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Abstract

Functional connectivity describes neural activity from resting-state functional magnetic resonance 

imaging (rs-fMRI). This noninvasive modality is a promising imaging biomarker of 

neurodegenerative diseases, such as Alzheimer’s disease (AD), where the connectome can be an 

indicator to assess and to understand the pathology. However, it only provides noisy measurements 

of brain activity. As a consequence, it has shown fairly limited discrimination power on clinical 

groups. So far, the reference functional marker of AD is the fluorodeoxyglucose positron emission 

tomography (FDG-PET). It gives a reliable quantification of metabolic activity, but it is costly and 

invasive. Here, our goal is to analyze AD populations solely based on rs-fMRI, as functional 

connectivity is correlated to metabolism. We introduce transmodal learning: leveraging a prior 

from one modality to improve results of another modality on different subjects. A metabolic prior 

is learned from an independent FDG-PET dataset to improve functional connectivity-based 

prediction of AD. The prior acts as a regularization of connectivity learning and improves the 

estimation of discriminative patterns from distinct rs-fMRI datasets. Our approach is a two-stage 

classification strategy that combines several seed-based connectivity maps to cover a large number 

of functional networks that identify AD physiopathology. Experimental results show that our 

transmodal approach increases classification accuracy compared to pure rs-fMRI approaches, 

without resorting to additional invasive acquisitions. The method successfully recovers brain 

regions known to be impacted by the disease.

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Alzheimer’s Disease

I. Introduction

Brain imaging can probe the signatures, anatomical or functional, of brain diseases. For 

Alzheimer’s Disease (AD), anatomical measurements on Magnetic Resonance Images 

(MRIs) such as the hippocampus volume [1] or the cortical thickness [2], [3] are accurate 

biomarkers that help to distinguish AD subjects from Mild Cognitive Impairment (MCI) 

subjects who convert later to AD [4].

Another imaging modality, Positron Emission Tomography (PET), measures brain 

biochemical and functional dynamics according to specific radiotracers. For example, the 

Pittsburgh compound B (PiB) radiotracer quantifies beta-amyloid plaques deposition that is 

at the root of AD [5]. FDG-PET (fluorodeoxyglucose PET) measures quantitatively brain 

metabolic activity and is considered as sufficiently accurate biomarker of AD. FDG-PET 

analysis has shown that a specific pattern of decrease of metabolic activity characterizes AD 

subjects with an accuracy of 90% [6], [7] However, PET imaging is costly and implies 

exposing the subject to radiations.

More recently, studies have shown promising use of resting-state functional MRI (rs-fMRI) 

as a biomarker of AD [8], [9]. Rs-fMRI is an easy-to-implement imaging protocol. It reveals 

functional interactions between brain networks that predict brain states [10], via the intrinsic 

functional connectivity (FC) estimated from the blood-oxygen-level dependent (BOLD) 

signal. As studied in [11], [12] and [13], AD is characterized by widespread decreases in 

connectivity, especially in the default mode network (DMN). Although functional 

connectivity brings a supplementary information on AD by mapping functional regions that 

share some common dynamics, its sensitivity to classify correctly AD subjects [14] is lower 

than the anatomical MRI features and FDG-PET. fMRI has a low signal-to-noise ratio 

(SNR), measures of functional connectivity are often limited by the quantity and quality of 

data. Reproducibility of the connectome is another major limitation. Indeed, many studies 

([15], [16]) have shown that good reproducibility is achievable only with longer time-series 

and after several re-test sessions.

Recent studies correlating FDG-PET to rs-fMRI have shown that functional connectivity at a 

regional level reflects the metabolic activity. In [17], the authors have presented a 

simultaneous PET/MR study on subjects watching visual stimuli. Correlations were found 

between metabolism and seed-based functional connectivity in visual areas during 

stimulation. Other works [18], [19] have shown significant correlation between the 

metabolism and the functional connectivity at the DMN level, in particular in the precuneus 

and the posterior cingulate cortex. Our contribution builds on this relationship between 

metabolism and connectivity: we conjecture that patterns specific to AD in fMRI and PET 

are equivalent [20]. We propose a transmodal learning framework that estimates a predictive 

model classifying AD from rs-fMRI –noninvasive but weakly accurate– informed by an 
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FDG-PET (invasive but accurate) discriminative pattern. Unlike multi-modal learning that 

combines different modalities observed in each subject, transmodal learning relies on a 

metabolic model to inform a connectivity model. This transfer implies that our connectivity-

based model can be used on rs-fMRI data acquired independently from the FDG-PET 

dataset used to build the metabolic prior. As there have already been many studies of AD 

with FDG-PET, a lot of information can be leveraged to improve connectivity-based 

prediction. Our goal is to have a more accurate discriminant model on non-invasive rs-fMRI 

to avoid as much as possible the use of an invasive modality. The proposed model addresses 

the issue of the arbitrary selection of a reference region of interest (ROI) when computing 

functional connectivity. Seed-based correlations are computed according to ROIs extracted 

from a functional atlas, followed by a model that stacks their predictions. Such an atlas may 

include ROIs that do not exhibit high correlation between connectivity and metabolism. 

However, the stacking model that combines them will select the most relevant ROIs. 

Resulting predictor, based on multiple ROIs, gives better accuracy than a single ROI.

Prior work in the neuroimaging literature has relied on informing a given imaging modality 

with a prior extracted from a different but related modality. In particular, potential 

correlations between functional and anatomical characteristics have been considered. In 

[21], functional connectivity matrix was learned from rs-fMRI with a structural-connectivity 

constraint from diffusion weighted MRI (dMRI). [22] proposed a unsupervised 

decomposition of resting-state time-series from rs-fMRI. This decomposition is constrained 

by a fiber connection pattern extracted from dMRI. While [23] introduced a joint functional/

structural connectivity estimation that helped to identify joint connectivity variations in 

schizophrenia. However, these two modalities should be combined with caution. Indeed, 

[24] highlighted possible inconsistencies between fMRI and dMRI. From a methodological 

standpoint, our work is related to transfer learning methods [25] that apply a model learned 

from a dataset (or modality) A to a dataset B. In AD classification, [26] has used a transfer-

learning scheme called auxilary model to enhance mild-cognitive-converters prediction from 

FDG-PET, anatomical MRI, and protein biomarkers. The main novelty of our approach is 

that we use the learned model as a constraint to the classification training.

A preliminary work has been presented in [27], where we have shown the feasibility of the 

approach on a smaller dataset. Here, after detailing the transmodal learning model, we 

extensively validate and analyze it: i) we compare this approach to classical approaches; ii) 

we assess the impact of parameter choice; iii) we extend the approach to a multimodal 

dataset, where we show that the metabolism-informed connectivity yields more accurate 

classification of AD.

In section II, we detail the transmodal learning framework for the connectivity-based 

prediction. Then we present in section III data used in our experiments that have been 

extracted from 211 subjects across 694 fMRI scans of the ADNI database. The results 

shown in section IV demonstrate the efficiency of the approach compared to classical 

connectivity-based classification.
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II. Methods

Here we introduce an enhanced predictive model of AD from functional connectivity 

computed from resting-state fMRI. This model exploits accurate and discriminative 

knowledge from previous FDG-PET studies by assuming that changes in metabolic activity 

yield information comparable to functional connectivity alterations.

We propose a voxel-based classifier that handles the connectivity-metabolism relationship. 

For this purpose, region-to-voxel connectivities are computed according to several regions of 

interest (ROIs). This leads to one predictive model per ROI, hence these models have to be 

combined at a later stage. This problem is often depicted as a multi-source learning and 

several solutions have been proposed such as multiple kernel learning (MKL) [28]. In the 

MKL setting, a kernel is computed for each source. Then a linear combination of the kernels 

is learned to optimize the classification of the sources. Another solution is to train a 

classifier on each source, and then to use majority voting to determine the final class 

assignment. We use a stacking approach, relying on a second-stage classification model that 

takes as input model predictions from each ROI. This approach makes no assumptions on 

the classifiers that should be used, and is well suited to heterogeneous data. It can also be 

used to recover the discriminant features and spatial maps, as it operates at the voxel-level 

with a linear classifier.

A. Transmodal Learning Framework Overview

The proposed pipeline is depicted in Fig. 1. The inputs are 4D acquisitions of resting-state 

fMRI, and a set of regions of interest (ROIs) from which the connectivity is estimated. First, 

the prior is estimated from 3D FDG-PET images of metabolism at the voxel-level with a 

linear classifier. The resting-state fMRI features are obtained by computing region-to-voxel 

connectivity maps from fMRI data. Region-to-voxel connectivity maps depend strongly on 

the the specific choice of seed region [29]. To avoid relying on a single ROI, we propose to 

combine a set of ROIs extracted from a brain atlas. Our goal is to aggregate discriminative 

functional-connectivity features from an atlas covering various functional networks. We will 

discuss in section IV-D which atlas should be selected. Then, an enhanced regression model 

informed by the FDG-PET prior is estimated; this yields one model per ROI. Finally, the 

global fMRI-based classification is performed via another classifier that estimates the target 

from the stacked predictions of each ROI-based model. Table I gives the notations that we 

use for the mathematical formulations.

B. Functional Connectivity Features

There are generally two ways to compute FC:

a) Region-to-voxel—Region-to-voxel connectivity measures correlations from a given 

seed ROI to the whole brain. It gives for each ROI a connectivity map at the voxel level. 

Choosing a seed ROI is difficult, as it changes vastly this connectivity map. We overcome 

this limitation by considering a set of ROIs. Typically, each region of a given brain atlas 

is used as a seed ROI for a connectivity map. For a subject sk, we define the region-to-voxel 

connectivity fc(sk) between any voxel and the region of interest ri as the Pearson correlation 
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between their time-series [30]. The correlation values are then normalized using Fisher’s Z-

transformation. It converts correlations to normally distributed values for a better 

comparison.

b) Region-to-region—Region-to-region connectivity  between ROI ri1 and ROI ri2 

is the correlation between their respective averaged timeseries. The correlation is also 

normalized with Fisher’s Z-transformation. This measurement on several ROIs (or atlas) 

yields a connectivity matrix (connectome) characterizing a subject [31]. It is not used in our 

approach, which relies on only region-to-voxel connectivities, but we will compare the two 

sets of features in the experiments.

The connectivity map fc(sk) associated with a ROI ri is a vector of dimension Nυ that 

represents the correlations of all brain voxels

(1)

We define the feature matrix Xri of dimension (Ns, Nυ) associated with ROI ri as:

(2)

This matrix will be used for the diagnosis prediction. We compute one classification model 

per ROI. Then the diagnosis is learned from the models predictions according to all ROIs.

C. Data-Driven Metabolic Prior Integration

Rather than a multi-modal PET-fMRI prediction in each subject, we derive independently a 

population-level PET prior, thus avoiding the additional requirement of one PET acquisition 

per subject for diagnosis. The estimation of a connectivity-based classification model is 

regularized by a learned metabolic prior, which involves a complementary coupling 

parameter to adapt this prior.

1) Prior Estimation—The metabolic prior is composed of discriminative coefficients of a 

linear model learned from Nspet FDG-PET images of a dataset distinct from the rs-fMRI 

dataset. It is the core of the transmodal approach that we propose. We define a feature matrix 

Xpet representing the metabolism in each voxel and a label vector ypet representing the target 

(diagnosis). A linear model is calculated on this matrix Xpet, where the model coefficients 

ŵprior are estimated as follows:

(3)

where ℒ is the loss function of the prediction which can be seen as a data-fidelity term. Ω is 

a regularization term. We keep this general formulation of a linear classifier since we are 

Rahim et al. Page 5

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



free to choose which classifier to use. In out experiments, we use a ℓ2 regularized logistic 

regression classifier to generate the metabolic prior wprior ∈ ℝNυ. It will be integrated into 

the functional connectivity classification.

2) Transmodal Classification—The integration of the metabolic prior into functional 

connectivity-based classification is done at the voxel level, by assuming that the connectivity 

features and the metabolic prior are estimated in the same spatial referential. The prior 

coefficients wprior act as regularizers of a linear model on the functional connectivity. The 

model operates on the connectivity features Xri computed from (2). It integrates the prior 

within the penalization term yielding

(4)

where wprior is the vector of weights that has already been learned. α > 0 is a penalization 

parameter that controls the amount of shrinkage. We use the least-squares loss function so 

that the regularization can be easily integrated. By substituting b = w − λwprior, one falls 

back to a classical ridge regression formulation. λ > 0 is a scaling parameter that adapts the 

prior to the actual setting. Here we assume that the discriminative weights of the metabolism 

and the functional connectivity are linearly correlated. When λ is zero, there is no effect of 

the prior, hence the weights estimated depends solely on connectivity features. Having λ too 

large imposes the rs-fMRI model to fully replicate the FDG-PET model, in effect 

underfitting the fMRI data. Model parameters λ and α are empirically estimated through a 

nested cross-validation on the training set. The resulting ŵri ∈ ℝNυ is the PET-informed 

coefficient vector of the classifier according to ROI ri.

D. Stacking Connectivity-Based Predictions

We introduce here the stacking model to predict the diagnosis by learning from the 

predictions of the atlas ROIs. The unthresholded predictions from (4) of all ROIs are 

concatenated, which yields the following matrix: S ∈ ℝNs × Nr

(5)

where each column i represents the predictions of ROI ri in all subjects. The subject class is 

learned from another classifier on the matrix S, such as a logistic regression classifier:

(6)

where C controls the regularization, c is the intercept and ŵs are the estimated stacking 

model coefficients to define the final discriminative model. Since the stacking is actually 

compatible with any kind of classifier, non-linear classifiers (e.g. random forests) can be 
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used as well. We discuss the choice of the classifier further by considering their impact on 

the model accuracies. We discuss also the impact of taking different sets of ROIs from 

different functional atlases.

III. Data and Experiments

A. ADNI Dataset

The data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database adni.loni.usc.edu. The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, together with clinical 

and neuropsychological assessment, can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 

information, see www.adni-info.org.

B. Subject Information

The subjects selected from the ADNI database in our study belong to two datasets (one 

dataset per modality). Let us emphasize that the PET dataset is different from the fMRI 

dataset; our goal is precisely to assess how metabolism measurements can inform the 

connectivity without resorting to a multi-modal PET-fMRI prediction in each subject.

Table II-a and Table II-b summarize phenotype informations of the fMRI dataset and the 

PET dataset respectively. There are three possible values for the subject diagnosis: i) 

Alzheimer’s Disease (AD) when the pathology has a histological confirmation by analyzing 

the cerebral spinal fluid collected from lumbar puncture; ii) Mild Cognitive Impairment 

(MCI) diagnosis gathers a spectrum from cognitive issues to prodromal stages of AD; this 

clinical group is generally determined through the mini-mental state examination score 

(MMSE) which relies on a test of functions like attention, calculation, recall, orientation, 

etc; iii) Cognitively Normal (CN) diagnosis is assigned if no evidence of a cognitive decline 

was detected during the MMSE (scores up to 30).

The PET dataset is used to build the metabolic prior. For this purpose, we select PET scans 

of 1371 subjects at baseline. Concerning the fMRI dataset, the available acquisitions in the 

database are quite limited, since resting-state protocol has been included only in the second 

phase of ADNI, 5 years after the beginning of the PET and the MRI data collection. Only 

211 fMRI acquisitions at baseline are currently available. When available, we used repeated 

fMRI acquisitions from the same subjects, as we expect that more data will capture more 

variability and will improve the generalization of the learned models. A total of 694 fMRI 

scans from 211 subjects have been used in this study. However, learning on longitudinal data 

can yield biased and overfitted models if images from the same subject are included both in 

the training and the testing sets. To avoid such effects, we use a training/testing split at the 

subject level rather than at the acquisition level, while keeping the proportions between the 

clinical groups. The model training is done on all scans of all subjects included in the 

training phase. The model is tested on the remaining scans. The predictions are averaged for 
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all scans of a given subject. A majority voting can be considered instead but we kept the 

averaging since we have a small number of scans per subject (five scans at most).

C. Image Acquisition and Preprocessing

The preprocessing of PET and fMRI scans was performed utilizing a combination of the 

Statistical Parametric Mapping (SPM12) software (www.fil.ion.ucl.ac.uk/spm/) for the 

classical preprocessing tasks, and the Nilearn Library (nilearn.github.io) [32] for the 

temporal preprocessing and the timeserie extraction. The acquisition and the preprocessing 

steps are detailed in the following subsections. In addition to the usual preprocessing steps, 

the resulting images have been resampled in the same spatial referential (namely MNI152), 

so that images from both modalities can be mapped at the voxel level.

1) FDG-PET Images—FDG-PET images were acquired using a 18F-labelled fluoro-

deoxyglucose (18F-FDG) radiotracer. SIEMENS, GE and PHILIPS PET scanners according 

to one of three standard protocols (30 – 60 minute dynamic, 30 – 60 minute static, 0 – 60 

minute dynamic). The FDG-PET images used in this study were downloaded from the 

ADNI database website and were already preprocessed. Each PET image is coregistered to 

the first frame and the sequence is averaged into one frame. Then, the averaged images are 

standardized to have a uniform resolution and a voxel size of 3 × 3 × 3 mm3. FDG-PET 

image intensities are normalized to those of the pons so that the standard uptake values 

(SUV) of PET scans from different scanners can be compared.

2) rs-fMRI Images—All rs-fMRI data were acquired on 3.0 Tesla PHILIPS scanners at 

multiple sites. These scans are about 3 mm isotropic, with TE = 30 ms and TR = 3000 ms. 

The rs-fMRI sequence consists of 140 volumes (timepoints). Each frame has a shape of 64 × 

64 × 48 voxels. For the preprocessing of each acquisition, the first 5 frames are discarded. 

The remaining 135 frames of the acquisition are motion-corrected and coregistered to the 

corresponding T1 structural image. We use the DARTEL algorithm [33] to normalize the 

images; basically, a template is built at the grouplevel and each fMRI acquisition is non-

linearly deformed to this template. The images are then spatially standardized and resampled 

into the MNI space, and smoothed using a Gaussian kernel of 6 mm FWHM. Timeseries are 

detrended for signal drift, and filtered with a 0.01 − 0.1 Hz bandpass filter. In addition, some 

nuisance variables are removed like the global mean signal, the white matter and the cerebral 

spinal fluid signals.

D. Experiment Settings

The experiments are performed on the datasets described in III-B. The transmodal learning 

is performed and compared to learning on fMRI only, either with region-to-region or region-

to-voxel connectivity. Then, atlas and classifier impact on the model are assessed by 

comparing different selections, in order to decide which atlas and classifier should be used. 

Finally, we experiment the stacking approach in a multimodal classification by including 

features from complementary modalities.

Our aim is to study and predict conversion of MCI subjects to AD. However, the rs-fMRI 

protocol has been integrated only recently in the ADNI study (from ADNI-GO phase), and 
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only 5 MCI converters in the database come with fMRI data. We thus consider a proxy by 

estimating the binary classification models to discriminate AD against MCI subjects. 

Classification models are assessed through the accuracy defined as the proportion (in %) of 

the correctly classified samples from all the samples of the test set. We use a stratified leave-

k-out cross-validation scheme (k is 25% of the dataset size), where training and testing splits 

are randomized 100 times (see Fig. 2). Model hyper-parameters (α, λ) are set by a nested 

cross-validation in each randomization. It relies on a 4-fold cross-validation applied on the 

training set (75% of the dataset) to tune the prior scaling and the regularization parameters in 

(4). Classifier comparison is done by comparing the mean and the standard deviation of the 

accuracies, as well as a two-sided Wilcoxon significance test. All experiments were 

implemented in Python, using the scikit-learn library [34].

IV. Results and Discussion

We present in this section experiments to demonstrate the effectiveness of the stacking 

approach and the metabolic prior integration to classify AD subjects from brain network 

connectivity on rs-fMRI data. We compare the accuracy of the classifiers when using the 

stacked region-to-voxel connectivity and the PET-informed model against classical 

approaches like region-to-region connectivity. We also study the impact of setting some 

parameters of the proposed approach, such as the brain atlas or the classification model. 

Then, we show the extensibility of the stacking framework to integrate multi-modal and non-

image features that improve the overall accuracy of AD prediction.

A. AD Classification by Stacking rs-fMRI Connectivity Maps

In this experiment, we show how stacking region-to-voxel connectivity maps without the 

PET prior predicts AD by comparing it to the classification from region-to-region 

connectivity matrices. For this, we compute the learning curves for the two connectivity 

approaches, see Fig. 3. The learning curve represents variations of the classifier accuracy 

when increasing the number of samples during model training.

The first information from these curves is that the region-to-voxel stacking approach 

significantly outperforms the classification with the connectivity matrix between regions. 

This can be explained by the fact that the information is restricted in the region-to-region 

connectivity to the selected set of regions and does not capture the functional activity in the 

remaining brain structures. By contrast, the region-to-voxel approach with multiple ROIs is 

more exhaustive as it covers the whole brain, so that the classifier takes into account 

potentially more discriminative information. Previous experiments revealed also that 

stacking connectivities from several ROIs performs better than using a single ROI [27].

Second, we observe the benefit of including subject longitudinal acquisitions and averaging 

predictions of these acquisitions per subject rather than using single rs-fMRI at baseline. 

This improves slightly, yet consistently the accuracy, which was expected, since the training 

is done on three times more data.

Thirdly, we note that for all classification models considered, having more subjects in the 

training phase improves the classification accuracy, as all the curves display an increase with 
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the number of samples. This suggests that using rs-fMRI as an imaging biomarker is relevant 

and could be even more accurate by enriching the classifier with more data. In this sense, the 

purpose of the integration of knowledge learned from the FDG-PET is to overcome the 

limitations imposed by the dataset size on the classifier accuracy. This will be discussed in 

section IV-C.

In summary, this experiment validates the stacking approach and the averaging of multiple 

datasets per subject. We study in the next section the impact of the classifiers in order to 

decide which model should be used for the stacking approach.

B. Which Classifier Should Be Used for Stacking?

We have presented in section II-D the stacking approach. On one hand, we propose to use a 

linear classifier that is well suited to the region-to-voxel connectivity, as the model 

coefficients provide explicitly an estimate of the discriminative patterns between the clinical 

groups at the voxel level. On the other hand, there is no constraint on what classifier should 

be used for stacking the predictions. In order to select the best pair of classifiers, we 

compare several linear models for the connectivity predictions combined with the following 

three classifiers for the stacking step: logistic regression, ridge regression and random 

forests.

Table III reports the mean and the standard deviations of the AD/MCI classification 

accuracies with different classifiers tested. Each row is a linear model for the connectivity 

classification, while columns represent the stacking classifier. The main observation from 

the results is that all classifier combinations give almost the same mean accuracy around 

77%. The choice of the linear model for region-to-voxel connectivity has no impact on 

accuracy. However, when stacking predictions, random forests classifier is more stable than 

logistic regression and ridge classifier. Standard deviations of accuracies over the runs is 

indeed significantly reduced. This is explained by the nature of random forests, which are an 

ensemble method where the prediction accuracy is stabilized by the internal averaging step; 

in other settings, this has also been reported to have a beneficial effect for prediction 

accuracy, even with no tuning [35].

C. Functional Connectivity Based Classification with Metabolic Prior Integration

We analyze in this experiment the effect of the metabolic prior integration on the 

classification of AD subjects from rs-fMRI. Box plots in Fig. 4 represent the variations of 

the classification accuracy over 100 randomizations when using different approaches 

(region-to-region connectivity, region-to-voxel connectivity and the PET informed region-to-

voxel connectivity) with four brain atlases. The results show that the proposed classification 

scheme with the metabolic prior method outperformed pure functional connectivity 

methods. Accuracy improvements are about 5% without prior: 77%, with prior: 82%) and 

are statistically significant. This means that the discriminative patterns learned from 

metabolism data helped to recover a better model fron the functional connectivity data.

The prior is learned from FDG-PET data from the dataset described in Table II-b. Basically, 

a linear classifier was estimated over this dataset, where metabolism values on whole brain 

voxels are the features of the model. We used a logistic regression for the prior estimation. 
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Other linear classifiers have been tested and we did not find major differences in term of 

accuracy and model coefficient distribution. Resulting classifier weights are the 

discriminative coefficients between the metabolic activity of AD and MCI subjects. Fig. 5-a 

gives a plot of these coefficients after standardization and thresholding. The main 

discriminative structures are the typical cerebral regions, such as the posterior cingulate 

cortex (PCC), the precuneus, and parts of the parietal lobe. We find in these regions a 

metabolism that is significantly decreased for subjects with AD, which is in agreement with 

the findings in many studies, such as in [36]. These coefficients constitute the metabolic 

prior map that constrains the classification of the functional connectivity from rs-fMRI. The 

model accuracy in Fig. 4 (last box plot on the right) validates the statistical power of the 

metabolic prior. The mean accuracy (88%) is similar to state-of-the-art results on FDG-PET 

data from ADNI database, although we cannot compare directly scores of studies with 

different subsets and features.

An interesting property of the stacking model is that we can recover the discriminative 

spatial map between AD and MCI subjects, since we perform a voxel-level brain analysis. 

The learned brain spatial models consist of averaged classifier weights across leave-k-out 

folds. Note that the resulting map is also an average of the coefficient maps of all ROIs, 

weighted by the importance of the ROI from the stacking with the random forests classifier. 

Fig. 5-b shows the normalized and thresholded coefficient map of the region-to-voxel 

connectivity based model without the FDG-PET prior. Although patterns are quite noisy, 

these regions describe some meaningful functional structures such as the default mode 

network, and parts of the parietal lobe. The impact of the FDG-PET prior is shown in Fig. 5-

c, where we see that the metabolic prior overcame the limitations of connectivity-based 

discriminant patterns. We observe in particular patterns that are smoother than with fMRI 

only, e.g. the clearly outstanding default mode network. This finding is in agreement with 

AD studies that showed functional connectivity differences observed in rs-fMRI [12], but it 

is hard to obtain from small rs-fMRI datasets.

D. Impact of the Brain Atlas on the Classification

We assess the impact of choosing a given ROIs-defining atlas on classification accuracy. For 

this, we compare four atlases through AD/MCI classification. These atlases have different 

numbers of regions and have different nature (functional, structural, histological). The first 

functional atlas (MSDL) has been proposed in [37], it contains 39 ROIs learned from rs-

fMRI data by a group-level dictionary-learning decomposition. The second atlas (Mayo 

Clinic) comprises 68 ROIs extracted from a functional dataset and proposed in [38]. It was 

constructed on 892 subjects by an independent component analysis. It yields a detailed 

decomposition of the default mode network, and was successfully used to characterize 

differences between AD and cognitively normal subjects. The third and fourth atlases are 

respectively structural and histological atlases. The Harvard-Oxford (96 cortical ROIs) and 

the Jülich (120 ROIs) atlases were obtained from FMRIB Software Library (FSL [39])1

1For more details about these two atlases see fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases.
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The accuracy obtained with the competing atlases is shown in Fig. 4, where the results are 

grouped according to the classification approach. The atlas choice has no impact on the 

region-to-voxel connectivity without the metabolic prior, as classification accuracies are 

almost similar. When integrating the metabolic prior, we observe that functional atlases are 

more accurate than structural atlases, although the differences are not statistically significant. 

This means that the metabolic prior may not fit well with connectivity maps of non 

functional regions, and that adding non relevant regions does not improve stacking accuracy. 

Regarding the region-to-region connectivity, increasing the number of ROIs gives better 

accuracy. This effect is explained by the fact that taking more ROIs will include more brain 

structures that may have discriminative information. Overall, the complexity of the model 

used yields different bias/variance compromises that condition the choice of the atlas.

E. Extension to Multi-modal Stacking

Here we demonstrate how the stacking framework can be extended to multimodal data. This 

experiment also evaluates the relevance of rs-fMRI connectivity informed by metabolic prior 

in a multimodal classification context of AD.

Many works have shown that combining complementary information about anatomical 

features from structural MRI, functional features from FDG-PET, and biological features 

from cerbrospinal fluid (CSF) leads to a more accurate prediction of AD [40], [41]. In our 

setting, we combine PET-informed fMRI connectivities from fMRI dataset at baseline with 

features from anatomical MRI and CSF. These features were collected from processed and 

quality-checked data uploaded in ADNI database. For the CSF, three biomarkers 

measurements (Aβ1–42, t-tau, p-tau181) were extracted from an analysis done at the 

University of Pennsylvania [42]. Regarding the anatomical MRI, we selected sixteen 

volumetric features of segmented hippocampus from a processing using FreeSurfer 

software performed at the university of California San Francisco. Thus, each subject is 

represented by a feature vector composed of the three modalities. We follow the same cross-

validation scheme as presented in III-D, by using a stratified leave-25%-out randomized over 

100 runs.

Fig. 6 summarizes accuracies of the AD/MCI classification on each single set separately 

(PET-informed connectivity, CSF biomarkers, hippocampus volumetry), then by combining 

modalities either by concatenating or by applying multiple kernel learning, and by stacking 

predictions from each modality classifier. The main message from these results is that the 

functional connectivity is a biomarker that brings a complementary information to reference 

biomarkers like CSF proteins and hippocampus volumetry, since combining these features 

yields better classification accuracy than using a single modality, which is in agreement with 

recent studies on predicting AD with rs-fMRI [43]. This suggests that fMRI could be used as 

a noninvasive alternative of the FDG-PET as a functional biomarker of AD. Moreover, 

stacking predictions of each modality is also a valid way to combine multimodal data as the 

accuracies (87%) are better than the concatenation (84%). Existing studies proposed to 

combine heterogeneous features from ADNI database for AD prediction, such as using 

multiple kernel learning [44], or random forests classifier [45]. We cannot compare directly 

our accuracy scores to the ones from the papers cited above since datasets are different. 
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Hence we applied MKL on our dataset, by using an implementation of the MKL proposed in 

[28] on linear sub-kernels. We found that accuracies are in the same range as stacking (MKL 

accuracy: 86%, stacking accuracy: 87%). The benefit of using the stacking approach is that 

it enables explicit interpretation of heterogeneous modalities and can leverage variable 

importance computed by random forests. Indeed, each variable for the stacking represents a 

prediction from a distinct modality, so that the discriminative maps are recovered for 

example by returning to the first-level classifiers. It is also flexible to different classification 

schemes, since no assumptions are made on the classifier.

V. Conclusion

We have introduced transmodal learning in neuroimaging-based diagnosis, by enhancing 

classification of AD subjects from rs-fMRI with a data-driven FDG-PET prior learned from 

a distinct and larger cohort. Specifically, we call transmodal an approach using an imaging 

modality to inform another imaging modality on different subjects. Rather than combining 

multi-modal images, transmodal imaging does not rely on having images of both modalities 

from the same subjects. From an application perspective it enriches an imaging modality 

without requiring additional measurements.

For our application, experimental results confirm that metabolic activity of brain structures 

measured on FDG-PET images is linked to connectivity measured with resting-state fMRI. 

The transmodal approach improves biomarker performance on a noninvasive modality (rs-

fMRI) using an invasive but more sensitive modality (FDG-PET). Hence the metabolic prior 

can be used for further rs-fMRI acquisitions dataset without having recourse to FDG-PET 

acquisitions and to a multimodal analysis. Such an approach overcomes the limitations of 

fMRI (non-quantitative, low SNR), yielding accurate predictions of AD based on functional 

connectivity.

We find that characterizing functional networks on rs-fMRI with multiple region-to-voxel 

connectivity maps gives a more accurate discrimination of AD than region-to-region 

connectivity. We mitigate the difficult choice of seed ROI by combining maps derived from 

an atlas of ROIs that covers sufficiently the cortical surface. Then a stacking step combines 

the set of maps and improves prediction accuracy. We find that using random forests for 

stacking gives predictions that are not only accurate, but also stable. In addition, stacking is 

interpretable as it recovers discriminative maps related to the state-of-the-art on AD. Finally, 

stacking is interesting as it can be extended to multimodal data. Indeed, fMRI is used here as 

an indicator of functional activity, but anatomical imaging and non-imaging markers capture 

other complementary aspects of disease progression. Combining these in the stacking step 

improves the accuracy of the predictive model.

Future work will tackle the high dimensionality of voxel-based (whole brain) connectivity. 

Dimensionality reduction with clustering methods might be useful to solve this problem 

[46], [47]. Also, the metabolic prior may not be suitable for some ROIs that are not related 

to the main resting-state networks. Regarding the dataset size, we observe that learning on 

multiple scans per subject improves the model. In this sense, existing datasets are a very 

useful resource to investigate more difficult questions such as the prognosis of conversion 
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from MCI to AD. A truly longitudinal approach, making use of time-evolution data for each 

subject, would probably yield even better results, and provide new insights on the pathology 

progression and its impact on the resting-state networks.
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Fig. 1. Overview of the proposed connectivity classification framework

First, region-to-voxel connectivity is computed from rs-fMRI timeseries according to each 

ROI of a brain atlas. This yields Nr connectivity maps for each subject. The FDG-PET prior 

is a vector of weights learned from a classification model on a distinct and larger dataset 

than the rs-fMRI dataset. These weights are integrated to regularize a linear classifier on the 

ROIs connectivity maps. Finally, predictions of all ROIs are concatenated in a matrix which 

is given as input to a stacking model to predict the clinical group.
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Fig. 2. Training/testing split scheme used on rs-fMRI data

As the number of subjects is quite small, longitudinal acquisitions are included during the 

training phase. In order to avoid subject over-fitting, the split is done over the subjects and 

the prediction is obtained by averaging across acquisitions over each subject. The train/test 

split is iterated across 100 reshufflings.
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Fig. 3. Learning curves of AD/MCI classification based on functional connectivity features

We observe that: i) The stacked region-to-voxel connectivity models are more accurate than 

the region-to-region connectivity models. ii) Using the subject longitudinal data in the 

training set gives better accuracy than using only one rs-fMRI per subject. iii) Including 

more samples in the training set improves the prediction accuracy in the testing set.
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Fig. 4. Impact of the transmodal connectivity on AD/MCI classification

The stacking + prior approach is more accurate than stacking without prior or using region-

to-region connectivity. Four different atlases are compared here : i) MSDL functional atlas 

[37] (39 regions). ii) Mayo Clinic functional atlas [38] (68 regions). iii) Harvard-Oxford 

anatomical atlas (96 regions). iv) Jülich Anatomical atlas (120 regions). The inter-atlas 

comparisons show that there are no major differences in the accuracy.
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Fig. 5. Spatial maps of AD/MCI classification coefficients

The parts of the default-mode network (involved in AD characterization) are better 

recovered from the prior-informed stacking model than the stacking model without prior, 

since it has been imposed during the regularization. The final stacking map is an aggregate 

of atlas ROIs weighted by stacking model coefficients. The maps are normalized and 

thresholded.
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Fig. 6. Multimodal AD/MCI classification accuracy with the stacking framework

The modalities used are: PET-informed and stacked connectivity from fMRI, cerebrospinal 

fluid (CSF) biomarkers (Aβ 1–42, t-tau, p-tau181) and hippocampus volumetric features 

extracted from anatomical MRI. The results show that the functional information from 

connectivity adds accuracy to the hippocampus volumetry which is considered as a reference 

biomarker for AD. The stacking framework can be easily extended to a multi-modal 

framework. The stacking accuracies are comparable to multiple kernel learning and are 

better than feature concatenation.
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TABLE I

NOTATIONS USED IN THE METHOD DESCRIPTION.

Nυ number of voxels of the entire brain.

Nr number of ROIs.

Ns number of subjects of the rs-fMRI dataset.

brain atlas: set of Nr brain regions ri,

such that:  = {ri} with 1 ≤ i ≤ Nr.

time-series at a voxel υj in subject sk.

averaged time-series across all voxels of ROI ri

in subject sk.

connectivity at voxel υj according to ROI ri

in subject sk.

connectivity between ROI ri1 and ROI ri2

in subject sk.

connectivity map (Nυ voxels)

in subject sk according to ROI ri.

Xri
connectivities of all subjects according to ROI ri,

its dimension is (Ns, Nυ).

y subject binary class (diagnosis) vector,
its dimension is Ns.

Nspet
number of subjects of the FDG-PET dataset.

Xpet feature matrix of the FDG-PET dataset,
its dimension is (Nspet

, Nυ).

ypet diagnosis vector of dimension Nspet
.

wprior linear classifier coefficients of the FDG-PET dataset,
its dimension is Nυ.

wri
linear classifier coefficients from the connectivity
values associated with the seed region ri.
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TABLE III

AD prediction accuracies according to several classifiers

While the mean accuracy is almost the same, stacking the connectivity predictions with Random Forests 

reduces the variance.

Stacking

Ridge Logistic Reg. Random Forests

Connectivity

Ridge 77.2 ± 8.9 77.4 ± 8.4 77.3 ± 4.3

Logistic Reg. 76.9 ± 8.6 77.0 ± 8.6 76.8 ± 4.3

Linear SVC 77.2 ± 8.8 76.9 ± 8.3 76.8 ± 4.4
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