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ABSTRACT
The linear exponential distribution is a very well-known distribu-
tion for modeling lifetime data in reliability and medical studies.We
introduce in this paper a new four-parameter generalized version of
the transmuted generalized linear exponential distribution.We pro-
vide a comprehensive account of the mathematical properties of the
new distributions. In particular, A closed-form expressions for the
density, cumulative distribution ,quantile and median of the distri-
bution is given. Also, the rth order moment and moment generat-
ing function are derived. The maximum likelihood estimation of the
unknown parameters is discussed. Real data are used to determine
whether the TGLED is better than other well-known distributions
in modeling lifetime data or not.

Keywords:
Transmuted generalized linear exponential distribution, quantile
and median, Maximum likelihood estimation, Moments.

1. INTRODUCTION AND MOTIVATION
The linear exponential distribution is also known as the Linear Fail-
ure Rate distribution , having exponential and Rayleigh distribu-
tions as special cases, is a very well-known distribution for model-
ing lifetime data in reliability and medical studies. It is also models
phenomena with increasing failure rate. However, the LE distribu-
tion does not provide a reasonable parametric fit for modeling phe-
nomenon with decreasing, non linear increasing, or non-monotone
failure rates such as the bathtub shape, which are common in firm
ware reliability modeling, biological studies, see Lai et al. (2001)
and Zhang et al. (2005).
A new generalization of the linear exponential distribution is gen-
eralized linear exponential (GLE) distribution. This distribution
is important since it contains as special sub-models some widely
well known distributions. It also provides more flexibility to ana-
lyze complex real data sets. (see Mahmoud and Alam (2010)).
A random variable X is said to have the generalized linear expo-
nential distribution with three parameters α, β and θ, if it has the
cumulative distribution function

G(x, α, β, θ) = 1− e−(αx+
β
2 x

2)θ , x > 0, α, β, θ > 0, (1)

and the corresponding probability density function (pdf) is given
by

g(x, α, β, θ) = θ(α+ βx)(αx+
β

2
x2)θ−1e−(αx+

β
2 x

2)θ ,

x > 0, α, β, θ > 0. (2)

The quality of the procedures used in statistical analysis depends
heavily on the assumed probability model or distributions. Because
of this, considerable effort over the years has been expended in the
development of large classes of standard probability distributions
along with relevant statistical methodologies. In fact, the statistics
literature is filled with hundreds of continuous univariate distribu-
tions. However, in recent years, applications from the environmen-
tal, financial, biomedical sciences, engineering among others, have
further shown that data sets following the classical distributions are
more often the exception rather than the reality. Since there is a
clear need for extended forms of these distributions a significant
progress has been made toward the generalization of some well-
known distributions and their successful application to problems in
areas such as engineering, finance, economics and biomedical sci-
ences, among others.
In this article we use transmutation map approach suggested by
Shaw and Buckley (2007) to define a new model which general-
izes the generalized linear exponential Distribution . We will call
the generalized distribution as the transmuted generalized linear
exponential distribution (TGLED) distribution. According to the
Quadratic Rank Transmutation Map,(QRTM), approach the cumu-
lative distribution function (cdf) satisfy the relationship

F2(x) = (1 + λ)F1(x)− λF1(x)2 (3)

which on differentiation yields,

f2(x) = f1(x) [(1 + λ)− 2λF1(x)] (4)

where f1(x) and f2(x) are the corresponding pdfs associated with
cdf F1(x) and F2(x) respectively and −1 ≤ λ ≤ 1. An extensive
information about the quadratic rank transmutation map is given in
Shaw and Buckley (2007).
We will use the above formulation for a pair of distributions F (x)
andG(x) whereG(x) is a sub-model ofF (x). Therefore, a random
variableX is said to have a transmuted probability distribution with
cdf F (x) if

F (x) = (1 + λ)G(x)− λG(x)2, |λ| ≤ 1, (5)

29



International Journal of Computer Applications (0975 8887)
Volume 83 - No. 17, December 2013

where G(x) is the cdf of the base distribution. Observe that at λ
= 0 we have the distribution of the base random variable.
Many authors dealing with the generalization of some well- known
distributions . Aryal and Tsokos (2009) defined the transmuted
generalized extreme value distribution and they studied some ba-
sic mathematical characteristics of transmuted Gumbel probability
distribution and it has been observed that the transmuted Gumbel
can be used to model climate data. Also Aryal and Tsokos (2011)
presented a new generalization of Weibull distribution called the
transmuted Weibull distribution . Recently, Aryal (2013) proposed
and studied the various structural properties of the transmuted Log-
Logistic distribution. and Muhammad khan and King (2013) in-
troduced the transmuted modified Weibull distribution which ex-
tended recent development on transmuted Weibull distribution by
Aryal et al. (2011). and they studied the mathematical properties
and maximum likelihood estimation of the unknown parameters.In
the present study we will provide mathematical formulation of the
transmuted generalized linear exponential distribution (TGLED)
distribution and some of its properties.
Merovci and Elbatal (2013) introduce a new lifetime distribution
by transmuted and compounding Lindley and geometric distribu-
tions named transmuted Lindley geometric distribution.They de-
rive expansions for moments and for the moment generating func-
tion. The estimation of parameters is approached by the method
of maximum likelihood, also the information matrix is derived. An
application of the transmuted Lindley geometric distribution to real
data. Elbatal (2013) proposed a functional composition of the cu-
mulative distribution function of one probability distribution with
the inverse cumulative distribution function of another is called the
transmutation map.He used the quadratic rank transmutation map
(QRTM) in order to generate a flexible family of probability dis-
tributions taking modified inverse weibull distribution as the base
value distribution by introducing a new parameter that would offer
more distributional flexibility. It will be shown that the analytical
results are applicable to model real world data. Elbatal and Aryal
(2013) presented the transmuted additive Weibull distribution, that
extends the additive Weibull distribution and some other distribu-
tions they used the quadratic rank transmutation map (QRTM) pro-
posed by Shaw & Buckley( 2007) in order to generate the trans-
muted additive Weibull distribution. Various structural properties of
the new distribution including the explicit expressions for the mo-
ments,random number generation and order statistics are derived.
Maximum likelihood estimation of the unknown parameters of the
new model for complete sample is also discussed. It will be shown
that the analytical results are applicable to model real world data.
The rest of the paper is organized as follows. In Section 2 we
demonstrate transmuted probability distribution, and we present the
flexibility of the subject distribution and some special sub-models.
The reliability functions of the subject model are given in Section
3. In Section 4 we studied the statistical properties include quantile
functions, moments, moment generating function . The minimum ,
maximum and median order statistics models are discussed in Sec-
tion 5. Finally, In Section 6 we demonstrate the maximum likeli-
hood estimates and the asymptotic confidence intervals of the un-
known parameters. Finally, some lifetime data sets are used to illus-
trate that the generalized linear exponential distribution (TGLED)
can used for the data under analysis, comparing with some known
distributions.

2. TRANSMUTED GENERALIZED LINEAR
EXPONENTIAL DISTRIBUTION

In this section we studied the transmuted generalized linear expo-
nential distribution (TGLED) and the sub-models of this distribu-
tion. Now using ?? and ?? we have the cdf of transmuted general-
ized linear exponential distribution

FTGLE = (1 + λ)
(

1− e−(αx+
β
2 x

2)θ
)
− λ

(
1− e−(αx+

β
2 x

2)θ
)2

,

=
[
1− e−(αx+

β
2 x

2)θ
] [

1 + λe−(αx+
β
2 x

2)θ
]

(6)

where α , β are the scale parameters , θ is shape parameter repre-
senting the different patterns of the transmuted generalized linear
exponential distribution and λ is the transmuted parameter. The re-
strictions in equation (6) on the values of α, β, θ and λ are always
the same. The probability density function (pdf) of the transmuted
generalized linear exponential distribution is given by

fTGIE(x) = θ(α+ βx)((αx+
β

2
x2)θ−1e−(αx+

β
2 x

2)θ ×[
1− λ+ 2λe−(αx+

β
2 x

2)θ
]
. (7)

The transmuted generalized linear exponential distribution is very
flexible model that approaches to different distributions when its
parameters are changed.

(i) If λ = 0 we get the generalized linear exponential distribution
GLED (α, β, θ).

(ii) If α = 1
σ
, β = 0 we get the transmuted Weibull distribution

TWD(λ, σ, θ).
(iii) If λ = β = 0, α = 1

σ
we get theWeibull distributionW (σ, θ).

(iv) If θ = 1 we get the transmuted linear exponential distribution
TLED(λ, α, β)

(v) If θ = 1, α = 0 we get the transmuted Rayleigh
distributionTRD(λ, β)

(vi) If θ = 1, α = λ = 0 we get the Rayleigh distribution RD
(β).

Figure 1 shows both cases of the shape parameter θ > 1 and θ ≤ 1.
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Fig. 1. Effect of shape parameter θ on the TGLED PDF

3. RELIABILITY ANALYSIS
The transmuted generalized linear exponential distribution can be
a useful characterization of life time data analysis. The reliabil-
ity function (RF ) of the transmuted generalized linear exponential
distribution is denoted by RTGLED (x) also known as the survivor
function and is defined as

RTGLED (x)

= 1− FTGLED (x)

= 1−
[
1− e−(αx+

β
2 x

2)θ
] [

1 + λe−(αx+
β
2 x

2)θ
]
. (8)

Figure 2 (a) and (b) represent the CDF and RF respectively for
different values of shape parameter θ.

Fig. 2(a) CDF
Fig. 2(b) RF

It is important to note that RTGLED (x) + FTGLED (x) = 1 . One
of the characteristic in reliability analysis is the hazard rate function
(HRF) defined by

hTGIE(x)

=
fTGLED (x)

1− FTGLED (x)

=
θ(α+ βx)((αx+ β

2
x2)θ−1e−(αx+

β
2 x

2)θ )

1−
[
1− e−(αx+

β
2 x

2)θ
] [

1 + λe−(αx+
β
2 x

2)θ
]
.

×

[
1− λ+ 2λe−(αx+

β
2 x

2)θ
]

1−
[
1− e−(αx+

β
2 x

2)θ
] [

1 + λe−(αx+
β
2 x

2)θ
]
.

(9)

It is important to note that the units for hTGIE(x) is the probability
of failure per unit of time, distance or cycles. These failure rates are
defined with different choices of parameters.The cumulative hazard
function of the transmuted generalized inverted exponential distri-
bution is denoted by HTGIE(x) and is defined as

HTGIE(x) = − ln

∣∣∣[1− e−(αx+ β
2 x

2)θ
] [

1 + λe−(αx+
β
2 x

2)θ
]∣∣∣

(10)
It is important to note that the units forHTGIE(x) is the cumulative
probability of failure per unit of time, distance or cycles. we can
show that . For all choice of parameters the distribution has the
decreasing patterns of cumulative instantaneous failure rates.
Figure 3 (a),(b) and (c) represent the hazard rate function (HRF)
with different values of shape parameter θ.
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Fig. 3(a)

Fig. 3(b)

Fig. 3(c)

Fig. (3) Effect of shape parameter θ on the hazard rate function
(HRF) of the TGLED.

THEOREM 1. The hazard rate function of the transmuted gen-
eralized linear exponential distribution has the following proper-
ties

(i) If λ = 0 we get the failure rate is same as theGLED (α, β, θ).

(ii) If α = 1
σ
, β = 0 we get the the failure rate is same as the

TWD(λ, σ, θ).

(iii) If λ = β = 0, α = 1
σ

we get the the failure rate is same as the
W (σ, θ).

(iv) If θ = 1 we get the the failure rate is same as the
TLED(λ, α, β).

PROOF. The hazard function (HF) of the transmuted general-
ized linear exponential distribution is given in equation (9) has the
special cases with different choice of parameters:

(i) If λ = 0 we get the failure rate is same as the GLED (α, β, θ)

hGLED = θ(α+ βx)((αx+
β

2
x2)θ−1

(ii) If α = 1
σ
, β = 0 we get the the failure rate is same as the

TWD(λ, σ, θ).

hTWD
(x) =

θx
σ

( x
σ

)θ−1e−(
x
σ )θ
[
1− λ+ 2λe−(

x
σ )θ
]

1−
[
1− e−( xσ )θ

] [
1 + λe−(

x
σ )θ
]
.
.

(iii) If λ = β = 0, α = 1
σ

we get the the failure rate is same as the
W (σ, θ)

h
WD

(x) =
θx
σ

( x
σ

)θ−1e−(
x
σ )θ

1−
[
1− e−( xσ )θ

]
(iv) If θ = 1 we get the the failure rate is same as the
TLED(λ, α, β)

h
TLED

(x) =
(α+ βx)e−(αx+

β
2 x

2)

[
1− λ+ 2λe−(αx+

β
2 x

2)

]
1−
[
1− e−(αx+

β
2 x

2)

] [
1 + λe−(αx+

β
2 x

2)

]
.

4. STATISTICAL PROPERTIES
This section is devoted to study statistical properties for the trans-
muted generalized linear exponential, specifically Quantile func-
tion ,median, moments, moment generating function.

4.1 Quantile and Median
The quantile xq of the TGLED (α, β, θ, λ, x) is real solution of the
following equation

xq =
−α+

√
α2 + 2β

[
− ln

(λ−1)+
√

(λ+1)2−4λq
2λ

] 1
θ

β
(11)

The above equation has no closed form solution in xq , so we have
to use a numerical technique such as a Newton- Raphson method
to get the quantile. If we put q = 0.5 in equation (11) one gets the
median of TGLED (α, β, θ, λ, x)
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4.2 Random Number Generation
The random number generation as x of the TGLED (α, β, θ, λ, x)
is defined by the following relation[

1− e−(αx+
β
2 x

2)
] [

1 + λe−(αx+
β
2 x

2)
]

= ϕ where ϕ ∼ U(0, 1)

thus

x =
−α+

√
α2 + 2β

[
− ln

(λ−1)+
√

(λ+1)2−4λϕ
2λ

] 1
θ

β
. (12)

4.3 Moments
In this subsection, we derive the rth moments and moment gener-
ating functionMX(t) of the TGLE . The following theorem gives
the rth moment (µr) of the TGLED (α, β, θ, λ, x.)

THEOREM 2. IfX has TGLE, then the rth moment ofX, r =
1, 2, ....has the following form:

µ
′
r =

r∑
i=0

∞∑
j=0

(−1)i+j
(
r
i

)(
r−i
2
j

)
2
r−i
2
−j
×

αi+2j 1

β
r+i
2 +j

{
(1− λ)Γ(

r − i
2θ
− j

θ
+ 1)

+ λ2−(
r+2θ−i

2θ )+ j
θ Γ(

r − i
2θ
− j

θ
+ 1)

}
.

PROOF. We start with the well known definition of the rth mo-
ment of the random variable X with pdf of transmuted generalized
linear exponential given by

µ
′
r = E(Xr)

=

∫ ∞

0

xrfTGLE(x)dx

=

{
(1− λ)

∫ ∞

0

xrθ(α+ βx)(αx+
β

2
x2)θ−1e−(αx+

β
2 x

2)θ

+ 2λ

∫ ∞

0

θxr(α+ βx)(αx+
β

2
x2)θ−1e−2(αx+

β
2 x

2)θ

}
×dx (13)

Now we define the following substitution y = (αx + β
2
x2)θ this

implies that dy = θ(αx+ β
2
x2)θ−1(α+ βx)dx. Clearly,

x =
−α+

√
α2 + 2βy

1
θ

β

Thus

µ
′
r = (1− λ)

{∫ ∞

0

[
−α+

√
α2 + 2βy

1
θ

β

]r
e−y

+ 2λ

[
−α+

√
α2 + 2βy

1
θ

β

]r
e−2y

}
dy, (14)

by using the binomial series expansion of
[
−α+

√
α2 + 2βy

1
θ

]r
we get

[
−α+

√
α2 + 2βy

1
θ

]r
=

r∑
i=0

(−1)i
(
r
i

)
αi
(
α2 + 2βy

1
θ

) r−i
2

,

(15)
and(
α2 + 2βy

1
θ

) r−i
2

= (2β)
r−i
2 y

r−i
2θ

∞∑
j=0

(−1)j
(

r−i
2
j

)(
α2

2βy
1
θ

)j
,

(16)
substituting from (15) and (16) into (14), we have the following

µ
′
r =

r∑
i=0

∞∑
j=0

(−1)i+j
(
r
i

)(
r−i
2
j

)
2
r−i
2
−j
αi+2j 1

β
r+i
2 +j

×{∫ ∞

0

y
r−i
2θ
− j
θ e−y

2λ

βr

∫ ∞

0

y
r−i
2θ
− j
θ e−2y

}
dy

=

r∑
i=0

∞∑
j=0

(−1)i+j
(
r
i

)(
r−i
2
j

)
2
r−i
2
−j
αi+2j 1

β
r+i
2 +j

×

{
(1− λ)Γ(

r − i
2θ
− j

θ
+ 1)

+ λ2−(
r+2θ−i

2θ )+ j
θ Γ(

r − i
2θ
− j

θ
+ 1)

}
(17)

therefore

µ
′
r = Ci,jΓ(

r − i
2θ
− j

θ
+ 1)

[
1− λ+ λ

(
1

2

) r−i
2θ
− j
θ
+1
]

(18)

where

Ci,j =

r∑
i=0

∞∑
j=0

(−1)i+j
(
r
i

)(
r−i
2
j

)
2
r−i
2
−j
αi+2j 1

β
3r+i

2 +j

which completes the proof .

THEOREM 3. If X has TGLE, then the moment generating
function MX(t) has the following form

MX(t) = Ci,j

∞∑
r=0

tr

r!
Γ(
r − i
2θ
− j

θ
+ 1)×[

1− λ+ λ
(

1

2

) r−i
2θ
− j
θ
+1
]

PROOF. We start with the well known definition of the moment
generating function given by

MX(t) = E(etx)

=

∫ ∞

0

etxfTGLE(x)dx

=

∫ ∞

0

∞∑
r=0

trxr

r!
fTGLE(x)dx

=

∞∑
r=0

tr

r!
µ
′
r
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= Ci,j

∞∑
r=0

tr

r!
Γ(
r − i
2θ
− j

θ
+ 1)×

[
1− λ+ λ

(
1

2

) r−i
2θ
− j
θ
+1
]

(19)

which completes the proof.

5. ORDER STATISTICS
The order statistics have many applications in reliability and life
testing. The order statistics arise in the study of reliability of a sys-
tem. Let X1, X2, ..., Xn be a simple random sample from TGLED
(α, β, θ, λ, x ) with cumulative distribution function and proba-
bility density function as in (6) and (7), respectively. Let X(1:n)

≤ X(2:n) ≤ ... ≤ X(n:n) denote the order statistics obtained from
this sample. In reliability literature,X(i:n) denote the lifetime of an
(n− i+ 1)− out− of− n system which consists of n independent
and identically components. Then the pdf of X(i:n) , 1 ≤ i ≤ n is
given by

fi::n(x) =
1

β(i, n− i+ 1)
[F (x,Φ)]i−1 [1− F (x,Φ)]n−i f(x,Φ)

(20)
where Φ = (α, β, θ, λ, ) also, the joint pdf of X(i:n) , X(j:n) and
1 ≤ i ≤ j ≤ n is

fi:j:n(xi, xj) = C [F (xi)]
i−1 [F (xj)− F (xi)]

j−i−1 ×
[1− F (xj)]

n−j f(xi)f(xj) (21)

where C

C =
n!

(i− 1)!(j − i− 1)!(n− j)!

We defined the first order statisticsX(1) = Min(X1, X2, ..., Xn),
the the last order statistics as X(n) = Max(X1,X2, ...,Xn) and
median order Xm+1 .

5.1 Distribution of Minimum , Maximum and Median
Let X1, X2, ..., Xn be independently identically distributed order
random variables from the transmuted generalized linear exponen-
tial distribution having first , last and median order probability den-
sity function are given by the following

f1:n(x)

= n [1− F (x,Φ)]n−1 f(x,Φ)

= n
(

1−
[
1− e−(αx(1)+

β
2 x

2
(1)

)θ
] [

1 + λe
−(αx(1)+

β
2 x

2
(1)

)θ
])n−1

×
[
θ(α+ βx(1))(αx(1) +

β

2
x2(1))

θ−1e
−(αx(1)+

β
2 x

2
(1)

)θ
]

×
[
1− λ+ 2λe

−(αx(1)+
β
2 x

2
(1)

)θ
]

(22)

fn:n(x)

= n
[
F (x(n),Φ)

]n−1
f(x(n)),Φ)

= n
{[

1− e−(αx(n)+
β
2 x

2
(n)

)θ
] [

1 + λe
−(αx(n)+

β
2 x

2
(n)

)θ
]}n−1

×
[
θ(α+ βx(n))(αx(n) +

β

2
x2(n))

θ−1e
−(αx(n)+

β
2 x

2
(n)

)θ
]

×
[
1− λ+ 2λe

−(αx(n)+
β
2 x

2
(n)

)θ
]

(23)

and

fm+1:n(x̃) =
(2m+ 1)!

m!m!
(F (x̃))m(1− F (x̃))mf(x̃)

=
(2m+ 1)!

m!m!

{[
1− e−(αx(m+1)+

β
2 x

2
(m+1)

)θ
]

×
[
1 + λe

−(αx(m+1)+
β
2 x

2
(m+1)

)θ
]}m

×
{(

1−
[
1− e−(αx(m+1)+

β
2 x

2
(m+1)

)θ
]

×
[

1 + λe−e
−(αx(m+1)+

β
2
x2
(m+1)

)θ
])}m

×
[
θ(α+ βx(m+1))(αx(m+1) +

β

2
x2(m+1))

θ−1×

e
−(αx(m+1)+

β
2 x

2
(m+1)

)θ
]

×
[
1− λ+ 2λe

−(αx(m+1)+
β
2 x

2
(m+1)

)θ
]

(24)

5.2 Joint Distribution of the ith and jth order Statistics
The joint distribution of the the ith and jth order Statistics from
transmuted generalized linear exponential distribution is

fi:j:n(xi, xj)

= C [F (xi)]
i−1 [F (xj)− F (xi)]

j−i−1 [1− F (xj)]
n−j f(xi)f(xj)

= C
{[

1− h(i)

] [
1 + λh(i)

]}i−1
×
{[

1− h(j)

] [
1 + λh(j)

]
−
[
1− h(i)

] [
1 + λh(i)

]}j−i−1
×
{

1−
[
1− h(j)

] [
1 + λh(j)

]}n−j
×
[
θ(α+ βx(i))(αx(i) +

β

2
x2(i))

θ−1h(i)

] [
1− λ+ 2λh(i)

]
×
[
θ(α+ βx(j))(αx(j) +

β

2
x2(j))

θ−1h(j)

] [
1− λ+ 2λh(j)

]
(25)

where

h(i) = e
−(αx(i)+

β
2 x

2
(i)

)θ
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special case if i = 1 and j = n we get the joint distribution of the
minimum and maximum of order statistics

f1::n:n(xi, xj)

= n(n− 1)
[
F (x(n))− F (x(1))

]n−2
f(x(1))f(x(n))

= n(n− 1)
{[

1− h(n)

] [
1 + λh(n)

]
−
[
1− h(1)

] [
1 + λh(1)

]}n−2
×
[
θ(α+ βx(1))(αx(1) +

β

2
x2(1))

θ−1h(1)

] [
1− λ+ 2λh(1)

]
×
[
θ(α+ βx(n))(αx(n) +

β

2
x2(n))

θ−1h(n)

] [
1− λ+ 2λh(n)

]
.

(26)

6. ESTIMATION AND INFERENCE
In this section we discuss the maximum likelihood estimators
(MLE’s) and inference for the TGLE (α, β, θ, λ, x). distribu-
tion. Let X1, ..., Xn be a random sample of size n from
TGLE (α, β, θ, λ, x) then the likelihood function can be written
as

L(θ, α, λ, x
(i)

)

= Πn
i=1f(xi, α, β, θ, λ)dx

= Πn
i=1θ(α+ βx(i))(αx(i) +

β

2
x2(i))

θ−1e
−(αx(i)+

β
2 x

2
(i)

)θ

×
[
1− λ+ 2λe

−(αx(i)+
β
2 x

2
(i)

)θ
]

(27)

By accumulation taking logarithm of equation (27) , and the log-
likelihood function can be written as

logL = n ln θ +

n∑
i=1

ln(α+ βxi)

+(θ − 1)

n∑
i=1

ln(αxi +
β

2
x2i )−

n∑
i=1

(αxi +
β

2
x2i )

θ

+

n∑
i=1

ln
[
1− λ+ 2λe−(αxi+

β
2 x

2
i
)θ
]

(28)

Differentiating equation (28) with respect to α, β, θ and λ then the
normal equations become

∂ logL

∂α
=

n∑
i=1

1

(α+ βxi)
+ (θ − 1)

n∑
i=1

xi

(αxi + β
2
x2i )

−θ
n∑
i=1

xi(αxi +
β

2
x2i )

θ−1

−2

n∑
i=1

θλxie
−(αxi+

β
2 x

2
i
)θ (αxi + β

2
x2i )

θ−1[
1− λ+ 2λe−(αxi+

β
2 x

2
i
)θ
] ,(29)

∂ logL

∂β
=

n∑
i=1

xi

(αxi + β
2
x2i )

+
(θ − 1)

2

n∑
i=1

x2i
(αxi + β

2
x2i )

−θ
2

n∑
i=1

x2i (αxi +
β

2
x2i )

θ−1

−
n∑
i=1

θλx2i e
−(αxi+

β
2 x

2
i
)θ (αxi + β

2
x2i )

θ−1[
1− λ+ 2λe−(αxi+

β
2 x

2
i
)θ
] , (30)

∂ logL

∂θ

=
n

θ
+

n∑
i=1

(αxi +
β

2
x2i )−

n∑
i=1

(αxi +
β

2
x2i )

θ ln(αxi +
β

2
x2i )

+2

n∑
i=1

λe−(αxi+
β
2 x

2
i
)θ (αxi + β

2
x2i )

θ ln(αxi + β
2
x2i )[

1− λ+ 2λe−(αxi+
β
2 x

2
i
)θ
] , (31)

and

∂ logL

∂λ
=

n∑
i=1

2e−(αxi+
β
2 x

2
i
)θ − 1[

1− λ+ 2λe−(αxi+
β
2 x

2
i
)θ
] . (32)

We can find the estimates of the unknown parameters by maxi-
mum likelihood method by setting these above nonlinear system of
equations (29) - (32) to zero and solve them simultaneously. These
solutions will yield the ML estimators for α̂, β̂ ,θ̂ , and λ̂, For the
four parameters transmuted generalized linear exponential distribu-
tion TGLE(α, β, θ, λ, x) pdf, all the second order derivatives exist.
Thus we have the inverse dispersion matrix is given by


α̂

β̂

θ̂

λ̂

 ∼ N

 α
β
θ
λ

 ,


V̂αα V̂αβ V̂αθ V̂αλ

V̂βα V̂ββ V̂βθ V̂βλ

V̂θα V̂θβ V̂θθ V̂θλ

V̂λα V̂λβ V̂λθ V̂λλ


 .
(33)

V −1 = −E

 Vαα Vαβ Vαθ Vαλ
Vβα Vββ Vβθ Vβλ
Vθα Vθβ Vθθ Vθλ
Vλα Vλβ Vλθ Vλλ


where

Vαα =
∂2L

∂α2
, Vθθ =

∂2L

∂θ2
, Vλλ =

∂2L

∂λ2
, Vββ =

∂2L

∂β2

Vλα =
∂2L

∂α∂λ
, Vαβ =

∂2L

∂α∂β
, Vαθ =

∂2L

∂α∂θ
.

By solving this inverse dispersion matrix these solutions will yield
asymptotic variance and covariances of these ML estimators for α̂,
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TGLED(α, β, θ, λ) n MSE(α̂) MSE(β̂ ) MSE(θ̂) MSE(λ̂)

15 0.0185 0.1548 0.0305 0.2507
25 0.0148 0.1498 0.0224 0.2276
35 0.0117 0.0129 0.0152 0.1252

(0.15, 0.35, 0.65, 0.3) 45 0.0114 0.0155 0.0135 0.0865
55 0.0162 0.0379 0.0125 0.0643
65 0.0052 0.0208 0.0065 0.0316
75 0.0093 0.0137 0.0059 0.0138

15 0.0340 0.0760 0.4058 0.0847
25 0.0216 0.0391 0.2918 0.0584
35 0.0212 0.0332 0.1807 0.0452

(0.3, 0.6, 2, 0.7) 45 0.0176 0.0292 0.1662 0.0338
55 0.0098 0.0191 0.0899 0.0260
65 0.0017 0.0063 0.0337 0.0067
75 0.0012 0.0056 0.0246 0.0087

15 0.1521 0.4083 0.5003 0.1452
25 0.0335 0.0693 0.4104 0.1335
35 0.0326 0.0497 0.3951 0.0841

(0.3, 0.9, 3.5, 0.8) 45 0.0227 0.0393 0.3170 0.0618
55 0.0180 0.0600 0.2866 0.0417
65 0.0240 0.0546 0.2468 0.0390
75 0.0232 0.0485 0.1470 0.0163

β̂ ,θ̂, and λ̂ . Using (33), we approximate 100(1 − γ) confidence
intervals for α, θ, and λ are determined respectively as

α̂± z γ
2

√
V̂αα, θ̂ ± z γ

2

√
V̂θθ , and λ̂± z γ

2

√
V̂λλ

where zγ is the upper 100γ the percentile of the standard normal
distribution. The following table represents the mean square error
(MSEs) of the MLEs.
Table 1 The mean square errors of the MLEs.

We noticed from the above Table 1 that all MSEs decrease as the
sample size increases, while they increase with increasing of the
true parameter.

7. APPLICATIONS
In this section two real data sets are considered to see which one of
distributions is more appropriate to the data set for some MLEs of
parameters.Such as the transmuted generalized linear exponential
distribution(TGLED) , the Linear exponential distribution, Trans-
muted Linear exponential distribution, Transmuted Raylight distri-
bution, Raylight distribution (LED, TLED, TRD, RD). To test the
goodness-of-fit of selected distributions in each example, we cal-
culated the Kol-mogorov Smirnov (K- S) distance test statistic and
its correspondicorresponding p-value.

EXAMPLE 1. Consider the data given by Abouammoh et al.
(1994) which represent 40 patients suffering from leukemia from
one of the Ministry of Health Hospitals in Saudi Arabia. The or-
dered lifetimes (in days) are given in Table 2.
Table 2 Lifetimes of 40 patients suffering from leukemia.

115 181 255 418 441 461 516 739
743 789 807 865 924 983 1024 1062
1063 1165 1191 1222 1222 1251 1277 1290
1357 1369 1408 1455 1478 1549 1578 1578
1599 1603 1605 1696 1735 1799 1815 1852

Table 3.The K- S distance test statistic and corresponding p-values.
Modeling distribution K-S test p-value

TGLED 0.3554414 0.000049
LED 0.213624 0.044205

TLED 0.2094859 0.051105
TRD 0.207288 0.055130
RD 0.184278 0.116136

Fig. 4 is provided to compare the empirical reliability functions
against the theoretical reliability functions of the modeling distri-
butions.
Fig.4. Empirical and estimated survival functions of the LED, RD,
TRD,TGLED and TLED models for (Leukemia data)

EXAMPLE 2. The lifetimes of 50 devices that were provided by
(Aarset, 1987) are given in Table 4.
Table 4 Lifetimes of 50 devices.

0.1 0.2 1.0 1.0 1.0 1.0 1.0 2.0
3.0 6.0 7.0 11.0 12.0 18.0 18.0 18.0
18.0 18.0 21.0 32.0 36.0 40.0 45.0 46.0
47.0 50.0 55.0 60.0 63.0 63.0 67.0 67.0
67.0 67.0 72.0 75.0 79.0 82.0 82.0 83.0
84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0
86.0 86.0

Table 5.The K- S distance test statistic and corresponding p-values.
Modeling distribution K-S test p-value

TGLED 0.2812918 0.000542
LED 0.176099 0.0793432

TLED 0.23746893 0.005777640
TRD 0.23832517 0.005878
RD 0.26237234 0.0015858

Fig. 5 is provided to compare the empirical reliability functions
against the theoretical reliability functions of the modeling distri-
butions.
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Fig. 5. Empirical and estimated survival functions of the LED, RD,
TRD, TGLED and TLED models for (Leukemia data) Lifetimes of
40 patients suffering from Leukemia.
By calculating K-S test and corresponding p-values for TGLED
and some special cases as LED, RD, TRD and TLED for men-
tioned two survival data examples we can say that the distribution
of TGLED can be appropriate to deal with Life data under different
levels of significant. Table 3 and Table 5 contain some of the results
that have been obtained for the two mentioned previous examples.
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