIIN )−1hhh∗

m1
|2 + 1/γs. By contrast, nm1

is Gaussian

distributed with the variance σ2 = 1/γs, which is smaller

than the variance of the other nm’s.

III. DETECTION ALGORITHMS FOR TRD-PSM SYSTEM

In this section, we introduce a range of detection algorithms

by taking into account the detection reliability and detec-

tion complexity of TRD-PSM systems. Both joint maximum

likelihood detection (JMLD) and successive MLD (SMLD)

algorithms are considered. Furthermore, in order to attain a

good trade-off between complexity and reliability, we propose

a RTT-assisted MLD (RTT-MLD). Below we first consider the

JMLD, which is capable of achieving the best performance at

the highest complexity among the detectors considered in this

paper.

A. Joint Maximum Likelihood Detection

In the general cases where different precoding algorithms

may be used, a JMLD can be built based on (3), which jointly

estimates m1 and x by solving the optimization problem of

〈m̂1, x̂〉 = arg min
m′

1
∈M1,x′∈X

{

∥

∥yyy −HHHTpppm′

1
x′
∥

∥

2
}

= arg max
m′

1
∈M1,x′∈X

{

ℜ
{

yyyHHHHTpppm′

1
x′
}

− 1

2

∥

∥HHHTpppm′

1
x′
∥

∥

2
}

(17)

Upon applying (5), (6), and the related matrices (vectors) to

the above equation, we obtain

〈m̂1, x̂〉 = arg max
m′

1
∈M1,x′∈X

{

ℜ
{

yyyH1 HHHT
1 pppm′

1
x′ + yyyHd HHHT

d pppm′

1
x′
}

−1

2

(

∥

∥HHHT
1 pppm′

1
x′
∥

∥

2
+
∥

∥HHHT
d pppm′

1
x′
∥

∥

2
)

}

(18)

When the TZF/TRD-PSM or when the TMMSE/TRD-PSM

with the residue interference approximated by Gaussian noise

is employed, with the aid of (11) or of (16), we can simplify

(18) to a simplified JMLD, described as

〈m̂1, x̂〉 =arg max
m′

1
∈M1,x′∈X

{

ℜ
{

βy∗m′

1
x′ + yyyHd HHHT

d pppm′

1
x′
}

−1

2

(

|βx′|2 +
∥

∥HHHT
d pppm′

1
x′
∥

∥

2
)

}

(19)
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Equations (18) and (19) show that the diversity antennas are

capable of enhancing the detection reliability by providing Md

orders of receive diversity, as shown explicitly by our further

analysis in Section IV. From (18) we can derive that the com-

plexity of the JMLD is O(2M1M2MN). When the TZF/TRD-

PSM or TMMSE/TRD-PSM is employed, the complexity of

the simplified JMLD of (19) is O(2M1M2(MdN+1)), which

is lower than that of the JMLD, due to the fact of Md < M .

B. Successive Maximum Likelihood Detection

The SMLD first detects the M1-SSK symbol m1 using

noncoherent detection. After the detection of the M1-SSK

symbol, the receiver knows which receive antenna for the M1-

SSK is activated and, hence, knows which precoding vector in

PPP is used for the precoding. With the aid of this knowledge,

the M2-APM symbol can then be detected using coherent

detection.

First, in order to detect the M1-SSK symbol m1 without

invoking any knowledge about x except knowing that it

belongs to an M2-APM constellation, we may follow the

noncoherent detection principles in [41–44] and build from

(19) a detector as

m̂1 =arg max
m′

1
∈M1

{

Ex

[

ℜ
{

βy∗m′

1
x+ yyyHd HHHT

d pppm′

1
x
}

−1

2

(

‖βx‖2 +
∥

∥HHHT
d pppm′

1
x
∥

∥

2
)

]}

(20)

where Ex[·] is the expectation operation with respect to x.

After the simplification following the principles in [41–44],

as well as using Ex[|x|2] = 1 and ignoring the β2 term, we

can obtain

m̂1 =arg max
m′

1
∈M1

{

∣

∣

∣
βy∗m′

1
+ yyyHd HHHT

d pppm′

1

∣

∣

∣
−
∥

∥HHHT
d pppm′

1

∥

∥

2

2

}

(21)

For convenience, the detector based on (21) for detection of

m1 is referred to as the SMLD.

Note that, when all the receive antennas are used only for

PSM, i.e., when M1 = M , the detector of (21) is reduced to

m̂1 = arg max
m′

1
∈M1

{
∣

∣ym′

1

∣

∣

}

(22)

Furthermore, even in the more general case of M > M1,

instead of using (21), in some references on SM, e.g., [10,

15], the simplified detector of

m̂1 = arg max
m′

1
∈M1

{∣

∣

∣
βy∗m′

1
+ yyyHd HHHT

d pppm′

1

∣

∣

∣

}

(23)

is usually used. For distinction, we refer to the SMLD using

(23) for detection of m1 as the simplified SMLD.

Comparing (21) and (23), the SMLD has an extra term of

‖HHHT
d pppm′

1
‖2/2. The value of this term can be very different

for applying different precoding vectors pppm′

1
. Consequently,

ignoring it generates interference on the detection and may

significantly degrade the achievable performance. However,

when N and Md are very large, it is expected that ‖HHHT
d pppm′

1
‖2

converges to a constant2. In this case, the SMLD of (21)

converges the simplified SMLD of (23). In Section V, we will

compare the performance achieved by (21) and (23), to show

that the error performance achieved by the detector of (23) is

in general worse than that achieved by the detector of (21).

After the detection of the M1-SSK symbol m1 using either

(21) or (23), from (5) and (6) we can obtain the observations

of

ym̂1
=βδ(m̂1,m1)x+ nm̂1

yyyd =HHHT
d pppm1

x+nnnd (24)

where δ(m1,m1) = 1 and δ(m̂1,m1) = 0, when m̂1 6= m1.

Since at this stage the receiver assumes that the transmitted

M1-SSK symbol is m̂1, it can use the maximum ratio combin-

ing (MRC), which is optimum, to form the decision variable

as

X = βym̂1
+ pppHm̂1

HHH∗
dyyyd (25)

for detection of the M2-APM symbol x. Based on this

equation, if m1 was correctly detected, i.e., if m̂1 = m1, then,

X is given by

X =
(

β2 + ‖HHHT
d pppm1

‖2
)

x+ n (26)

where n = βnm1
+ pppHm1

HHH∗
dnnnd. Therefore, x can be detected

with (Md + 1) orders of diversity, rendering the detection

very reliable, if Md is relatively large. By contrast, if m1 was

erroneously detected, i.e., when m̂1 6= m1, then, X is given

by

X =
(

pppHm̂1
HHH∗

dHHH
T
d pppm1

)

x+ n (27)

where n = βnm̂1
+pppHm̂1

HHH∗
dnnnd, while the amplitude in the front

of x is a complex random variable. In this case, the detection

of x is equivalent to a random guess, and the probability of

correct detection is about 1/M2.

Therefore, for both the SMLD and the simplified SMLD,

reliable detection of the M1-SSK symbol is critical, which

dominates the reliability of the whole PSM system. Un-

fortunately, in the above described SMLDs, the M1-SSK

symbol m1 is noncoherently detected. In comparison to the

JMLD, the detection reliability of the SMLDs should be

much lower. However, both the SMLDs have much lower

complexity than the JMLD. Specifically, the complexity of the

SMLD can be readily analyzed from (21) and (25), which is

O(M1 +2M1MdN +MdN +M2), where the first two terms

are contributed by the detection of M1-SSK symbol, while

the other two by the detection of the M2-APM symbol. In

the bracket, the term of NMdM1 is for computing HHHT
d pppm′

1
in

(21), computing all the other terms in (21) has lower number

of operations than computing this one. M1 is added for the

case Md = 0, while M2 takes into account of the complexity

for the M2-APM demodulation based on (26). In the next

section, we propose a ratio threshold test assisted MLD (RTT-

MLD), in order to attain an error performance significantly

better than that of the SMLD, but with a detection complexity

much lower than that of the JMLD.

2When N → ∞ and Md → ∞, by following the law of large numbers, we
have HHHT

1
HHH∗

1
→ NIIIM1

and HHH∗

d
HHHT

d
→ MdIIIN . Therefore, we can derive

that ‖HHHT

d
pppm′

1
‖2 → Mdeee

T

m′

1

HHHT

1
HHH∗

1
eeem′

1
/N → Md.
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C. Ratio Threshold Test Aided Maximum Likelihood Detection

Based on (21), let us express the M1 decision variables

given for detection of the M1-SSK symbol as

Yi =
∣

∣βy∗i + yyyHd HHHT
d pppi
∣

∣−
∥

∥HHHT
d pppi
∥

∥

2

2
, i = 0, 1, . . . ,M1 − 1

(28)

Based on (22), we may build an even simpler scheme based

on the decision variables of

Yi = |yi|2 , i = 0, 1, . . . ,M1 − 1 (29)

In principle, we can use the M1 decision variables either

in (28) or in (29) to estimate the received M1-SSK symbol.

Let us reorder Yi in descending order as

Yd0
, Yd1

, . . . , YdM1−1
(30)

where Ydi
≥ Ydi+1

and di ∈ M1. Let us express the ratio

between the second maximum and the maximum of the M1

variables given in (28) or (29) as

R = Yd1
/Yd0

(31)

Then, according to the principles of the RTT [36–39], when

conditioned on that the M1-SSK symbol is correctly detected,

R usually has a small value distributed close to zero. By

contrast, when conditioned on that the M1-SSK symbol is

erroneously detected, R usually has a relatively large value

distributed close to one. As some examples, based on (28),

Fig. 1 plots the distributions of R, when given the M1-

SSK symbols correctly or erroneously detected, and when

the TZF and TMMSE are respectively employed. Explicitly,

when the M1-SSK symbols are correctly detected, R is mainly

distributed close to zero. By contrast, when the M1-SSK

symbols are erroneously detected, R is distributed in the region

towards one. This behavior becomes more declared, as the

SNR γb increases.

0.0

0.5

1.0

1.5

2.0

2.5

P
D

F

0.0 0.25 0.5 0.75 1.0

R

b = -2dB

(a)

TMMSE

TZF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
D

F

0.0 0.25 0.5 0.75 1.0

R

b = 2dB

(b)

TMMSE

TZF

H1 H0

H1

H0

Fig. 1. PDFs of R conditioned on that the M1-SSK symbols are correctly
detected (H1) or erroneously detected (H0), when assuming that N = 4,
M = 6, 4SSK, Quadrature Phase-Shift Keying (QPSK), and γb = −2dB (a),
γb = 2dB (b).

Therefore, in the RTT-MLD, we can use the RTT to first

test whether the detection of a M1-SSK symbol is reliable.

For this purpose, let Th be a threshold, which can be set

offline according to the reliability requirement. Then, if the

corresponding R is lower than Th, we render the detection

of the M1-SSK symbol reliable. In this case, the RTT-MLD

forwards to detect the M2-APM symbol. Otherwise, when

the corresponding R is higher than Th, meaning that the

detection of the M1-SSK symbol is not confidently reliable,

we then form from (30) a subset having Mh elements, which is

expressed as D = {d0, d1, . . . , dMh−1}. Based on this subset,

the M1-SSK and M2-APM symbols are detected by solving

the optimization problem of

〈m̂1, x̂〉 =arg max
m′

1
∈D,x′∈X

{

ℜ
{

βy∗m′

1
x′ + yyyHd HHHT

d pppm′

1
x′
}

−1

2

(

|βx′|2 +
∥

∥HHHT
d pppm′

1
x′
∥

∥

2
)

}

(32)

which is the same as (19), but has a search space determined

by D instead of M1.

According to [36–39], we can be implied that, when a M1-

SSK symbol is detected in error, the second or the third largest

in {Yi} of (30) is most probably the correct one. Based on this

fact, in the RTT-MLD, the size Mh of D is usually very small,

typically, less than five. Hence, the complexity of the RTT-

MLD can be significantly lower than that of the simplified

JMLD described in Section III-A.

To support the above argument, Fig. 2 depicts the impact

of Mh on the BER performance of the RTT-MLD associated

with Th = 0.1. For the sake of comparison, in the figure,

the BER performance of the PSM systems with the simplified

JMLD is also provided. As shown in Fig. 2, as Mh is increased

from 1 to 4, the BER performance of the RTT-MLD becomes

closer and closer to that of the simplified JMLD. Furthermore,

in contrast to the significant performance improvement, when

increasing Mh from 1 to 2, slight performance improvement

is observed, when increasing Mh from 3 to 4. Therefore, in

practice, using a relatively small value of Mh can guarantee

that most of performance gain is attained, but at much lower

detection complexity.

N=10, M=10, 8SSK, and QPSK

10
-5

10
-4

10
-3

10
-2

10
-1

1

B
E

R

-18 -15 -12 -9 -6 -3 0 3 6 9 12 15

b (dB)

RTT-MLD, Mh=1

RTT-MLD, Mh=2

RTT-MLD, Mh=3

RTT-MLD, Mh=4

Simplified JMLD

TMMSE

TZF

Fig. 2. BER versus average SNR per bit performance of the TRD-
PSM systems employing, respectively, the simplified JMLD (19) and RTT-
MLD (32), when assuming N = 10, M = 10, 8SSK, and QPSK.

Finally, after ignoring the less significant terms contributing

to the complexity and for the convenience of comparison,

the complexity of the different detectors provided in this
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TABLE I
COMPLEXITY OF THE VARIOUS DETECTORS

Detector Complexity

JMLD O(2M1M2MN)

Simplified JMLD O(2M1M2MdN)

SMLD O(2M1MdN)

Simplified SMLD O(M1MdN)

RTT-MLD O(2M1MdN)

section is summarized in Table I. Explicitly, the JMLD has

the highest complexity, while the simplified SMLD has the

lowest complexity. The RTT-MLD has a similar complexity

as the SMLD.

IV. PERFORMANCE ANALYSIS OF TRD-PSM SYSTEMS

In this section, we analyze the ABEP of TRD-PSM systems,

when the JMLD or simplified JMLD introduced in Section III

is employed. The reason for us to consider in particular these

two representative detectors is that, first, the optimum JMLD

provides a performance upper-bound for all the detectors

considered. Second, the simplified JMLD can provide a close

approximation for the performance of the RTT-MLD, and also

for that of the SMLD employing a relatively big number of

diversity antennas. Below we first analyze the TRD-PSM sys-

tems employing the JMLD described by (18). The analytical

results are then modified for the TRD-PSM systems with the

simplified JMLD defined by (19). Our analysis will address

two cases. In the first case, we derive a union-bound for the

ABEP of the small-scale TRD-PSM systems. By contrast, the

second case considers the large-scale TRD-PSM systems, and

we analyze the asymptotic ABEP of TRD-PSM systems.

A. ABEP of TRD-PSM Systems with JMLD

1) Small-Scale TRD-PSM Systems: For small-scale TRD-

PSM systems, we assume that N > M1 and N takes a

relatively small value. Upon adopting the union-bound ap-

proach [44], we can obtain that the ABEP of the PSM systems

employing the JMLD of (18) satisfies

Pe ≤
1

kb2kb

∑

〈m1,x〉

∑

〈m′

1
,x′〉

dH (〈m1, x〉, 〈m′
1, x

′〉)

EHHH [PEP {〈m1, x〉 → 〈m′
1, x

′〉}] (33)

where kb = k1 + k2, dH(x, y) is the Hamming distance

between the two binary-represented symbols x and y, and

EHHH [PEP{〈m1, x〉 → 〈m′
1, x

′〉}] denotes the average pairwise

error probability (APEP) after averaging with respect to the

related channels. With the aid of (18), the pairwise error

probability (PEP) of receiving 〈m′
1, x

′〉 given that 〈m1, x〉 was

transmitted can be formulated as

PEP {〈m1, x〉 → 〈m′
1, x

′〉}
= Pr

{

2ℜ
{

yyyH
(

HHHTpppm′

1
x′ −HHHTpppm1

x
)}

>
∥

∥HHHTpppm′

1
x′
∥

∥

2 −
∥

∥HHHTpppm1
x
∥

∥

2
}

= Pr

{

2ℜ
{

(

HHHTpppm′

1
x′ −HHHTpppm1

x
)H

nnn
}

>
∥

∥HHHTpppm′

1
x′ −HHHTpppm1

x
∥

∥

2
}

= Q

(

√

v + w

2σ2

)

(34)

where Q(·) is the well-known Gaussian Q-function [45], v =
‖HHHT

1 (pppm′

1
x′ − pppm1

x)‖2, and w = ‖HHHT
d (pppm′

1
x′ − pppm1

x)‖2.

In order to obtain the relatively simple expressions that

are convenient to evaluate, we introduce a tight upper-bound

for the Q-function [45], given by Q(x) ≤ exp(−2x2)/6 +
exp(−x2)/12+exp(−x2/2)/4. Then, we can express the PEP

of (34) as

PEP {〈m1, x〉 → 〈m′
1, x

′〉} ≤
3
∑

j=1

τj exp

(

−v + w

αj

)

(35)

where τ1 = 1
6 , τ2 = 1

12 , and τ3 = 1
4 , while α1 = σ2, α2 =

2σ2, and α3 = 4σ2. Therefore, when substituting (35) into

(33), we have

Pe ≤
1

kb2kb

∑

〈m1,x〉

∑

〈m′

1
,x′〉

dH (〈m1, x〉, 〈m′
1, x

′〉)EHHH [g (v, w)]

(36)

where, by definition, g(v, w) =
∑3

j=1 τje
−(v+w)/αj , the

average of which in terms of HHH is analyzed as follows.

Following the moment generating function (MGF) ap-

proach [44], we can express the expectation in (36) as

EHHH [g (v, w)] = EHHH1





3
∑

j=1

τj exp

(

− v

αj

)

EHHHd

[

exp

(

− w

αj

)]





= EHHH1





3
∑

j=1

τj exp

(

− v

αj

)

Mw

(

− w

αj

)





= EHHH1





3
∑

j=1

τj exp

(

− v

αj

)

(

αj
∥

∥pppm′

1
x′ − pppm1

x
∥

∥

2
+ αj

)Md





(37)

where Mw (·) is the MGF of w, and the last equation is due

to the assumption of independent identically distributed (iid)

Rayleigh fading [46].

Remark 1: When the average SNR per symbol γs is high,

making σ2 = 1/γs → 0, using the values of αj , we can

simplify the expectation in (37) to

EHHH [g (v, w)] =EHHH1











3
∑

j=1

τjc
Md

j exp
(

− v
αj

)

∥

∥pppm′

1
x′ − pppm1

x
∥

∥

−2Md











γs
−Md (38)
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where c1 = 1, c2 = 2 and c3 = 4. In (38), the term of γs
−Md

explains that the employment of Md diversity antennas results

in Md orders of receive diversity.

To this point, further simplifying (38) becomes very hard,

even when the TZF and TMMSE precoders are considered.

Specifically, when the TZF precoder is employed, we can

have v = β2‖eeem′

1
x′ − eeem1

x‖2. Then, the problem can be

modified to derive the probability density function (PDF) of

β, which is still hard to obtain a closed-form expression,

as β has a complicated structure of HHH1 [27]. The situation

becomes even worse when the TMMSE precoder is employed,

as in this case v is more complicated than that in the TZF

case. Therefore, in the case of finite N , we approximate η =
v+w as a Gamma distributed random variable, i.e., Gamma-

approximation (Gamma-Ap)3 [48]. As shown in Section V of

this paper, the Gamma-Ap is highly effective for performance

evaluation.

With the aid of the Gamma-Ap, we approximate η as the

Gamma distributed random variable with a PDF [47] of

f (η) =
ηmη−1

Γ (mη)
(Ωη)

−mη e−η/Ωη , η ≥ 0 (39)

whose distribution parameters mη and Ωη are given by

mη =(E[η])
2
/E
[

(η − E[η])
2
]

Ωη =E

[

(η − E[η])
2
]

/E[η] (40)

Explicitly, mη and Ωη are functions of v and w, which

are hard to obtain analytical solutions. However, their values

can be readily obtained via numerical simulations. As shown

in [48], about 104 channel realizations are usually sufficient

for obtaining reliable estimations of mη and Ωη . Therefore, in

our following studies, we use 104 Monte-Carlo simulations to

estimate the parameters of the Gamma PDF of (39).

With the aid of the Gamma-Ap of η, we can then have the

following Theorem for simplifying the expectation in (34).

Theorem 1: Given the Gamma PDF of η as shown in (39),

the expectation in (34) can be expressed as

EHHH [g (v, w)] =

∫ ∞

0

g (η) f (η) dη

=

3
∑

j=1

τj

(

αj

Ωη + αj

)mη

(41)

Proof: See Appendix A.

Upon substituting (41) into (34), the approximate ABEP

upper-bound can be given by the following corollary.

Corollary 1: When the Gamma-Ap for η = v +w is used,

an approximate ABEP upper-bound for the TRD-PSM system

with JMLD is

Pub,app
e =

1

kb2kb

∑

〈m1,x〉

∑

〈m′

1
,x′〉

dH (〈m1, x〉, 〈m′
1, x

′〉)

3
∑

j=1

τj

(

αj

Ωη + αj

)mη

. (42)

3Note that, the sensibility of using the Gamma-Ap is that, no matter TZF
or TMMSE is employed, HHHTpppm′

1
x′ and HHHTpppm1

x in (34) are near-Gaussian

distributed, and hence, η = v + w is near-Gamma distributed [44, 47].

Let us below consider the large-scale TRD-PSM systems.

2) Large-Scale TRD-PSM Systems: In the large-scale TRD-

PSM systems, we assume that N >> M1. Then, according

to the principles of massive MIMO [49], both the TZF and

TMMSE converge to the transmit matched-filtering (TMF)

based precoding, which is also optimum in the sense of

maximum SNR. Therefore, the optimum precoding matrix is

PPP =HHH∗
1/
√
N (43)

Correspondingly, v and w in (34) can be expressed as

v =N
∥

∥eeem′

1
x′ − eeem1

x
∥

∥

2
(44)

w =
∥

∥HHHT
duuu
∥

∥

2
(45)

where uuu = HHH∗
1(eeem′

1
x′ − eeem1

x)/
√
N . Consequently, g(v, w)

in (36) can be expressed as

g (v, w) =
3
∑

j=1

τj exp

(

−Ndmx +
∥

∥HHHT
duuu
∥

∥

2

αj

)

(46)

where dmx = ‖eeem′

1
x′ −eeem1

x‖2. Furthermore, as HHH1 and HHHd

are independent, the expectation on (46) can be obtained by

first averaging it over HHHd, and then averaging the result over

HHH1, which is expressed as

EHHH [g (v, w)] =
3
∑

j=1

τj exp

(

−Ndmx

αj

)

EHHH1

[

EHHHd

[

exp

(

−
∥

∥HHHT
duuu
∥

∥

2

αj

)]]

(47)

After the simplification, we have EHHH {g (v, w)} as summarized

by the following theorem.

Theorem 2: In the large-scale TRD-PSM systems satisfying

N >> M1, EHHH [g (v, w)] is given by

EHHH [g (v, w)] ≈
3
∑

j=1

τj exp

(

−Ndmx

αj

)(

αj

dmx + αj

)Md

(48)

Proof: See Appendix B.

Furthermore, when substituting (48) into (36), we have the

following corollary for an ABEP upper-bound.

Corollary 2: An asymptotic ABEP upper-bound for a large-

scale TRD-PSM system with N >> M1 can be formulated

as

Pub,asy
e =

1

kb2kb

∑

〈m1,x〉

∑

〈m′

1
,x′〉

dH (〈m1, x〉, 〈m′
1, x

′〉)

3
∑

j=1

τj exp

(

−Ndmx

αj

)(

αj

dmx + αj

)Md

(49)

Remark 2: In the high SNR region of σ2 → 0, (49) can be

further approximated as

Pub,asy
e ≈ 1

kb2kb

∑

〈m1,x〉

∑

〈m′

1
,x′〉

dH (〈m1, x〉, 〈m′
1, x

′〉)

3
∑

j=1

τjc
Md

j

dMd
mx

exp

(

−Ndmx

αj

)

γs
−Md (50)
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where c1 = 1, c2 = 2 and c3 = 4. From (50) we are

also implied that, in the TRD-PSM systems employing Md

diversity antennas, Md extra orders of diversity are achievable.

B. ABEP of TRD-PSM Systems with Simplified JMLD

Above we have analyzed the ABEP of the TRD-PSM

systems with the JMLD described by (18). Below we extend

our analysis to the TRD-PSM systems with the simplified

JMLD of (19). In these cases, from (11) for the TZF/TRD-

PSM and (16) for the TMMSE/TRD-PSM, we can express the

PEP as

PEP {〈m1, x〉, 〈m′
1, x

′〉}
= Pr

{

2ℜ
{

βyyyH1 eeem′

1
x′ + yyyHd HHHT

d pppm′

1
x′
}

−
∥

∥βeeem′

1
x′
∥

∥

2

−
∥

∥HHHT
d pppm′

1
x′
∥

∥

2
> 2ℜ

{

βyyyH1 eeem1
x+ yyyHd HHHT

d pppm1
x
}

−‖βeeem1
x‖2 −

∥

∥HHHT
d pppm1

x
∥

∥

2
}

(51)

Specifically, when the TZF/TRD-PSM is considered, it can

be shown that in (34), after expanding HHHTpppm1
and HHHTpppm′

1
,

and making use of HHHT
1 pppm1

= eeem1
and HHHT

1 pppm′

1
= eeem′

1
, it

gives the same expression of (51). Therefore, the TZF/TRD-

PSM employing the simplified JMLD achieves the same error

performance as the TZF/TRD-PSM employing the JMLD. In

other words, when the TZF/TRD-PSM employing the simpli-

fied JMLD of (19), the corresponding PEP can be evaluated

by the same approach in Sections IV-A1 and IV-A2.

When the TMMSE/TRD-PSM is employed, using (16), we

can further simplify (51) to

PEP {〈m1, x〉, 〈m′
1, x

′〉}
= Pr

{

2ℜ
{

n∗
m′

1
β (m′

1)x
′ − n∗

m1
β (m1)x+nnnH

d HHHT
d

(

pppm′

1
x′ − pppm1

x
)}

> |β (m′
1)x

′|2 + |β (m1)x|2

+
∥

∥HHHT
d

(

pppm′

1
x′ − pppm1

x
)
∥

∥

2
}

= Q
(

δ/
√

2ξ
)

, (52)

where β(m1) = β′hhhT
m1

(HHH∗
1HHH

T
1 + M1σ

2IIIN )−1hhh∗
m1

, δ =
‖β(m′

1)eeem′

1
x′−β(m1)eeem1

x)‖2+‖HHHT
d (pppm′

1
x′−pppm1

x)‖2, and

ξ =







δσ2, m′
1 = m1

|β(m′
1)x

′|2σ2
I + |β(m1)x|2σ2

+ ‖HHHT
d (pppm′

1
x′ − pppm1

x)‖2σ2, m′
1 6= m1

(53)

As shown in (52), for a limited value of N , the PEP of

TMMSE/TRD-PSM systems has a very complicated structure

of the related channels, which makes the simplification and

further derivation of a closed-form expression for the ABEP

upper-bound highly involved. However, it is well-known that

the TMMSE precoder always slightly outperforms the TZF

precoder and, when SNR is sufficiently high, both of them

attain a similar error performance. Therefore, in this paper,

we do not attempt to further simplify the PEP of (52).

When comparing (34) and (52), we can know that the error

performance achieved by the TMMSE/TRD-PSM systems

with simplified JMLD should be worse than that of the

TMMSE/TRD-PSM systems with JMLD, due to the factor

that ξ in (52) is larger than σ2. This is because the JMLD

can make use of the ‘interference’ generated by the TMMSE

precoder for performance improvement, while the simplified

JMLD treats this interference as Gaussian noise.

Note furthermore that, in the case of N → ∞, as shown

in Section IV-A2, the TMMSE, TZF as well as the TMF pre-

coders are all optimum. Hence, the simplified JMLD achieves

the same error performance as the JMLD. Consequently, the

expression of (49) also provides an asymptotic ABEP upper-

bound for both the TMMSE/TRD-PSM and TZF/TRD-PSM

systems employing the simplified JMLD.

V. PERFORMANCE RESULTS AND DISCUSSION

In this section, we will demonstrate and compare the

error performance of the TRD-PSM systems employing TZF

or TMMSE, associated with various detection algorithms,

including the JMLD, simplified JMLD, SMLD, simplified

SMLD, and the RTT-MLD, respectively. The statements made

in Section III and Section IV will be validated. Furthermore,

we will validate the approximate and asymptotic ABEP upper-

bounds derived in Section IV by the Monte-Carlo simulations.

Additionally, we will compare the error performance between

the TRD-PSM systems providing receive diversity with that of

the conventional pure PSM systems, where all receive antennas

are used for SSK modulation. Note that, in the following

figures, when the RTT-MLD of (32) is considered, we set

Mh = 4 and Th = 0.1, which are the desired values obtained

from our tests.

N=10, M=8, 8SSK, and QPSK
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B
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R
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TZF

TMMSE
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RTT-MLD

Simplified JMLD

JMLD

Fig. 3. BER versus average SNR per bit performance of the pure PSM
systems with various precoding and detection schemes.

First, let us demonstrate the BER performance of the pure

PSM systems (Md = 0) in Fig. 3, when the precoders of

TZF and TMMSE, as well as various detectors are respectively

employed. The parameters used in our simulations are detailed

on the top of the figure, the same are in the following figures.

Note that, when Md = 0, both the SMLD and simplified

SMLD become the same. From the results shown in Fig. 3,

we may have the following observations. First, as illustrated

in Fig. 3 as well as in the following figures, TMMSE always

outperforms TZF in term of the BER performance. Second,

when TZF is employed, all the detectors achieve the same

BER performance. This is because, when TZF is employed,
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the JMLD, simplified JMLD and the RTT-MLD are actually

the same in the case of Md = 0, which slightly outperform

the SMLD in terms of the BER performance. Third, when

TMMSE is employed, the JMLD yields the best BER per-

formance. In comparison to the JMLD, the SMLD has a big

performance loss, which requires about 8 dB of extra transmit

power than the JMLD at 10−5. As seen in Fig. 3, both the

simplified JMLD and the RTT-MLD, which attain nearly the

same BER performance, have about 2 dB SNR loss at the

10−5 BER, when in comparison with the JMLD. However,

both of them significantly outperform the SMLD.

JMLD: N=8, 8SSK, and QPSK
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Fig. 4. BER versus average SNR per bit performance of the TRD-PSM
systems with JMLD of (18).

Simplified JMLD: N=8, 8SSK, and QPSK
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Fig. 5. BER versus average SNR per bit performance of the TRD-PSM
systems with simplified JMLD of (19).

In Figs. 4-8, we characterize the BER performance of

the TRD-PSM systems, when the JMLD (Fig. 4), simplified

JMLD (Fig. 5), RTT-MLD (Fig. 6), SMLD (Fig. 7), and

the simplified SMLD (Fig. 8) are respectively employed. As

shown in the figures, we assume N = 8 and M1 = 8 for 8SSK.

Hence, M = 8, 9, 10, 12 correspond to Md = 0, 1, 2, 4,

respectively. Figs. 4-7 explicitly show that diversity gain

is available, as the number of diversity antennas, i.e., Md,

increases. To be more specific, as shown in Figs. 4 and

5, for the TZF/TRD-PSM systems employing the JMLD or

simplified JMLD, significant diversity gain is observed, when

Md is increased from 0 to 4. By contrast, when the TZF/TRD-

PSM systems employ the RTT-MLD or SMLD, as shown in

Figs. 6 and 7, a lower diversity gain than that in Figs. 4 and

RTT-MLD: N=8, 8SSK, and QPSK
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Fig. 6. BER versus average SNR per bit performance of the TRD-PSM
systems with RTT-MLD of (32), when Mh = 4 and Th = 0.1.

SMLD: N=8, 8SSK, and QPSK
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Fig. 7. BER versus average SNR per bit performance of the TRD-PSM
systems with SMLD of (21) and (26).

5 is observed. On the other hand, when the TMMSE/TRD-

PSM systems are considered, as shown in Figs. 4–7, the

largest diversity gain is provided by the SMLD, although

the JMLD, simplified JMLD and the RTT-MLD employed

in Fig. 4, Fig. 5 and Fig. 6 outperform the SMLD. When

comparing the BER performance demonstrated in Figs. 4-

7, we observe that for the TMMSE/TRD-PSM systems, the

simplified JMLD only slightly outperforms the RTT-MLD,

while both of them significantly outperform the SMLD. By

contrast, when the TZF/TRD-PSM systems are considered, the

RTT-MLD is outperformed by the SMLD, when Md ≥ 1. This

is because the TZF operation amplifies noise and makes the

observations at different receive antennas become correlated.

By contrast, when TMMSE is employed, the observations at

different receive antennas are nearly uncorrelated and can be

well approximated by the Gaussian distribution, which makes

the RTT-MLD highly effective.

When comparing the results shown in Figs. 7 and 8, we

explicitly witness the significant difference between the SMLD

and the simplified SMLD, when Md ≥ 1. As shown in Fig. 7,

for both the TZF/TRD-PSM and TMMSE/TRD-PSM systems,

diversity gain can be achieved by increasing the number of

diversity antennas. By contrast, when the simplified SMLD is

employed, as shown in Fig. 8, the TMMSE/TRD-PSM system

is capable of achieving some diversity gain in low SNR region,
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Simplified SMLD: N=8, 8SSK, and QPSK
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Fig. 8. BER versus average SNR per bit performance of the TRD-PSM
systems with simplified SMLD of (23) and (26).

but no diversity gain in high SNR region. For the TZF/TRD-

PSM system, there is no diversity gain in the whole SNR

region. The reason for the above observations is as follows.

When comparing (21) and (23) in Section III-B, the simplified

SMLD ignores the negative term of −‖HHHT
d pppm′

1
‖2/2 used in

the SMLD. This ignored term imposes interference on the Md

diversity antennas. When SNR is low, the BER performance is

dominated by noise, making the TMMSE/TRD-PSM system

achieve certain diversity gain. However, when SNR is high,

the interference becomes overwhelming and, in this case,

no diversity gain is available. From the above analysis we

can know that the simplified SMLD, which has been widely

employed in references [10, 11, 15, 16, 50, 51], is not suitable

for the TRD-PSM systems.

In Fig. 8, Md = 0, 1, 2 and 4 are considered, which

are relatively small values. By contrast, Fig. 9 plots the BER

performance of the TZF/TRD-PSM and TMMSE/TRD-PSM

systems employing the SMLD, simplified SMLD as well as

the benchmark JMLD, when Md takes a relatively large value

of Md = 36−4 = 32. In this case, we can know from statistics

theory that ‖HHHT
d pppm′

1
‖2 in (21) converges to a constant of

E
[

‖HHHT
d pppm′

1
‖2
]

, which results in that the SMLD converges

to the simplified SMLD expressed by (23). Consequently,

as shown in Fig. 9, for either the TZF/TRD-PSM or the

TMMSE/TRD-PSM, the BER performance achieved by the

simplified SMLD becomes closer to that of the SMLD, when

comparing to the results shown in Figs. 7 and 8. Furthermore,

while the SMLD still outperforms the simplified SMLD, the

BER performance attained by both of them is close to that

achieved by the JMLD, especially when the TMMSE/TRD-

PSM system is considered. Hence, for a TRD-PSM system

employing a big number of diversity antennas, both the SMLD

and the simplified SMLD are near optimum.

In Fig. 10, we demonstrate the approximate ABEP upper-

bound of (42) derived in Section IV. In this example, both

the pure PSM and the TRD-PSM systems are considered. We

assume 4SSK and QPSK, and that the transmitter employs

N = 8 antennas. Hence, for the pure PSM system, there

are M = 4 receive antennas. By contrast, we assume that

the TRD-PSM system is equipped with M = 12 receive

antennas, corresponding to Md = 8. As shown in Fig. 10,

the BER as well as the upper-bound (UBound) results of both

N=32, M=36, 4SSK, and QPSK
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Fig. 9. Comparison of BER versus average SNR per bit performance of the
SMLD, simplified SMLD and the JMLD.

TZF/TRD-PSM and TMMSE/TRD-PSM systems are better

than the corresponding BER and UBound results of the pure

TZF-PSM (or TMMSE-PSM) systems. Straightforwardly, this

is because the contribution made by the Md extra receive

antennas in the TRD-PSM systems. Note that, the performance

advantage of the TRD-PSM systems over the pure PSM

systems will also be witnessed in the forthcoming figures. As

shown in Fig. 10, at a sufficiently high SNR, although the

approximate ABEP upper-bound for the pure PSM is tighter

than the corresponding ABEP upper-bound of the TRD-PSM,

the upper-bounds for all the cases are in general tight. Hence,

we can be convinced the effectiveness of both the Gamma-Ap

and the approximation invoked for deriving the ABEP upper-

bound of (42). Additionally, Fig. 10 shows that the ABEP

upper-bound for the TMMSE/TRD-PSM is slightly tighter

than that for the TZF/TRD-PSM. This is because the TMMSE

results in more independent Gaussian-like observations than

the TZF4 [40].

JMLD: N=8, 4SSK, and QPSK
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Fig. 10. Comparison between the simulated BER and the approximate ABEP
upper-bounds of the TRD-PSM systems with JMLD.

In Fig. 11 and 12, we demonstrate the tightness of the

asymptotic ABEP upper-bounds evaluated from (49), by

comparing them with the simulated BER, when both the

TZF/TRD-PSM and TMMSE/TRD-PSM systems with JMLD

are considered. Specifically, Fig. 11(a) assumes M = 4 receive

4While ZF processing fully removes interference, it however makes noise
samples become correlated.
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antennas, meaning that there is no receive diversity, while

Fig. 11(b) assumes M = 36, giving Md = 32 and hence

a high receive diversity order. The other parameters for both

Fig. 11(a) and Fig. 11(b) are the same, as detailed in the

figures. From Fig. 11 we observe that the upper-bounds are in

general tight for all the cases considered in the high SNR

region. By contrast, in the low SNR region, the ones in

Fig. 11(b) are tighter than the corresponding ones in Fig. 11(a).

Furthermore, we can see that using M = 36 instead of M = 4
receive antennas results in about 3 dB SNR gain at the BER of

10−5. Note that, as there are N = 32 transmit antennas in the

considered cases, which is significantly larger than M = 4
required for implementing the 4SSK, there is already a big

diversity gain provided by the 28 extra transmit antennas.

Due to this, the diversity gain provided by the Md = 32
receive antennas is not remarkable. By contrast, in Fig. 12, we

demonstrate the effect of the number of receive antennas on the

tightness of the asymptotic ABEP upper-bound. Apparently,

using Md = 64 diversity antennas results in a tighter upper-

bound than using no (Md = 0) diversity antennas at receiver,

especially, in the low SNR region.

JMLD: N=32, M=4, and 4SSK
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JMLD: N=32, M=36, and 4SSK
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Fig. 11. Comparison between the simulated BER and the asymptotic
ABEP upper-bounds for the TRD-PSM systems employing N = 32 transmit
antennas and JMLD, when M = 4 (a) or M = 36 (b) receive antennas are
employed.

From the results shown in Fig. 11 and 12, we are implied

that the upper-bound of (49) derived in Section IV is valid,

and can be used to estimate the BER performance of the PSM

systems, provided that the SNR is sufficiently high, resulting

in that the BER is about 10−3 or lower.

VI. SUMMARY AND CONCLUSIONS

We have proposed and studied a TRD-PSM MIMO trans-

mission scheme, which is capable of achieving both transmit

and receive diversity, and flexibly making use of CSIT. To

implement PSM, two precoding schemes, namely TZF and

TMMSE, have been studied, showing that they can reduce the

transmitter’s implementation complexity. In order to facilitate

TRD-PSM to be implemented at different complexity, we have

proposed and investigated a range of detectors, which include

the JMLD, simplified JMLD, SMLD, simplified SMLD, and

JMLD: N=64, 4SSK, and 16QAM
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Fig. 12. Comparison between the simulated BER and the asymptotic
ABEP upper-bounds for the TRD-PSM systems employing N = 64 transmit
antennas and JMLD.

the RTT-MLD. Our studies demonstrate that, while the JMLD

is capable of attaining the best error performance, it also has

the highest complexity among the considered detectors. On the

other hand, the simplified SMLD has the lowest implemen-

tation complexity but achieves the worst error performance

among these detectors. The RTT-MLD can achieve a similar

error performance as the simplified JMLD, which is close

to that of the JMLD, while enjoying a significantly lower

complexity than the simplified JMLD. We have demonstrated

that the simplified SMLD, which has widely been studied in

the references on SM, is inefficient for operation in PSM

systems having extra receive antennas for diversity. Instead,

the SMLD proposed in this paper is able to circumvent the

problems of the simplified SMLD, and achieves desirable error

performance.

We have also analyzed the ABEP of TRD-PSM systems

employing respectively the JMLD and the simplified JMLD

at both small- and large-scale. For the small-scale TRD-PSM

systems, the approximate ABEP expressions have been derived

via analyzing the union-bounds based on the Gamma-Ap. By

contrast, for the large-scale TRD-PSM systems, the asymptotic

ABEP formulas have been derived by invoking large-scale

approximation. Our analytical results have been validated by

simulations, and they demonstrate that the approximate and

asymptotic ABEP expressions are general, and can be applied

for evaluating the error performance of pure PSM systems.

APPENDIX

A. Proof of Theorem 1

As η = v+w and v and w are uncorrelated, the mathemat-

ical expectation in (36) can be expressed as

EHHH [g (v, w)] =

∫ ∞

0

g (η) fη (η) dη (54)

Substituting the PEP upper-bound of (35) and the PDF of

(39) into the above equation, and making use of the formula
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of (3.326,2) in [52], we obtain

EHHH [g (v, w)] ≈
∫ ∞

0

(

1

6
e−

η

σ2 +
1

12
e−

η

2σ2 +
1

4
e−

η

4σ2

)

1

Γ (mη)
(Ωη)

−mη ηmη−1e−η/Ωηdη

=
1

6

[

σ2

Ωη + σ2

]mη

+
1

12

[

2σ2

Ωη + 2σ2

]mη

+
1

4

[

4σ2

Ωη + 4σ2

]mη

(55)

which can be expressed in the form of (41).

B. Proof of Theorem 2

When communicating over iid Rayleigh fading channels,

using the fact that HHHd is independent of uuu and the result in

(63) of [46], we can deduce that

EHHHd

[

exp

(

−
∥

∥HHHT
duuu
∥

∥

2

αj

)]

=

(

αj

‖uuu‖2 + αj

)Md

(56)

Substituting it into (47) yields

EHHH [g (v, w)]

=

3
∑

j=1

τj exp

(

−Ndmx

αj

)

EHHH1





(

αj

‖uuu‖2 + αj

)Md





(c)
≈

3
∑

j=1

τj exp

(

−Ndmx

αj

)

EHHH1

[

(

αj

dmx + αj

)Md

]

(57)

where the approximation at (c) holds due to the large-scale

asymptotic result of HHHT
1HHH

∗
1/N ≈ IIIM1

. Consequently, we have

the closed-form formula of (48).

REFERENCES

[1] M. D. Renzo, H. Haas, and P. M. Grant, “Spatial modulation for
multiple-antenna wireless systems: A survey,” IEEE Commun. Mag.,
vol. 49, no. 12, pp. 182–191, Dec. 2011.

[2] M. D. Renzo, H. Haas, and et.al, “Spatial modulation for generalized
MIMO: Challenges, opportunities, and implementation,” Proc. IEEE,
vol. 102, no. 1, pp. 56–103, Jan. 2014.

[3] P. Yang, M. D. Renzo, and et.al, “Design guidelines for spatial modula-
tion,” IEEE Commun. Sur. & Tutor., vol. 17, no. 1, pp. 6–26, Firstquarter
2015.

[4] P. Yang, Y. Xiao, and et.al, “Single-Carrier SM-MIMO: A promising
design for broadband large-scale antenna systems,” IEEE Commun. Sur.

& Tutor., vol. 18, no. 3, pp. 1687–1716, Thirdquarter 2016.
[5] Y. A. Chau and S. H. Yu, “Space modulation on wireless fading

channels,” in Proc. of IEEE 54th VTC (Fall), Sep. 2001, pp. 1668–1671.
[6] R. Mesleh, H. Haas, and et.al, “Spatial modulation - a new low-

complexity spectral efficiency enhancing technique,” in Proc. of Chi-

nacom’2006, Oct. 2006, pp. 1–5.
[7] S. Ganesan, R. Mesleh, and et.al, “On the performance of spatial

modulation of OFDM,” in Proc. 40th Asilomar Conf. Signal, Syst.

Comput., Oct. 29 - Nov. 1 2006, pp. 1825–1829.
[8] J. Jeganathan, A. Ghrayeb, and et.al, “Space shift keying modulation

for MIMO channels,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp.
3692–3703, Jul. 2009.

[9] Y. Yang and B. Jiao, “Information-guided channel-hopping for high data
rate wireless communication,” IEEE Commun. Lett., vol. 12, no. 4, pp.
225–227, Apr. 2008.

[10] R. Y. Mesleh, H. Haas, and et.al, “Spatial modulation,” IEEE Trans.

Veh. Technol., vol. 57, no. 4, pp. 2228–2241, Jul. 2008.
[11] N. R. Naidoo, H. J. Xu, and T. A. M. Quazi, “Spatial modulation:

Optimal detector asymptotic performance and multiple-stage detection,”
IET Commun., vol. 5, no. 10, pp. 1368–1376, Jul. 2011.

[12] A. Garcia-Rodriguez and C. Masouros, “Low-complexity compressive
sensing detection for spatial modulation in large-scale multiple access
channels,” IEEE Transactions on Communications, vol. 63, no. 7, pp.
2565–2579, July 2015.

[13] J. Wang, S. Jia, and J. Song, “Generalised spatial modulation system
with multiple active transmit antennas and low complexity detection
scheme,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1605–1615,
Apr. 2012.

[14] S. Sugiura, S. Chen, and L. Hanzo, “Coherent and differential space-
time shift keying: A dispersion matrix approach,” IEEE Transactions on

Communications, vol. 58, no. 11, pp. 3219 – 3230, November 2010.
[15] A. Garcia-Rodriguez and C. Masouros, “Low-complexity compressive

sensing detection for spatial modulation in large-scale multiple access
channels,” IEEE Trans. Commun., vol. 63, no. 7, pp. 2565–2579, Jul.
2015.

[16] L.-L. Yang, “Signal detection in antenna-hopping space-division
multiple-access systems with space-shift keying modulation,” IEEE

Trans. Signal Process., vol. 60, no. 1, pp. 351–366, Jan. 2012.
[17] M. D. Renzo and H. Haas, “A general framework for performance

analysis of space shift keying (SSK) modulation for MISO correlated
Nakagami-m fading channels,” IEEE Trans. Commun., vol. 58, no. 9,
pp. 2590–2603, Sep. 2010.

[18] ——, “Bit error probability of space modulation over Nakagami-m
fading: Asymptotic analysis,” IEEE Commun. Lett., vol. 15, no. 10, pp.
1026–1028, Oct. 2011.

[19] ——, “Bit error probability of SM-MIMO over generalized fading
channels,” IEEE Trans. Veh. Technol., vol. 61, no. 3, pp. 1124–1144,
Mar. 2012.

[20] L.-L. Yang, “Transmitter preprocessing aided spatial modulation for
multiple-input multiple-output systems,” in Proc. of IEEE 73th VTC

(Spring), May 2011.
[21] A. Stavridis, M. D. Renzo, and H. Haas, “Performance analysis of

multistream receive spatial modulation in the MIMO broadcast channel,”
IEEE Trans. Wireless Commun., vol. 15, no. 3, pp. 1808–1820, Mar.
2016.

[22] A. Stavridis, M. D. Renzo, and et.al, “On the asymptotic performance
of receive space modulation in the shadowing broadcast channel,” IEEE

Commun. Lett., vol. 20, no. 10, pp. 2103–2106, Oct. 2016.
[23] A. Stavridis, M. D. Renzo, P. M. Grant, and H. Haas, “Performance

analysis of receive space modulation in the shadowing MIMO broadcast
channel,” IEEE Trans. Commun., vol. 65, no. 5, pp. 1972–1983, May
2017.

[24] C. Masouros and L. Hanzo, “Dual-Layered MIMO transmission for
increased bandwidth efficiency,” IEEE Trans. Veh. Technol., vol. 65,
no. 5, pp. 3139–3149, May 2016.

[25] A. Stavridis, D. Basnayaka, and et.al, “A virtual MIMO dual-hop
architecture based on hybrid spatial modulation,” IEEE Trans. Wireless

Commun., vol. 62, no. 9, pp. 3161–3179, Sep. 2014.
[26] R. Zhang, L.-L. Yang, and L. Hanzo, “Generalised pre-coding aided

spatial modulation,” IEEE Trans. Wireless Commun., vol. 12, no. 11,
pp. 5434–5443, Nov. 2013.

[27] ——, “Error probability and capacity analysis of generalised pre-coding
aided spatial modulation,” IEEE Trans. Wireless Commun., vol. 14, no. 1,
pp. 364–375, Jan. 2015.

[28] B. Gulbahar, “Network topology modulation for energy and data
transmission in internet of magneto-inductive things,” in 2016 IEEE

Globecom Workshops, Dec. 2016, pp. 1–6.
[29] J. Zheng, “Fast receive antenna subset selection for pre-coding aided

spatial modulation,” IEEE Wireless Commun. Lett., vol. 4, no. 3, pp.
317–320, Jun. 2015.

[30] R. Zhang, L.-L. Yang, and L. Hanzo, “Performance analysis of non-
linear generalized pre-coding aided spatial modulation,” IEEE Trans.

Wireless Commun., vol. 15, no. 10, pp. 6731–6741, Oct. 2016.
[31] M. C. Lee, W. H. Chung, and T. S. Lee, “Generalized precoder design

formulation and iterative algorithm for spatial modulation in MIMO
systems with CSIT,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1230–
1244, Apr. 2015.

[32] P. Yang, Y. L. Guan, Y. Xiao, M. D. Renzo, S. Li, and L. Hanzo, “Trans-
mit precoded spatial modulation: Maximizing the minimum euclidean
distance versus minimizing the bit error ratio,” IEEE Trans. Wireless

Commun., vol. 15, no. 3, pp. 2054–2068, Mar. 2016.
[33] C. Masouros and L. Hanzo, “Constellation randomization achieves

transmit diversity for single-RF spatial modulation,” IEEE Trans. Veh.

Technol., vol. 65, no. 10, pp. 8101–8111, Oct. 2016.
[34] M. C. Lee, W. H. Chung, and T. S. Lee, “Limited feedback precoder

design for spatial modulation in MIMO systems,” IEEE Commun. Lett.,
vol. 19, no. 11, pp. 1909–1912, Nov. 2015.



14

[35] P. Yang, Y. Xiao, B. Zhang, S. Li, M. El-Hajjar, and L. Hanzo,
“Power allocation-aided spatial modulation for limited-feedback MIMO
systems,” IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 2198–2204, May
2015.

[36] A. J. Viterbi, “A robust ratio-threshold technique to mitigate tone and
partial band jamming in coded MFSK systems,” in Proc. of IEEE Milit.

Commun. Conf. Rec., Oct. 1982, pp. 22.4.1–22.4.5.
[37] L.-L. Yang and L. Hanzo, “Ratio statistic test assisted residue num-

ber system based parallel communication systems,” in Proc. of IEEE

VTC’99, Houston, USA, May 1999, pp. 894–898.
[38] ——, “Performance analysis of coded M-ary orthogonal signaling using

errors-and-erasures decoding over frequency-selective fading channels,”
IEEE J. Sel. Areas Commun., vol. 19, no. 2, Feb. 2001.

[39] ——, “Low complexity erasure insertion in RS-coded SFH spread-
spectrum communications with partial-band interference and Nakagami-
m fading,” IEEE Trans. Commun., vol. 50, no. 6, pp. 914–925, Jun.
2002.

[40] H. V. Poor and S. Verdu, “Probability of error in MMSE multiuser
detection,” IEEE Trans. Inf. Theory, vol. 43, no. 3, pp. 858–871, May
1997.

[41] M. D. Renzo and H. Haas, “Space shift keying (SSK) modulation with
partial channel state information: Optimal detector and performance
analysis over fading channels,” IEEE Trans. Commun., vol. 58, no. 11,
pp. 3196–3210, Nov. 2010.

[42] H. L. V. Trees, Optimum Array Processing. Wiley Interscience, 2002.
[43] J. G. Proakis, Digital Communications, 5th ed. McGraw Hill, 2007.
[44] M. K. Simon and M.-S. Alouini, Digital Communication over Fading

Channels, 2nd ed. New York: John Wiley & Sons, 2005.
[45] M. Chiani, D. Dardari, and M. K. Simon, “New exponential bounds

and approximations for the computation of error probability in fading
channels,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 840–845,
Jul. 2003.

[46] W. Zeng, C. Xiao, and et.al, “Linear precoding for finite-alphabet inputs
over MIMO fading channels with statistical CSI,” IEEE Trans. Signal

Process., vol. 60, no. 6, pp. 3134–3148, Jun. 2012.
[47] A. Papoulis and S. U. Pillai, Probability, Random Variables, and

Stochastic Processes, 4th ed. New York: McGraw-Hill, Inc, 2002.
[48] J. Shi, C. Dong, and L.-L. Yang, “Performance comparison of co-

operative relay links with different relay processing strategies: Nak-
agami/gamma approximation approaches,” EURASIP J. Wireless Com-

mun. Networ., vol. 2014, no. 1, pp. 1–17, 2014.
[49] L. Lu, G. Li, and et.al, “An overview of massive MIMO: Benefits and

challenges,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–
758, Oct. 2014.

[50] S. Sugiura, C. Xu, and et.al, “Reduced-complexity coherent versus non-
coherent QAM-aided space-time shift keying,” IEEE Trans. Commun.,
vol. 59, no. 11, pp. 3090–3101, Nov. 2011.

[51] P. Yang, Y. Xiao, and et.al, “An improved matched-filter based detection
algorithm for space-time shift keying systems,” IEEE Signal Process.

Lett., vol. 19, no. 5, pp. 271–274, May 2012.
[52] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products,

7th ed. San Diego, C.A.: Academic Press, Inc, 2007.

Chaowen Liu received the B.S. degree in electri-
cal engineering from Henan University of Science
and Technology, Luoyang, China, in 2011. He is
currently working towards the Ph.D. degree at the
Institute of Information Engineering, Xi’an Jiaotong
University, Xi’an, China. Since November 2015, he
has been a Visiting Ph.D. Student with Prof. Lie-
Liang Yang with the School of Electronics and
Computer Science, University of Southampton, UK.
His main research interests include spatial domain
modulation techniques, physical layer security, full-

duplex node aided wireless communications, index modulation for 5G wireless
networks, and node-positioning in wireless sensor networks.

Lie-Liang Yang (M’98, SM’02, F’16) received his
BEng degree in communications engineering from
Shanghai TieDao University, Shanghai, China in
1988, and his MEng and PhD degrees in commu-
nications and electronics from Northern (Beijing)
Jiaotong University, Beijing, China in 1991 and
1997, respectively. From June 1997 to December
1997 he was a visiting scientist of the Institute of
Radio Engineering and Electronics, Academy of Sci-
ences of the Czech Republic. Since December 1997,
he has been with the University of Southampton,

United Kingdom, where he is the professor of wireless communications in
the School of Electronics and Computer Science. He has research interest
in a wide range of topics in wireless communications, wireless networks
and signal processing for wireless communications, as well as molecular
communications. He has published over 330 research papers in journals and
conference proceedings, authored/co-authored three books and also published
several book chapters. The details about his publications can be found at
http://www.mobile.ecs.soton.ac.uk/lly/. He is a fellow of both the IEEE and the
IET, and a distinguished lecturer of the IEEE. He served as an associate editor
to the IEEE Trans. on Vehicular Technology and Journal of Communications
and Networks (JCN), and is currently an associate editor to the IEEE Access
and the Security and Communication Networks (SCN) Journal.

Wenjie Wang (M’10) received the B.S., M.S., and
Ph.D. degrees in information and communication
engineering from Xi’an Jiaotong University, Xi’an,
China, in 1993, 1998, and 2001, respectively. From
2009 to 2010, he was a visiting scholar at the
Department of Electrical and Computer Engineering,
University of Delaware, Newark, USA. Currently, he
is a Professor at Xi’an Jiaotong University. His main
research interests include information theory, broad-
band wireless communications, signal processing
with application to communication systems, array

signal processing and cooperative communications in distributed networks.


