
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 6, No. 1, 2013, 66-88

ISSN 1307-5543 – www.ejpam.com

Transmuted Modified Weibull Distribution: A Generalization

of the Modified Weibull Probability Distribution

Muhammad Shuaib Khan∗, Robert King

School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308,

Australia

Abstract. This paper introduces a transmuted modified Weibull distribution as an important compet-

itive model which contains eleven life time distributions as special cases. We generalized the three

parameter modified Weibull distribution using the quadratic rank transmutation map studied by Shaw

et al. [12] to develop a transmuted modified Weibull distribution. The properties of the transmuted

modified Weibull distribution are discussed. Least square estimation is used to evaluate the parame-

ters. Explicit expressions are derived for the quantiles. We derive the moments and examine the order

statistics. We propose the method of maximum likelihood for estimating the model parameters and

obtain the observed information matrix. This model is capable of modeling of various shapes of aging

and failure criteria.
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1. Introduction

The Weibull distribution is a life time probability distribution used in the reliability engi-

neering discipline. We introduce the transmuted modified Weibull distribution which extends

recent development on transmuted Weibull distribution by Aryal et al. [1]. More recently

Aryal et al. [2] introduced the transmuted extreme value distribution. In this article, we

introduce and study several mathematical properties of new reliability model referred to as

the transmuted modified Weibull distribution. This paper focuses on all the properties of this

model and presents the graphical analysis of the subject distribution. This paper presents the

relationship between shape parameter and other properties such as non-reliability function,

reliability function, instantaneous failure rate, cumulative instantaneous failure rate models.

Recently Ammar et al. [10] proposed the modified Weibull distribution.

FMW (t) = 1− exp(−αt −ηtβ ). (1)
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This article defined the family of transmuted modified Weibull distributions. The main fea-

ture of this model is that a transmuted parameter λ is introduced in the subject distribution

which provides greater flexibility in the form of new distributions. Using the quadratic rank

transmutation map studied by Shaw et al. [12], we develop the four parameter transmuted

modified Weibull distribution T MW D(α,β ,η,λ, t). We provide a comprehensive description

of mathematical properties of the subject distribution with the hope that it will attract wider

applications in reliability, engineering and in other areas of research. These distributions have

several attractive properties for more details we refer to [5, 8, 4, 6, 7, 13].

The article is organized as follows, In Section 2, we present the flexibility of the subject

distribution and some special sub-models. In Section 3, we demonstrate the reliability func-

tions of the subject model. A range of mathematical properties are considered in Section

4-5. These include quantile functions, moment estimation, moment generating function and

least square estimation. In Section 6, the minimum, maximum and median order statistics

models are discussed. We also demonstrate the joint density functions g(t1, tn) of the trans-

muted modified Weibull distribution. In Section 7, we demonstrate the maximum likelihood

estimates (M LES) of the unknown parameters and the asymptotic confidence intervals of the

unknown parameters. However, some of these quantities could not be evaluated in closed

form and therefore special cases were used to express them. In Section 8, we fit the TMW

model to illustrate its usefulness. In Section 9, concluding remarks are addressed.

2. Transmuted Modified Weibull Distribution

A random variable T is said to have transmuted Modified Weibull probability distribu-

tion with parameters α,β ,η > 0 and −1 ≤ λ ≤ 1 . It can be used to represent the failure

probability density function is given by

fT MW (t) = (α+ βηtβ−1)exp(−αt −ηtβ )(1−λ+ 2λexp(−αt −ηtβ )) t > 0 (2)

Where β and η are the shape parameters representing the different patterns of the trans-

muted modified Weibull distribution and are positive, α is a scale parameter representing the

characteristic life and is also positive, λ is the transmuted parameter. The restrictions in equa-

tion (2) on the values of α,β ,η and λ are always the same.

The transmuted modified Weibull distribution is very flexible model that approaches to

different distributions when its parameters are changed. The flexibility of the transmuted

modified Weibull distribution is explained in Table 1. The subject distribution includes as

special cases the transmuted modified Exponential (TME), transmuted Linear Failure Rate

(TLFR), transmuted Weibull (TW), transmuted Rayleigh (TR) and transmuted Exponential

distributions. Figure 1 shows the transmuted modified Weibull distribution that approaches

to eleven different lifetime distributions when its parameters are changed. The cumulative

distribution function of the transmuted modified Weibull distribution is denoted by FT MW (t)

and is defined as

FT MW (t) = (1− exp(−αt −ηtβ ))(1+λexp(−αt −ηtβ )) (3)



M. Shuaib, R. King / Eur. J. Pure Appl. Math, 6 (2013), 66-88 68

Figure 1: Sub Models of Transmuted Modified Weibull Distribution

Table 1: Modified and Transmuted Modified type distributions: T=Transmuted; M=Modified;

W=Weibull; E=Exponential; R=Rayleigh

S.N o Distr ibution T MW T MW T MW T MW

α β η λ

1 T M E α 1 η λ

2 T MR α 2 η λ

3 MW α β η 0

4 MR α 2 η 0

5 M E α 1 η 0

6 TW 0 β η λ

7 TR 0 2 η λ

8 T E 0 1 η λ

9 W 0 β η 0

10 R 0 2 η 0

11 E 0 1 η 0

Figure 2a shows the diverse shape of the transmuted modified Weibull PDF with different

choice of parameters. The beauty of the subject distribution and its sub models are explained

in Table 1.

When the CDF of the T MW D(α,β ,η,λ, t) distribution has zero value then it represents

no failure components. It is clear from the Figure 2b that two curves intersect at the point

of (0.4, 0.574997) and two curves approximately intersect at the point (1.1, 0.885533) the

characteristic point for the transmuted modified Weibull CDF.
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(a) Probability Density Function (b) Cumulative Distribution Function

Figure 2: Transmuted Modified Weibull PDF & CDF

3. Reliability Analysis

The transmuted modified Weibull distribution can be a useful characterization of life time

data analysis. The reliability function (RF) of the transmuted modified Weibull distribution is

denoted by RT MW (t) also known as the survivor function and is defined as

RT MW (t) = 1− FT MW (t)

RT MW (t) = 1− (1− exp(−αt −ηtβ ))(1+λexp(−αt −ηtβ )) (4)

It is important to note that RT MW (t) + FT MW (t) = 1 . Figure 3a illustrates the reliability

pattern of the transmuted modified Weibull distribution with different choice of parameters.

One of the characteristic in reliability analysis is the hazard rate function defined by

hT MW (t) =
fT MW (t)

1− FT MW (t)
(5)

The hazard function (HF) of the transmuted modified Weibull distribution also known as

instantaneous failure rate denoted by hT MW (t) and is defined as
fT MW (t)

RT MW (t)

hT MW (t) =
(α+ βηtβ−1)exp(−αt −ηtβ )(1−λ+ 2λexp(−αt −ηtβ ))

1− (1− exp(−αt −ηtβ ))(1+λexp(−αt −ηtβ ))
(6)

It is important to note that the units for hT MW (t) is the probability of failure per unit of

time, distance or cycles.

Figures 3b and 3c shows the transmuted modified Weibull instantaneous failure rate pat-

terns. These failure rates are defined with different choices of parameters.
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(a) Reliability Function (b) Hazard Function (wear out period)

(c) Hazard Function (useful life period) (d) Cumulative Hazard Function

Figure 3: Transmuted Modified Weibull Reliability and Hazard Functions

In both cases when β = 5 the distribution has the strictly increasing HR. when β = 1 ,

the HR is steadily increasing in Figure 3b which represents failure life between early failures

and wear out periods. When β = 1 , the HR is constant in Figure 3c which represents failure

life in useful life period. When β > 1 , the HF is continually increasing which represents

failures occurs after the useful life periods and approaches to the wear-out failures. The HR

of the TMWD as given in equation (6) becomes identical with the HR of transmuted modified

Rayleigh distribution for β = 2 and for β = 1 it coincides with the transmuted modified

Exponential distribution. So the transmuted modified Weibull distribution is a very flexible

reliability model.

The Cumulative hazard function of the transmuted modified Weibull distribution is de-

noted by HT MW (t) and is defined as

HT MW (t) = −ln|(1− exp(−αt −ηtβ ))(1+λexp(−αt −ηtβ ))| (7)

It is important to note that the units for HT MW (t) is the cumulative probability of failure per

unit of time, distance or cycles. Figure 3d shows the transmuted modified Weibull cumulative
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hazard failure rates with different choices of parameters. For all choice of parameters the

distribution has the decreasing patterns of cumulative instantaneous failure rates.

Theorem 1. The hazard rate function of the transmuted modified Weibull distribution has the

following properties

(i) If β = 1 the failure rate is same as the T M ED(α,η,λ, t)

(ii) If β = 2 the failure rate is same as the T LFRD(α,η,λ, t)

(iii) If α = 0 the failure rate is same as the TW D(β ,η,λ, t)

(iv) If α = 0,β = 1 the failure rate is same as the T ED(η,λ, t)

(v) If α = 0,β = 2 the failure rate is same as the TRD(η,λ, t)

(vi) If λ= 0 the failure rate is same as the MW D(α,β ,η, t)

(vii) If λ= 0,β = 1 the failure rate is same as the M ED(α,η, t)

(viii) If λ= 0,β = 2 the failure rate is same as the MRD(α,η, t)

Proof. The hazard function (HF) of the transmuted modified Weibull distribution is given

in equation (6) has the special cases with different choice of parameters

(i) If β = 1 the failure rate is same as the T M ED(α,η,λ, t)

hT M E(t) =
(α+η)exp(−αt −ηt)(1−λ+ 2λexp(−αt −ηt))

1− (1− exp(−αt −ηt))(1+λexp(−αt −ηt))

(ii) If β = 2 the failure rate is same as the T LFRD(α,η,λ, t)

hT LFR(t) =
(α+ 2ηt)exp(−αt −ηt2)(1−λ+ 2λexp(−αt −ηt2))

1− (1− exp(−αt −ηt2))(1+λexp(−αt −ηt2))

(iii) If α= 0 the failure rate is same as the TW D(β ,η,λ, t)

hTW (t) =
(βηtβ−1)exp(−ηtβ )(1−λ+ 2λexp(−ηtβ ))

1− (1− exp(−ηtβ ))(1+λexp(−ηtβ ))

(iv) If α= 0,β = 1 the failure rate is same as the T ED(η,λ, t)

hT E(t) =
(η)exp(−ηt)(1−λ+ 2λexp(−ηt))

1− (1− exp(−ηt))(1+λexp(−ηt))

(v) If α= 0,β = 2 the failure rate is same as the TRD(η,λ, t)

hTR(t) =
(2ηt)exp(−ηt2)(1−λ+ 2λexp(−ηt2))

1− (1− exp(−ηt2))(1+λexp(−ηt2))
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(vi) If λ= 0 the failure rate is same as the MW D(α,β ,η, t)

hMW (t) =
(α+ βηtβ−1)exp(−αt −ηtβ )

1− (1− exp(−αt −ηtβ ))

(vii) If λ= 0,β = 1 the failure rate is same as the M ED(α,η, t)

hM E(t) =
(α+η)exp(−αt −ηt)

1− (1− exp(−αt −ηt))

(viii) If λ= 0,β = 2 the failure rate is same as the MRD(α,η, t)

hMR(t) =
(α+ 2ηt)exp(−αt −ηt2)

1− (1− exp(−αt −ηt2))

4. Statistical Properties

This section explain the statistical properties of the T MW D(α,β ,η,λ, t)

4.1. Quantile and Median

The quantile tq of the T MW D(α,β ,η,λ, t) is the real solution of the following equation

ηtβq +αtq + ln



1− (1+λ)−
p

(1+λ)2− 4λq

2λ



 = 0 (8)

The above equation (8) has no closed-form solution in tq , so we have different cases by sub-

stituting the parametric values in the above quantile equation. So the derived special cases are

(1) The q-th quantile of the T LFRD(α,η,λ, t) by substituting β = 2

tq =

−α+
Ç

α2 − 4η ln

�

1− (1+λ)−
p
(1+λ)2−4λq

2λ

�

2η

(2) The q-th quantile of the TW D(β ,η,λ, t) by substituting α= 0

tq =



− 1

η
ln



1− (1+λ)−
p

(1+λ)2 − 4λq

2λ









1

β
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(3) The q-th quantile of the TRD(η,λ, t) by substituting α = 0,β = 2

tq =

√

√

√

√



− 1

η
ln



1− (1+λ)−
p

(1+λ)2− 4λq

2λ









(4) The q-th quantile of the T ED(η,λ, t) by substituting α= 0,β = 1

tq =



− 1

η
ln



1− (1+λ)−
p

(1+λ)2 − 4λq

2λ









By putting q = 0.5 in equation (8) we can get the median of T MW D(α,β ,η,λ, t).

The median life of the subject distribution is the 50th percentile. In practice, this is the

life by which 50 percent of the units will be expected to have failed and so it is the life at

which 50 percent of the units would be expected to still survive. Figure 4a shows the trans-

muted modified Weibull median life with different choice of parameters are 0.1 ≤ β ≤ 5,

λ = 0.3,0.5,0.7,1 and the value of η = 2. It is important to note that as the λ increases

the pattern of the median life increases. Figure 4b shows the multiple patterns of the sub-

ject distribution for B-life with different choice of parameters. Here the B − 0.1 life shows

the maximum values of percentiles life and B − 0.00001 life shows the minimum values of

percentiles life. So as the percentile decreases the pattern of B-lives decreases. All of these

B-lives are of increasing patterns. Here as β →∞ then these B-lives are also increasing. The

subject distribution for percentile life is applying in those situations where the B-lives are of

increasing order.

(a) Median (b) B-lives

Figure 4: Transmuted Modified Weibull Quantiles

4.2. Random Number Generation

The random number as t of the T MW D(α,β ,η,λ, t) is defined by the following equation

(1− exp(−αt −ηtβ ))(1+λexp(−αt −ηtβ )) = ξ, where ξ∼ U(0,1)



M. Shuaib, R. King / Eur. J. Pure Appl. Math, 6 (2013), 66-88 74

ηtβ +αt + ln



1− (1+λ)−
p

(1+λ)2 − 4λξ

2λ



 = 0 (9)

The above equation is not in closed form solution in t, Using ξ a random number uni-

formly distributed from zero to one, we have solved the above equation F(t) = ξ to obtain a

random number in t.

4.3. Moments

The following theorem gives the kth moment of the T MW D(α,β ,η,λ, t)

Theorem 2. If T has the T MW D(α,β ,η,λ, t) with |λ| ≥ 1 , then the kth moment of T say µk

is given as follows

µk =



















∑∞
i=0

(−1)iηi

i!

h

(1−λ)
�

Γ(iβ+k+1)

αiβ+k +
βηΓ(β(i+1)+k)

αβ(i+1)+k

�i

if α,β ,η > 0

+2λ
∑∞

i=0
(−1)i (2η)i

i!

h�

αΓ(iβ+k+1)

(2α)iβ+k+1 +
βηΓ(β(i+1)+k)

(2α)β(i+1)+k

�i

η
−k

β Γ
�

1+ k

β

�
�

(1−λ) +λ2
−k

β

�

if α= 0

α−kΓ(1+ k)((1−λ) +λ2−k) if β = 0

(10)

Based on the above results given in Theorem 2, the coefficient of variation, coefficient of

skewness and coefficient of kurtosis of T MW D can be obtained according to the following

relation

CVT MW =

r

µ2

µ1

− 1 (11)

CST MW =
µ3− 3µ2µ1+ 2µ3

1

(µ2−µ2
1)

3

2

(12)

CKT MW =
µ4− 4µ3µ1+ 6µ2µ

2
1− 3µ4

1

(µ2−µ2
1)

2
(13)

The relationship between β and the mean life is shown in Figure 5. From this analysis it is

clear that as β → ∞ the mean life of the subject distribution is also increasing. So β and

the mean life has the positive proportion. The relationship between β and the variance life

is shown in Figure 6a. From our calculation it is clear that as β →∞ the variance life of the

subject distribution is decreasing. So β and the variance life has the negative proportion. The

relationship between β and the C .VT MW life is shown in Figure 6b.
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Figure 5: β vs Mean

(a) β vs VarT MW (b) β vs CVT MW

(c) β vs CST MW (d) β vs CKT MW

Figure 6: Transmuted Modified Weibull β vs. Coefficients

This relationship shows that it becomes asymptotic decreasing as β → ∞. The C .VT MW

life is used to measure the consistency of the data. Here C .ST MW is the quantity used to
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measure the skewness of the distribution. The relationship between β and C .ST MW is shown

in Figure 6c. From our calculations it is clear that C .ST MW becomes asymptotically decreasing

as β → ∞ . Here C .KT MW is the quantity used to measure the kurtosis of the distribution.

The relationship between β and C .KT MW is shown in Figure 6d. From our calculations it is

clear that as β →∞ the value of C .KT MW becomes asymptotically decreasing.

4.4. Moment Generating Function

The following theorem gives the moment generating function (mgf) of T MW D(α,β ,η,λ, t)

Theorem 3. If T has the T MW D(α,β ,η,λ, t) with |λ| ≥ 1 , then the moment generating

function of T say Mx(t) is given as follows

Mx (t) =























∑∞
i=0

(−1)iηi

i!

h

(1−λ)
�

αΓ(iβ+1)

(α−t)iβ+1 +
βηΓ(β(i+1))

(α−t)β(i+1)

�i

if α,β ,η > 0

+2λ
∑∞

i=0
(−1)i (2η)i

i!

h�

αΓ(iβ+1)

(2α−t)iβ+1 +
βηΓ(β(i+1)+k)

(2α−t)β(i+1)

�i

∑∞
i=0

t i

i!
η
−i

β Γ
�

1+ i

β

�
�

(1−λ) +λ2
−i

β

�

if α= 0

α
�

1−λ
α−t
+ 2λ

2α−t

�

if β = 0

(14)

The proof of this theorem is provided in Appendix. Based on the above results given in

Theorem 3, the measure of central tendency, measure of dispersion, coefficient of variation,

coefficient of skewness and coefficient of kurtosis of T MW D(α,β ,η,λ, t) can be obtained

according to the above relation in Theorem 2.

5. Least Square Estimation

Let T1, T2, . . . , Tn be a random sample of T MW D(α,β ,η,λ, t) transmuted modified Weibull

distribution with cdf FT MW (t), and suppose that T(i), i = 1,2, . . . , n denote the ordered sam-

ple. For sample of size n, we have

E(F(T(i))) =
i

n+ 1

The least square estimators (LSES) are obtained by minimizing

Q(α,β ,η,λ) =

n
∑

i=0

�

F(T(i))−
i

n+ 1

�2

(15)

By using (3) and (15) we have the following equation

Q(α,β ,η,λ) =

n
∑

i=0

�

(1− exp(−αt −ηtβ ))(1+λexp(−αt −ηtβ ))− i

n+ 1

�2

(16)
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To minimize equation (16) with respect to α,β ,η and λ , we differentiate with respect to

these parameters, which leads to the following equations

n
∑

i=0

((1− exp(−αt −ηtβ ))

�

1+λexp(−αt −ηtβ ))− i

n+ 1

�

(t)

× ((1+λ)exp(−αt −ηtβ ))− 2λ(1− exp(−αt −ηtβ )) = 0

n
∑

i=0

((1− exp(−αt −ηtβ ))

�

1+λexp(−αt −ηtβ ))− i

n+ 1

�

ηtβ ln(t)

× ((1+λ)exp(−αt −ηtβ ))− 2λ(1− exp(−αt −ηtβ )) = 0

n
∑

i=0

((1− exp(−αt −ηtβ ))

�

1+λexp(−αt −ηtβ ))− i

n+ 1

�

tβ

× ((1+λ)exp(−αt −ηtβ ))− 2λ(1− exp(−αt −ηtβ )) = 0

n
∑

i=0

((1− exp(−αt −ηtβ ))

�

1+λexp(−αt −ηtβ ))− i

n+ 1

�

× (exp(−αt −ηtβ ))− 2(1− exp(−αt −ηtβ )) = 0

6. Order Statistics

Let T1:n ≤ T2:n ≤ . . . ≤ Tn:n be the order statistics from the continuous distribution, then

the pdf of Tr:n 1≤ r ≤ n is given by

fr:n(t) = Cr:n(F(t))
r−1(1− F(t))n−r f (t), t > 0 (17)

The joint pdf of Tr:n and Ts:n 1≤ r ≤ s ≤ n, is given by

fr:s:n(t,u) = Cr:s:n(F(t))
r−1(F(u)− F(t))s−r−1(1− F(t))n−s f (t) f (u), (18)

for 0≤ t ≤ u≤∞ and where Cr:n =
n!

(r−1)!(n−r)!
and Cr:s:n =

n!

(r−1)!(s−r−1)!(n−s)!

6.1. Distribution of Minimum and Maximum

Let t1, t2, . . . tn be n given random variables. Here we define T1 = Min(t1, t2, . . . tn) and

Tn = Max(t1, t2, . . . tn) ordered random variables. We find the transmuted modified Weibull

distribution for the minimum and maximum observations and its sub models when its param-

eters are changed [9, 11].
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Theorem 4. Let t1, t2, . . . tn are independently identically distributed ordered random variables

from the transmuted modified Weibull distribution having Ist order and nth order probability

density function is given by

f1:n(t) =n(1− (1− exp(−αt −ηtβ ))(1+λexp(−αt −ηtβ )))n−1(α

+ βηtβ−1)× exp(−αt −ηtβ )(1−λ+ 2λexp(−αt −ηtβ )) (19)

fn:n(t) =n((1− exp(−αt −ηtβ ))(1+λexp(−αt −ηtβ )))n−1(α+ βηtβ−1)

× exp(−αt −ηtβ )(1−λ+ 2λexp(−αt −ηtβ )) (20)

Proof. For the minimum and maximum order statistic of the four parameters transmuted

modified Weibull distribution have different life time distributions when its parameters are

changed.

Case A: Minimum order statistic

1. The minimum order statistic of the T LFRD(α,η,λ, t) by substituting β = 2

f1:n(t) =n(1− (1− exp(−αt −ηt2))(1+λexp(−αt −ηt2)))n−1(α+ 2ηt)

× exp(−αt −ηt2)(1−λ+ 2λexp(−αt −ηt2))

2. The minimum order statistic of the T M ED(α,η,λ, t) by substituting β = 1

f1:n(t) =n(1− (1− exp(−αt −ηt))(1+λexp(−αt −ηt)))n−1(α+η)

× exp(−αt −ηt)(1−λ+ 2λexp(−αt −ηt))

3. The minimum order statistic of the TW D(β ,η,λ, t) by substituting α= 0

f1:n(t) =n(1− (1− exp(−ηtβ ))(1+λexp(−ηtβ )))n−1(βηtβ−1)

× exp(−ηtβ )(1−λ+ 2λexp(−ηtβ ))

4. The minimum order statistic of the TRD(η,λ, t) by substituting α = 0,β = 2

f1:n(t) =n(1− (1− exp(−ηt2))(1+λexp(−ηt2)))n−1(2ηt)

× exp(−ηt2)(1−λ+ 2λexp(−ηt2))

5. The minimum order statistic of the T ED(η,λ, t) by substituting α= 0,β = 1

f1:n(t) = n(1−(1−exp(−ηt))(1+λexp(−ηt)))n−1(η)×exp(−ηt)(1−λ+2λexp(−ηt))

6. The minimum order statistic of the MW D(α,β ,η, t) by substituting λ = 0,

f1:n(t) = n(1− (1− exp(−αt −ηtβ )))n−1(α+ βηtβ−1)exp(−αt −ηtβ )
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7. The minimum order statistic of the MRD(α,η, t) by substituting β = 2,λ= 0,

f1:n(t) = n(1− (1− exp(−αt −ηt2)))n−1(α+ 2ηt)exp(−αt −ηt2)

8. The minimum order statistic of the M ED(α,η, t) by substituting β = 1,λ= 0,

f1:n(t) = n(1− (1− exp(−αt −ηt)))n−1(α+η)exp(−αt −ηt)

Case B: Maximum order statistic

1. The maximum order statistic of the T LFRD(α,η,λ, t) by substituting β = 2

fn:n(t) =n((1− exp(−αt −ηt2))(1+λexp(−αt −ηt2)))n−1(α+ 2ηt)

× exp(−αt −ηt2)(1−λ+ 2λexp(−αt −ηt2))

2. The maximum order statistic of the T M ED(α,η,λ, t) by substituting β = 1

fn:n(t) =n((1− exp(−αt −ηt))(1+λexp(−αt −ηt)))n−1(α+η)

× exp(−αt −ηt)(1−λ+ 2λexp(−αt −ηt))

3. The maximum order statistic of the TW D(β ,η,λ, t) by substituting α= 0

fn:n(t) =n((1− exp(−ηtβ ))(1+λexp(−ηtβ )))n−1(βηtβ−1)

× exp(−ηtβ )(1−λ+ 2λexp(−ηtβ ))

4. The maximum order statistic of the TRD(η,λ, t) by substituting α= 0,β = 2

fn:n(t) =n((1− exp(−ηt2))(1+λexp(−ηt2)))n−1(2ηt)

× exp(−ηt2)(1−λ+ 2λexp(−ηt2))

5. The maximum order statistic of the T ED(η,λ, t) by substituting α= 0,β = 1

fn:n(t) = n((1− exp(−ηt))(1+λexp(−ηt)))n−1(η)× exp(−ηt)(1−λ+ 2λexp(−ηt))

6. The maximum order statistic of the MW D(α,β ,η, t) by substituting λ= 0,

fn:n(t) = n((1− exp(−αt −ηtβ )))n−1(α+ βηtβ−1)exp(−αt −ηtβ )

7. The maximum order statistic of the MRD(α,η, t) by substituting β = 2,λ = 0,

fn:n(t) = n((1− exp(−αt −ηt2)))n−1(α+ 2ηt)exp(−αt −ηt2)
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8. The maximum order statistic of the M ED(α,η, t) by substituting β = 1,λ= 0,

fn:n(t) = n((1− exp(−αt −ηt)))n−1(α+η)exp(−αt −ηt)

Theorem 5. Let t1, t2, . . . tn are independently identically distributed ordered random variables

from the transmuted modified Weibull distribution having median order Tm+1 probability density

function is given by

g( t̃) =
(2m+ 1)!

m!m!
(F( t̃))m(1− F( t̃))m f ( t̃), 0≤ t̃ ≤∞ (21)

Proof. Using (21) the median order statistic of the four parameters transmuted modified

Weibull distribution is given below

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−α t̃ −η t̃β ))(1+λexp(−α t̃ −η t̃β )))m(α+ βη t̃β−1)

× (1− (1− exp(−α t̃ −η t̃β ))(1+λexp(−α t̃ −η t̃β )))m

× exp(−α t̃ −η t̃β )(1−λ+ 2λexp(−α t̃ −η t̃β )) (22)

Using (22) we have different life time distributions of median order statistic when its param-

eters are changed

1. The median order statistic of the T LFRD(α,η,λ, t) by substituting β = 2

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−α t̃ −η t̃2))(1+λexp(−α t̃ −η t̃2)))m(α+ 2η t̃)

× (1− (1− exp(−α t̃ −η t̃2))(1+λexp(−α t̃ −η t̃2)))m

× exp(−α t̃ −η t̃2)(1−λ+ 2λexp(−α t̃ −η t̃2))

2. The median order statistic of the T M ED(α,η,λ, t) by substituting β = 1

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−α t̃ −η t̃))(1+λexp(−α t̃ −η t̃)))m(α+η)

× (1− (1− exp(−α t̃ −η t̃))(1+λexp(−α t̃ −η t̃)))m

× exp(−α t̃ −η t̃)(1−λ+ 2λexp(−α t̃ −η t̃))

3. The median order statistic of the TW D(β ,η,λ, t) by substituting α= 0

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−η t̃β ))(1+λexp(−η t̃β )))m(βη t̃β−1)

× (1− (1− exp(−η t̃β ))(1+λexp(−η t̃β )))m

× exp(−η t̃β )(1−λ+ 2λexp(−η t̃β ))
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4. The median order statistic of the TRD(η,λ, t) by substituting α= 0,β = 2

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−η t̃2))(1+λexp(−η t̃2)))m(2η t̃)

× (1− (1− exp(−η t̃2))(1+λexp(−η t̃2)))m

× exp(−η t̃2)(1−λ+ 2λexp(−η t̃2))

5. The median order statistic of the T ED(η,λ, t) by substituting α= 0,β = 1

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−η t̃))(1+λexp(−η t̃)))m(η t̃)

× (1− (1− exp(−η t̃))(1+λexp(−η t̃)))m

× exp(−η t̃)(1−λ+ 2λexp(−η t̃))

6. The median order statistic of the MW D(α,β ,η, t) by substituting λ= 0,

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−α t̃ −η t̃β ))m(α+ βη t̃β−1)

× (1− (1− exp(−α t̃ −η t̃β ))m× exp(−α t̃ −η t̃β )

7. The median order statistic of the MRD(α,η, t) by substituting β = 2,λ = 0,

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−α t̃ −η t̃2))m(α+ 2η t̃)

× (1− (1− exp(−α t̃ −η t̃2))m× exp(−α t̃ −η t̃2)

8. The median order statistic of the M ED(α,η, t) by substituting β = 1,λ= 0,

g( t̃) =
(2m+ 1)!

m!m!
((1− exp(−α t̃ −η t̃))m(α+η)

× (1− (1− exp(−α t̃ −η t̃))m× exp(−α t̃ −η t̃)

6.2. Joint Distribution of rth Order Statistic Tr and sth Order Statistic Ts

The joint pdf of Tr and Ts with Tr = t and Ts = u, (1≤ r ≤ s ≤ n) in (18) by taking r = 1

and s = n in (17) the minimum and maximum joint density can be written as

g(t1, tn) = n(n− 1)(F(tn)− F(t1))
n−2 f (t1) f (t2) (23)

Theorem 6. Let t1, t2, . . . , tn be independently identically distributed ordered random variables

from the transmuted modified Weibull distribution having joint probability density function using

(2) and (3) in (23) is given by

g(t1, tn) =n(n− 1)(α+βηt
β−1

1 )exp(−αt1 −ηt
β

1 )(1−λ+ 2λexp(−αt1 −ηt
β

1 ))
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× (α+ βηtβ−1
n )exp(−αtn −ηtβn )(1−λ+ 2λexp(−αtn −ηtβn ))

× [(1− exp(−αtn −ηtβn ))(1+λexp(−αtn−ηtβn ))

− (1− exp(−αt1 −ηt
β

1 ))(1+λexp(−αt1 −ηt
β

1 ))]
n−2 (24)

Proof. Using (24), the joint probability density function g(t1, tn) of the subject distribution

has different joint distributions when its parameters are changed

1. The min and max order statistic of the T LFRD(α,η,λ, t) by substituting β = 2

g(t1, tn) =n(n− 1)(α+ 2ηt1)exp(−αt1 −ηt2
1)(1−λ+ 2λexp(−αt1 −ηt2

1))

× (α+ 2ηtn)exp(−αtn−ηt2
n)(1−λ+ 2λexp(−αtn −ηt2

n))

× [(1− exp(−αtn −ηt2
n))(1+λexp(−αtn −ηt2

n))

− (1− exp(−αt1 −ηt2
1))(1+λexp(−αt1 −ηt2

1))]
n−2

2. The min and max order statistic of the T M ED(α,η,λ, t) by substituting β = 1

g(t1, tn) =n(n− 1)(α+η)exp(−αt1 −ηt1)(1−λ+ 2λexp(−αt1 −ηt1))

× (α+η)exp(−αtn −ηtn)(1−λ+ 2λexp(−αtn−ηtn))

× [(1− exp(−αtn −ηtn))(1+λexp(−αtn −ηtn))

− (1− exp(−αt1 −ηt1))(1+λexp(−αt1 −ηt1))]
n−2

3. The min and mix order statistic of the TW D(β ,η,λ, t) by substituting α = 0

g(t1, tn) =n(n− 1)(βηt
β−1

1 )exp(−ηt
β

1 )(1−λ+ 2λexp(−ηt
β

1 ))

× (βηtβ−1
n )exp(−ηtβn )(1−λ+ 2λexp(−ηtβn ))

× [(1−ηtβn ))(1+λexp(−ηtβn ))

− (1− exp(−ηt
β

1 ))(1+λexp(−ηt
β

1 ))]
n−2

4. The min and max order statistic of the TRD(η,λ, t) by substituting α= 0,β = 2

g(t1, tn) =n(n− 1)(2ηt1)exp(−ηt2
1)(1−λ+ 2λexp(−ηt2

1))

× (2ηtn)exp(−ηt2
n)(1−λ+ 2λexp(−ηt2

n))× [(1−ηt2
n))(1+λexp(−ηt2

n))

− (1− exp(−ηt2
1))(1+λexp(−ηt2

1))]
n−2

5. The min and max order statistic of the T ED(η,λ, t) by substituting α = 0,β = 1

g(t1, tn) =n(n− 1)(η)exp(−ηt1)(1−λ+ 2λexp(−ηt1))

× (η)exp(−ηtn)(1−λ+ 2λexp(−ηtn))× [(1−ηtn))(1+λexp(−ηtn))

− (1− exp(−ηt1))(1+λexp(−ηt1))]
n−2
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6. The min and max order statistic of the MW D(α,β ,η, t) by substituting λ= 0,

g(t1, tn) =n(n− 1)(β2η2 t
β−1

1 tβ−1
n )exp(−ηt

β

1 −ηtβn )

[(1− exp(−ηtβn ))− (1− exp(−ηt
β

1 ))]
n−2

7. The min and max order statistic of the MRD(α,η, t) by substituting β = 2,λ= 0,

g(t1, tn) =n(n− 1)(4η2t1 tn)exp(−ηt2
1 −ηt2

n)

[(1− exp(−ηt2
n))− (1− exp(−ηt2

1))]
n−2

8. The min and max order statistic of the M ED(α,η, t) by substituting β = 1,λ= 0,

g(t1, tn) =n(n− 1)(η2)exp(−ηt1 −ηtn)

[(1− exp(−ηtn))− (1− exp(−ηt1))]
n−2

7. Maximum Likelihood Estimation

Consider the random samples t1, t2, . . . tn consisting of n observations from the transmuted

modified Weibull distribution T MW D(α,β ,η,λ, t) having probability density function. The

likelihood function of equation (2) is given by

L(t1, . . . tn,α,β ,η,λ, ) =
∏

(α+ βηtβ−1)exp(−αt −ηtβ )(1−λ+ 2λexp(−αt −ηtβ ))

(25)

By accumulation taking logarithm of equation (25), we find the log-likelihood function

Ł = ln L , differentiating equation (26) with respect to α,β ,η and λ then equating it to zero,

we obtain the estimating equations are

L(t1, t2, . . . tn,α,β ,η,λ, ) =

n
∑

i=0

ln(α+ βηt
β−1

i
)−α

n
∑

i=0

t i −η
n
∑

i=0

t
β

i

+

n
∑

i=0

ln(1−λ+ 2λexp(−αt i −ηt
β

i
)) (26)

∂ Ł

∂ α
=

n
∑

i=0

1

(α+ βηt
β−1

i
)
−

n
∑

i=0

t i −
n
∑

i=0

2λt i exp(−αt i −ηt
β

i
)

(1−λ+ 2λexp(−αt i −ηt
β

i
))

(27)

∂ Ł

∂ β
=

n
∑

i=0

t
β−1

i
(1+ β ln(t i))

(α+ βηt
β−1

i
)
−

n
∑

i=0

t
β

i
ln(t i)−

n
∑

i=0

2λexp(−αt i −ηt
β

i
)t
β

i
ln(t i)

(1−λ+ 2λexp(−αt i −ηt
β

i
))
= 0 (28)

∂ Ł

∂ η
=

n
∑

i=0

β t
β−1

i

(α+ βηt
β−1

i
)
−

n
∑

i=0

t
β

i
−

n
∑

i=0

2λexp(−αt i −ηt
β

i
)t
β

i

(1−λ+ 2λexp(−αt i −ηt
β

i
))

(29)
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∂ Ł

∂ λ
=

n
∑

i=0

2 exp(−αt i −ηt
β

i
)− 1

(1−λ+ 2λexp(−αt i −ηt
β

i
))
= 0 (30)

By solving this nonlinear system of equations (27) -(30), these solutions will yield the ML

estimators α̂, β̂ , η̂ and λ̂. For the four parameters transmuted modified Weibull distribution

T MW D(α,β ,η,λ, t) pdf all the second order derivatives exist. Thus we have the inverse

dispersion matrix is











α̂

β̂

η̂

λ̂











∼ N





















α

β

η

λ











,











V̂11 V̂12 V̂13 V̂14

V̂21 V̂22 V̂23 V̂24

V̂31 V̂32 V̂33 V̂34

V̂41 V̂42 V̂43 V̂44





















V−1 = −E















V11 ... V14

... ... ...

V41 ... V44






= −E









∂ 2Ł

∂ α2 ... ∂ 2Ł

∂ α∂ λ

... ... ...
∂ 2Ł

∂ α∂ λ
... ∂ 2Ł

∂ λ2

















(31)

Equation (31) is the variance covariance matrix of the T MW D(α,β ,η,λ, t)

V11 =
∂ 2Ł

∂ α2
V12 =

∂ 2Ł

∂ α∂ β

V22 =
∂ 2Ł

∂ β2
V13 =

∂ 2Ł

∂ α∂ η

V33 =
∂ 2Ł

∂ η2
V14 =

∂ 2Ł

∂ α∂ λ

V44 =
∂ 2Ł

∂ λ2
V23 =

∂ 2Ł

∂ β∂ η

V24 =
∂ 2Ł

∂ β∂ λ
V34 =

∂ 2Ł

∂ η∂ λ

By solving this inverse dispersion matrix, these solutions will yield the asymptotic variance

and co-variances of these ML estimators for α̂, β̂ , η̂ and λ̂. By using (31), approximately

100(1−α)% confidence intervals for α, β , η and λ can be determined as

α̂± Z α
2

p

V̂11 β̂ ± Z α
2

p

V̂22 η̂± Z α
2

p

V̂33 λ̂± Z α
2

p

V̂44

Where Z α
2

is the upper αth percentile of the standard normal distribution.

8. Numerical Example

In this section we provide a data analysis in order to assess the goodness-of-fit of a model

with respect to a maximum flood levels data to see how the new model works in practice. The
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data have been obtained from Dumonceaux and Antle [3].

The analysis of least square estimates for the unknown parameters in these distributions

namely: Transmuted Modified Weibull (TMW), Transmuted Weibull (TW), Transmuted Mod-

ified exponential (TME), Modified Weibull (MW) and Weibull (W) distributions by using the

method of least squares are defined. The LSE(s) of the unknown parameter(s), coefficient of

determination (R2) and the corresponding Mean square error for transmuted modified Weibull

families of distributions are given in Table 2.

We have provided the parametric estimate of the cumulative distribution function and

the fitted functions in Figure 7. It is clear that the transmuted modified Weibull (TMW)

distribution provides better fit than the other distributions. In this analysis some estimated

values are negative which is not good in the LSE. Another check is to compare the respective

coefficients of determination for these regression lines. We have supporting evidence that

the coefficient of determination of (TMW) is 0.984714, which is higher than the coefficient

of determination of (TME), (TW), (MW) and (W) distributions. Hence the data point from

the transmuted modified Weibull (TMW) has better relationship and hence this distribution is

good model for life time data.

Table 2: Estimated parameters of TMW, TME, TW, MW and W Distributions

Parameters T MW T M E TW MW W

α 0.035028 -0.45467 - 0.03065 -

β 0.1 1 0.458922 0.05 0.496531

η 0.384726 0.494294 0.254649 0.219493 0.183961

λ -0.57901 0.380212 -0.32547 - -

R2 0.984714 0.953394 0.978145 0.984598 0.977871

MSE 0.003663 0.01051 0.004929 0.003473 0.004713

Figure 7: Empirical CDF for the fitted models
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9. Concluding Remarks

In this paper we introduce a new generalization of the Weibull distribution called trans-

muted modified Weibull distribution and presented its theoretical properties. The new dis-

tribution is very flexible model that approaches to different life time distributions when its

parameters are changed. From the instantaneous failure rate analysis it is observed that it has

increasing and decreasing failure rate pattern for life time data. This model has the capability

to provide consistent results from all estimation methods.
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Appendix

Proof of Theorem 2

µk =

∫ ∞

0

tk f (α,β ,η,λ, t)d t

By substituting (2) into the above relation we have

µk =

∫ ∞

0

tk(α+ βηtβ−1)exp(−αt −ηtβ )(1−λ+ 2λexp(−αt −ηtβ ))d t (A1)

Case A: In this case α,β ,η > 0 and |λ| ≥ 1. The exponent quantity is E x p(−ηtβ )

E x p(−ηtβ ) =

∞
∑

i=0

(−1)iηi(t)iβ

i!
(A2)

Here equation (A1) takes the following form

µk =

∞
∑

i=0

(−1)iηi

i!

�

(1−λ)
�

Γ(iβ + k+ 1)

αiβ+k
+
βηΓ(β(i+ 1) + k)

αβ(i+1)+k

��

+ 2λ

∞
∑

i=0

(−1)i(2η)i

i!

��

αΓ(iβ + k+ 1)

2αiβ+k+1
+
βηΓ(β(i + 1)+ k)

2αβ(i+1)+k

��

(A3)

Case B: In this case α= 0, β ,η > 0 and |λ| ≥ 1.

µk =

∫ ∞

0

tk(βηtβ−1)exp(−ηtβ )(1−λ+ 2λexp(−ηtβ ))d t

By substituting w = ηt(β) then we get

µk = η
−k

β Γ

�

1+
k

β

�
�

(1−λ) +λ2
−k

β

�

(A4)

Case C: In this case α > 0, β = 0, η = 0 and |λ| ≥ 1.

µk =

∫ ∞

0

tkαexp(−αt)(1−λ+ 2λexp(−αt))d t

µk = α
−kΓ(1+ k)((1−λ) +λ2−k) (A5)
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Proof of Theorem 3

Mx (t) =

∫ ∞

0

et x f (α,β ,η,λ, t)d t

By substituting (2) into the above relation we have

Mx (t) =

∫ ∞

0

et x (α+ βηtβ−1)exp(−αt −ηtβ )(1−λ+ 2λexp(−αt −ηtβ ))d t (A6)

Case A: In this case α,β ,η > 0 and |λ| ≥ 1. The exponent quantity is E x p(−ηtβ ). Here

equation (A6) takes the following form

Mx (t) =

∞
∑

i=0

(−1)iηi

i!

�

(1−λ)
�

αΓ(iβ + 1)

(α− t)iβ+1
+
βηΓ(β(i+ 1))

(α− t)β(i+1)

��

+ 2λ

∞
∑

i=0

(−1)i(2η)i

i!

��

αΓ(iβ + 1)

(2α− t)iβ+1
+
βηΓ(β(i+ 1) + k)

(2α− t)β(i+1)

��

(A7)

Case B: In this case α= 0, β ,η > 0 and |λ| ≥ 1.

Mx (t) =

∫ ∞

0

et x (βηtβ−1)exp(−ηtβ )(1−λ+ 2λexp(−ηtβ ))d t

By substituting w = ηt(β) then we get

Mx (t) =

∞
∑

i=0

t i

i!
η
−k

β Γ

�

1+
i

β

�
�

(1−λ)+λ2
−i

β

�

(A8)


