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A B S T R A C T

In the last decade, convolutional neural networks (ConvNets) have been a major focus
of research in medical image analysis. However, the performances of ConvNets may
be limited by a lack of explicit consideration of the long-range spatial relationships
in an image. Recently Vision Transformer architectures have been proposed to ad-
dress the shortcomings of ConvNets and have produced state-of-the-art performances
in many medical imaging applications. Transformers may be a strong candidate for im-
age registration because their substantially larger receptive field enables a more precise
comprehension of the spatial correspondence between moving and fixed images. Here,
we present TransMorph, a hybrid Transformer-ConvNet model for volumetric medical
image registration. This paper also presents diffeomorphic and Bayesian variants of
TransMorph: the diffeomorphic variants ensure the topology-preserving deformations,
and the Bayesian variant produces a well-calibrated registration uncertainty estimate.
We extensively validated the proposed models using 3D medical images from three ap-
plications: inter-patient and atlas-to-patient brain MRI registration and phantom-to-CT
registration. The proposed models are evaluated in comparison to a variety of exist-
ing registration methods and Transformer architectures. Qualitative and quantitative
results demonstrate that the proposed Transformer-based model leads to a substantial
performance improvement over the baseline methods, confirming the effectiveness of
Transformers for medical image registration.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

Deformable image registration (DIR) is fundamental for
many medical imaging analysis tasks. It functions by establish-
ing spatial correspondence in order to minimize the differences
between a pair of fixed and moving images. Traditional meth-

∗Corresponding author
e-mail: jchen245@jhmi.edu (Junyu Chen), efrey@jhmi.edu (Eric C.

Frey), yufanh@nvidia.com (Yufan He), paul.segars@duke.edu (William
P. Segars), gary.li@mgh.harvard.edu (Ye Li), duyong@jhmi.edu (Yong
Du)

ods formulate image registration as a variational problem for
estimating a smooth mapping between the points in one image
and those in another (Avants et al. 2008; Beg et al. 2005; Ver-
cauteren et al. 2009; Heinrich et al. 2013a; Modat et al. 2010).
However, such methods are computationally expensive and usu-
ally slow in practice because the optimization problem needs to
be solved de novo for each pair of unseen images.

Recently, deep neural networks (DNNs), especially convo-
lutional neural networks (ConvNets), have demonstrated state-
of-the-art performance in many computer vision tasks, includ-
ing object detection (Redmon et al. 2016), image classification
(He et al. 2016), and segmentation (Long et al. 2015). Ever
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since the success of U-Net in the ISBI cell tracking challenge of
2015 (Ronneberger et al. 2015), ConvNet-based methods have
become a major focus of attention in medical image analysis
fields, such as tumor segmentation (Isensee et al. 2021; Zhou
et al. 2019), image reconstruction (Zhu et al. 2018), and dis-
ease diagnostics (Lian et al. 2018). In medical image regis-
tration, ConvNet-based methods can produce significantly im-
proved registration performance while operating orders of mag-
nitudes faster (after training) compared to traditional methods.
ConvNet-based methods replace the costly per-image optimiza-
tion seen in traditional methods with a single global function
optimization during a training phase. The ConvNets learn the
common representation of image registration from training im-
ages, enabling rapid alignment of an unseen image pair after
training. Initially, the supervision of ground-truth deformation
fields (which are usually generated using traditional registration
methods) is needed for training the neural networks (Onofrey
et al. 2013; Yang et al. 2017b; Rohé et al. 2017). Recently, the
focus has been shifted towards developing unsupervised meth-
ods that do not depend on ground-truth deformation fields (Bal-
akrishnan et al. 2019; Dalca et al. 2019; Kim et al. 2021; de Vos
et al. 2019, 2017; Lei et al. 2020; Chen et al. 2020; Zhang
2018). Nearly all of the existing deep-learning-based methods
mentioned above used U-Net (Ronneberger et al. 2015) or the
simply modified versions of U-Net (e.g., tweaking the number
of layers or changing down- and up-sampling schemes) as their
ConvNet designs.

ConvNet architectures generally have limitations in model-
ing explicit long-range spatial relations (i.e., relations between
two voxels that are far away from each other) present in an im-
age due to the intrinsic locality (i.e., the limited effective re-
ceptive field) of convolution operations (Luo et al. 2016). The
U-Net (or V-Net (Milletari et al. 2016)) was proposed to over-
come this limitation by introducing down- and up-sampling op-
erations into a ConvNet, which theoretically enlarges the re-
ceptive field of the ConvNet and, thus, encourages the network
to consider long-range relationships between points in images.
However, several problems remain: first, the receptive fields
of the first several layers are still restricted by the convolution-
kernel size, and the global information of an image can only be
viewed at the deeper layers of the network; second, it has been
shown that as the convolutional layers deepen, the impact from
far-away voxels decays quickly (Li et al. 2021). Therefore, the
effective receptive field of a U-Net is, in practice, much smaller
than its theoretical receptive field, and it is only a portion of the
typical size of a medical image. This limits the U-Net’s ability
to perceive semantic information and model long-range rela-
tionships between points. Yet, it is believed that the ability to
comprehend semantic scene information is of great importance
in coping large deformations (Ha et al. 2020). Many works in
other fields (e.g., image segmentation) have addressed this lim-
itation of U-Net (Zhou et al. 2019; Jha et al. 2019; Devalla et al.
2018; Alom et al. 2018). To allow for a better flow of multi-
scale contextual information throughout the network, Zhou et
al. (Zhou et al. 2019) proposed a nested U-Net (i.e., U-Net++),
in which the complex up- and down-samplings along with mul-
tiple skip connections were used. Devalla et al. (Devalla et al.

2018) introduced dilated convolution to the U-Net architecture
that enlarges the network’s effective receptive field. A similar
idea was proposed by Alom et al. (Alom et al. 2018), where
the network’s effective receptive field was increased by deploy-
ing recurrent convolutional operations. Jha et al. proposed Re-
sUNet++ (Jha et al. 2019) that incorporates the attention mech-
anisms into U-Net for modeling long-range spatial information.
Despite these methods’ promising performance in other medi-
cal imaging fields, there has been limiting work on using ad-
vanced network architectures for medical image registration.

Transformer, which originated from natural language pro-
cessing tasks (Vaswani et al. 2017), has shown its potential in
computer vision tasks. A Transformer deploys self-attention
mechanisms to determine which parts of the input sequence
(e.g., an image) are essential based on contextual information.
Unlike convolution operations, whose effective receptive fields
are limited by the size of convolution kernels, the self-attention
mechanisms in a Transformer have large size effective receptive
fields, making a Transformer capable of capturing long-range
spatial information (Li et al. 2021). Dosovitskiy et al. (Dosovit-
skiy et al. 2020) proposed Vision Transformer (ViT) that applies
the Transformer encoder from NLP directly to images. It was
the first purely self-attention-based network for computer vi-
sion and achieved state-of-the-art performance in image recog-
nition. Subsequent to their success, Swin Transformer (Liu
et al. 2021a) and its variants (Dai et al. 2021; Dong et al. 2021)
have demonstrated their superior performances in object detec-
tion, and semantic segmentation. Recently, Transformer-related
methods have gained increased attention in medical imaging
(Chen et al. 2021b; Xie et al. 2021; Wang et al. 2021b; Li et al.
2021; Wang et al. 2021a; Zhang et al. 2021); the major applica-
tion has been the task of image segmentation.

Transformer can be a strong candidate for image registration
because it can better comprehend the spatial correspondence
between the moving and fixed images. Registration is the pro-
cess of establishing such correspondence, and intuitively, by
comparing different parts of the moving to the fixed image. A
ConvNet has a narrow field of view: it performs convolution lo-
cally, and its field of view grows in proportion to the ConvNet’s
depth; hence, the shallow layers have a relatively small recep-
tive field, limiting the ConvNet’s ability to associate the distant
parts between two images. For example, if the left part of the
moving image matches the right part of the fixed image, Con-
vNet will be unable to establish the proper spatial correspon-
dence between the two parts if it cannot see both parts concur-
rently (i.e., when one of the parts falls outside of the ConvNet’s
field of view). However, Transformer is capable of handling
such circumstances and rapidly focusing on the parts that need
deformation, owing to its large receptive field and self-attention
mechanism.

Our group has previously shown preliminary results that
demonstrated the bridging of ViT and V-Net provided good
performance in image registration (Chen et al. 2021a). In this
work, we extended that preliminary work and investigated vari-
ous Transformer models from other tasks (i.e., computer vision
and medical imaging tasks). We present a hybrid Transformer-
ConvNet framework, TransMorph, for volumetric medical im-
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age registration. In this method, the Swin Transformer (Liu
et al. 2021a) was employed as the encoder to capture the spa-
tial correspondence between the input moving and fixed im-
ages. Then, a ConvNet decoder processed the information pro-
vided by the Transformer encoder into a dense displacement
field. Long skip connections were deployed to maintain the
flow of localization information between the encoder and de-
coder stages. We also introduced diffeomorphic variations of
TransMorph to ensure a smooth and topology-preserving de-
formation. Additionally, we applied variational inference on
the parameters of TransMorph, resulting in a Bayesian model
that predicts registration uncertainty based on the given image
pair. Qualitative and quantitative evaluation of the experimental
results demonstrate the robustness of the proposed method and
confirm the efficacy of Transformers for image registration.

The main contributions of this work are summarized as fol-
lows:

• Transformer-based model: This paper presents the pi-
oneering work on using Transformers for image reg-
istration. A novel Transformer-based neural network,
TransMorph, was proposed for affine and deformable im-
age registration.
• Architecture analysis: Experiments in this paper demon-

strate that positional embedding, which is a commonly
used element in Transformer by convention, is not required
for the proposed hybrid Transformer-ConvNet model.
Secondly, we show that Transformer-based models have
larger effective receptive fields than ConvNets. Moreover,
we demonstrated that TransMorph promotes a flatter reg-
istration loss landscape.
• Diffeomorphic registration: We demonstrate that
TransMorph can be easily integrated into two exist-
ing frameworks as a registration backbone to provide
diffeomorphic registration.
• Uncertainty quantification: This paper also provides a

Bayesian uncertainty variant of TransMorph that yields
transformer uncertainty and perfectly calibrated appear-
ance uncertainty estimates.
• State-of-the-art results: We extensively validate the pro-

posed registration models on two brain MRI registration
applications (inter-patient and atlas-to-patient registration)
and on a novel application of XCAT-to-CT registration
with an aim to create a population of anatomically variable
XCAT phantom. The datasets used in this study (which
include a publicly available dataset, the IXI dataset1) con-
tain over 1000 image pairs for training and testing. The
proposed models were compared with various registration
methods and demonstrated state-of-the-art performance.
Eight registration approaches were employed as baselines,
including learning-based methods and widely used con-
ventional methods. The performances of four recently
proposed Transformer architectures from other tasks (e.g.,
semantic segmentation, classification, etc.) were also eval-
uated on the task of image registration.

1https://brain-development.org/ixi-dataset/

• Open source: We provide the community with a fast and
accurate tool for deformable registration. The source code,
the pre-trained models, and our preprocessed IXI dataset
are publicly available at https://bit.ly/37eJS6N.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 explains the proposed methodology. Sec-
tion 4 discusses experimental setup, implementation details,
and datasets used in this study. Section 5 presents experimental
results. Section 6 discusses the findings based on the results,
and Section 7 concludes the paper.

2. Related Work

This section reviews the relevant literature and provides fun-
damental knowledge for the proposed method.

2.1. Image Registration
Deformable image registration (DIR) establishes spatial cor-

respondence between two images by optimizing an energy
function:

E(Im, I f , φ) = Esim(Im ◦ φ, I f ) + λR(φ), (1)

where Im and I f denote, respectively, the moving and fixed im-
age, φ denotes the deformation field that warps the moving im-
age (i.e., Im ◦ φ), R(φ) imposes smoothness of the deformation
field, and λ is the regularization hyper-parameter that deter-
mines the trade-off between image similarity and deformation
field regularity. The optimal warping, φ̂ is given by minimizing
this energy function:

φ̂ = arg min
φ

E(Im, I f , φ). (2)

In the energy function, Esim measures the level of alignment
between the deformed moving image, Im ◦ φ, and the fixed im-
age, I f . Some common choices for Esim are mean squared error
(MSE) (Beg et al. 2005; Wolberg and Zokai 2000), normalized
cross-correlation (NCC) (Avants et al. 2008), structural simi-
larity index (SSIM) (Chen et al. 2020), and mututal informa-
tion (MI) (Viola and Wells III 1997). The regularization term,
R(φ), imposes spatial smoothness on the deformation field. A
common assumption in most applications is that similar struc-
tures exist in both moving and fixed images. As a result, a
continuous and invertible deformation field (i.e., a diffeomor-
phism) is needed to preserve topology, and the regularization,
R(φ) is meant to enforce or encourage this. Isotropic diffusion
(equivalent to Gaussian smoothing) (Balakrishnan et al. 2019),
anisotropic diffusion (Pace et al. 2013), total variation (Vish-
nevskiy et al. 2016), and bending energy (Johnson and Chris-
tensen 2002) are popular options for R(φ).

2.1.1. Image registration via deep neural networks
While traditional image registration methods iteratively min-

imize the energy function in (1) for each pair of moving and
fixed images, DNN-based methods optimize the energy func-
tion for a training dataset, thereby learning a global representa-
tion of image registration that enables alignment of an unseen

https://brain-development.org/ixi-dataset/
https://bit.ly/37eJS6N
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Fig. 1: The architecture of the proposed TransMorph registration network.

Fig. 2: The conventional paradigm of image registration.

pair of volumes. DNN methods are often categorized as super-
vised or unsupervised, with the former requiring a ground truth
deformation field for training and the latter relying only on the
image datasets.

In supervised DNN methods, the ground-truth deformation
fields are either produced synthetically or generated by tradi-
tional registration methods (Yang et al. 2017b; Sokooti et al.
2017; Cao et al. 2018). Yang et al. 2017b proposed a super-
vised ConvNet that predicts the LDDMM (Beg et al. 2005)
momentum from image patches. Sokooti et al. 2017 trained
a registration ConvNet with synthetic displacement fields. The
ground-truth deformation fields are often computationally ex-
pensive to generate, and the registration accuracy of these meth-
ods is highly dependent on the quality of the ground truth.

Due to the limitations of supervised methods, the focus of
research has switched to unsupervised DNN methods that do
not need ground-truth deformation fields. Unsupervised DNNs
optimize an energy function on the input images, similar to tra-
ditional methods. However, DNN-based methods learn a com-
mon registration representation from a training set and then ap-
ply it to unseen images. Note that the term “unsupervised”
refers to the absence of ground-truth deformation fields, but
the network still needs training (this is also known as “self-
supervised”). de Vos et al. 2019; Balakrishnan et al. 2018, 2019
are representative of unsupervised DNN-based methods.

More recently, diffeomorphic deformation representations
have been developed to address the issue of non-smooth de-
formations in DNN-based methods. We briefly introduce its
concepts in the next subsection.

2.1.2. Diffeomorphic image registration
Diffeomorphic deformable image registration is important in

many medical image applications, owing to its special prop-
erties including topology preservation and transformation in-
vertibility. A diffeomorphic transformation is a smooth and
continuous one-to-one mapping with invertible derivatives (i.e.,
non-zero Jacobian determinant). Such a transformation can
be achieved via the time-integration of time-dependent (Beg
et al. 2005; Avants et al. 2008) or time-stationary velocity fields
(SVFs) (Arsigny et al. 2006; Ashburner 2007; Vercauteren et al.
2009; Hernandez et al. 2009). In the time-dependent setting
(e.g., LDDMM (Beg et al. 2005) and SyN (Avants et al. 2008)),
a diffeomorphic transformation φ is obtained via integrating
the sufficiently smooth time-varying velocity fields ν(t), i.e.,
d
dtφ

(t) = ν(t)(φ(t)), where φ(t) = id is the identity transform. On
the other hand, in the stationary velocity fields (SVFs) setting
(e.g., DARTEL Ashburner 2007 and diffeomorphic Demons
(Vercauteren et al. 2009)), the velocity fields are assumed to be
stationary over time, i.e., d

dtφ
(t) = ν(φ(t)). Dalca et al. (Dalca

et al. 2019) first adopt the diffeomorphism formulation in a
deep learning model, using the SVFs setting with an efficient
scaling-and-squaring approach (Arsigny et al. 2006). In the
scaling-and-squaring approach, the deformation field is repre-
sented as a Lie algebra member that is exponentiated to gen-
erate a time 1 deformation φ(1), which is a member of the Lie
group: φ(1) = exp(ν). This means that the exponentiated flow
field compels the mapping to be diffeomorphic and invertible
using the same flow field. Starting from an initial deformation
field:

φ(1/2T ) = p +
ν(p)
2T , (3)

where p denotes the spatial locations. The φ(1) can be obtained
using the recurrence:

φ(1/2t−1) = φ(1/2t) ◦ φ(1/2t). (4)

Thus, φ(1) = φ(1/2) ◦ φ(1/2).
In practice, a neural network first generates a displacement

field, which is then scaled by 1/2T to produce an initial de-
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Fig. 3: The overall framework of the proposed Transformer-based image registration model, TransMorph. The proposed hybrid Transformer-ConvNet network
takes two inputs: a fixed image and a moving image that is affinely aligned with the fixed image. The network generates a nonlinear warping function, which is then
applied to the moving image through a spatial transformation function. If an image pair has not been affinely aligned, an affine Transformer may be used prior to the
deformable registration (left dashed box). Additionally, auxiliary anatomical segmentations may be leveraged during training the proposed network (right dashed
box).

formation field φ(1/2T ). Subsequently, the squaring technique
(i.e., Eqn. 4) is applied recursively to φ(1/2T ) T times via a spa-
tial transformation function, resulting in a final diffeomorphic
deformation field φ(1). Despite the fact that diffeomorphisms
are theoretically guaranteed to be invertible, interpolation er-
rors can lead to invertibility errors that increase linearly with
the number of interpolation steps (Avants et al. 2008; Mok and
Chung 2020).

2.2. Self-attention Mechanism and Transformer

Transformer makes use of a self-attention mechanism that es-
timates the relevance of one input sequence to another via the
Query-Key-Value (QKV) model (Vaswani et al. 2017; Dosovit-
skiy et al. 2020). The input sequences often originate from the
flattened patches of an image. Let x be an image volume de-
fined over a 3D spatial domain (i.e., x ∈ RH×W×L). The image
is first divided into N flattened 3D patches xp ∈ RN×P3

, where
(H,W, L) is the size of the original image, (P, P, P) is the size
of each image patch, and N = HWL

P3 . Then, a learnable linear
embedding E is applied to xp, which projects each patch into a
D × 1 vector representation:

x̂e = [x1
pE; x2

pE; ...; xN
p E], E ∈ RP3×D (5)

where the dimension D is a user-defined hyperparemeter. Then,
a learnable positional embedding is added to x̂e so that the
patches can retain their positional information, i.e., xe = x̂e +

Epos, where Epos ∈ RN×D. These vector representations, of-
ten known as tokens, are subsequently used as inputs for self-
attention computations.

Self-attention. To compute self-attention (SA), xe ∈ RN×D is
encoded by U (i.e., a linear layer) to three matrix represen-
tations: Queries Q ∈ RN×Dk , Keys K ∈ RN×Dk , and Values
V ∈ RN×Dv . The scaled dot-product attention is given by:

[Q,K,V] = xeUq,k,v Uq,k,v ∈ RD×Dq,k,v ,

A = softmax(
QK>
√

Dk
) A ∈ RN×N ,

S A(xe) = AV,

(6)

where A is the attention weight matrix, each element of A repre-
sents the pairwise similarity between two elements of the input
sequence xe and their respective query and key representations.
In general, SA computes a normalized score for each input to-
ken based on the dot product of the Query and Key representa-
tions. The score is subsequently applied to the Value represen-
tation of the token, signifying to the network whether or not to
focus on this token.

Multi-head self-attention. A Transformer employs multi-head
self-attention (MSA) rather than a single attention function.
MSA is an extension of self-attention in which h self-attention
operations (i.e., “heads”) are processed in parallel, thereby ef-
fectively increasing the number of trainable parameters. Then,
the outputs of the SA operations are concatenated then pro-
jected onto a D-dimensional representation:

MS A(xe) =[S A1(xe); S A2(xe); ...; S Ah(xe)]UMS A, (7)

where UMS A ∈ Rh·Dh×D, and Dh is typically set to D/h in order
to keep the number of parameters constant before and after the
MSA operation.
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2.3. Bayesian Deep Learning

Uncertainty estimates help comprehend what a machine
learning model does not know. They indicate the likelihood that
a neural network may make an incorrect prediction. Because
most deep neural networks are incapable of providing an esti-
mate of the uncertainty in their output values, their predictions
are frequently taken at face value and thought to be correct.
Bayesian deep learning estimates predictive uncertainty, pro-
viding a realistic paradigm for understanding uncertainty within
deep neural networks (Gal and Ghahramani 2016). The uncer-
tainty caused by the parameters in a neural network is known as
epistemic uncertainty, which is modeled by placing a prior dis-
tribution (e.g., a Gaussian prior distribution: W ∼ N(0, I)) on
the parameters of a network and then attempting to capture how
much these weights vary given specific data. Recent efforts in
this area include the Bayes by Backprop (Blundell et al. 2015),
its closely related mean-field variational inference by assum-
ing a Gaussian prior distribution (Tölle et al. 2021), stochas-
tic batch normalization (Atanov et al. 2018), and Monte-Carlo
(MC) dropout (Gal and Ghahramani 2016; Kendall and Gal
2017). The applications of Bayesian deep learning in med-
ical imaging expands on image denoising (Tölle et al. 2021;
Laves et al. 2020b) and image segmentation (DeVries and Tay-
lor 2018; Baumgartner et al. 2019; Mehrtash et al. 2020). In
deep-learning-based image registration, the majority of meth-
ods provide a single, deterministic solution of the unknown ge-
ometric transformation. Knowing about epistemic uncertainty
helps determine if and to what degree the registration results
can be trusted and whether the input data is appropriate for the
neural network.

In general, two categories of registration uncertainty may
be modeled using the epistemic uncertainty of a deep learning
model: transformation uncertainty and appearance uncertainty
(Luo et al. 2019; Xu et al. 2022). Transformation uncertainty
measures the local ambiguity of the spatial transformation (i.e.,
the deformation), whereas appearance uncertainty quantifies
the uncertainty in the intensity values of registered voxels or
the volumes of the registered organs. Transformation uncer-
tainty estimates may be used for uncertainty-weighted registra-
tion (Simpson et al. 2011; Kybic 2009), surgical treatment plan-
ning, or directly visualized for qualitative evaluations (Yang
et al. 2017b). Appearance uncertainty may be translated into
dose uncertainties in cumulative dose for radiation or radiophar-
maceutical therapy (Risholm et al. 2011; Vickress et al. 2017;
Chetty and Rosu-Bubulac 2019; Gear et al. 2018). These regis-
tration uncertainty estimates also enable the assessment of oper-
ative risks and leads to better-informed clinical decisions (Luo
et al. 2019). Cui et al. (Cui et al. 2021) and Yang et al. (Yang
et al. 2017b) incorporated MC dropout layers in their registra-
tion network designs, which allows for the estimation of trans-
formation uncertainty by sampling multiple deformation field
predictions from the network.

The proposed image registration framework expands on these
ideas. In particular, a new registration framework is presented
that leverages a Transformer in the network design. We demon-
strate that this framework can be readily adapted to several ex-
isting techniques to allow diffeomorphism for image registra-

tion, and incorporate Bayesian deep learning to estimate regis-
tration uncertainty.

3. Methods

The conventional paradigm of image registration is shown in
Fig. 2. The moving and fixed images, denoted respectively as
Îm and I f , are first affinely transformed into a single coordinate
system. The resulting affine-aligned moving image is denoted
as Im. Subsequently, Im is warped to I f using a deformation
field, φ, generated by a DIR algorithm (i.e., Im ◦ φ). Fig. 3
presents an overview of the proposed method. Here, both the
affine transformation and the deformable registration are per-
formed using Transformer-based neural networks. The affine
Transformer takes Îm and I f as inputs and computes a set of
affine transformation parameters (e.g., rotation angle, transla-
tion, etc.). These parameters are used to affinely align Îm with I f

via an affine transformation function, yielding an aligned image
Im. Then, a DIR network computes a deformation field φ given
Im and I f , which warps Im using a spatial transformation func-
tion (i.e., Î f = Im ◦ φ). During training, the DIR network may
optionally include supplementary information (e.g., anatomical
segmentation). The network architectures, the loss and regular-
ization functions, and the variants of the method are described
in detail in the following sections.

Fig. 4: The framework of the proposed Transformer-based affine model.

3.1. Affine Transformation Network

Affine transformation is often used as the initial stage in im-
age registration because it facilitates the optimization of the fol-
lowing more complicated DIR processes (de Vos et al. 2019).
An affine network examines a pair of moving and fixed images
globally and produces a set of transformation parameters that
aligns the moving image with the fixed image. Here, the archi-
tecture of the proposed Transformer-based affine network is a
modified Swin Transformer (Liu et al. 2021a) that takes two 3D
volumes as the inputs (i.e., I f and Îm) and generates 12 affine
parameters: three rotation angles, three translation parameters,
three scaling parameters, and three shearing parameters. The
details and a visualization of the architecture are shown in Fig.
A.19 in the Appendix. We reduced the number of parameters in
the original Swin Transformer due to the relative simplicity of
affine registration. The specifics of the Transformer’s architec-
ture and parameter settings are covered in a subsequent section.
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Fig. 5: (a): Swin Transformer creates hierarchical feature maps by merging image patches. The self-attention is computed within each local 3D window (the
red box). The feature maps generated at each resolution are sent into a ConvNet decoder to produce an output. (b): The 3D cyclic shift of local windows for
shifted-window-based self-attention computation.

3.2. Deformable Registration Network

Fig. 1 shows the network architecture of the proposed
TransMorph. The encoder of the network first splits the input
moving and fixed volumes into non-overlapping 3D patches,
each of size 2×P×P×P, where P is typically set to 4 (Dosovit-
skiy et al. 2020; Liu et al. 2021a; Dong et al. 2021). We denote
the ith patch as xi

p, where i ∈ {1, ...,N} and N = H
P ×

W
P ×

L
P is the

total number of patches. Each patch is flattened and regarded as
a “token”, and then a linear projection layer is used to project
each token to a feature representation of an arbitrary dimension
(denoted as C):

z0 = [x1
pE; x2

pE; ...; xN
p E], (8)

where E ∈ R2P3×C denotes the linear projection, and the output
z0 has a dimension of N ×C.

Because the linear projection operates on image patches and
does not keep the token’s location relative to the image as a
whole, previous Transformer-based models often added a posi-
tional embedding to the linear projections in order to integrate
the positional information into tokens, i.e. z0 + Epos (Vaswani
et al. 2017; Dosovitskiy et al. 2020; Liu et al. 2021a; Dong
et al. 2021). Such Transformers were primarily designed for
image classification, where the output is often a vector describ-
ing the likelihood of an input image being classified as a certain
class. Thus, if the positional embedding is not employed, the
Transformer may lose the positional information. However, for
pixel-level tasks such as image registration, the network often
includes a decoder that generates a dense prediction with the
same resolution as the input or target image. The spatial cor-
respondence between voxels in the output image is enforced
by comparing the output with the target image using a loss
function. Any spatial mismatches between output and target
would contribute to the loss and be backpropagated into the
Transformer encoder. The Transformer should thereby inher-
ently capture the tokens’ positional information. In this work,
we observed, as will be shown in section 6.1.2, that positional
embedding is not necessary for image registration, and it only
adds extra parameters to the network without improving perfor-
mance.

Following the linear projection layer, several consecutive
stages of patch merging and Swin Transformer blocks (Liu

et al. 2021a) are applied on the tokens z0. The Swin Trans-
former blocks outputs the same number of tokens as the in-
put, while the patch merging layers concatenate the features
of each group of 2 × 2 × 2 neighboring tokens, thus they re-
duce the number of tokens by a factor of 2 × 2 × 2 = 8 (e.g.,
H×W×L×C −→ H

2 ×
W
2 ×

L
2 ×8C). Then, a linear layer is applied

on the 8C-dimensional concatenated features to produce fea-
tures each of 2C-dimension. After four stages of Swin Trans-
former blocks and three stages of patch merging in between the
Transformer stages (i.e., orange boxes in Fig. 1), the output di-
mension at the last stage of the encoder is H

32 ×
W
32 ×

L
32 × 8C.

The decoder consists of successive upsampling and convolu-
tional layers with the kernel size of 3 × 3. Each of the up-
sampled feature maps in the decoding stage was concatenated
with the corresponding feature map from the encoding path via
skip connections, then followed by two consecutive convolu-
tional layers. As shown in Fig. 1, the Transformer encoder
can only provide feature maps up to a resolution of H

P ×
W
P ×

L
P

owing to the nature of patch operation (denoted by the orange
arrows). Hence, Transformer may fall short of delivering high-
resolution feature maps and aggregating local information at
lower layers (Raghu et al. 2021). To address this shortcoming,
we employed two convolutional layers using the original and
downsampled image pair as inputs to capture local information
and generate high-resolution feature maps. The outputs of these
layers were concatenated with the feature maps in the decoder
to produce a deformation field. The output deformation field,
φ, was generated the application of sixteen 3 × 3 convolutions.
Except for the last convolutional layer, each convolutional layer
is followed by a Leaky Rectified Linear Unit (Maas et al. 2013)
activation. Finally, the spatial transformation function (Jader-
berg et al. 2015) is used to apply a nonlinear warp to the moving
image Im with the deformation field φ (or the displacement field
u) provided by the network.

In the next subsections, we discuss the Swin Transformer
block, the spatial transformation function, and the loss func-
tions in detail.

3.2.1. 3D Swin Transformer Block
Swin Transformer (Liu et al. 2021a) can generate hierarchi-

cal feature maps at various resolutions by using patch merging
layers, making it ideal for usage as a general-purpose back-



8 Junyu Chen et al. / Medical Image Analysis (2022)

bone for pixel-level tasks like image registration and segmen-
tation. Swin Transformer’s most significant component, apart
from patch merging layers, is the shifted window-based self-
attention mechanism. Unlike ViT (Dosovitskiy et al. 2020),
which computes the relationships between a token and all other
tokens at each step of the self-attention modules. Swin Trans-
former computes self-attention within the evenly partitioned
non-overlapping local windows of the original and the lower
resolution feature maps (as shown in Fig. 5 (a)). In contrast
to the original Swin Transformer, this work uses rectangular-
parallelepiped windows to accommodate non-square images,
and each has a shape of Mx × My × Mz. At each resolution,
the first Swin Transformer block employs a regular window
partitioning method, beginning with the top-left voxel, and the
feature maps are evenly partitioned into non-overlapping win-
dows of size Mx × My × Mz. The self-attention is then cal-
culated locally within each window. To introduce connections
between neighboring windows, the Swin Transformer uses a
shifted window design: in the successive Swin Transformer
blocks, the windowing configuration shifts from that of the pre-
ceding block, by displacing the windows in the preceding block
by (

⌊
Mx
2

⌋
×

⌊ My

2

⌋
×

⌊
Mz
2

⌋
) voxels. As illustrated by an example in

Fig. 5 (b), the input feature map has 4 × 8 × 12 voxels. With a
window size of 2 × 4 × 6, the feature map is evenly partitioned
into 2 × 2 × 2 = 8 windows in the first Swin Transformer block
(“Swin Block 1” in Fig. 5 (b)). Then, in the next block, the
windows are shifted by (

⌊
2
2

⌋
×

⌊
4
2

⌋
×

⌊
6
2

⌋
) = (1 × 2 × 3), and the

number of windows becomes 3 × 3 × 3 = 27. We extended the
original 2D efficient batch computation (i.e., cyclic shift) (Liu
et al. 2021a,b) to 3D and applied it to the 27 shifted windows,
keeping the final number of windows for attention computa-
tion at 8. With the windowing-based attention, two consecutive
Swin Transformer blocks can be computed as:

ẑ` = W-MSA(LN(z`−1)) + z`−1,

z` = MLP(LN(ẑ`)) + ẑ`,
ẑ`+1 = SW-MSA(LN(z`)) + z`,
z`+1 = MLP(LN(ẑ`+1)) + ẑ`+1,

(9)

where W-MSA and SW-MSA denote, respectively, window-
based multi-head self-attention and shifted-window-based
multi-head self-attention modules; MLP denotes the multi-layer
perceptron module (Vaswani et al. 2017); ẑ` and z` denote the
output features of the (S)W-MSA and the MLP module for
block `, respectively. The self-attention is computed as:

A(Q,K,V) = softmax(
QK>
√

d
+ B)V, (10)

where Q,K,V ∈ RMx My Mz×d are query, key, value matrices, d
denotes the dimension of query and key features, MxMyMz is
the number of tokens in a 3D window, and B represents the
relative position of tokens in each window. Since the relative
position between tokens along each axis (i.e., x, y, z) can only
take values from [−Mx,y,z+1,Mx,y,z−1], the values in B are taken
from a smaller bias matrix B̂ ∈ R(2Mx−1)×(2My−1)×(2Mz−1). For
the reasons given previously, we will show in section 6.1.2 that
positional bias B is not needed for the proposed network and

that it just adds extra parameters without improving registration
performance.

3.2.2. Loss Functions
The overall loss function for network training derives from

the energy function of traditional image registration algorithms
(i.e., Eqn. (1)). The loss function consists of two parts: one
computes the similarity between the deformed moving and the
fixed images, and another one regularizes the deformation field
so that it is smooth:

L(I f , Im, φ) = Lsim(I f , Im, φ) + λR(φ), (11)

where Lsim denotes the image fidelity measure, and R denotes
the deformation field regularization.

Image Similarity Measure. In this work, we experimented with
two widely-used similarity metric for Lsim. The first was the
mean squared error, which was the mean of the squared differ-
ence in voxel values between I f and Im:

MS E(I f , Im, φ) =
1
Ω

∑
p∈Ω

|I f (p) − [Im ◦ φ](p)|2, (12)

where p denotes the voxel location, and Ω represents the image
domain.

Another similarity metric used was the local normalized
cross-correlation between I f and Im:

LNCC(I f , Im, φ) =∑
p∈Ω

(∑
pi

( f (pi) − f̄ (p))([Im ◦ φ](pi) − [Īm ◦ φ](p))
)2(∑

pi
( f (pi) − f̄ (p))2

) (∑
pi

([Im ◦ φ](pi) − [Īm ◦ φ](p))2
) ,
(13)

where Ī f (p) and Īm(p) denotes the mean voxel value within the
local window of size n3 centered at voxel p. We used n = 9 in
the experiments.

Deformation Field Regularization. Optimizing the similarity
metric alone would encourage Im ◦ φ to be visually as close
as possible to I f . The resulting deformation field φ, however,
might not be smooth or realistic. To impose smoothness in the
deformation field, a regularizerR(φ) was added to the loss func-
tion. R(φ) encourages the displacement value in a location to be
similar to the values in its neighboring locations. Here, we ex-
perimented with two regularizers. The first was the diffusion
regularizer Balakrishnan et al. 2019:

Rdi f f usion(φ) =
∑
p∈Ω

‖∇u(p)‖2, (14)

where u(p) is the spatial gradients of the displacement field u.
The spatial gradients were approximated using forward differ-
ences, that is, ∂u(p)

∂{x,y,z} ≈ u(p{x,y,z} + 1) − u(p{x,y,z}).
The second regularizer was bending energy (Rueckert et al.

1999), which penalizes sharply curved deformations, thus, it
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may be helpful for abdominal organ registration. Bending en-
ergy operates on the second derivative of the displacement field
u, and it is defined as:

Rbending(φ) =
∑
p∈Ω

‖∇2u(p)‖2 =
∑
p∈Ω

[ (
∂2u(p)
∂x2

)2

+

(
∂2u(p)
∂y2

)2

+

(
∂2u(p)
∂z2

)2

+ 2
(
∂2u(p)
∂xz

)2

+ 2
(
∂2u(p)
∂xy

)2

+ 2
(
∂2u(p)
∂yz

)2 ]
,

(15)

where the derivatives were estimated using the same forward
differences that were used previously.

Auxiliary Segmentation Information. When the organ segmen-
tations of I f and Im are available, TransMorph may lever-
age this auxiliary information during training to improve the
anatomical mapping between Im◦φ and I f . A loss functionLseg

that quantifies the segmentation overlap is added to the overall
loss function (Eqn. 11):

L(I f , Im, φ) = Lsim(I f , Im, φ) + λR(φ) + γLseg(s f , sm, φ), (16)

where s f and sm represent, respectively, the organ segmentation
of I f and Im, and γ is a weighting parameter that controls the
strength ofLseg. In the field of image registration, it is common
to use Dice score (Dice 1945) as a figure of merit to quantify
registration performance. Therefore, we directly minimized the
Dice loss (Milletari et al. 2016) between sk

f and sk
m, where k

represents the kth structure/organ:

Dice(s f , sm, φ) = 1−

1
K

∑
k

2
∑

p∈Ω sk
f (p)[sk

m ◦ φ](p)∑
p∈Ω

(
sk

f (p)
)2

+
∑

p∈Ω
(
[sk

m ◦ φ](p)
)2 .

(17)

To allow backpropagation of the Dice loss, we used a method
similar to that described in (Balakrishnan et al. 2019), in which
we designed s f and sm as image volumes with K channels, each
channel containing a binary mask defining the segmentation of
a specific structure/organ. Then, sm ◦φ is computed by warping
the K-channel sm with φ using linear interpolation so that the
gradients of Lseg can be backpropagated into the network.

3.3. Probabilistic and B-spline Variants

In this section, we demonstrate that by simply altering the
decoder, TransMorph can be used in conjunction with the con-
cepts from prior research to ensure a diffeomorphic deforma-
tion such that the resulting deformable mapping is continu-
ous, differentiable, and topology-preserving. The diffeomor-
phic registration was achieved using the scaling-and-squaring
approach (described in section 2.1.2) with a stationary ve-
locity field representation (Arsigny et al. 2006). Two exist-
ing diffeomorphic models, VoxelMorph-diff (Dalca et al.
2019) and MIDIR (Qiu et al. 2021), have been adopted as
bases for the proposed TransMorph diffeomorphic variants,
designated by TransMorph-diff (section Appendix H) and

TransMorph-bspl (section Appendix I), respectively. The ar-
chitectures of the two variants are shown in Fig. 6. The detailed
derivation of these two variants are listed in Appendix.
TransMorph-diff was trained using the same loss func-

tions as VoxelMorph-diff (Dalca et al. 2019):

Lprob.(I f , Im, φu;ψ)

= −Eu∼qψ

[
log p(I f |u, Im)

]
+ KL

[
qψ(u|I f , Im)‖p(u)

]
=

1
2σ2 ‖I f − Im ◦ φu‖

2 +
1
2

[
tr(λDΣψ − logΣψ) + µ>ψΛuµψ

]
,

(18)

and when anatomical label maps are available:

Lprob. w/ aux.(I f , s f , Im, sm, φu;ψ)

=
1

2σ2 ‖I f − Im ◦ φu‖
2 +

1
2σ2

s
‖s f − sm ◦ φu‖

2

+
1
2

[
tr(λDΣψ − logΣψ) + µ>ψΛuµψ

]
.

(19)

However, it is important to note that in (Dalca et al. 2019), s f

and sm represent anatomical surfaces obtained from label maps.
In contrast, we directly used the label maps as s f and sm in this
work. They were image volumes with multiple channels, each
channel contained a binary mask defining the segmentation of
a certain structure/organ.

Fig. 6: The probabilistic and B-spline variants of TransMorph. (a): The archi-
tecture of the probabilistic diffeomorphic TransMorph. (b): The architecture
of the B-spline diffeomorphic TransMorph.

3.4. Bayesian Uncertainty Variant

In this section, we extend the proposed TransMorph to a
Bayesian neural network (BNN) using the variational infer-
ence framework with Monte Carlo dropout (Gal and Ghahra-
mani 2016), for which we refer readers to (Gal and Ghahra-
mani 2016; Yang et al. 2017a, 2016) for both theoretical
and technical details. We denoted the resulting model as
TransMorph-Bayes. In this model, Dropout layers were in-
serted into the Transformer encoder of the TransMorph archi-
tecture but not into the ConvNet decoder, in order to avoid im-
posing excessive regularity for the network parameters and thus
decreasing performance. We added a dropout layer after each



10 Junyu Chen et al. / Medical Image Analysis (2022)

Table 1: The ablation study of TransMorph models with skip connections and positional embedding. “Conv. skip.” denotes the skip-connections from convolutional
layers (indicated by green arrows in Fig. 1); “Trans. skip,” denotes the skip-connections from the Transformer blocks (indicated by orange arrows in Fig. 1); “lrn.
positional embedding” denotes the learnable positional embedding; “sin. positional embedding” denotes the sinusoidal positional embedding.

Model Conv. skip. Trans. skip. Parameters (M)
w/o conv. skip. X - 46.70
w/o Trans. skip. - X 41.55

w/o positional embedding X X 46.77
w/ shuffling X X 46.77

w/ rel. positional bias X X 46.77
w/ lrn. positional embedding X X 63.63
w/ sin. positional embedding X X 46.77

Table 2: The architecture hyperparameters of the TransMorph models used in the ablation study. “Embed. Dimension” denotes the embedding dimension, C, in
the very first stage (described in section 3.2); “Swin-T.” denotes Swin Transformer.

Model Embed. Dimension Swin-T. block numbers Head numbers Parameters (M)
TransMorph 96 {2, 2, 4, 2} {4, 4, 8, 8} 46.77

TransMorph-tiny 6 {2, 2, 4, 2} {4, 4, 8, 8} 0.24
TransMorph-small 48 {2, 2, 4, 2} {4, 4, 4, 4} 11.76
TransMorph-large 128 {2, 2, 12, 2} {4, 4, 8, 16} 108.34
VoxelMorph-huge - - - 63.25

fully connected layer in the MLPs (Eqn. 9) and after each self-
attention computation (Eqn. 10). Note that these are the loca-
tions where dropout layers are commonly used for Transformer
training. We set the dropout probability p to 0.15 to further
avoid the network imposing an excessive degree of regularity
on the network weights.

Both the transformation and appearance uncertainty can be
estimated as the variability from the predictive mean (i.e., the
variance), where the predictive mean of the deformation fields
and the deformed images can be estimated by Monte Carlo in-
tegration (Gal and Ghahramani 2016):

φ̂ =
1
T

T∑
t=1

φt, (20)

and

Î f =
1
T

T∑
t=1

Im ◦ φt. (21)

This is equivalent to averaging the output of T forward passes
through the network during inference, where φt represents the
deformation field produced by tth forward pass. The transfor-
mation and appearance uncertainty can be estimated using the
predictive variances of the deformation fields and the deformed
images, respectively, as:

Σ̂2
φ =

1
T

T∑
t=1

(
φt − φ̂ f

)2
, (22)

and

Σ̂2
f =

1
T

T∑
t=1

(
Im ◦ φt − Î f

)2
. (23)

3.4.1. Appearance uncertainty calibration
An ideal uncertainty estimate should be properly correlated

to the inaccuracy of the registration results; that is, a high un-

certainty value should indicate a large registration error, and
vice versa. Otherwise, doctors/surgeons may be misled by the
erroneous estimate of registration uncertainty and place unwar-
ranted confidence in the registration results, resulting in severe
consequences (Luo et al. 2019; Risholm et al. 2013, 2011). The
appearance uncertainty given by Eqn. 23 is expressed as the
variability from the mean model prediction. Such an appear-
ance uncertainty estimation does not account for the systematic
errors (i.e., bias) between the mean registration prediction and
the target image; therefore, a low uncertainty value given by
Eqn. 23 does not always guarantee an accurate registration re-
sult.

When the predicted uncertainty values closely corresponded
to the expected model error, the uncertainty estimates are con-
sidered to be well-calibrated (Laves et al. 2019; Levi et al.
2019). In an ideal scenario, the estimated registration uncer-
tainty should completely reflect the actual registration error. For
instance, if the predictive variance of a batch of registered im-
ages generated by the network is found to be 0.5, the expecta-
tion of the squared error should likewise be 0.5. Accordingly,
if the expected model error is quantified by MSE, then the per-
fect calibration of appearance uncertainty may be defined as the
following (Guo et al. 2017; Levi et al. 2019; Laves et al. 2020c):

EΣ̂2

[
‖Im ◦ φ − I f ‖

2|Σ̂2 = Σ2
]

= Σ2 ∀
{
Σ2 ∈ R|Σ2 ≥ 0

}
. (24)

In the conventional paradigm of Bayesian neural networks,
the uncertainty estimate is derived from the predictive variance
Σ̂2 relative to the predictive mean Î f as in Eqn. 23. However,
it can be shown that this predictive variance can be miscali-
brated as a result of overfitting the training dataset (as shown
in Appendix B). Therefore, the uncertainty values estimated
based on Σ̂2

f in Eqn. 23 may be biased. This bias must be
corrected in applications such as image denoising or classifi-
cation (Laves et al. 2019; Guo et al. 2017; Kuleshov et al. 2018;
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Phan et al. 2018; Laves et al. 2020c,a), such that the uncertainty
values closely reflect the expected error. In image registration,
however, the expected appearance error may be computed even
during the test time since the target image is always known.
Therefore, a perfectly calibrated appearance uncertainty quan-
tification may be achieved without additional effort. Here, we
propose to replace the predicted mean Î f with the target image
I f in Eqn. 23. Then, the appearance uncertainty is the equiva-
lent to the expected error:

Σ2
f = err(Im ◦ φ) =

1
T

T∑
t=1

(
Im ◦ φt − I f

)2
. (25)

A comparison between the two appearance uncertainty estimate
methods (i.e., Σ̂2

f and Σ2
f ) is shown later in this paper.

4. Experiments

4.1. Datasets and Preprocessing

Three datasets including over 1000 image pairs were used to
thoroughly validate the proposed method. The details of each
dataset are described in the following sections.

4.1.1. Inter-patient Brain MRI Registration
For the inter-patient brain MR image registration dataset, we

used a dataset of 260 T1–weighted brain MRI images acquired
at Johns Hopkins University. The images were anonymized and
acquired under IRB approval. The dataset was split into 182,
26, and 52 (7:1:2) volumes for training, validation, and test sets.
Each image volume was used as a moving image to form two
image pairs by randomly matching it to two other volumes in
the set (i.e., the fixed images). Then, the moving and fixed im-
ages were inverted to form another two image pairs, resulting
in four registration pairings of I f and Im. The final data com-
prises 768, 104, and 208 image pairs for training, validation,
and testing, respectively. FreeSurfer (Fischl 2012) was used to
perform standard pre-processing procedures for structural brain
MRI, including skull stripping, resampling, and affine transfor-
mation. The pre-processed image volumes were all cropped to
size of 160 × 192 × 224. Label maps including 30 anatomical
structures were obtained using FreeSurfer for evaluating regis-
tration performances.

4.1.2. Atlas-to-patient Brain MRI Registration
We used a publicly available dataset to evaluate the proposed

model with atlas-to-patient brain MRI registration task. A total
number of 576 T1–weighted brain MRI images from the Infor-
mation eXtraction from Images (IXI) database2 was used as the
fixed images. The moving image for this task was an atlas brain
MRI obtained from (Kim et al. 2021). The dataset was split into
403, 58, and 115 (7:1:2) volumes for training, validation, and
test sets. FreeSurfer was used to pre-process the MRI volumes.
We carried out the same pre-processing procedures we used for

2https://brain-development.org/ixi-dataset/

the previous dataset applied to the IXI dataset. All image vol-
umes were cropped to size of 160 × 192 × 224. Label maps
of 30 anatomical structures were used to evaluate registration
performances.

4.1.3. Learn2Reg OASIS Brain MRI Registration
We additionally evaluated TransMorph on a public regis-

tration challenge, OASIS (Marcus et al. 2007; Hoopes et al.
2021), obtained from the 2021 Learn2Reg challenge (Hering
et al. 2021) for inter-patient registration. This dataset contains
a total of 451 brain T1 MRI images, with 394, 19, and 38 im-
ages being used for training, validation, and testing, respec-
tively. FreeSurfer (Fischl 2012) was used to pre-process the
brain MRI images, and label maps for 35 anatomical structures
were provided for evaluation.

4.1.4. XCAT-to-CT Registration
Computerized phantoms have been widely used in the med-

ical imaging field for algorithm optimization and imaging sys-
tem validation (Christoffersen et al. 2013; Chen et al. 2019;
Zhang et al. 2017). The four-dimensional extended cardiac-
torso (XCAT) phantom (Segars et al. 2010) was developed
based on anatomical images from the Visible Human Project
data. While the current XCAT phantom3 can model anatomical
variations through organ and phantom scaling, it cannot com-
pletely replicate the anatomical variations seen in humans. As
a result, XCAT-to-CT registration (which can be thought of as
atlas-to-image registration) has become a key method for creat-
ing anatomically variable phantoms (Chen et al. 2020; Fu et al.
2021; Segars et al. 2013). This research used a CT dataset
from (Segars et al. 2013) that includes 50 non-contrast chest-
abdomen-pelvis (CAP) CT scans that are part of the Duke Uni-
versity imaging database. Selected organs and structures were
manually segmented in each patient’s CT scan. The structures
segmented included the following: the body outline, the bone
structures, lungs, heart, liver, spleen, kidneys, stomach, pan-
creas, large intestine, prostate, bladder, gall bladder, and thy-
roid. The manual segmentation was done by several medi-
cal students, and the results were subsequently corrected by
an experienced radiologist at Duke University. The CT vol-
umes have voxel sizes ranging from 0.625 × 0.625 × 5mm to
0.926× 0.926× 5mm. We used trilinear interpolation to resam-
ple all volumes to an identical voxel spacing of 2.5×2.5×5mm.
The volumes were all cropped and zero-padded to have a size of
160 × 160 × 160 voxels. The intensity values were first clipped
in the range of [−1000, 700] Hounsfield Units and then normal-
ized to the range of [0, 1]. The XCAT attenuation map was gen-
erated with a resolution of 1.1× 1.1× 1.1mm using the material
compositions and attenuation coefficients of the constituents at
120 keV. It was then resampled, cropped, and padded so that
the resulting volume matched the size of the CT volumes. The
XCAT attenuation map’s intensity values were also normal-
ized to be within a range of [0, 1]. The XCAT and CT images
were rigidly registered using the proposed affine network. The

3as of October, 2021

https://brain-development.org/ixi-dataset/
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dataset was split into 35, 5, and 10 (7:1:2) volumes for training,
validation, and testing. We conducted five-fold cross-validation
on the fifty image volumes, resulting in 50 testing volumes in
total.

4.2. Baseline Methods

We compared TransMorph to various registration methods
that have previously demonstrated state-of-the-art registration
performance. We begin by comparing TransMorph with four
non-deep-learning-based methods. The hyper-parameters of
these methods, unless otherwise specified, were empirically set
to balance the trade-off between registration accuracy and run-
ning time. The methods and their hyperparameter settings are
described below:

• SyN4(Avants et al. 2008): For both inter-patient and atlas-
to-patient brain MR registration tasks, we used the mean
squared difference (MSQ) as the objective function, along
with a default Gaussian smoothing of 3 and three scales
with 180, 80, 40 iterations, respectively. For XCAT-to-CT
registration, we used cross-correlation (CC) as the objec-
tive function, a Gaussian smoothing of 5 and three scales
with 160, 100, 40 iterations, respectively.
• NiftyReg5(Modat et al. 2010): We used the sum of

squared differences (SSD) as the objective function and
bending energy as a regularizer for all registration tasks.
For inter-patient brain MR registration, we empirically
used a regularization weighting of 0.0002 and three
scales with 300 iterations each. For atlas-to-patient brain
MR registration, the regularization weighting was set to
0.0006, and we used three scales with 500 iterations each.
For XCAT-to-CT registration, we used a regularization
weight of 0.0005 and five scales with 500 iterations each.
• deedsBCV6 (Heinrich et al. 2015): The objective function

was self-similarity context (SSC) (Heinrich et al. 2013b)
by default. For both inter-patient and atlas-to-patient brain
MR registration, we used the hyperparameter values sug-
gested in (Hoffmann et al. 2020) for neuroimaging, in
which the grid spacing, search radius, and quantization
step were set to 6 × 5 × 4 × 3 × 2, 6 × 5 × 4 × 3 × 2,
and 5 × 4 × 3 × 2 × 1, respectively. For XCAT-to-CT
registration, we used the default parameters suggested for
abdominal CT registration (Heinrich et al. 2015), where
the grid spacing, search radius, and quantization step were
8 × 7 × 6 × 5 × 4, 8 × 7 × 6 × 5 × 4, and 5 × 4 × 3 × 2 × 1,
respectively.
• LDDMM7 (Beg et al. 2005): MSE was used as the objective

function by default. For both inter-patient and atlas-to-
patient brain MR registration, we used the smoothing ker-
nel size of 5, the smoothing kernel power of 2, the match-
ing term coefficient of 4, the regularization term coefficient
of 10, and the iteration number of 500. For XCAT-to-CT

4https://github.com/ANTsX/ANTsPy
5https://www.ucl.ac.uk/medical-image-computing
6https://github.com/mattiaspaul/deedsBCV
7https://github.com/brianlee324/torch-lddmm

registration, we used the same kernel size, kernel power,
the matching term coefficient, and the number of iteration.
However, the regularization term coefficient was empiri-
cally set to 3.

Next, we compared the proposed method with several exist-
ing deep-learning-based methods. For a fair comparison, unless
otherwise indicated, the loss function (Eqn. 11) that consists
of MSE (Eqn. 12) and diffusion regularization (Eqn. 14) was
used for inter-patient brain MR registration, while we instead
used LNCC (Eqn. 13) for atlas-to-patient MRI registration. For
XCAT-to-CT registration, we used the loss function (Eqn. 16)
that consists of LNCC (Eqn. 13), bending energy (Eqn. 15), and
Dice loss (Eqn. 17). Auxiliary data (organ segmentation) was
used for XCAT-to-CT registration only. Recall that the hyper-
parameters λ and γ define, respectively, the weight for deforma-
tion field regularization and Dice loss. The detailed parameter
settings used for each method were as follows:

• VoxelMorph8 (Balakrishnan et al. 2018, 2019): We em-
ployed two variants of VoxelMorph, the second variant
doubles the number of convolution filters in the first vari-
ant; they are designated as VoxelMorph-1 and -2, respec-
tively. For inter-patient and atlas-to-patient brain MR reg-
istration, the regularization hyperparameter λ was set, re-
spectively, to 0.02 and 1, where these values were reported
as the optimal values in Balakrishnan et al. 2019. For
XCAT-to-CT registration, we set λ = γ = 1.
• VoxelMorph-diff9 (Dalca et al. 2019): For both inter-

patient and atlas-to-patient brain MR registration tasks, the
loss function Lprob. (Eqn. 18) was used with σ set to 0.01
and λ set to 20. For XCAT-to-CT registration, we used the
loss function Lprob.w/aux. (Eqn. 19) with σ = σs = 0.01
and λ = 20.
• CycleMorph10 (Kim et al. 2021): In CycleMorph, the hy-

erparameters α, β, and λ, correspond to the weights for cy-
cle loss, identity loss, and deformation field regularization.
For inter-patient brain MR registration, we set α = 0.1,
β = 0.5, and λ = 0.02. Whereas for atlas-to-patient brain
MR registration, we set α = 0.1, β = 0.5, and λ = 1. These
values were recommended in (Kim et al. 2021) as the op-
timal values for neuroimaging. For XCAT-to-CT registra-
tion, we modified the CycleMorph by adding a Dice loss
with a weighting of 1 to incorporate organ segmentation
during training, and we set α = 0.1 and β = 1. We ob-
served that the λ value of 1 suggested in (Kim et al. 2021)
yielded over-smoothed deformation field in our applica-
tion. Therefore, the value of λ was decreased to 0.1.
• MIDIR11 (Qiu et al. 2021): The same loss function and λ

value as VoxelMorph were used. In addition, the control
point spacing δ for B-spline transformation was set to 2 for
all tasks, which was shown to be an optimal value in Qiu
et al. 2021.

8http://voxelmorph.csail.mit.edu
9http://voxelmorph.csail.mit.edu

10https://github.com/boahK/MEDIA_CycleMorph
11https://github.com/qiuhuaqi/midir

https://github.com/ANTsX/ANTsPy
https://www.ucl.ac.uk/medical-image-computing
https://github.com/mattiaspaul/deedsBCV
https://github.com/brianlee324/torch-lddmm
http://voxelmorph.csail.mit.edu
http://voxelmorph.csail.mit.edu
https://github.com/boahK/MEDIA_CycleMorph
https://github.com/qiuhuaqi/midir
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To evaluate the proposed Swin-Transformer-based network
architecture, we compared its performance to existing
Transformer-based networks that achieved state-of-the-art per-
formance in other applications (e.g., image segmentation, ob-
ject detection, etc.). We customized these models to make them
suitable for image registration. They were modified to produce
3-dimensional deformation fields that warp the given moving
image. Note that the only change between the methods be-
low and VoxelMorph is the network architecture, with the spa-
tial transformation function, loss function, and network train-
ing procedures remaining the same. The first three models used
the hybrid Transformer-ConvNet architecture (i.e., ViT-V-Net,
PVT, and CoTr), while the last model used a pure Transformer-
based architecture (i.e., nnFormer). Their network hyperpa-
rameter settings were as follows:

• ViT-V-Net12 (Chen et al. 2021a): This registration net-
work was developed based on ViT (Dosovitskiy et al.
2020). We applied the default network hyperparameter
settings suggested in (Chen et al. 2021a).
• PVT13 (Wang et al. 2021c): The default settings were

applied, except that the embedding dimensions were to
be {20, 40, 200, 320}, the number of heads was set to
{2, 4, 8, 16}, and the depth was increased to {3, 10, 60, 3}
to achieve a comparable number of parameters to that of
TransMorph.
• CoTr14 (Xie et al. 2021): We used the default network set-

tings for all registration tasks.
• nnFormer15 (Zhou et al. 2021): Because nnFormer was

also developed on the basis of Swin Transformer, we ap-
plied the same Transformer hyperparameter values as in
TransMorph to make a fair comparison.

4.3. Implementation Details

The proposed TransMorph was implemented using Py-
Torch (Paszke et al. 2019) on a PC with an NVIDIA TITAN
RTX GPU and an NVIDIA RTX3090 GPU. All models were
trained for 500 epochs using the Adam optimization algorithm,
with a learning rate of 1 × 10−4 and a batch size of 1. The
brain MR dataset was augmented with flipping in random di-
rections during training, while no data augmentation was ap-
plied to the CT dataset. Restricted by the sizes of the im-
age volumes, the window sizes (i.e., {Mx,My,Mz}) used in
Swin Transformer were set to {5, 6, 7} for MR brain registra-
tion, {5, 5, 5} for XCAT-to-CT registration, and {}respectively.
The Transformer hyperparameter settings for TransMorph are
listed in the first row of Table. 2. Note that the variants of
TransMorph (i.e., TransMorph-Bayes, TransMorph-bspl,
and TransMorph-diff) share the same Transformer settings as
TransMorph. The hyperparameter settings for each proposed
variant are described as follows:

12https://bit.ly/3bWDynR
13https://github.com/whai362/PVT
14https://github.com/YtongXie/CoTr
15https://github.com/282857341/nnFormer

• TransMorph: The identical loss function parameters as
VoxelMorph were used for all tasks.
• TransMorph-Bayes: The identical loss function parame-

ters as VoxelMorph were applied here for all tasks. The
dropout probability was set to 0.15.
• TransMorph-bspl: The loss function settings for all

tasks were the same ones as those used in VoxelMorph.
The control point spacing, δ, for B-spline transformation
was also set to 2, the same value used in MIDIR.
• TransMorph-diff: We applied the same loss function

parameters as those used in VoxelMorph-diff.

The affine model presented in this work comprises of a com-
pact Swin Transformer. The Transformer parameter settings
were identical to TransMorph except that the embedding di-
mension was set to be 12, the numbers of Swin Transfomer
block were set to be {1, 1, 2, 2}, and the head numbers were set
to be {1, 1, 2, 2}. The resulting affine model has a total number
of 19.55 millions of parameters and a computational complexity
of 0.4 GMacs. Because the MRI datasets were affinely aligned
as part of the preprocessing, the affine model was only used in
the XCAT-to-CT registration.

4.4. Additional Studies
In this section, we present experiments designed to verify

the effect of the various Transformer modules in TransMorph

architecture. Specifically, we carried out two additional stud-
ies of network components and model complexity. They are
performed using the validation datasets from the three registra-
tion tasks, and the system-level comparisons are reported on
test datasets. The following subsections provide detailed de-
scriptions of these studies.

4.4.1. Ablation study on network components
We begin by examining the effects of several network compo-

nents on registration performance. Table 1 lists three variants of
TransMorph that either keep or remove the network’s long skip
connections or the positional embeddings in the Transformer
encoder. In “w/o conv. skip.”, the long skip connections from
the two convolutional layers were removed (including two con-
volutional layers), which are the green arrows in Fig. 1. In
“w/o trans. skip.”, the long skip connections coming from the
Swin Transformer blocks were removed, which are the orange
arrows in Fig. 1. We claimed in section 3.2 that the positional
embedding (i.e., Epos in Eqn. 8) was not a necessary element
of TransMorph, because the positional information of tokens
can be learned implicitly in the network via the consecutive up-
sampling in the decoder and backpropagating the loss between
output and target. Here, we conducted experiments to study
the effectiveness of positional embeddings. Table 1 also lists
five variants of TransMorph that either keep or remove the po-
sitional embeddings in the Transformer encoder. In the third
variation, ”w/o positional embedding”, we did not employ any
type of positional embedding. In the fourth variant, “w/ shuf-
fling”, we did not employ any positional embedding but instead
randomly shuffled the positions of the tokens (i.e., the dimen-
sion N of z in Eqn. 8 and 9) just before the self-attention cal-
culation. Following the self-attention calculation, the positions

 https://bit.ly/3bWDynR
https://github.com/whai362/PVT
https://github.com/YtongXie/CoTr
https://github.com/282857341/nnFormer
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Fig. 7: The number of parameters in each deep-learning-based model. The
values are in units of millions of parameters.

are permuted back into their original order. This way, the self-
attention modules in the Transformer encoder are truly invariant
to the order of the tokens. In the fifth variant, “w/ rel. positional
bias”, we used the relative positional bias in the self-attention
computation (i.e. B in Eqn. 10) as used in the Swin Trans-
former (Liu et al. 2021a). In the second to last variant, “w/ lrn.
positional embedding”, we added the same learnable positional
embedding to the patch embeddings at the start of the Trans-
former encoder as used in the ViT (Dosovitskiy et al. 2020)
while keeping the relative positional bias. In the last variant,
“w/ sin. positional embedding”, we substituted the learnable
positional embedding with a sinusoidal positional embedding,
the same embedding used in the original Transformer (Vaswani
et al. 2017), which hardcodes the positional information in the
tokens.

4.4.2. Model complexity study
The impact of model complexity on registration performance

was also investigated in this paper. Table 2 listed the parameter
settings and the number of trainable parameters of four vari-
ants of the proposed TransMorph model. In the base model,
TransMorph, the embedding dimension C was set to 96, and
the number of Swin Transformer blocks in the four stages of
the encoder was set to 2, 2, 4, and 2, respectively. Addi-
tionally, we introduced TransMorph-tiny, TransMorph-small,
and TransMorph-large, which are about 1/200×, 1/4×, and
2× the model size of TransMorph. Finally, we compared our
model to a customized VoxelMorph (denoted VoxelMorph-
huge), which has a comparable parameter size to that of
TransMorph w/ lrn. positional embedding. Specifically, we
maintained the same number of layers in VoxelMorph-huge as
in VoxelMorph, but increased the number of convolution ker-
nels in each layer. As a result, VoxelMorph-huge has 63.25
million trainable parameters.

4.5. Evaluation Metrics
The registration performance of each model was evaluated

based on the volume overlap between anatomical/organ seg-
mentation, which was quantified using the Dice score (Dice

1945). We averaged the Dice scores of all anatomical/organ
structures for all patients. The mean and standard deviation of
the averaged scores were compared across various registration
methods.

To quantify the regularity of the deformation fields, we also
reported the percentages of non-positive values in the deter-
minant of the Jacobian matrix on the deformation fields (i.e.,
|Jφ| ≤ 0).

Additionally, for XCAT-to-CT registration, we used the
structural similarity index (SSIM) (Wang et al. 2004) to quan-
tify the structural difference between the deformed XCAT and
the target CT images. The mean and standard deviation of the
SSIM values of all patients were reported and compared.

5. Results

5.1. Inter-patient Brain MRI Registration
The top-left panel of Fig. 8 shows the qualitative re-

sults of a sample slice for inter-patient brain MRI registra-
tion. The scores in blue, orange, green, and pink correspond
to ventricles, third ventricle, thalami, and hippocampi, respec-
tively. Additional qualitative comparisons across all methods
are shown in Fig. C.20 in Appendix C. Among the proposed
models, diffeomorphic variants (i.e., TransMorph-diff and
TransMorph-bspl) generated smoother displacement fields,
with TransMorph-bspl producing the smoothest deformations
inside the brain area. On the other hand, TransMorph and
TransMorph-Bayes showed better qualitative results (high-
lighted by the yellow arrows) with higher Dice scores for the
delineated structures.

The quantitative evaluations are shown in Table 3. The re-
sults presented in the table show that the proposed method,
TransMorph, achieved the highest mean Dice score of 0.745.
Although the diffeomorphic variants produced slightly lower
Dice scores than TransMorph, they still outperformed the ex-
isting registration methods and generated almost no foldings
(i.e., ∼ 0% of |Jφ| ≤ 0) in the deformation fields. By
comparison, TransMorph improved Dice score by >0.2 when
compared to VoxelMorph and CycleMorph. We found that
the Transformer-based models (i.e., TransMorph, ViT-V-Net,
PVT, CoTr, and nnFormer) generally produced better Dice
scores than the ConvNet-based models. Note that even though
ViT-V-Net had almost twice the number of the trainable pa-
rameters (as shown in Fig. 7), TransMorph still outperformed
all the Transformer-based models (including ViT-V-Net) by at
least 0.1 in the Dice score, demonstrating Swin-Transformer’s
superiority over other Transformer architectures. When we
conducted hypothesis testing on the results using the paired
t-test with Bonferroni correction Armstrong 2014 (i.e., divid-
ing the p-values by 13, the total number of the paired t-
tests performed), the p-values between the best performing
TransMorph variant (i.e., TransMorph) and all other methods
were p � 0.0005.

Figs. C.21 and C.22 show additional Dice results for
a variety of anatomical structures, with Fig. C.21 com-
paring TransMorph to current registration techniques (both
optimization- and learning-based methods), and Fig. C.22 com-
paring the Dice scores between the Transformer-based models.
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Table 3: Quantitative evaluation results of the inter-patient (i.e., the JHU dataset)
and the atlas-to-patient (i.e., the IXI dataset) brain MRI registration. Dice score
and percentage of voxels with a non-positive Jacobian determinant (i.e., folded
voxels) are evaluated for different methods. The bolded numbers denote the high-
est scores, while the italicized ones indicate the second highest.

Inter-patient MRI Atlas-to-patient MRI
Model DSC % of |Jφ | ≤ 0 DSC % of |Jφ | ≤ 0
Affine 0.572±0.166 - 0.386±0.195 -
SyN 0.729±0.127 <0.0001 0.645±0.152 <0.0001

NiftyReg 0.723±0.131 0.061±0.093 0.645±0.167 0.020±0.046
LDDMM 0.716±0.131 <0.0001 0.680±0.135 <0.0001

deedsBCV 0.719±0.130 0.253±0.110 0.733±0.126 0.147±0.050
VoxelMorph-1 0.718±0.134 0.426±0.231 0.729±0.129 1.590±0.339
VoxelMorph-2 0.723±0.132 0.389±0.222 0.732±0.123 1.522±0.336

VoxelMorph-diff 0.715±0.137 <0.0001 0.580±0.165 <0.0001
CycleMorph 0.719±0.134 0.231±0.168 0.737±0.123 1.719±0.382

MIDIR 0.710±0.132 <0.0001 0.742±0.128 <0.0001
ViT-V-Net 0.729±0.128 0.402±0.249 0.734±0.124 1.609±0.319

PVT 0.729±0.130 0.427±0.254 0.727±0.128 1.858±0.314
CoTr 0.725±0.131 0.415±0.258 0.735±0.135 1.292±0.342

nnFormer 0.729±0.128 0.399±0.234 0.747±0.135 1.595±0.358

TransMorph-Bayes 0.744±0.125 0.389±0.241 0.753±0.123 1.560±0.333
TransMorph-diff 0.730±0.129 <0.0001 0.594±0.163 <0.0001
TransMorph-bspl 0.740±0.123 <0.0001 0.761±0.122 <0.0001

TransMorph 0.745±0.125 0.396±0.240 0.754±0.124 1.579±0.328

Table 4: Quantitative evaluation results of XCAT-to-CT registration. Dice score
of 16 organs, percentage of voxels with a non-positive Jacobian determinant (i.e.,
folded voxels), and SSIM are evaluated for different methods. The bolded num-
bers denote the highest scores, while the italicized ones indicate the second high-
est.

Model DSC % of |Jφ | ≤ 0 SSIM
w/o registration 0.220±0.242 - 0.576±0.071

Affine Transformer 0.330±0.291 - 0.751±0.018
SyN 0.498±0.342 0.001±0.002 0.894±0.021

NiftyReg 0.488±0.333 0.025±0.046 0.886±0.027
LDDMM 0.519±0.265 0.006±0.007 0.874±0.031

deedsBCV 0.568±0.306 0.126±0.123 0.863±0.029
VoxelMorph-1 0.532±0.313 2.275±1.283 0.899±0.027
VoxelMorph-2 0.548±0.317 1.696±0.909 0.910±0.027

VoxelMorph-diff 0.526±0.330 <0.0001 0.911±0.020
CycleMorph 0.528±0.321 3.263±1.188 0.909±0.024

MIDIR 0.551±0.303 <0.0001 0.896±0.022
ViT-V-Net 0.582±0.311 2.109±1.032 0.915±0.020

PVT 0.516±0.321 2.939±1.162 0.900±0.027
CoTr 0.550±0.313 1.530±1.052 0.905±0.029

nnFormer 0.536±0.315 1.371±0.620 0.902±0.024

TransMorph-Bayes 0.594±0.313 1.475±0.857 0.919±0.024
TransMorph-diff 0.541±0.324 <0.0001 0.910±0.025
TransMorph-bspl 0.575±0.311 <0.0001 0.908±0.025

TransMorph 0.604±0.314 1.679±0.772 0.918±0.023

Fig. 8: Qualitative results of TransMorph (2nd column) and its Bayesian- (3rd column), probabilistic- (4th column), and B-spline (5th column) variants. Top-left &
Top-right panels: Results of inter-patient and atlas-to-patient brain MRI registration. The blue, orange, green, and pink contours define, respectively, the ventricles,
third ventricle, thalami, and hippocampi. Bottom panel: Results of XCAT-to-CT registration. The blue, orange, green, and pink contours define, respectively, the
liver, heart, left lung, and right lung. The second row in both panels exhibits the displacement fields u, where spatial dimension x, y, and z is mapped to each of the
RGB color channels, respectively. The [p, q] in color bars denotes the magnitude range of the fields.
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Fig. 9: Quantitative evaluation results of the additional studies performed on the validation datasets of the two brain MRI and XCAT-to-CT registration tasks.

Table 5: Quantitative evaluation results for brain MRI registration of the OASIS
dataset from the 2021 Learn2Reg challenge task 3. Dice score of 35 cortical and
subcortical brain structures, the 95th percentile percentage of the Hausdorff dis-
tance, and the standard deviation of the logarithm of the Jacobian determinant
(SDlogJ) of the displacement field are evaluated for different methods. The val-
idation results came from the challenge’s leaderboard, whereas the test results
came directly from the challenge’s organizers. The bolded numbers denote the
highest scores, while the italicized ones indicate the second highest.

Validation
Model DSC HdDist95 SDlogJ

Lv et al. 2022 0.827±0.013 1.722±0.318 0.121±0.015
Siebert et al. 2021 0.846±0.016 1.500±0.304 0.067±0.005

Mok and Chung 2021 0.861±0.015 1.514±0.337 0.072±0.007
VoxelMorph-huge 0.847±0.014 1.546±0.306 0.133±0.021

TransMorph 0.858±0.014 1.494±0.288 0.118±0.019
TransMorph-Large 0.862±0.014 1.431±0.282 0.128±0.021

Test
Model DSC HdDist95 SDlogJ
Initial 0.56 3.86 -

Lv et al. 2022 0.80 1.77 0.08
Siebert et al. 2021 0.81 1.63 0.07

Mok and Chung 2021 0.82 1.67 0.07
TransMorph 0.816 1.692 0.124

TransMorph-Large 0.820 1.656 0.124

5.2. Atlas-to-patient Brain MRI Registration

The top-right panel of Fig. 8 shows the qualitative results of
the TransMorph variants on a sample MRI slice for atlas-to-
patient brain MRI registration. As highlighted by the yellow
arrows, the diffeomorphic variants resulted in the deformed im-
ages that were less comparable to the fixed image in terms of vi-
sual appearance. In contrast, the variants without diffeomorphic
deformations (i.e., TransMorph and TransMorph-Bayes) pro-
duced better qualitative results, with the sulci in the deformed
atlas images more closely matching those in the fixed image.
Additional qualitative comparisons are shown in Fig. D.23 in
Appendix D, where we observed that all the learning-based

methods yielded more detailed and precise deformation fields
than the conventional methods. This might be owing to the high
parameterization of the DNNs, which enables the modeling of
more complicated deformations.

Table. 3 shows the quantitative evaluation results of the atlas-
to-patient registration. The highest mean Dice score of 0.761
was achieved by the proposed TransMorph-bspl with nearly
no folded voxels. The second best Dice score of 0.754 was
achieved by both TransMorph and TransMorph-Bayes, while
TransMorph-Bayes yielded a smaller standard deviation. In
comparison to these TransMorph variants, TransMorph-diff
produced a lower Dice score of 0.594. However, note
that this score is still higher (∼0.02) than the one pro-
duced by VoxelMorph-diff, which is the base model of
TransMorph-diff. Additionally, we observed that the reg-
istration methods that used MSE for training or optimization
resulted in lower Dice scores (i.e., SyN, NiftyReg, LDDMM,
VoxelMorph-diff, and TransMorph-diff). This was most
likely due to the significant disparity in the intensity values of
brain sulci between the atlas and the patient MRI images. As
seen in the top-right panel of Fig 8, the sulci in the atlas image
(i.e., the moving image) exhibited low-intensity values compa-
rable to the background, but the sulci in the patient MRI im-
age had intensity values more comparable to the neighboring
gyri. Thus, the discrepancies in the sulci intensity values may
account for the majority of the MSE loss during training, com-
pelling the registration models to fill the sulci in the atlas image
with other brain structures (as shown in Fig. D.23, these models
produced significantly smaller sulci than models trained with
LNCC), thereby limiting registration performance. The paired
t-tests with Bonferroni correction (Armstrong 2014) revealed
the p-values of p � 0.0005 between the best performing model
(i.e., TransMorph-bspl) and all other methods. This indicates
that the proposed method outperformed the comparative regis-
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tration methods and network architectures.
A detailed breakdown of Dice scores for a variety of anatom-

ical structures is shown in Figs. D.24 and D.25 in Appendix D.

5.3. Learn2Reg OASIS Brain MRI Registration

Table 5 shows the quantitative results of the validation
and test sets of the challenge. The validation scores of
the various methods were obtained from the leaderboard of
the challenge, whilst the test scores were obtained directly
from the organizers. TransMorph performed similarly to the
best-performing method (LapIRN (Mok and Chung 2021)) of
the challenge on the validation set, where TransMorph-large
achieved the best mean Dice score of 0.862 and mean Hd-
Dist95 of 1.431. VoxelMorph-huge performed significantly
poor than TransMorph, with a p-value less than 0.01 from
paired t-test. This reveals the superiority of Transformer-
based architecture over ConvNet despite having a comparable
number of parameters. On the test set, the TransMorph and
TransMorph-large achieved comparable mean Dice score to
that of LapIRN. Despite the comparable performance, LapIRN
produced much more uniform deformation fields as measured
by SDlogJ. In a separate study, we presented a simple exten-
sion of TransMorph that significantly outperformed LapIRN

while maintaining smooth deformation fields. We direct inter-
ested readers to (Chen et al. 2022) for further details. More-
over, LapIRN employed a multiresolution framework in which
three ConvNet registration backbones were involved in gener-
ating deformation fields at three different scales. TransMorph,
however, operated on a single resolution. We underline that
TransMorph is a registration backbone, and that it may be eas-
ily adapted to LapIRN or any advanced registration frameworks.

5.4. XCAT-to-CT Registration

The bottom panel of Fig. 8 shows the qualitative results for a
representative CT slice. The blue, orange, green, and pink lines
denote the liver, heart, left lung, and right lung, respectively,
while the bottom values show the corresponding Dice scores.
Similar to the findings in the previous sections, TransMorph
and TransMorph-Bayes gave more accurate registration re-
sults (highlighted by the yellow arrows and the delineated struc-
tures), while the diffeomorphic variants produced smoother de-
formations. Additional qualitative comparisons are shown in
Fig. E.26 in Appendix E. It is possible to see certain artifacts
in the displacement field created by nnFormer (as shown in
Fig. E.26); these were most likely caused by the patch oper-
ations of the Transformers used in its architecture. nnFormer

is a near-convolution-free model (convolutional layers are em-
ployed only to form displacement fields). In contrast to the
relatively small displacements in brain MRI registration, dis-
placements in XCAT-to-CT registration may exceed the patch
size. Consequently, the lack of convolutional layers to refine
the stitched displacement field patches may have resulted in
artifacts. Four example coronal slices of the deformed XCAT
phantoms generated by various registration methods are shown
in Fig. E.27 in Appendix E.

The quantitative evaluation results are presented in Table 4.
They include Dice scores for all organs and scans, the percent-
age of non-positive Jacobian determinants, and the structural
similarity index (SSIM) (Wang et al. 2004) between the de-
formed XCAT phantom and the target CT scan. The window
size used in SSIM was set to 7. Without registration or affine
transformation, a Dice score of 0.22 and an SSIM of 0.576
demonstrate the large dissimilarity between the original XCAT
phantom and patient CT scans. The Dice score and SSIM in-
creased to 0.33 and 0.751, respectively, after aligning the XCAT
and patient CT using the proposed affine Transformer. Among
the traditional registration methods, deedsBCV, which was ini-
tially designed for abdominal CT registration-based segmenta-
tion (Heinrich et al. 2015), achieved the highest Dice score of
0.568, which is even higher than most of the learning-based
methods. Among the learning-based methods, Transformer-
based models outperformed ConvNet-based models on aver-
age, which is consistent with the findings from the brain MR
registration tasks. The p-values from the paired t-tests with
Bonferroni correction (Armstrong 2014) between TransMorph

and all non-TransMorph methods were p � 0.05. The pro-
posed TransMorph models yielded the highest Dice and SSIM
scores of all methods in general, with the best Dice of 0.604
given by TransMorph and the best SSIM of 0.919 given by
TransMorph-Bayes. The diffeomorphic variants produced
lower Dice and SSIM scores as a consequence of not having
any folded voxels in the deformation.

Figs. E.28 and E.29 show additional boxplots of Dice
scores on the various abdominal organs, with Fig. E.28 com-
paring TransMorph to current registration techniques (both
optimization- and learning-based methods), and Fig. E.29 com-
paring the Dice scores between the Transformer-based models.

5.5. Ablation Studies
Inter-patient Registration. The first figure in the first row of
Fig. 9 shows the violin plots of Dice scores from the ablation
study on the validation dataset of inter-patient brain MR regis-
tration. When evaluating the effectiveness of skip connections,
we observed that the skip connections from both the convolu-
tion and Transformer layers improved registration performance.
TransMorph scored a mean Dice of 0.753 after the skip con-
nections from the convolutional layers were removed. How-
ever, the score decreased to 0.740 when the skip connections
from the Transformer blocks were removed. In comparison,
the skip connections from convolutional layers were less effec-
tive, with a mean Dice improvement of 0.003. Note that the
TransMorph with shuffling, and with and without positional
embeddings all generated comparable mean Dice scores and
violin plots, suggesting that positional embedding may not be
necessary.

Atlas-to-patient Registration. The violin plots from the abla-
tion study on the atlas-to-patient registration task are shown in
the second figure in the first row of Fig. 9. Comparable vio-
lin plots with similar mean Dice scores around 0.752 were ob-
served with and without the skip connections from the convolu-
tional layers. When the skip connections from the Transformer
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Table 6: System-level comparison of various TransMorph designs and the customized VoxelMorph on the validation and test datasets of inter-patient MRI, atlas-
to-patient MRI, and XCAT-to-CT registration tasks. ”Val. DSC” denotes the Dice scores on the validation dataset; “Test DSC” denotes the system-level comparison
of the Dice scores on the test dataset. The bolded numbers denote the highest scores, while the italicized ones indicate the second highest.

Inter-patient MRI Atlas-to-patient MRI XCAT-to-CT
Model Val. DSC Test DSC Val. DSC Test DSC Val. DSC Test DSC

w/o conv. skip. 0.753±0.119 0.743±0.124 0.752±0.129 0.754±0.125 0.591±0.319 0.586±0.314
w/o Trans. skip. 0.740±0.124 0.727±0.130 0.734±0.127 0.736±0.125 0.578±0.315 0.588±0.314

w/ shuffling 0.755±0.119 0.744±0.125 0.751±0.127 0.754±0.123 0.588±0.314 0.597±0.310
w/ rel. positional bias 0.755±0.120 0.742±0.125 0.751±0.131 0.753±0.127 0.593±0.315 0.592±0.319

w/ lrn. positional embedding 0.755±0.120 0.744±0.125 0.749±0.131 0.751±0.129 0.594±0.315 0.586±0.315
w/ sin. positional embedding 0.755±0.120 0.744±0.125 0.752±0.126 0.754±0.123 0.583±0.320 0.572±0.317

TransMorph 0.756±0.119 0.745±0.125 0.753±0.127 0.754±0.124 0.600±0.317 0.604±0.314
TransMorph-tiny 0.710±0.132 0.696±0.140 0.545±0.180 0.543±0.180 0.502±0.311 0.501±0.312
TransMorph-small 0.751±0.121 0.740±0.126 0.746±0.128 0.747±0.125 0.572±0.320 0.570±0.318
TransMorph-large 0.757±0.119 0.746±0.124 0.753±0.130 0.754±0.128 0.608±0.305 0.611±0.311
VoxelMorph-huge 0.755±0.119 0.744±0.124 0.750±0.133 0.751±0.130 0.543±0.320 0.550±0.319

Fig. 10: Model computational complexity comparisons represented in Giga multiply–accumulate operations (GMACs). Greater values imply a greater degree of
computational complexity. These values were obtained using an input image of size 160 × 192 × 224.

Fig. 11: Examples of feature maps in TransMorph’s skip connections. Eight feature maps are randomly selected from the feature maps associated with each skip
connection. Left panel: Example 2D slices of source and target images (i.e., Im and I f ), which are used as inputs to TransMorph. Middle panel: Feature maps in the
skip connections of the two convolutional layers (denoted by the green arrows in Fig. 1). Right panel: Feature maps in the skip connections of the Swin Transformer
blocks (denoted by the orange arrows in Fig. 1).

blocks were removed, the Dice score decreased by 0.019, re-
flecting the effectiveness of these skip connections. Compara-
ble violin plots and mean Dice scores around 0.750 were ob-

served with shuffling, and with and without various positional
embeddings, confirming that TransMorph’s performance is un-
affected by whether or not positional embedding was used.
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XCAT-to-CT Registration. The second to last figure in the first
row of Fig. 9 shows the violin plots from the validation dataset
of XCAT-to-CT registration task. Without the skip connections
from the convolution and Transformer layers, the Dice scores
dropped by 0.013 and 0.016, respectively, when compared to
TransMorph, further supporting the observation that skip con-
nections can improve performance. Learnable and relative po-
sitional embeddings yielded comparable mean Dice scores for
XCAT-to-CT registration in the range of 0.593. When sinu-
soidal positional embedding was employed, a score of 0.583
was attained, whereas a score of 0.588 was produced when the
positions were shuffled. With a score of 0.600, without us-
ing positional embeddings yielded a slight improvement among
other variants. The effect of each component is addressed in
depth in the Discussion section (section 6.1).

In conclusion, the results from all three tasks indicate that us-
ing skip connections improves performance. The results of the
three tasks (i.e., inter-patient, atlas-to-patient, and XCAT-to-CT
registration tasks) reveal that with and without using positional
embedding or even randomly shuffling the token positions pro-
duced similar results. Additionally, we applied the TranMorph
models to the test datasets of the three registration tasks for
system-level comparisons, and the results are shown in the up-
per panel of Table. 6. The scores on the test datasets followed
the same trend as those on the validation datasets, where the
positional embeddings had an insignificant influence on regis-
tration performance.

5.6. Computational Complexity

The barplot in the left panel of Fig. 10 shows the com-
putational complexity comparisons between the deep-learning-
based registration models. The plot was created using an in-
put image with a resolution of 160 × 192 × 224, the same
size as the brain MRI images. The numbers were expressed in
Giga multiply-accumulate operations (GMACs), with a higher
value indicating a more computationally expensive model that
may also be more memory intensive. The proposed model,
TransMorph, and its Bayesian variant, TransMorph-Bayes,
had a moderate computational complexity with 687 GMACs
which is much less than CoTr and CycleMorph. In practice,
the GPU memory occupied during training for TransMorph

was about 15 GiB with a batch size of 1 and an input im-
age size of 160 × 192 × 224. The diffeomorphic variants,
TransMorph-diff and TransMorph-bspl, had 281 and 454
GMACs, which are comparable to that of the conventional
ConvNet-based registration models, VoxelMorph-1 and -2. In
practice, they occupied approximately 11 GiB of GPU memory
during training, which is a size that can be readily accommo-
dated by the majority of modern GPUs. In terms of the number
of parameters, all ConvNet-based models had fewer than 1M
network parameters (as shown in Fig. 7); yet their GMACs (i.e.,
computational complexity) were comparable to TransMorph,
but their registration performances were significantly inferior.
Transformer-based models were all of large scale, with more
than 30M parameters. Notably, ViT-V-Net and PVT had
around 2× and 1.5×more parameters than TransMorph, never-
theless TransMorph outperformed them by a significant margin

on all of the evaluated registration tasks. This demonstrates that
the success of TransMorph owes not just to the large model
size but also to the architecture itself.

Fig. 9 shows the quantitative results of TransMorph models
with various architectural settings and the customized ConvNet-
based model VoxelMorph-huge on the validation datasets of
the three registration datasets. When parameter size is the
only variable in TransMorph models, there is a strong corre-
lation between model complexity (as shown in the right panel
of Fig. 10) and registration performance. TransMorph-tiny
produced the lowest mean Dice of 0.710, 0.545, and 0.502
on the validation set of the three registration tasks, respec-
tively. The Dice score steadily improves as the complexity
of the model increases. Note that for inter-patient and atlas-
to-patient brain MRI registration (the first and second figures
in the bottom row of Fig. 9), the improvement in mean Dice
score from TransMorph to TransMorph-large were mostly un-
der 0.01 but the latter was almost twice as computationally
costly (as shown in the right panel of Fig. 10). The customized
ConvNet-based model, VoxelMorph-huge, had the comparable
number of parameters as TransMorph. However, it achieved
slightly lower mean Dice scores than those of TransMorph

for the JHU and IXI brain MR registration tasks, and signif-
icantly lower scores for OASIS brain MR and the XCAT-to-
CT registration task. This further indicates the architectural
advantages of TransMorph for image registration. A signifi-
cant disadvantage of VoxelMorph-huge was its computational
complexity, with 3656 GMACs (as seen in the right panel of
Fig. 10), it was nearly five times as computationally expen-
sive as TransMorph, making it memory-intensive (∼ 22 GiB
for a patch size of 1 during training) and slow to train in prac-
tice. However, TransMorph was able to accommodate a larger
number of parameters without significantly increasing compu-
tational complexity. The promising performances brought by
the larger scale of parameters demonstrate the superior scal-
ing property of Transformer-based models as described in (Zhai
et al. 2022; Liu et al. 2022). The TranMorph models with dif-
ferent model parameter settings and VoxelMorph-huge were
applied to the test datasets for system-level comparisons, and
the results are shown in the bottom panel of Table. 6.

6. Discussion

6.1. Network Components in TransMorph

6.1.1. Skip Connections
As previously shown in section 5.5, skip connections may

aid in enhancing registration accuracy. In this section, we give
further insight into the skip connections’ functionality.

Fig. 11 shows some example feature maps in each skip con-
nection (a full feature map visualization is shown in Fig. G.31
in Appendix). Specifically, the left panel shows sample slices of
the input volumes; the center panel illustrates selected feature
maps in the skip connections of the convolutional layers, and
the right panel illustrates selected feature maps in the skip con-
nections of the Swin Transformer blocks. As seen from these
feature maps that the Swin Transformer blocks provided more
abstract information (right panel in Fig. 11), in comparison to
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Fig. 12: Qualitative impact of skip connections on the deformation fields. The
spatial dimension x, y, and z in the displacement field is mapped to each of
the RGB color channels, respectively. The [p, q] in color bars denotes the
magnitude range of the fields.

the convolutional layers (middle panel in Fig. 11). Since a
Transformer divides an input image volume into patches to cre-
ate tokens for self-attention operations (as described in section
3.2), it can only deliver information up to a certain resolution,
which is often a factor of the patch size lower than the original
resolution (i.e., H

P ×
W
P ×

L
P , and P = 4 in our case). On the

other hand, the convolutional layers resulted in higher resolu-
tion feature maps with more detailed and human-readable in-
formation (e.g., edge and boundary information). Certain fea-
ture maps even revealed distinctions between the moving and
fixed images (highlighted by the red boxes). Fig. 12 shows the
qualitative comparisons between the proposed model with and
without a specific type of skip connection. As seen by the mag-
nified areas, TransMorph with both skip connection types pro-
vided a more detailed and accurate displacement field. There-
fore, adding the skip connections from the convolutional layers
is still recommended, although the actual Dice improvement
were subtle on the validation datasets (0.003 for inter-patient
brain MRI, 0.001 for atlas-to-patient brain MRI, and 0.009 for
XCAT-to-CT registration).

Fig. 13: Example slice of the positional embeddings used in TransMorph. Left
panel: Sinusoidal positional embedding. Right panel: Learnable positional em-
bedding. Tiles in both panels show the cosine similarities between the position
embedding of the token with the indicated row and column and the position
embeddings of all other tokens.

6.1.2. Positional Embedding

Transformers in computer vision were initially designed for
image classification tasks (Dosovitskiy et al. 2020; Liu et al.
2021a; Dong et al. 2021; Wang et al. 2021c). Such a Trans-
former produces a condensed probability vector that is not in
the image domain but instead a description of the likelihood of
being a certain class. The loss calculated based on this vec-
tor does not backpropagate any spatial information into the net-
work. Thus, it is critical to encode positional information on the
patched tokens; otherwise, as the network gets deeper, Trans-
former would lose track of the tokens’ locations relative to the
input image, resulting in unstable training and inferior predic-
tions. However, for pixel-level tasks like image registration, the
condensed features generated by Transformers are often sub-
sequently expanded using a decoder whose output is an image
with the same resolution as the input and target images. Any
spatial mismatching between the output and target contributes
to the loss, which is then backpropagated throughout the net-
work. As a result, the Transformer implicitly learns the posi-
tional information of tokens, thus obviating the need for posi-
tional embedding. In this work, we compared the registration
performance of TransMorph and TransMorph with positional
embedding on brain MRI and XCAT-to-CT registration. The re-
sults shown in section 5.5 indicated that positional embedding
did not improve registration performance; rather, it introduced
more parameters into the network. In this section, we discuss
the positional embeddings in further detail.

Three positional embeddings were studied in this paper: si-
nusoidal (Vaswani et al. 2017), learnable (Dosovitskiy et al.
2020), and relative (Liu et al. 2021a) embeddings, which are
also the major types of positional embedding. In sinusoidal po-
sitional embedding, the position of each patched token is rep-
resented by a value drawn from a predetermined sinusoidal sig-
nal according to the token’s position relative to the input im-
age. Whereas with learnable positional embedding, the network
learns the representation of the token’s location from the train-
ing dataset rather than giving a hardcoded value. The relative
positional bias hardcodes the relative position relations between
any two tokens in the dot product of the query and key represen-
tations (i.e., B in Eqn. 10). To validate that the network learned
the positional information, Dosovitskiy et al. 2020 computed
the cosine similarities between a learned embedding of a token
and that of all other tokens. The obtained similarity values were
then used to form an image. If positional information is learned,
the image should reflect increased similarities at the token’s and
nearby tokens’ positions. Here, we computed the images of
cosine similarities for both sinusoidal and learnable positional
embeddings used in this work. The left and right panels in Fig.
13 show the images of cosine similarities. These images were
generated based on an input image size of 160 × 192 × 224 and
a patch size of 4 × 4 × 4 (resulting in 40 × 48 × 56 patches).
Each image has a size of 40 × 48 representing an image of
cosine similarities in the plane of z = 28 (i.e., the middle
slice). There should have been a total of 40 × 48 images in
each panel. However, for better visualization, just a few im-
ages were shown here. The images were chosen with step sizes
of 5 and 8 in x and y direction, respectively, resulting in 6 × 5
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Fig. 14: Comparisons of the appearance uncertainty estimates derived from the predictive variance and the predicted model error. Left panel: Calibration plots and
uncertainty calibration error (UCE) for TransMorph-Bayes on two inter-patient brain MR test sets (top), two atlas-to-patient brain MR test sets (middle), and two
XCAT-to-CT test sets (bottom). The blue lines represent the results obtained using the uncertainty estimate Σ̂2

f . The dashed lines represent the perfect calibration,

which are the results achieved when the uncertainty estimate is Σ2
f or err(Im ◦ φ) (i.e., the expected model error). The values are obtained from 10 repeated runs,

and the shaded regions represent the standard deviation. Right panel: Visualization of the registration uncertainty on an inter-patient brain MRI test set (i.e., a-f),
an atlas-to-patient brain MRI test set (i.e., g-l), and a CT test set (i.e., m-r). (a), (g), & (m): Moving image. (b), (h), & (n): Fixed image. (c), (i), & (o): Deformed
moving image. (d), (j), & (p): Per-pixel uncertainty, represented by Σ2

f , overlays the deformed image. (e), (k), & (q): Per-pixel uncertainty given by Σ2
f (i.e., the

proposed method). (f), (l), & (r): Per-pixel uncertainty given by Σ̂2
f . The yellow arrows highlight sites where Σ2

f identifies registration failures but Σ̂2
f does not.

images in each panel. As seen from the left panel, the images
of sinusoidal embeddings exhibit a structured pattern, showing
a high degree of correlation between tokens’ relative locations
and image intensity values. Note that the brightest pixel in each
image represents the cosine similarity between a token’s posi-
tional embedding and itself, which reflects the token’s actual
location relative to all other tokens. The similarity then grad-
ually decreases as it gets farther away from the token. On the
other hand, images generated with learnable embeddings (right
panel of Fig. 13) lack such structured patterns, implying that
the network did not learn the positional information associated
with the tokens in the learnable embeddings. To further demon-
strate that the network implicitly learned the positional informa-
tion, we randomly shuffled the token positions when computing

self-attention during training and testing. As a result, the self-
attention modules could not explicitly perceive input tokens’
positional information. However, as seen from the Dice scores
in Fig. 9, regardless of shuffling and which positional embed-
ding was employed, the mean Dice scores and violin plots were
quite comparable to those produced without positional embed-
ding. Thus, the findings confirmed that TransMorph learned
the positional information of the tokens implicitly and that the
learnable, sinusoidal, and relative positional embeddings were
redundant in the model and had a negligible effect on registra-
tion performance.
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Fig. 15: Example ERFs of VoxelMorph and the proposed Transformer-based model TransMorph. The top row shows the ERF slices (i.e., y = 80) at each stage
of the network on an input image size of 160 × 160 × 160. For a consistent comparison of ERFs between VoxelMorph and TransMorph, the ERFs at 1/2 of
VoxelMorph and 1/32 resolution of TransMorph were omitted.

6.2. Uncertainty Quantification of TransMorph-Bayes

As previously mentioned in section 3.4, the appearance un-
certainty estimates produced by the predictive variance (Eqn.
23) were actually miscalibrated, meaning that the uncertainty
values did not properly correlate to predicted model errors since
variance was computed using the predictive mean instead of tar-
get image I f . We proposed to directly use the expected model
error to express appearance uncertainty since the target image is
available at all times in image registration. Thus, the resulting
appearance uncertainty estimate is perfectly calibrated. In this
section, we examine how the proposed and existing methods
differ in their estimates of appearance uncertainty.

To quantify the calibration error, we used the Uncertainty
Calibration Error (UCE) introduced in (Laves et al. 2020a),
which is calculated on the basis of the binned difference be-
tween the expected model error (i.e., E

[
(Im ◦ φ − I f )2

]
) and the

uncertainty estimation (e.g., Σ̂2
f in Eqn. 23 or Σ2

f in Eqn. 25).
We refer the interested reader to the corresponding references
for further details about UCE. The plots in the left panel of Fig.
14 exhibit the calibration plots and UCE obtained on four repre-
sentative test sets. All results were based on a sample size of 25
(i.e., T = 25 in Eqn. 21, 23, and 25) from 10 repeated runs. The
blue lines show the results produced with the Σ̂2

f and the shaded
regions represent the standard deviation from the 10 runs, while
the dashed black lines indicate the perfect calibration achieved
with the proposed method. Notice that the uncertainty values
obtained using Σ̂2

f did not match well to the expected model er-
ror; in fact, they were consistently being underestimated (for
reasons described in section 3.4.1). In comparison, the pro-
posed method enabled perfect calibration with UCE = 0 since
its uncertainty estimate equaled the expected model error. In
the right panel of Fig. 14, we show the visual comparisons of
the uncertainty derived from Σ2

f and Σ̂2
f . When we compare ei-

ther (e) to (f) or (k) to (l), we see that the former (i.e., (e) and
(k)) captured more registration failures than the latter (as high-
lighted by the yellow arrows), indicating a stronger correlation
between deformation uncertainty and registration failures. This
is thus further evidence that the proposed method provides the
perfect uncertainty calibration.

Despite the promising results, there are some limitations of
using σ f to estimate appearance uncertainty. In this work,

we modeled σ f as E
[
(Im ◦ φ − I f )2

]
, which is the MSE of the

Monte Carlo sampled registration outputs relative to the fixed
image. MSE, on the other hand, is not necessarily the opti-
mal metric for expressing the expected error. In multi-modal
registration instances like PET to CT or MRI to CT registra-
tion, MSE is anticipated to be high, given the vast difference
in image appearance and voxel values across modalities. Thus,
if MSE is employed to quantify the appearance uncertainty in
these instances, the uncertainty values will be dominated by the
squared bias (i.e., (Î f − I f )2 in Eqn. B.3), resulting in an inef-
fective uncertainty estimate. In these instances, the predicted
variance may be a more appropriate choice for appearance un-
certainty quantification.

Additional results for both appearance and transformation
uncertainty estimations are shown in Fig. F.30 in Appendix.
Observably, the two uncertainty measures provide estimates
that are substantially different, with appearance uncertainty val-
ues being high in locations with substantial appearance mis-
matches and transformation uncertainty values being high in
regions with large deformations and generally constant inten-
sity values.

6.3. Comparison of Effective Receptive Fields

We demonstrate in this section that the effective receptive
fields (ERFs) of Transformer-based models are larger than that
of ConvNet-based models and spans the whole spatial domain
of an image. We used the definition of ERF introduced in (Luo
et al. 2016), which quantifies the amount of influence that each
input voxel has on the output of a neural network. In the next
paragraph, we briefly discuss the computation of ERF and rec-
ommend interested readers to the reference for further informa-
tion.

Assume the voxels in the input image Im and the output dis-
placement field u are indexed by (i, j, k), with an image size of
160 × 160 × 160 (i.e., the size of CT scans used in this work),
the center voxel is located at (80, 80, 80). ERF quantifies how
much each Im(i, j, k) contributes to the center voxel of the dis-
placement field, i.e. u(80, 80, 80). This is accomplished using
the partial derivative ∂u(80, 80, 80)/∂Im(i, j, k), which indicates
the relative relevance of Im(i, j, k) to u(80, 80, 80). To obtain
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Fig. 16: The loss landscapes of MIDIR, VoxelMorph-2, VoxelMorph-huge, and TransMorph, where the loss function is composed of LNCC and diffusion
regularizer. TransMorph yielded a much flatter landscape that those of ConvNet-based models.

this partial derivative, we set the error gradient to:

∂`

∂u(i, j, k)
=

1, for (i, j, k) = (80, 80, 80)
0, otherwise

, (26)

where ` denotes an arbitrary loss function. Then this gradi-
ent is propagated downward from u to the input Im, where the
resulting gradient of Im represents the desired partial derivative
∂u(80, 80, 80)/∂Im(i, j, k). This partial derivative is independent
of the input and loss function and is only a function of the net-
work architecture and the index (i, j, k), which adequately de-
scribes the distribution of the effective receptive field.

A comparison of the ERFs of VoxelMorph and TransMorph
is shown in Fig. 15. Note that the other ConvNet-based models
were omitted because they adopted a similar network architec-
ture as VoxelMorph (e.g., CycleMorph and MIDIR). Due to
the locality of convolution operations, VoxelMorph’s ERF at
each stage (top row in Fig. 15) was highly localized, partic-
ularly in the encoding stages (i.e., 1/4, 1/8, and 1/16 resolu-
tion). Even at the end of the network, the theoretical recep-
tive field of VoxelMorph encompassed the entire image; yet,
its ERF emphasized only a small portion of the image. In con-
trast, the ERFs of the proposed TransMorph were substantially
larger than those of VoxelMorph at each stage, and the ERFs
in the decoding stage covered the entire image (bottom row in
Fig. 15). The ERFs reveal that ConvNet-based architectures
can only perceive a portion of the input image, particularly dur-
ing the encoding stages, indicating that they cannot explicitly
comprehend the spatial relationships between distant voxels.
For tasks that require large deformations, ConvNets may fall
short of establishing accurate voxel correspondences between
the moving and fixed images, which is essential for image reg-
istration. On the other hand, TransMorph adopts substantially
large kernels at the encoding stages leading to substantially
large ERFs throughout the network thanks to the self-attention
mechanism of the Transformer.

6.4. Comparison of Displacement Magnitudes

As demonstrated in section 6.3, TransMorph had substan-
tially larger effective receptive fields than VoxelMorph, which
might be beneficial for capturing semantic information that is
necessary for coping with large deformations (Ha et al. 2020).

In this section, we provide more evidence that Transformer-
based models are more capable of producing larger deforma-
tions. We used 115 test volumes from the IXI dataset to
generate histograms of displacement magnitudes in millime-
ters. Fig. 17 shows histograms of the displacement mag-
nitudes for the various methods. The models that produced
dense displacement fields are shown for fair comparisons. Note
that VoxelMorph and CylceMorph are ConvNet-based mod-
els, whereas the other models are Transformer-based. All mod-
els were trained under the identical setting (e.g., loss functions,
number of epochs, optimizers, etc.), where the only variable
was the network architecture. As indicated by the histograms,
all Transformer-based models had much more larger displace-
ments than ConvNet-based models. The displacement distri-
butions of ConvNet-based models had a mode near 0 and had
more smaller displacements. We additionally showed the his-
tograms of VoxelMorph-huge and TransMorph-small, the for-
mer of which had 63.25M parameters and the latter of which
had 11.76M parameters. Despite having around 6× more pa-
rameters, VoxelMorph-huge still exhibited smaller displace-
ments than TransMorph-small. This further indicates that the
larger displacements produced by TransMorph were not a con-
sequence of an increase in the number of parameters but rather
the network architecture. Given the above-demonstrated im-
proved registration performance of the Transformer-based mod-
els, these histograms indicate that in cases where larger dis-
placements are required, the Transformer-based models will
likely provide better registration.

6.5. Comparison of Loss Landscapes
In this section, the loss landscapes of TransMorph and

ConvNet-based models are compared. We adopted the loss
landscape visualization method described in (Li et al. 2018;
Goodfellow et al. 2014; Im et al. 2016), in which a set of pre-
trained model parameters (denoted as θ) are perturbed in two
random directions (denoted as δ and η) with step sizes of α and
β to acquire loss values at different locations. The loss land-
scape was plotted based on the function of the form:

f (α, β) = L(θ + αδ + βη), (27)

where L denotes the loss function made up of LNCC and dif-
fusion regularizer. We averaged the loss landscapes of ten sam-
ples from the validation set of the atlas-to-patient registration
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Fig. 17: Histograms of the displacement magnitudes in millimeters. These histograms were generated using 115 test volumes from the IXI dataset. The displacement

magnitude is computed as
√

d2
x + d2

y + d2
z , where d{x, y, z} denotes the displacement in x, y, and z directions. The median displacement magnitude is shown in the

upper right corner of each plot. To provide fair comparisons, only models that produce dense displacements are shown here. VoxelMorph and CycleMorph are
ConvNet-based models, whereas the other models are Transformer-based.

Fig. 18: Validation Dice scores for inter-patient brain MRI registration during training. The validation dataset comprises 104 image pairings that were not included
in the training or testing set.

task to obtain the final 3D contour plot for each model. For
comparison between ConvNet-based models and TransMorph,
the loss landscapes of VoxelMorph, MIDIR, and TransMorph

were created as shown in Fig. 16. TransMorph produced a
substantially flatter loss landscape than that of the ConvNet-
based models. This observation is consistent with the findings
given in (Park and Kim 2022), which suggest that Transform-
ers tend to promote flatter loss landscapes. Many studies have
demonstrated that a flatter landscape results in improved perfor-
mance and better generalizability (Park and Kim 2022; Keskar
et al. 2016; Santurkar et al. 2018; Foret et al. 2020; Li et al.
2018). The flatter landscape of TransMorph further demon-
strates the advantages of Transformer-based models for image
registration.

6.6. Convergence and Speed
The left panel of Fig. 18 shows the validation dice scores

of the learning-based methods during training. In comparison
to other methods, the proposed TransMorph achieved > 0.7
in Dice within the first 20 epochs, showing that it learned the
spatial correspondence between image pairs quicker than the
competing models. Notably, TransMorph consistently out-
performed the other Transformer-based models while having a

comparable number of parameters and computational complex-
ity. This implied Swin Transformer architecture was more ef-
fective than other Transformers, resulting in a performance im-
provement for TransMorph. On average, Transformer-based
models provided better validation scores than ConvNet-based
models, with the exception of CoTr, whose validation results
were volatile during training (as seen from the orange curve in
Fig. 18). The performance of CoTr may be limited by its ar-
chitecture design, which substitutes a Transformer for the skip
connections and bottleneck of a U-shaped CovnNet. As a re-
sult, it lacks the direct flow of features learned during the en-
coding stage to the layers creating the registration, making it
difficult to converge. The right panel of Fig. 18 shows the
training curves of the TransMorph variants and the customized
VoxelMorph-huge. As described in (Im et al. 2016; Sutskever
et al. 2013; Darken and Moody 1991), the training curve of a
deep learning model consists of two phases: a “transient” phase
followed by a “minimization” phase, where the former identi-
fies the neighborhood of local minima and the latter seeks the
local minima inside that neighborhood. As seen in the figure,
TransMorph variants had shorter “transient” phases than that of
VoxelMorph-huge, indicating that they identified the local min-
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Model Training (min/epoch) Inference (sec/image)
SyN - 192.140

NiftyReg - 30.723
LDDMM - 66.829

deedsBCV - 31.857
VoxelMorph-1 8.75 0.380
VoxelMorph-2 9.40 0.430
VoxelMorph-diff 4.20 0.049
VoxelMorph-huge 28.50 1.107

CycleMorph 41.90 0.281
MIDIR 4.05 1.627

ViT-V-Net 9.20 0.197
PVT 13.80 0.209
CoTr 17.10 0.372

nnFormer 6.35 0.105
TransMorph-Bayes 22.60 7.739
TransMorph-diff 7.35 0.099
TransMorph-bspl 10.50 1.739

TransMorph 14.40 0.329

Table 7: Average training and inference time for methods used in this work.
Note that SyN, NiftyReg, and deedsBCV were applied using CPUs, while
LDDMM and the learning-based methods were implemented on GPU. Inference
time was averaged based on 40 repeated runs.

ima neighborhood more quickly. A fast convergent algorithm is
often preferred since it not only saves time but also computing
resources and costs. There have been many efforts to acceler-
ate the convergence rate of deep learning models (Darken and
Moody 1991; Looney 1996; Zeiler et al. 2013; Smith and Topin
2019). TransMorph tends to accelerate convergence rate com-
pared to ConvNet-based models, which promotes its potential
of faster training using fewer epochs, saving time and reducing
the carbon footprint.

Table 7 compares the training time in min per epoch
(min/epoch) and inference time in seconds per image
(sec/image) among the methods used in this paper. Note that
SyN, NiftyReg, and deedsBCV packages are all CPU-based,
while LDDMM and the deep-learning-based methods are all GPU-
based. The speed was calculated using an input image size of
160 × 192 × 224, which corresponds to the size of the brain
MRI scans. The training time per epoch was computed based
on 768 training image pairs. The most and second most time-
consuming methods to train are two ConvNet-based methods,
CycleMorph and the customized VoxelMorph-huge, which re-
quired approximately (41.90min × 500)/(60min × 24hr) ≈ 15
days and (28.50min × 500)/(60min × 24hr) ≈ 10 days for
500 epochs of training, respectively. CycleMorph was time-
consuming because the cycle-consistent training virtually trains
four networks simultaneously in a single epoch. Whereas the
training of VoxelMorph-huge was slowed down by the exten-
sive convolution operations. The proposed TransMorph has
a moderate training speed, roughly 1.5× that of VoxelMorph-
2 but 0.5× that of the customized VoxelMorph-huge. In
terms of inference time, learning-based models undoubtedly
operated orders of magnitudes faster than traditional registra-
tion methods. Note that TransMorph is about 3× faster than
VoxelMorph-huge during inference. These finds are propor-
tional to the calculated computational complexity as shown
in the barplot on the left in Fig. 10. Among the learning-
based models, TransMorph-Bayes required the highest infer-

ence time. However, the time required is due to the sampling of
T = 25 images for a single prediction and uncertainty estima-
tion.

6.7. Limitations
There are some limitations to our work. First, rather than do-

ing extensive grid searches for optimal hyperparameters for the
baseline methods, the hyperparameters are either determined
empirically or based on the values suggested in the original pa-
per. Due to the time required to train some of the baseline meth-
ods and the limited memory available on the GPU, we were un-
able to afford the intensive grid search. Moreover, because this
study introduced a generic network architecture for image regis-
tration, we concentrated on architectural comparison rather than
on selecting optimal hyperparameters for loss functions or com-
plex training methods. However, the proposed TransMorph ar-
chitecture is readily adaptable using either the cycle-consistent
training method used by CycleMorph (Kim et al. 2021) or the
symmetric training method proposed in (Mok and Chung 2020).
Additionally, the proposed network may be used in conjunction
with any registration loss function.

In the future, we will investigate alternative loss functions,
such as mutual information, in an effort to expand the potential
of the proposed method for multi-modal registration tasks.

7. Conclusion

In this paper, we introduced TransMorph, a novel model for
unsupervised deformable image registration. TransMorph is
built on Transformer, which is well-known for its capability
to establish long-range spatial correspondence between image
voxels, making TransMorph a strong candidate for image reg-
istration tasks.

Two variants of TransMorph are proposed, which pro-
vide topology-preserved deformations. Additionally, we in-
troduced Bayesian deep learning to the Transformer encoder
of TransMorph, enabling deformation uncertainty estimation
without degrading registration performance.

We evaluated TransMorph on the task of inter-patient brain
MR registration and a novel task of phantom-to-CT registration.
The results revealed that TransMorph achieved superior reg-
istration accuracy than various traditional and learning-based
methods, demonstrating its effectiveness for medical image reg-
istration.
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Appendix

Appendix A. Affine Network Architecture

Fig. A.19: Visualization of the proposed Swin-Transformer-based affine network. This network outputs three rotation, three translation, three scaling, and three
shearing parameters for rigid registration. The embedding dimension C in the network was set to 12.

Appendix B. Miscalibration in Predictive Variance

The expected model error (characterized by MSE) is defined as:

err(Im ◦ φ) = E
[
(Im ◦ φ − I f )2

]
=

1
T

T∑
t=1

(
Im ◦ φt − I f

)2
, (B.1)

where t represents the tth sample from a total number of T samples. We denote Id = Im ◦ φ for convenience, and it can be shown
that:

E
[
(Id − I f )2

]
= E

[
(Id − E[Id] + E[Id] − I f )2

]
= E

[
(Id − E[Id])2

]
+

(
E[Id] − I f

)2
+ 2(E[Id] − I f )E [Id − E[Id]]

= E
[
(Id − E[Id])2

]
+

(
E[Id] − I f

)2
.

(B.2)

Therefore,

err(Im ◦ φ) =
1
T

T∑
t=1

(
Im ◦ φt − I f

)2

=
1
T

T∑
t=1

Im ◦ φt −
1
T

T∑
t=1

Im ◦ φt

2

+

 1
T

T∑
t=1

Im ◦ φt − I f

2

= Σ̂2
f +

(
Î f − I f

)2
,

(B.3)

where Î f − I f is referred to as the bias between the predictive mean Î f and the target image I f . Due to the problem of overfitting
the training set in supervised algorithms (e.g., deep learning) (Bishop 2006), this bias may be less noticeable on training dataset
but more noticeable on test images, which is a phenomenon referred to as the bias-variance tradeoff (Friedman 2017). As a
consequence, the predictive variance Σ̂2

f is systematically smaller than the expected error err(Im ◦ φ), resulting in miscalibrated
uncertainty estimations.
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Appendix C. Additional Results for Inter-patient Brain MRI Registration

Fig. C.20: Additional qualitative comparison of various registration methods on the inter-patient brain MR registration task. The first row shows the deformed
moving images, the second row shows the deformation fields, and the last row shows the deformed grids. The spatial dimension x, y, and z in the displacement field
is mapped to each of the RGB color channels, respectively. The [p, q] in color bars denotes the magnitude range of the fields.
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Fig. C.21: Quantitative comparison of the various registration methods on the inter-patient brain MR registration task. Boxplots showing Dice scores for different
brain MR substructures using the proposed TransMorph and existing image registration methods.

Fig. C.22: Quantitative comparison of the Transformer-based models on the inter-patient brain MR registration task. Boxplots showing Dice scores for different
brain MR substructures using the proposed TransMorph, the variants of TransMorph, and other Transformer architectures.
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Appendix D. Additional Results for Atlas-to-patient Brain MRI Registration

Fig. D.23: Additional qualitative comparison of various registration methods on the atlas-to-patient brain MR registration task. The first row shows the deformed
moving images, the second row shows the deformation fields, and the last row shows the deformed grids. The spatial dimension x, y, and z in the displacement field
is mapped to each of the RGB color channels, respectively. The [p, q] in color bars denotes the magnitude range of the fields.
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Fig. D.24: Quantitative comparison of the various registration methods on the atlas-to-patient brain MR registration task. Boxplots showing Dice scores for different
brain MR substructures using the proposed TransMorph and existing image registration methods.

Fig. D.25: Quantitative comparison of the Transformer-based models on the atlas-to-patient brain MR registration task. Boxplots showing Dice scores for different
brain MR substructures using the proposed TransMorph, the variants of TransMorph, and other Transformer architectures.
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Appendix E. Additional Results for XCAT-to-CT Registration

Fig. E.26: Additional qualitative comparison of various registration methods on the XCAT-to-CT registration task. The first row shows the deformed moving images,
the second row shows the deformation fields, and the last row shows the deformed grids. The spatial dimension x, y, and z in the displacement field is mapped to
each of the RGB color channels, respectively. The [p, q] in color bars denotes the magnitude range of the fields.
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Fig. E.27: Additional coronal slices of the deformed XCAT phantom generated by various registration methods.
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Fig. E.28: Quantitative comparison of various registration methods on the XCAT-to-CT registration task. Boxplots showing Dice scores for different organs in CT
obtained using the proposed TransMorph and existing image registration methods.

Fig. E.29: Quantitative comparison of the Transformer-based models on the XCAT-to-CT registration task. Boxplots showing Dice scores for different organs in CT
obtained using the proposed TransMorph, the variants of TransMorph, and other Transformer architectures.
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Appendix F. Additional Qualitative Results for Uncertainty Quantification

Fig. F.30: Qualitative results and registration uncertainty estimate with TransMorph-Bayes. The fourth and the fifth columns exhibit the appearance uncertainties
estimated using the proposed uncertainty estimation scheme (i.e., Σ2

f ). The last column shows the transformation uncertainties, i.e., Σ̂2
φ, where the uncertainty maps

were taken as square root of the sum of the variances of the deformation in x, y, and z direction. The spatial dimension x, y, and z in the displacement field is mapped
to each of the RGB color channels, respectively. The [p, q] in color bars denotes the magnitude range of the fields.
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Appendix G. Visualization of Feature Maps in Skip Connections

Fig. G.31: Feature maps in TransMorph’s skip connections. (a) and (b) exhibit, respectively, the feature maps in the first and second skip connections from the
convolutional layers in the encoder (i.e., the green arrows in Fig. 1); (c)-(f) exhibit the feature maps in the skip connections from the Transformer blocks (i.e., the
orange arrows in Fig. 1).

Appendix H. Probabilistic diffeomorphic registration

As shown in section 3.3, we introduced a variational inference framework to the proposed TransMorph (which we denote as
TransMorph-diff). A prior distribution

p(u) = N(u; 0,Σu) (H.1)

was placed over the dense displacement field u, where 0 and Σu are the mean and covariance of the multivariate Gaussian distribu-
tion. We followed (Dalca et al. 2019) and defined Σ−1

u = Λu = λL, where Λu denotes the precision matrix, λ controls the scale of
u, L = D − A is the Laplacian matrix of a neighborhood graph formed on the voxel grid, D is the graph degree matrix, and A is a
voxel neighborhood adjacency matrix. The probability p(I f |Im) can be computed using the law of total probability:

p(I f |Im) =

∫
u

p(I f |u, Im)p(u)du. (H.2)

The likelihood p(I f |u, Im) was also assumed to be Gaussian

p(I f |u, Im) = N(I f ; Im ◦ φu, σ
2
I I), (H.3)

where σ2
I captures the variance of the image noise, and φu is the group exponential of the time-stationary velocity field u, i.e.

φ = exp(u), and was computed using a scaling-and-squaring approach (section 2.1.2).
Our goal is to estimate the posterior probability p(u|I f , Im). Due to the intractable nature of the integral over u in Eqn. H.2,

p(I f |Im) is usually calculated using just the u’s that are most likely to have generated I f (Krebs et al. 2019). Since computing the
posterior p(u|I f , Im) analytically is also intractable, we instead assumed a variational posterior qψ(u|I f , Im) learned by the network
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with parameters ψ. The Kullback-Leibler divergence (KL) was used to relate the variational posterior to the actual posterior, which
results in the evidence lower limit (ELBO) (Kingma and Welling 2013):

logp(I f |Im) − KL
[
qψ(u|I f , Im)‖p(u|I f , Im)

]
=

Eu∼qψ

[
log p(I f |u, Im)

]
− KL

[
qψ(u|I f , Im)‖p(u)

]
,

(H.4)

where the KL-divergence on the left hand side vanishes if the variational posterior is identical to the actual posterior. Therefore,
maximizing log p(I f |Im) is equivalent to minimizing the negative of ELBO on the right hand side of Eqn. H.4. Since the prior
distribution p(u) was assumed to be a multivariate Gaussian, the variational posterior is likewise a multivariate Gaussian, defined
as:

qψ(u|I f , Im) = N(u; µψ(u|I f , Im),Σψ(u|I f , Im)), (H.5)

where µψ and Σψ are the voxel-wise mean and variance generated by the network with parameters ψ. In each forward pass, the
dense displacement field u is sampled using reparameterization u = µψ + Σψ � ε with ε ∼ N(0, I). The variational parameters µψ
and Σψ are learned by minimizing the loss (Dalca et al. 2019):

Lprob.(I f , Im, φu;ψ)

= −Eu∼qψ

[
log p(I f |u, Im)

]
+ KL

[
qψ(u|I f , Im)‖p(u)

]
=

1
2σ2 ‖I f − Im ◦ φu‖

2 +
1
2

[
tr(λDΣψ − logΣψ) + µ>ψΛuµψ

]
,

(H.6)

where µ>ψΛuµψ can be thought of as a diffusion regluarization (Eqn. 14) placed over the mean displacement field µψ, that is
µ>ψΛuµψ = λ

2
∑

p
∑

i∈N(p)
(µ(p) − µ(i))2, where N(p) represents the neighboring voxels of the pth voxel.

As discussed in section 3.2.2, when the auxiliary segmentation information is available (i.e., the label maps of I f and Im, denoted
as s f and sm), Dice loss can be used for training the network to further enhance registration performance. Dice loss, however,
does not preserve a Gaussian approximation of the deformation fields. Instead, we follow (Dalca et al. 2019) and replace the KL
divergence in Eqn. H.4 with:

KL
[
qψ(u|I f , Im)‖p(u|I f , s f ; Im, sm)

]
, (H.7)

which yields a loss function of the form:

Lprob. w/ aux.(I f , s f , Im, sm, φu;ψ)

=
1

2σ2 ‖I f − Im ◦ φu‖
2 +

1
2σ2

s
‖s f − sm ◦ φu‖

2

+
1
2

[
tr(λDΣψ − logΣψ) + µ>ψΛuµψ

]
.

(H.8)

In (Dalca et al. 2019), s f and sm represent anatomical surfaces obtained from label maps. In contrast, we directly used the label
maps as s f and sm in this work. They were image volumes with multiple channels, each channel contained a binary mask defining
the segmentation of a certain structure/organ.

Appendix I. B-splines diffeomorphic registration

As demonstrated in section 3.3, we incorporated a cubic B-spline model (Qiu et al. 2021) into TransMorph (which we denote as
TransMorph-bspl). This network produces a lattice of low-dimensional control points instead of producing a dense displacement
field at the original resolution, which might be computationally costly. As shown in Fig. 6, we denote the displacements of the B-
spline control points generated by the network as uB and the spacing between the control points as δ. Then, a weighted combination
of cubic B-spline basis functions (i.e., βd) (Rueckert et al. 1999) is used to generate the dense displacement field (i.e., the B-spline
tensor product in Fig. 6):

û(p) =
∑
c∈C

uB(c)
∏

d∈{x,y,z}

βd(pd − k(cd)), (I.1)

where c is the index of the control points on the lattice C, and k denotes the coordinates of the control points uB(c) in image space.
Then the final time-stationary displacement u is obtained using the same scaling-and-squaring approach described in section 2.1.2.
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Beg, M.F., Miller, M.I., Trouvé, A., Younes, L., 2005. Computing large de-
formation metric mappings via geodesic flows of diffeomorphisms. Interna-
tional journal of computer vision 61, 139–157.

Bishop, C.M., 2006. Pattern recognition. Machine learning 128.
Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D., 2015. Weight uncer-

tainty in neural network, in: International Conference on Machine Learning,
PMLR. pp. 1613–1622.

Cao, X., Yang, J., Wang, L., Xue, Z., Wang, Q., Shen, D., 2018. Deep learning
based inter-modality image registration supervised by intra-modality simi-
larity, in: International workshop on machine learning in medical imaging,
Springer. pp. 55–63.

Chen, J., Frey, E., Du, Y., 2022. Unsupervised learning of diffeomorphic image
registration via transmorph, in: 10th Internatioal Workshop on Biomedical
Image Registration. URL: https://openreview.net/forum?id=uwIo_
_2xnTO.

Chen, J., He, Y., Frey, E.C., Li, Y., Du, Y., 2021a. Vit-v-net: Vision transformer
for unsupervised volumetric medical image registration. arXiv preprint
arXiv:2104.06468 .

Chen, J., Jha, A.K., Frey, E.C., 2019. Incorporating ct prior information in the
robust fuzzy c-means algorithm for qspect image segmentation, in: Medi-
cal Imaging 2019: Image Processing, International Society for Optics and
Photonics. p. 109491W.

Chen, J., Li, Y., Du, Y., Frey, E.C., 2020. Generating anthropomorphic phan-
toms using fully unsupervised deformable image registration with convolu-
tional neural networks. Medical physics .

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou,
Y., 2021b. Transunet: Transformers make strong encoders for medical image
segmentation. arXiv preprint arXiv:2102.04306 .

Chetty, I.J., Rosu-Bubulac, M., 2019. Deformable registration for dose accu-
mulation, in: Seminars in radiation oncology, Elsevier. pp. 198–208.

Christoffersen, C.P., Hansen, D., Poulsen, P., Sorensen, T.S., 2013.
Registration-based reconstruction of four-dimensional cone beam computed
tomography. IEEE Transactions on Medical Imaging 32, 2064–2077.
doi:10.1109/TMI.2013.2272882.

Cui, K., Fu, P., Li, Y., Lin, Y., 2021. Bayesian fully convolutional networks for
brain image registration. Journal of Healthcare Engineering 2021.

Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L., Zhang, L., 2021. Dy-
namic head: Unifying object detection heads with attentions, in: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 7373–7382.

Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R., 2019. Unsupervised
learning of probabilistic diffeomorphic registration for images and surfaces.
Medical image analysis 57, 226–236.

Darken, C., Moody, J., 1991. Towards faster stochastic gradient search. Ad-
vances in neural information processing systems 4.

Devalla, S.K., Renukanand, P.K., Sreedhar, B.K., Subramanian, G., Zhang,
L., Perera, S., Mari, J.M., Chin, K.S., Tun, T.A., Strouthidis, N.G., et al.,
2018. Drunet: a dilated-residual u-net deep learning network to segment op-
tic nerve head tissues in optical coherence tomography images. Biomedical
optics express 9, 3244–3265.

DeVries, T., Taylor, G.W., 2018. Leveraging uncertainty estimates for predict-
ing segmentation quality. arXiv preprint arXiv:1807.00502 .

Dice, L.R., 1945. Measures of the amount of ecologic association between
species. Ecology 26, 297–302.

Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L., Chen, D., Guo,
B., 2021. Cswin transformer: A general vision transformer backbone with
cross-shaped windows. arXiv preprint arXiv:2107.00652 .

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.,
2020. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929 .

Fischl, B., 2012. Freesurfer. Neuroimage 62, 774–781.
Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B., 2020. Sharpness-aware

minimization for efficiently improving generalization. arXiv preprint
arXiv:2010.01412 .

Friedman, J.H., 2017. The elements of statistical learning: Data mining, infer-
ence, and prediction. springer open.

Fu, W., Sharma, S., Abadi, E., Iliopoulos, A.S., Wang, Q., Sun, X., Lo, J.Y.C.,
Segars, W.P., Samei, E., 2021. iphantom: a framework for automated cre-
ation of individualized computational phantoms and its application to ct or-
gan dosimetry. IEEE Journal of Biomedical and Health Informatics .

Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning, in: international conference on
machine learning, PMLR. pp. 1050–1059.

Gear, J.I., Cox, M.G., Gustafsson, J., Gleisner, K.S., Murray, I., Glatting, G.,
Konijnenberg, M., Flux, G.D., 2018. Eanm practical guidance on uncer-
tainty analysis for molecular radiotherapy absorbed dose calculations. Eu-
ropean journal of nuclear medicine and molecular imaging 45, 2456–2474.

Goodfellow, I.J., Vinyals, O., Saxe, A.M., 2014. Qualitatively characterizing
neural network optimization problems. arXiv preprint arXiv:1412.6544 .

Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q., 2017. On calibration of modern
neural networks, in: International Conference on Machine Learning, PMLR.
pp. 1321–1330.

Ha, I.Y., Wilms, M., Heinrich, M., 2020. Semantically guided large deforma-
tion estimation with deep networks. Sensors 20, 1392.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778.

Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A., 2013a. Mrf-based
deformable registration and ventilation estimation of lung ct. IEEE transac-
tions on medical imaging 32, 1239–1248.
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Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T., 2019. Learning
a probabilistic model for diffeomorphic registration. IEEE transactions on
medical imaging 38, 2165–2176.

Kuleshov, V., Fenner, N., Ermon, S., 2018. Accurate uncertainties for deep
learning using calibrated regression, in: International Conference on Ma-
chine Learning, PMLR. pp. 2796–2804.

Kybic, J., 2009. Bootstrap resampling for image registration uncertainty esti-
mation without ground truth. IEEE Transactions on Image Processing 19,
64–73.

Laves, M.H., Ihler, S., Fast, J.F., Kahrs, L.A., Ortmaier, T., 2020a. Well-
calibrated regression uncertainty in medical imaging with deep learning, in:
Arbel, T., Ben Ayed, I., de Bruijne, M., Descoteaux, M., Lombaert, H., Pal,
C. (Eds.), Proceedings of the Third Conference on Medical Imaging with
Deep Learning, PMLR. pp. 393–412. URL: https://proceedings.mlr.
press/v121/laves20a.html.

Laves, M.H., Ihler, S., Kortmann, K.P., Ortmaier, T., 2019. Well-calibrated
model uncertainty with temperature scaling for dropout variational infer-
ence. arXiv preprint arXiv:1909.13550 .

Laves, M.H., Tölle, M., Ortmaier, T., 2020b. Uncertainty Estimation in Med-
ical Image Denoising with Bayesian Deep Image Prior. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 12443 LNCS, 81–96. URL:
https://arxiv.org/abs/2008.08837v1, arXiv:2008.08837.

Laves, M.H., Tölle, M., Ortmaier, T., 2020c. Uncertainty estimation in med-
ical image denoising with bayesian deep image prior, in: Uncertainty for
Safe Utilization of Machine Learning in Medical Imaging, and Graphs in
Biomedical Image Analysis. Springer, pp. 81–96.

Lei, Y., Fu, Y., Wang, T., Liu, Y., Patel, P., Curran, W.J., Liu, T., Yang, X.,
2020. 4d-ct deformable image registration using multiscale unsupervised
deep learning. Physics in Medicine & Biology 65, 085003.

Levi, D., Gispan, L., Giladi, N., Fetaya, E., 2019. Evaluating and calibrating
uncertainty prediction in regression tasks. arXiv preprint arXiv:1905.11659
.

Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T., 2018. Visualizing the
loss landscape of neural nets. Advances in neural information processing
systems 31.

Li, S., Sui, X., Luo, X., Xu, X., Liu, Y., Goh, R.S.M., 2021. Medical im-
age segmentation using squeeze-and-expansion transformers. arXiv preprint
arXiv:2105.09511 .

Lian, C., Liu, M., Zhang, J., Shen, D., 2018. Hierarchical fully convolutional
network for joint atrophy localization and alzheimer’s disease diagnosis us-
ing structural mri. IEEE transactions on pattern analysis and machine intel-
ligence 42, 880–893.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021a.
Swin transformer: Hierarchical vision transformer using shifted windows.

arXiv preprint arXiv:2103.14030 .
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S., 2022. A

convnet for the 2020s. arXiv preprint arXiv:2201.03545 .
Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H., 2021b. Video

swin transformer. arXiv preprint arXiv:2106.13230 .
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for

semantic segmentation, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3431–3440.

Looney, C.G., 1996. Stabilization and speedup of convergence in training feed-
forward neural networks. Neurocomputing 10, 7–31.

Luo, J., Sedghi, A., Popuri, K., Cobzas, D., Zhang, M., Preiswerk, F., Toews,
M., Golby, A., Sugiyama, M., Wells, W.M., et al., 2019. On the applicability
of registration uncertainty, in: International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer. pp. 410–419.

Luo, W., Li, Y., Urtasun, R., Zemel, R., 2016. Understanding the effective
receptive field in deep convolutional neural networks, in: Proceedings of the
30th International Conference on Neural Information Processing Systems,
pp. 4905–4913.

Lv, J., Wang, Z., Shi, H., Zhang, H., Wang, S., Wang, Y., Li, Q., 2022. Joint
progressive and coarse-to-fine registration of brain mri via deformation field
integration and non-rigid feature fusion. IEEE Transactions on Medical
Imaging .

Maas, A.L., Hannun, A.Y., Ng, A.Y., et al., 2013. Rectifier nonlinearities im-
prove neural network acoustic models, in: Proc. icml, Citeseer. p. 3.

Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner,
R.L., 2007. Open access series of imaging studies (oasis): cross-sectional
mri data in young, middle aged, nondemented, and demented older adults.
Journal of cognitive neuroscience 19, 1498–1507.

Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T., 2020.
Confidence calibration and predictive uncertainty estimation for deep med-
ical image segmentation. IEEE transactions on medical imaging 39, 3868–
3878.

Milletari, F., Navab, N., Ahmadi, S.A., 2016. V-net: Fully convolutional neu-
ral networks for volumetric medical image segmentation, in: 2016 fourth
international conference on 3D vision (3DV), IEEE. pp. 565–571.

Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes,
D.J., Fox, N.C., Ourselin, S., 2010. Fast free-form deformation using graph-
ics processing units. Computer methods and programs in biomedicine 98,
278–284.

Mok, T.C., Chung, A., 2020. Fast symmetric diffeomorphic image registra-
tion with convolutional neural networks, in: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4644–4653.

Mok, T.C., Chung, A., 2021. Conditional deformable image registration with
convolutional neural network, in: International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, Springer. pp. 35–45.

Onofrey, J.A., Staib, L.H., Papademetris, X., 2013. Semi-supervised learning
of nonrigid deformations for image registration, in: International MICCAI
Workshop on Medical Computer Vision, Springer. pp. 13–23.

Pace, D.F., Aylward, S.R., Niethammer, M., 2013. A locally adaptive regular-
ization based on anisotropic diffusion for deformable image registration of
sliding organs. IEEE transactions on medical imaging 32, 2114–2126.

Park, N., Kim, S., 2022. How do vision transformers work? arXiv preprint
arXiv:2202.06709 .

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural informa-
tion processing systems 32, 8026–8037.

Phan, B., Salay, R., Czarnecki, K., Abdelzad, V., Denouden, T., Vernekar, S.,
2018. Calibrating uncertainties in object localization task. arXiv preprint
arXiv:1811.11210 .

Qiu, H., Qin, C., Schuh, A., Hammernik, K., Rueckert, D., 2021. Learning dif-
feomorphic and modality-invariant registration using b-splines, in: Medical
Imaging with Deep Learning.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A., 2021. Do
vision transformers see like convolutional neural networks? arXiv preprint
arXiv:2108.08810 .

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once:
Unified, real-time object detection, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 779–788.

Risholm, P., Balter, J., Wells, W.M., 2011. Estimation of delivered dose in ra-
diotherapy: the influence of registration uncertainty, in: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention,

https://arxiv.org/abs/1703.04977v2
http://arxiv.org/abs/1703.04977
https://proceedings.mlr.press/v121/laves20a.html
https://proceedings.mlr.press/v121/laves20a.html
https://arxiv.org/abs/2008.08837v1
http://arxiv.org/abs/2008.08837


40 Junyu Chen et al. / Medical Image Analysis (2022)

Springer. pp. 548–555.
Risholm, P., Janoos, F., Norton, I., Golby, A.J., Wells III, W.M., 2013. Bayesian

characterization of uncertainty in intra-subject non-rigid registration. Medi-
cal image analysis 17, 538–555.

Rohé, M.M., Datar, M., Heimann, T., Sermesant, M., Pennec, X., 2017. Svf-
net: Learning deformable image registration using shape matching, in: In-
ternational conference on medical image computing and computer-assisted
intervention, Springer. pp. 266–274.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks
for biomedical image segmentation, in: International Conference on Medi-
cal image computing and computer-assisted intervention, Springer. pp. 234–
241.

Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.,
1999. Nonrigid registration using free-form deformations: application to
breast mr images. IEEE transactions on medical imaging 18, 712–721.

Santurkar, S., Tsipras, D., Ilyas, A., Madry, A., 2018. How does batch nor-
malization help optimization? Advances in neural information processing
systems 31.

Segars, W., Bond, J., Frush, J., Hon, S., Eckersley, C., Williams, C.H., Feng, J.,
Tward, D.J., Ratnanather, J., Miller, M., et al., 2013. Population of anatomi-
cally variable 4d xcat adult phantoms for imaging research and optimization.
Medical physics 40, 043701.

Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M., 2010. 4d xcat
phantom for multimodality imaging research. Medical physics 37, 4902–
4915.

Siebert, H., Hansen, L., Heinrich, M.P., 2021. Fast 3d registration with ac-
curate optimisation and little learning for learn2reg 2021. arXiv preprint
arXiv:2112.03053 .

Simpson, I.J., Woolrich, M., Groves, A.R., Schnabel, J.A., 2011. Longitu-
dinal brain mri analysis with uncertain registration, in: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention,
Springer. pp. 647–654.

Smith, L.N., Topin, N., 2019. Super-convergence: Very fast training of neural
networks using large learning rates, in: Artificial intelligence and machine
learning for multi-domain operations applications, International Society for
Optics and Photonics. p. 1100612.

Sokooti, H., De Vos, B., Berendsen, F., Lelieveldt, B.P., Išgum, I., Staring,
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