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Abstract
This study introduces a new lifetime distribution called the transmuted lower record
type inverse Rayleigh which extends the inverse Rayleigh distribution and has the
potential to model the recovery times of Covid-19 patients.The new distribution is
obtained using the distributions of the first two lower record statistics of the inverse
Rayleigh distribution. We discuss some statistical inferences and mathematical prop-
erties of the suggested distribution. We examine some characteristics of the proposed
distribution such as density shape, hazard function,moments,moment generating func-
tion, incomplete moments,Rényi entropy, order statistics, stochastic ordering. We
consider five estimationmethods such asmaximum likelihood, least squares, weighted
least squares, Anderson-Darling, Cramér-vonMises for the point estimation of the pro-
posed distribution. Then, a comprehensive Monte Carlo simulation study is carried
out to assess the risk behavior of the examined estimators. We provide two real data
applications to illustrate the fitting ability of the proposed model, and compare its fit
with competitor ones. Unlike many previously proposed distributions, the introduced
distribution in this paper has modeled the recovery times of Covid-19 patients.

Keywords Inverse Rayleigh distribution · Lower records · Point estimation ·
Covid-19

1 Introduction

In recent years, many lifetime distributions have been proposed in the literature. The
lifetime distributions are useful in various fields such as agriculture, actuarial, biology,
engineering, and medical sciences. These distributions have emerged via different
methods. One of these methods is the quadratic rank transmutation map (QTRM),
which is based on order statistics. The QRTM was proposed by [1] to generate a
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Table 1 Some transmuted distributions in the literature

Baseline distribution Author(s)

Weibull [2]

Lindley [3]

Rayleigh [4]

Inverse Rayleigh [5]

Exponentiated Inverse Rayleigh [6]

Generalized Modified Weibull [7]

Complementary Exponential Power [8]

Exponential Power [9]

new distribution using the distributions of the first two order statistics. QRTM is
summarized as follows:

Let X1:n , X2:n be the order statistics from a population with cumulative distribution
function (cdf) G (.) and probability density function (pdf) g (.) and n denotes sample
sizes.

Let us define random variable Y by

Y
d= X1:2, with probability π

Y
d= X2:2, with probability 1 − π,

where π ∈ (0, 1). The, the cdf of Y is given by

FY (x) = π P (X1:2 ≤ x) + (1 − π) P (X2:2 ≤ x)

= π
(
1 − (1 − G (x))2

)
+ (1 − π)G2 (x)

= 2πG (x) + (1 − 2π)G2 (x) . (1)

Substituting π = 1+λ
2 in (1) the cdf and corresponding pdf are obtained by

F (x) = (1 + λ)G (x) − λ [G (x)]2 (2)

and

f (x) = (1 + λ) g (x) − 2λG (x) g (x) , (3)

respectively,whereλ ∈ [−1, 1]. The generated distributions by usingQRTMare called
transmuted distributions. In last decade, many transmuted distributions are suggested
in the literature, and some transmuted distributions are given in Table 1.

In addition to Table 1, [10] introduced a generalized family of transmuted distribu-
tion. [11] proposed a new methodcalled cubic rank map (CRTM) with the motivation
of the QRTM. The CRTM is summarized as follows:

123



Transmuted lower record type inverse... 779

Let X1:n , X2:n and X3:n be the order statistics from a population with cdf G (x) and
pdf g (x).

Let us define a random variable Y by

Y
d= X1:3, with probability π1

Y
d= X2:3, with probability π2

Y
d= X3:3, with probability π3,

where π1 + π2 + π3 = 1. Thus, the cdf of Y is given by

FY (x) = π1P (X1:3 ≤ x) + π2P (X2:3 ≤ x) + π3P (X3:3 ≤ x)

= π1

[
1 − (1 − G (x))3

]
+ 6π2

x∫

0

G (t) (1 − G (t)) g (t) dt + π3G
3 (x)

= 3π1G (x) + (3π2 − 3π1)G
2 (x) + (1 − 3π2)G

3 (x) (4)

Substituting 3π1 = λ1, 3π2 = λ2 in (4), the cdf and pdf of cubic rank transmuted
distribution are given by

FY (x) = λ1G (x) + (λ2 − λ1)G
2 (x) + (1 − λ2)G

3 (x) , (5)

and

fY (x) = g (x) λ [1 + 2 (λ2 − λ1)G (x)] + 3 (1 − λ2) g (x)G2 (x) , (6)

respectively, where λ1 ∈ [0, 1] , λ2 ∈ [−1, 1]. The generated distributions via the
CRTM are called cubic rank transmuted distributions. In the literature, some cubic
rank transmuted distributions are listed in Table 2.

[17] provided a generalization of cubic rank transmuted distributions. [18] sug-
gested a new method based on the distributions of first two upper records called
transmuted upper record type map (TRTM) to produce distributions. They described
the TRTM in [18] as follows:

Table 2 Some cubic transmuted distributions in the literature

Baseline distribution Authors

Weibull [11]

Log-logistic [11]

Kumaraswamy [12]

Inverse Weibull [13]

Modified Burr III [14]

Modified Burr III Pareto [15]

Lindley [16]
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780 C. Tanış

Let XU (1) and XU (2) be upper records from a population with cdf G (.) and pdf
g (.).

Let us describe a random variable Y by

Y
d= XU (1), with probability π1

Y
d= XU (2), with probability π2,

where π1 + π2 = 1. In this case, the cdf of Y is given by

FY (x) = π1P
(
XU (1) ≤ x

)+ π2P
(
XU (2) ≤ x

)

= π1G (x) + π2

[
1 −

1∑
R=0

(− log (1 − G (x)))R

R! (1 − G (x))

]

= G (x) + p(1 − G (x)) × log (1 − G (x)), (7)

where π2 = p, π1 = 1 − p, p ∈ (0, 1). Then, the corresponding pdf of Y is

fY (x) = g (x)
[
1 + p (− log (1 − G (x))−1)

]
(8)

[19] discussed some mathematical properties and estimation methods of a special
case based on Weibull distribution of the family of record-based transmuted distribu-
tions. Balakrishnan and He [18] also provided the record-based family of distributions
which is a mixture based on the distributions of the first two lower record values. This
family of distributions is constructed by

Let XL(1) and XL(2) be the lower record values from a population with the cdf
G (x) .

Let us define a new random variable based on these records:

Y =
⎧
⎨
⎩

XL(1) , U > p

XL(2) , U < p,

whereU is standard uniform random variable and p ∈ (0, 1). The cdf of Y is obtained
by

F (x) = (1 − p) P
(
XL(1) ≤ x

)+ pP
(
XL(2) ≤ x

)

= (1 − p)G (x) + p
[
G (x) (1 − log (G (x)))

]

= G (x)
[
1 − p log (G (x))

]
. (9)

Balakrishnan and He [18] noticed that the distribution with cdf (9) is called dual
record-transmuted distribution. In this paper, we call this family of distributions as the
family of transmuted lower record type (TLRT) distributions. The corresponding pdf
and hazard function(hf) of TLRT distribution are given by

f (x) = g (x)
[
1 − p (1 + log (G (x)))

]
(10)
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Transmuted lower record type inverse... 781

and

h (x) = g (x)
[
1 − p (1 + log (G (x)))

]

1 − G (x)
[
1 − p log (G (x))

] , (11)

respectively. [20] proposed the first sub-model of the family of TLRT distributions
called transmuted lower record type Fréchet distribution.

Transmuted lower record type method (TLRTM) defined in (14) and (15) allows
to be proposed a new distribution via the mixture of the distributions of the lower
record values. For instance, let consider an Olympic athlete who broke more than
one record in the Olympics and assume that this athlete achieve first and second
records with certain probabilities. The new mixed distribution produced with TLRTM
can be associated with this situation in real life. The motivation of this paper is to
generate a new special case based on inverse Rayleigh by using TLRTM. We aim
to provide a new flexible version of inverse Rayleigh distribution for modelling the
data in medical sciences and other fields. Unlike previously proposed distributions,
an important advantage of the suggested distribution is that it models the recovery
times of COVID-19 patients. The study is organized as follows: In Sect. 2, some
distributional properties of the suggested distribution are examined such as density
shapes, moments, incomplete moments, moment generating function, Rényi entropy,
stochastic ordering, and order statistics. In Sect. 3, we obtain five estimators of the
parameters of the introduced distribution such as maximum likelihood estimators
(MLEs), least squares estimators (LSEs), weighted least squares estimators (WLSEs),
Anderson-Darling estimators (ADEs), and Cramér-von Mises estimators (CvMEs).
A comprehensive simulation study is considered to compare the performances of the
examined estimators according to mean squared errors (MSEs) and biases in Sect. 4.
Section 5 presents two real data applications regarding the recovery times of COVID-
19 patients to illustrate the applicability of the introduced distribution, and we show
that it has the potential for modelling datasets inmedical sciences. Finally, conclusions
are given in Sect. 6.

2 Transmuted lower record type inverse rayleigh distribution and
distributional properties

In this section, we introduce a new lifetime distribution called transmuted lower record
type inverse Rayleigh (TLRTIR) by using the TLRTM.

Let X be a random variable from inverse Rayleigh distribution. The cdf and pdf of
X are given as follows:

G (x) = exp
(
− α

x2

)
, (12)

and

g (x) = 2α

x3
exp

(
− α

x2

)
(13)
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782 C. Tanış

respectively, where, α > 0 and x > 0. Substituting the cdf (12) and pdf (13) into (9)
and (10), then the cdf and pdf of TRTLIR distribution are

F (x;α, p) = exp
(
− α

x2

) (
1 + pα

x2

)
(14)

and

f (x;α, p) = 2α

x3
exp

(
− α

x2

) [
1 − p

(
1 − α

x2

)]
, (15)

respectively, where α > 0, p ∈ (0, 1) and x > 0. The distribution with cdf (14) is
called “transmuted lower record type inverse Rayleigh (TLRTIR(α, p))”distribution.

2.1 Density shape

In this section, we examine some possible density shapes of TLRTIR (α, p) distribu-
tion.

Theorem 2.1 Let X be a random variable from TLRTIR (α, p) distribution. The pdf
of TLRTIR (α, p) distribution is unimodal for p > 12

17 .

Proof Let T1 (x) = d
dx log { fT LRT I R (x)} and T2 (x) = d2

dx2
log { fT LRT I R (x)} are

given by

T1 (x) = (3 − 3p) x4 + (7pα − 2α) x2 − 2pα2

x3
{
(p − 1) x2 − pα

} (16)

and

T2 (x) = � (x, α, p) + 17α2 p
(
p − 12

17

)
x2 − 6p2α3

{
(p − 1) x2 − pα

}
x4

(17)

where,
� (x, α, p) = 3 (p − 1)2 x6 − 18α (p − 1)

(
p − 1

3

)
x4.

We observe that T2 (x) < 0 for p > 12
17 , and the density of TLRTIR (α, p) distri-

bution has log-concavity property. The proof is completed. ��
Thus, it can be concluded that the density of the TLRTIR (α, p) distribution is

unimodal for p > 12
17 according to Theorem1. The hf of the TLRTIR(α, p) distribution

is given by

h (x;α, p) =
2α
x3

exp
(
− α

x2

) [
1 − p

(
1 − α

x2

)]

1 − exp
(
− α

x2

) (
1 + pα

x2

) (18)
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Transmuted lower record type inverse... 783

Fig. 1 The pdf plots for TLRTIR(α, p) distribution

Fig. 2 The hf plots of TLRTIR (α, p) distribution

Figures 1 and 2 illustrate the possible pdf and hf shapes of the TLRTIR (α, p)
distribution for the selected parameter values respectively.

From Figure 2, it is seen that the TLRTIR (α, p) distribution has upside bathtub
shaped hf for selected parameters.
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784 C. Tanış

2.2 Moments

The r th raw moment of TLRTIR(α, p) distribution for r ∈ N+ is given by

E
(
Xr ) = (1 − p) αr/2�

(
2 − r

2

)
+ pα(r+1)/2�

(
3 − r

2

)
, (19)

where � (·) is a gamma function.

2.3 Moment generating function

The moment generating function of TLRTIR (α, p) distribution is given by

M (t) = (1 − p)
∞∑
r=0

tr

r !α
r/2�

(
2 − r

2

)

+p
∞∑
r=0

tr

r !α
(r+1)/2�

(
3 − r

2

)
. (20)

2.4 Incomplete moments

The incomplete moments of TLRTIR distribution is given by

mr (y) = (1 − p) αr/2�

(
2 − r

2
,

α

t2

)

+pα(r+1)/2�

(
3 − r

2
,

α

t2

)
, (21)

where � (a, x) is incomplete gamma function defined by

� (a, x) =
∫ ∞

x
ta−1e−t dt .

2.5 Rényi entropy

The Rényi entropy is proposed by Rényi [21]. The Rényi entropy is a measure of
uncertainty, and it is defined by

IR (ρ) = 1

1 − ρ
log

{∫
f (x)ρ dx

}
, (22)

where ρ > 0 and ρ �= 1.
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Theorem 2.2 The Rényi entropy for TLRTIR(α, p) distribution is

IR (ρ) = 1

1 − ρ

⎡
⎣log

⎧⎨
⎩ϕ (ρ)

ρ∑
j=0

pρ− j (1 − p) j � (10ρ − 4 j − 2)

� (ρ − j + 1) � ( j + 1)

⎫⎬
⎭

⎤
⎦ , (23)

where, ϕ (ρ) = 2ρ−1α(ρ−1)/2�(ρ+1)
ρ(3ρ+1)/2 , ρ �= 1 and ρ ∈ Z.

Proof The Rényi entropy of TLRTIR(α, p) distribution can be written using (22) as
follows:

IR (ρ) = 1

1 − ρ
log

{∫ (
2α

x3

)ρ

exp
(
−ρα

x2

) [
1 − p

(
1 − α

x2

)]ρ
dx

}
(24)

Using u = ρα

x2
transformation in (24), the integral is obtained by

∞∫

0

f (x)ρ dx =
∞∫

0

(2α)ρ−1 exp (−u) [1 − p + pu] ρ

ρ
(

ρα
u

)3(ρ−1)/2
du, (25)

Then, using power series expansion of (1 − p + pu)ρ =
ρ∑
j=0

(
ρ
j

)
(1 − p) j pρ− j uρ− j

defined in [22], Eq. (25) is obtained as follows:

∞∫

0

f (x)ρ dx = 2ρ−1α(ρ−1)/2

ρ(3ρ+1)/2

ρ∑
j=0

pρ− j (1 − p) j � (ρ + 1)

� (ρ − j + 1) � ( j + 1)

∞∫

0

u(5ρ−2 j−3)/2 exp (−u) du

= 2ρ−1α(ρ−1)/2� (ρ + 1)

ρ(3ρ+1)/2

ρ∑
j=0

pρ− j (1 − p) j � (10ρ − 4 j − 2)

� (ρ − j + 1) � ( j + 1)
(26)

By substituting (26) into (24), Thus, the Rényi entropy in (23) and the proof is com-
pleted. ��

2.6 Order statistics

Let X1:n, X2:n, ..., Xn:n be the order statistics from a population with cdf (14) and pdf
(15). The pdf of j th order statistics, X j :n, j = 1, ..., n is given by

fX j :n (x) = n!
( j − 1)! (n − j)! f (x) F j−1(x) [1 − F (x)]n− j

= n!
( j − 1)! (n − j)!

2α

x3
exp

(
− α

x2

) [
1 − p

(
1 − α

x2

)]

×
n− j∑
i=0

(−1) j
(
n − j

i

)
exp

(
− (i + j − 1) α

x2

)[
1 + p

α

x2

]i+ j−1
. (27)
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2.7 Stochastic ordering

Stochastic and the other ordering are important means for evaluating the comparative
properties for a positive continuous random variable [20]. The following theorem
shows that the TLRTIR random variables can be ordered with respect to the likelihood
ratio.

Theorem 2.3 Let X ∼TLRTIR(α, p1) and Y ∼ T LRT I R (α, p2) . If p1 > p2 then
X is smaller than Y in the likelihood ratio order, i.e., the ratio function of the corre-
sponding pdfs is decreasing in x.

Proof For any x > 0, the ratio of the densities is given by

g (x) =
1 − p1

(
1 − α

x2

)

1 − p2
(
1 − α

x2

) .

Consider the derivative of log (g (x)) in x

d log (g (x))

dx
= −2αx (p1 − p2)

m (x, α, p1, p2)

where,

m (x, α, p1, p2) =
(
(p1 − 1) x2 − p1α

)

×
(
(p2 − 1) x2 − p2α

)

It is seen that d log(g(x))
dx < 0 for p1 > p2 and hence proof is completed. ��

Corollary 2.4 It follows from [23] that X is also smaller than Y in the hazard ratio,
and stochastic orders under the conditions given in Theorem 2.3.

2.8 Random numbers generation

In order to generate the data fromTLRTIR (α, p1)distribution, an acceptance-rejection
(AR) sampling method is given in the following algorithm. In this algorithm, the
Weibull distribution is chosen as a proposal distribution. The AR algorithm is given
as follows:

Algorithm 1.
A1.Generate data on random variable Y fromWeibull distribution with pdf g given

as follow:

g (α, β) = α

β

(
y

β

)α−1

exp

(
−
(
y

β

)α)
.
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A2. Generate U from standard uniform distribution(independent of Y ).
A3. If

U <
f (Y ;α, p)

k × g (Y ;α, β)

then set X = Y (“accept”); otherwise go back to A1 (“reject”), where pdf f is given
as in (15) and

k = max
z∈R+

f (z;α, p)

g (z;α, β)
.

The output of this algorithm suggests a random data on X from TLRTIR(α, p). It is
noticed that the Algorithm 1 is used for all simulations in the paper.

3 Point estimation

In this section, we examine five estimators for point estimation of the TLRTIR (α, p)
distributions such as MLEs, LSEs, WLSEs, ADEs, and CVMEs.

3.1 Maximum likelihood estimation

Let X1, X2, ..., Xn be a random sample from TLRTIR(α, p) distribution. The log-
likelihood function is given by;


 (α, p|x) = n log 2α −
n∑

i=1

α

x2i
− 3

n∑
i=1

log xi +
n∑

i=1

log

(
1 − p

(
1− α

x2i

))
, (28)

where x = (x1, x2, ..., xn). The MLEs, α̂MLE and p̂MLE , of α and p are obtained by
simultaneously solving the following log-likelihood equations.

∂
 (α, p|x)
∂α

= n

α
−

n∑
i=1

1

x2i
+

n∑
i=1

p

x2i

(
1 − p

(
1− α

x2i

)) = 0, (29)

∂
 (α, p|x)
∂ p

=
n∑

i=1

α

x2i
− 1

1 − p

(
1 − α

x2i

) = 0. (30)

The log-likelihood equations (29)-(30) can be solved using numerical methods such
as Nelder-Mead,Broyden-Fletcher-Goldfarb-Shanno (BFGS). This algoritm is firstly
studied by Fletcher [24]. These methods can be easily employed by optim function in
R. The following results regarding to singularity of α̂MLE of the parameter α.
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Theorem 3.1 Let us assume that the parameter p is known. There exists a unique MLE
of the parameter α for p ∈ (0, 1) .

Proof Weobtained the second derivative of the log-likelihood function (3.1) according
to the parameter α as follows:

∂2
 (α, p|x)
∂α2 = − n

α2 −
n∑

i=1

p2

x4i

{
1 − p

(
1 − α

x2i

)}2

Since p ∈ (0, 1) , it follows that ∂2
(α,p|x)
∂α2 < 0, which means that ∂
(α,p|x)

∂α
is

a decreasing function. Further, it is clearly seen that limα→0
∂
(α,p|x)

∂α
= ∞ and

limα→∞ ∂
(α,p|x)
∂α

= −∑n
i=1

1
x2i

< 0, which provides the uniqueness of α̂MLE . Thus,

the proof is completed. ��

3.2 Ordinary least squares and weighted least squares estimation

Let X1, X2, ..., Xn be a random sample from TLRTIR(α, p) distribution, and x1:n <

x2:n < · · · < x2:n denote the corresponding observed order statistics. The LSEs ,
α̂LSE and p̂LSE , of α and p are obtained by minimizing

Z (α, p) =
n∑

i=1

[
F (Xi :n, α, p) − i

n + 1

]2
, (31)

with respect to α and p parameters. The weighted least squares estimators (WLSEs),
α̂WLSE and p̂W LSE , of α and p are derived by minimizing following equation with
respect to α and p parameters.

� (α, p) =
n∑

i=1

(n + 1)2 (n + 2)

i (n − i + 1)
×
[(

F (Xi :n, α, p) − i

n + 1

)]2
, (32)

where cdf F(.) is given as in (14)

3.3 Anderson-darling estimation

TheADEs, α̂ADE and p̂ADE ofα and p are obtained byminimizing following equation
with respect to α and p parameters.

A (α, p) = −n − 1

n

n∑
i=1

(2i − 1)
(
log F (Xi :n, α, p) + log F̄ (Xi .n, α, p)

)
. (33)
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3.4 Cramér-vonmises estimation

The CMEs α̂CME and p̂CME of α and p are derived byminimizing following equation
with respect to α and p parameters.

C (α, p) = 1

12n
+

n∑
i=1

(
F (Xi :n, α, p) − 2i − 1

2n

)2

. (34)

4 Simulation study

In this subsection, we perform a Monte Carlo simulation study. In the simulation
study, MSEs and biases of five estimators are calculated with 5000 repetitions for
the sample sizes such as n=50, 100, 250, 500, 750 and 1000. Five parameter settings
are considered as follows: (α = 0.3, p = 0.3), (α = 0.7, p = 0.9), (α = 1, p = 0.5),
(α = 2, p = 0.7), (α = 3, p = 0.9) . In all simulations, the samples are generated
from TLRTIR (α, p) distribution by using AR sampling given in Algorithm 1. The
biases and MSEs of the estimators are given in Tables 3, 7.

According to Tables 3, 4, 5, 6 and 7, it is observed that as the sample sizes increase,
the biases andMSEs of the all estimators decrease and approach to zero. For parameter
p, the performances of MLEs are generally better than the other estimators in terms
of MSEs and biases. On the other hand, it is seen that the best estimators is ADE in
small sample sizes while MLE is the best estimator in large sample sizes according to
MSE and bias for point estimation of parameter α. As a result of the simulation study,
we recommend the maximum likelihood method and Anderson-Darling method for
point estimation of parameters of TLRTIR (α, p) distribution.

5 Real data analysis

In this section, we perform two real data applications to illustrate the usefulness of
TLRTIR (α, p) distribution in modelling real-life data. In real data analysis, two
datasets are fitted to TLRTIR(α, p), transmuted inverse Rayleigh (TIR (α, λ)) [5],
inverse Rayleigh (IR (α)), transmuted Rayleigh (TR (α, λ)) [4], transmuted Weibull
(TW (α, β, λ)) [2], Weibull (α, β), Rayleigh (α), transmuted record type Weibull
(TRTW (α, β, p)) [18] distributions. The pdfs of fitted distributions are listed in
Table 8.

In order to compare the fitted distribution, some selection statistics such as Akaike’s
information criterion (AIC), Bayesian information criterion (BIC), Anderson-Darling
(A*), Cramer von Mises (W*), Kolmogorov-Smirnov (K-S) test statistics and its p-
value are used.
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790 C. Tanış

Table 3 Average bias and MSEs of the estimators for α = 0.3 and p = 0.3

Bias MSE

α̂ p̂ α̂ p̂

MLE 50 0.049664 0.068824 0.00842 0.070459

100 0.026747 0.019832 0.004448 0.050308

250 0.010469 −0.01022 0.002162 0.030212

500 0.005703 −0.01236 0.001215 0.018199

750 0.004496 −0.01093 0.000895 0.013646

1000 0.001791 −0.01702 0.000644 0.010161

5000 0.000493 −0.0085 0.000109 0.001724

LSE 50 0.032189 0.002717 0.007961 0.075084

100 0.018769 −0.0146 0.004617 0.055491

250 0.005786 −0.03001 0.002624 0.037136

500 0.00196 −0.0274 0.001597 0.023545

750 −0.00069 −0.03167 0.001431 0.022892

1000 −0.00173 −0.03103 0.001031 0.016086

5000 −9.3×10−5 −0.01084 0.000184 0.002691

WLSE 50 0.03502 0.011656 0.008007 0.077188

100 0.020739 −0.00689 0.004484 0.056185

250 0.004852 −0.03444 0.002741 0.042562

500 0.00226 −0.02651 0.001547 0.025085

750 0.003175 −0.01606 0.001012 0.015469

1000 0.000281 −0.02301 0.000802 0.012796

5000 0.00032 −0.00919 0.000136 0.002097

ADE 50 0.034733 0.012024 0.007586 0.081607

100 0.022988 0.002217 0.004177 0.05087

250 0.008604 −0.01858 0.002225 0.032055

500 0.001474 −0.02985 0.001608 0.026403

750 0.002873 −0.01732 0.001022 0.015749

1000 0.000202 −0.0233 0.000787 0.012533

5000 0.000266 −0.00939 0.000134 0.00207

CvME 50 0.053395 0.067505 0.010383 0.082356

100 0.029976 0.021029 0.00538 0.056922

250 0.011018 −0.0125 0.002738 0.03632

500 0.004874 −0.01745 0.001609 0.022777

750 0.001504 −0.02395 0.001404 0.021858

1000 −0.00014 −0.02552 0.001015 0.015504

5000 0.000217 −0.00977 0.000183 0.002649
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Table 4 Average bias and MSEs of the estimators for α = 0.7 and p = 0.9

Bias MSE

α̂ p̂ α̂ p̂

MLE 50 0.004532 −0.09673 0.008028 0.028921

100 0.009934 −0.05253 0.003927 0.011603

250 0.0089 −0.02491 0.001666 0.004334

500 0.007633 −0.01442 0.000887 0.002213

750 0.005716 −0.01163 0.00059 0.001528

1000 0.00493 −0.00994 0.000441 0.00112

5000 0.002069 −0.00454 8.48×10−5 0.000214

LSE 50 −0.01939 −0.13143 0.012882 0.060167

100 −0.00121 −0.06824 0.005696 0.022617

250 0.004767 −0.03116 0.002316 0.008213

500 0.005102 −0.01828 0.001153 0.003794

750 0.004289 −0.01403 0.000774 0.002592

1000 0.003348 −0.01287 0.000581 0.001967

5000 0.00186 −0.00482 0.000115 0.000373

WLSE 50 −0.01456 −0.1266 0.0114 0.057153

100 0.001919 −0.06481 0.005205 0.022039

250 0.006696 −0.02798 0.001842 0.005572

500 0.006418 −0.01613 0.000949 0.002701

750 0.00506 −0.01262 0.000639 0.001873

1000 0.004202 −0.01122 0.000482 0.001416

5000 0.001965 −0.00466 9.43×10−5 0.000269

ADE 50 −0.01059 −0.11797 0.00915 0.04163

100 0.002661 −0.06243 0.004162 0.014911

250 0.006094 −0.02905 0.001778 0.005381

500 0.005952 −0.01697 0.000934 0.002684

750 0.004719 −0.01322 0.00063 0.001865

1000 0.003957 −0.01166 0.000477 0.001413

5000 0.001905 −0.00476 9.4×10−5 0.00027

CvME 50 0.006198 −0.08132 0.012182 0.045509

100 0.010539 −0.04516 0.005809 0.019822

250 0.009388 −0.02182 0.002327 0.007206

500 0.007335 −0.01378 0.00118 0.003635

750 0.00577 −0.01104 0.000788 0.002511

1000 0.004456 −0.01063 0.000589 0.00191

5000 0.002079 −0.00438 0.000116 0.000368
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Table 5 Average bias and MSEs of the estimators for α = 1 and p = 0.5

Bias MSE

α̂ p̂ α̂ p̂

MLE 50 0.07328 −0.0167 0.052078 0.066896

100 0.047856 −0.01732 0.028987 0.041861

250 0.026077 −0.0181 0.011296 0.017925

500 0.014644 −0.01578 0.005586 0.009275

750 0.012821 −0.01176 0.003683 0.005816

1000 0.009643 −0.01178 0.002583 0.00422

5000 0.003933 −0.00543 0.000496 0.000825

LSE 50 0.007252 −0.09039 0.061082 0.093738

100 0.006455 −0.06402 0.037772 0.060589

250 0.005879 −0.04108 0.016866 0.027737

500 0.004612 −0.02729 0.00847 0.013762

750 0.007582 −0.01753 0.005054 0.007517

1000 0.005646 −0.0162 0.003569 0.005387

5000 0.003076 −0.00635 0.000692 0.001039

WLSE 50 0.017581 −0.08063 0.058191 0.093202

100 0.020565 −0.04859 0.033561 0.05424

250 0.013928 −0.03219 0.014558 0.025039

500 0.009952 −0.02117 0.006831 0.011352

750 0.010665 −0.01402 0.004113 0.006301

1000 0.007908 −0.0136 0.002897 0.00457

5000 0.003604 −0.00577 0.000566 0.000896

ADE 50 0.03261 −0.06302 0.053849 0.084021

100 0.025818 −0.04218 0.03154 0.049819

250 0.016301 −0.02899 0.013158 0.021636

500 0.009759 −0.02135 0.006652 0.011059

750 0.009964 −0.01495 0.004284 0.00678

1000 0.007658 −0.01392 0.002887 0.004579

5000 0.003534 −0.00585 0.000565 0.000897

CvME 50 0.064212 −0.02921 0.067525 0.085902

100 0.03813 −0.02914 0.038526 0.054513

250 0.019487 −0.02571 0.016274 0.024633

500 0.010943 −0.0203 0.008395 0.013062

750 0.011476 −0.01337 0.005206 0.007583

1000 0.008673 −0.01288 0.003585 0.005233

5000 0.003662 −0.00571 0.000695 0.001029
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Table 6 Average bias and MSEs of the estimators for α = 2 and p = 0.7

Bias MSE

α̂ p̂ α̂ p̂

MLE 50 0.07372 −0.042 0.110049 0.045603

100 0.062605 −0.02372 0.059204 0.026281

250 0.040866 −0.01311 0.023258 0.009907

500 0.030569 −0.00893 0.011186 0.004779

750 0.024302 −0.00819 0.007832 0.003313

1000 0.021305 −0.00753 0.005433 0.002295

5000 0.009233 −0.00375 0.001095 0.000477

LSE 50 −0.03617 −0.10178 0.15932 0.079513

100 0.011205 −0.05165 0.080768 0.038977

250 0.019934 −0.02423 0.029432 0.012814

500 0.020198 −0.0147 0.014256 0.006079

750 0.018246 −0.01178 0.010165 0.004278

1000 0.016654 −0.0102 0.006849 0.002847

5000 0.007945 −0.00446 0.001395 0.000588

WLSE 50 −0.00381 −0.08375 0.130536 0.064235

100 0.029262 −0.04207 0.068541 0.033551

250 0.029727 −0.01877 0.024868 0.010882

500 0.025742 −0.01147 0.011965 0.00509

750 0.021797 −0.00962 0.008507 0.003564

1000 0.018997 −0.00876 0.005789 0.002424

5000 0.008589 −0.00408 0.001174 0.000503

ADE 50 0.012258 −0.07409 0.120657 0.058372

100 0.035621 −0.03733 0.06267 0.029554

250 0.029924 −0.01852 0.024325 0.010534

500 0.025172 −0.01175 0.011885 0.005086

750 0.021401 −0.00984 0.008462 0.003563

1000 0.018723 −0.0089 0.00577 0.002428

5000 0.008495 −0.00413 0.001173 0.000504

CvME 50 0.057488 −0.04411 0.156188 0.064916

100 0.056578 −0.02398 0.081187 0.034829

250 0.036973 −0.01388 0.03028 0.012324

500 0.028598 −0.00957 0.014595 0.0059

750 0.023809 −0.00837 0.010365 0.004185

1000 0.02081 −0.00765 0.00699 0.002789

5000 0.008763 −0.00395 0.001408 0.000584
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Table 7 Average bias and MSEs of the estimators for α = 3 and p = 0.9

Bias MSE

α̂ p̂ α̂ p̂

MLE 50 −0.00693 −0.07718 0.126464 0.024359

100 0.032353 −0.03804 0.061012 0.010199

250 0.041147 −0.01532 0.02726 0.004242

500 0.036455 −0.00745 0.014003 0.00219

750 0.03137 −0.0058 0.009701 0.001475

1000 0.028266 −0.00499 0.007464 0.001119

5000 0.011353 −0.00321 0.001492 0.000228

LSE 50 −0.10732 −0.11138 0.213604 0.052957

100 −0.00812 −0.05099 0.09582 0.020827

250 0.019089 −0.02381 0.03742 0.007553

500 0.026372 −0.01129 0.019378 0.003868

750 0.024707 −0.00876 0.013292 0.00254

1000 0.024162 −0.00684 0.010145 0.001905

5000 0.01084 −0.00359 0.002072 0.000392

WLSE 50 −0.07754 −0.10062 0.163501 0.038734

100 0.006056 −0.04595 0.074239 0.014942

250 0.029599 −0.01965 0.029987 0.005373

500 0.031431 −0.00924 0.015549 0.002768

750 0.028188 −0.00725 0.010735 0.001827

1000 0.026388 −0.00586 0.008292 0.001384

5000 0.011187 −0.00339 0.001668 0.000284

ADE 50 −0.07402 −0.09961 0.145472 0.034185

100 0.00143 −0.04806 0.06676 0.013027

250 0.026329 −0.02102 0.028818 0.005164

500 0.029396 −0.01009 0.015153 0.002714

750 0.026675 −0.00786 0.010553 0.001811

1000 0.025357 −0.00629 0.008161 0.001371

5000 0.010953 −0.00349 0.00166 0.000284

CvME 50 −0.00131 −0.06195 0.196431 0.040316

100 0.041705 −0.02784 0.09697 0.01849

250 0.038375 −0.01477 0.038486 0.007142

500 0.035889 −0.0068 0.019953 0.003772

750 0.03103 −0.00577 0.013637 0.00249

1000 0.02889 −0.0046 0.010391 0.001876

5000 0.011777 −0.00314 0.002093 0.000389
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Table 8 The list of the lifetime distribution to modelling COVID-19 patient data

fT I R (x) = 2α
x3

exp
(
− α

x2

) {
1 + λ − 2λ exp

(
− α

x2

)}
, α > 0, λ ∈ [−1, 1]

fT R (x) = x
α2

exp
(
− x2

2α2

) {
1 − λ + 2λ exp

(
− x2

2α2

)}
, α > 0, λ ∈ [−1, 1]

fTW (x) = α
β

(
x
β

)α−1
exp

(
−
(
x
β

)α) {
1 − λ + 2λ exp

(
−
(
x
β

)α)}
, α, β > 0, λ ∈ [−1, 1]

fWeibull (x) = βαxα−1 exp
(−βxα

)
, α, β > 0

fRayleigh (x) = x
α2

exp
(
− x2

2α2

)
, α > 0

fT RTW (x) = βαxα−1 exp
(−βxα

) [
1 + p

(
βxα − 1

)]
, α, β > 0, p ∈ (0, 1)

Table 9 The MLEs and standard errors of parameters of the fitted distribution for dataset 1

Parameter Estimates

TLRTIR (α, p) 249.5468 0.4844

(67.3622) (0.3686)

TIR (α, λ) 91.8731 −0.9113

(19.3602) (0.1886)

IR (α) 167.8621

(23.7392)

TR (α, λ) 18.5168 0.7395

(2.1861) (0.2670)

TW (α, β, λ) 2.053352 26.11543 0.735174

(0.203708) (2.929975) (0.257507)

Weibull (α, β) 1.87789 20.85076

(0.18604) (1.669257)

Rayleigh (α) 15.0090

(1.0613)

TRTW (α, β, p) 1.866321 0.003511 0.012848

(0.097855) (0.000987) (0.180258)

5.1 Dataset 1: COVID-19 patients data

The first dataset consists of the time (in days) from the first positive to the first negative
COVID-19PCR test for 50 Israelis (more than 60years andmale).The recovery periods
(days) were calculated from an anonymized dataset of recovered COVID-19 patients
released to the public by the Israel Ministry of Health on November 25, 2020 [25].
The first dataset is as follows: 16, 16, 16, 14, 36, 9, 10, 11, 8, 9, 12, 10, 22, 5, 11, 17,
20, 12, 29, 12, 15, 25, 25, 24, 18, 13, 44, 14, 20, 19, 11, 10, 18, 21, 31, 9, 29, 12, 10,
10, 13, 12, 19, 33, 37, 16, 63, 9, 28, 16

The MLEs and standard errors (in parenthesis) of the parameters of the fitted dis-
tributions are presented in Table 9 and the comparison statistics are given for dataset
1 in Table 10. Also, Figure 3 provides the fitted cdfs and fitted pdfs for dataset 1.
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Table 10 The selection criterion statistics for dataset 1

AIC BIC K-S A* W* p-value

TLRTIR 355.81 359.634 0.075421 0.373537 0.036377 0.938582

TIR 355.7445 359.5685 0.082833 0.696839 0.089463 0.882608

IR 354.0869 355.9989 0.085887 0.605888 0.068869 0.854456

TW 366.4329 372.169 0.135886 1.18278 0.181822 0.314356

TR 364.5019 368.326 0.144622 1.188009 0.176251 0.246527

Weibull 367.4034 371.2274 0.146526 1.445075 0.229008 0.233298

Rayleigh 365.8247 367.7367 0.14654 1.575139 0.275655 0.233201

TRTW 369.4124 375.1484 0.148828 1.44123 0.226084 0.218029

Bold indicates the best model according to the criteria in the relevant column

Fig. 3 Fitted cdfs (left panel)and fitted pdfs (right panel) for dataset 1

As a result of the analysis of dataset 1, it is observed that the best fitted model is
TLRTIR (α, p) according to A*, W*, K-S and its p-value. By assuming the recovery
times distribute TLRTIR (α = 249.5468, p = 0.4844) distribution, we estimate the
probabilities of recovery times of COVID-19 patients more than 60 years old and
male. In this regard, estimated probabilities according to recovery times are given in
Table 11.

From Table 11, the probability of recovery of a COVID-19 patient (more than 60
years old and male) within the first two weeks after contracting the virus is approxi-
mately 45%. The probability of recovery in patients having to the same characteristics
within the first three weeks is approximately 72%. It can be concluded that in the first
8 weeks after infection, about 95% of the patients recovered. The expected value of
TIRTIR (α = 249.5468, p = 0.4844) distribution is approximately 21. This means
the recovery time of the COVID-19 patient (more than 60 years and male) is about 21
days.
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Table 11 Estimated probabilities of the recovery times of COVID-19 patients for dataset 1

Recovery time Estimated probability Recovery time Estimated probability

<7 days 0.0212 <4 weeks 0.8395

<8 days 0.0585 <5 weeks 0.8961

<9 days 0.1144 <6 weeks 0.9275

<10 days 0.1821 <7 weeks 0.9466

<11 days 0.2541 <8 weeks 0.9591

<12 days 0.3251 <9 weeks 0.9676

<13 days 0.3917 <10 weeks 0.9737

<14 days 0.4525 <11 weeks 0.9783

<15 days 0.507 <12 weeks 0.9817

<16 days 0.5554 <13 weeks 0.9844

<17 days 0.598 <14 weeks 0.9866

<18 days 0.6356 <15 weeks 0.9883

<19 days 0.6686 <16 weeks 0.9897

<20 days 0.6978 <17 weeks 0.9909

<21 days 0.7235 <18 weeks 0.9918

Table 12 The MLEs of parameters of the fitted distribution for dataset 2

Parameter Estimates

TLRTIR (α, p) 127.2051 0.4521

(29.9773) (0.3109)

TIR (α, λ) 105.5277 0.4040

(19.4813) (0.3522)

IR (α) 87.6003

(11.4045)

TR (α, λ) 13.1314 0.6423

(1.3328) (0.6423)

TW (α, β, λ) 2.0182 18.5726 0.6431

(0.1875) (1.8412) (0.2339)

Weibull (α, β) 1.8403 15.3060

(0.1711) (1.1512)

Rayleigh (α) 11.0828

(0.7214)

TRTW (α, β, p) 1.8414 0.0066 0.0041

(0.1343) (0.0027) (0.1848)
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Table 13 The selection criterion statistics for dataset 2

AIC BIC K-S A* W* p-value

TLRTIR 382.5586 386.7137 0.0619 0.2741 0.0333 0.9775

TIR 382.2614 386.4165 0.0655 0.2553 0.0329 0.9621

IR 381.1754 383.2529 0.0822 0.4637 0.0635 0.8203

TR 395.4216 399.5766 0.1299 1.4934 0.2173 0.2720

TW 397.4121 403.6447 0.1325 1.5029 0.2213 0.2515

Weibull 398.5811 402.7361 0.1432 1.8404 0.2804 0.1780

Rayleigh 397.4217 399.4992 0.1721 2.2104 0.3773 0.0608

TRTW 400.5824 406.8150 0.1421 1.8286 0.2765 0.1842

Bold indicates the best model according to the criteria in the relevant column

Fig. 4 Fitted cdfs (left panel)and fitted pdfs (right panel) for dataset 2

5.2 Dataset 2: Actual taxes revenue data

The second dataset is obtained by [26]. The data includes of the monthly actual taxes
revenue (in million Egyptian pounds) in Egypt from January 2006 to November 2010.
The second dataset are as follows: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6,
13.3, 8.5, 21.6, 18.5,5.1,6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8,
9.2, 26.2,21.9,16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9,
7,8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8.

For the second dataset, the MLEs and standard errors (in parenthesis) of the param-
eters of the fitted distributions are given in Table 12, and the selection criteria statistics
are presented in Table 13. Also, Figure 4 illustrates the fitted cdfs and fitted pdfs for
dataset 2. For twodatasets, someplots such asKernel densities, Probability-Probability
(P-P) and Quantile-Quantile (Q-Q) plots are respectively given in Figs. 5-7.

From Figures 5-7, we can easily see that there are good fits between TLRTIR (α, p)
distribution and datasets 1-2. Also, it is observed that the TLRTIR (α, p) distribution
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Fig. 5 Kernel density for dataset 1 (left panel)Kernel density for dataset 2 (right panel)

Fig. 6 P-P plot for dataset 1 (left panel)P-P plot for dataset 2 (right panel)
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Fig. 7 Q-Q plot for dataset 1 (left panel)Q-Q plot for dataset 2 (right panel)
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is the best fit to the datasets in Figs. 3-4. So Figures 3-7 support the results in Table 10
and Table 13.

6 Conclusion

In this study, we suggest a new lifetime distribution which is useful in modelling med-
ical science data. We obtain five estimators such as MLE, LSE, WLSE, ADE, and
CvME of the unknown parameters of the TLRTIR (α, p) distribution. A comprehen-
sive Monte Carlo simulation study is considered to assess the performances of these
estimators via biases andMSEs. As a result of the simulation study, we observe that as
the sample sizes increase theMSEs and biases of all estimators decrease for all parame-
ter values as expected.We recommend themaximum likelihood andAnderson-Darling
method for point estimation of α and p. Two real data applications are performed to
show the usefulness of TLRTIR (α, p) distribution. In real data illustration, we provide
the data sets regarding the recovery time (in days) of COVID-19 patients. The results
of real data applications show that the best fitted model is TLRTIR (α, p) according
to K-S, its p-value, A*, and W* for data set 1 while the best fitted model is TLRTIR
(α, p) according to all selection criteria for data set 2.

In previous studies, Barman et al. [27] emphasized that the probability of recovery
period of a COVID-19 patient within 20 days is about 43%. Sutiningsih et al. [28]
reported that the mean recovery time in COVID-19 patients is 20.63 days. Moreover,
Voinsky et al. [29] found that the average recovery time in COVID-19 patients is
approximately 15 days. Our results support previous studies. We observe that the
estimated mean recovery time is found about 21 days for dataset 1. On the other hand,
we estimate that the probability of recovery period of a COVID-19 patient within two
weeks is about 45%.

In conclusion,weprovide a newperspective on the interpretation and statistical eval-
uation of clinical data on COVID-19 patients. We also have shown that a new lifetime
distribution is not only included in statistical theory and that they have the potential to
be used in interpreting theCOVID-19 data. To our knowledge, this is the first study pro-
viding the estimated probabilities of the recovery time in COVID-19 patients using a
lifetime distribution. One of the advantages of this study is that the calculated estimates
in the real data analysis section are similar to the previous studies. In future times,
extensive research should be conducted on the recovery periods of COVID-19 patients.
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