“Transmuting” Women into Men:
Galton’s Family Data on Human Stature

James A. HANLEY

The first two regression lines, and the first correlations, were cal-
culated by Francis Galton, in his work on heredity in sweet peas
and in humans. When “regressing” the heights of adult children
on those of their parents, Galton had to deal with the fact that men
are generally taller than women—but without modern-day sta-
tistical tools such as multiple regression and partial correlation.
This article uses the family data on stature, which we obtained
directly from Galton’s notebooks, to (a) compare the sharpness
of his methods, relative to modern-day ones, for dealing with
this complication; and (b) estimate the additional familial com-
ponent of variance in stature beyond that contributed by the
parental heights. In keeping with Galton’s plea for “a manuscript
library of original data,” these historical and pedagogically valu-
able data are now available to the statistical community as digital
photographs and as a dataset ready for further analyses.

KEY WORDS: Correlation; Data repository; Historical data;
Random-effects model; Regression; Transformations.

1. INTRODUCTION

Francis Galton coined the term regression to describe situa-
tions in which there is reversion of a characteristic measured in
offspring, away from the mean value of the same characteristic
in their own parents, and towards the mean value in all offspring.
To measure the “Rate of regression in hereditary stature,” Galton
(1886) divided the offspring into nine subgroups according to the
average height of their two parents (he called this amalgam the
“mid-parent”). He plotted the median offspring height against
the median mid-parent height, and by eye, fitted a straight line to
the nine datapoints. He estimated that “the Deviates of the Chil-
dren are to those of their Mid-Parents as 2 to 3” implying that
“When Mid-Parents are taller than mediocrity, their Children
tend to be shorter than they,” and conversely.
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Galton’s two-way frequency table “Number of Adult Children
of various Statures born of 205 Mid-Parents of various Statures”
has a special place in the history of mathematical statistics. The
concentric elliptical shape of the contours of equal frequency led
Galton to the correlation coefficient of the bivariate Gaussian dis-
tribution. From these, Karl Pearson developed a full treatment of
correlation, multiple and partial. When illustrating this, Pearson
(1896) had not yet accumulated enough data from his own Fam-
ily Record Series (Pearson and Lee 1903). He therefore relied
on “the family data on which (Galton’s) work on ‘Natural In-
heritance’ was based.” These, “Mr. Galton, with his accustomed
generosity, has placed at my disposal.”

Ibecame familiar with some of this history after I too was able
to obtain these same raw data which Galton placed at Pearson’s
disposal. This article explains the questions that led me to pursue
them, and the answers the data provide. In keeping with Galton’s
own wishes (1901), I am making “digital hard copies” and elec-
tronic versions of these raw data available. Some will merely
admire the raw data and how Galton organized them; “others
who desire to verify his work” (e.g., Wachsmuth, Wilkinson,
and Dallal 2003) can now subject them to statistical analyses
that were not possible in 1886, or could not be carried out di-
rectly using only the two-way frequency data available until
now.

2. BACKGROUND AND QUESTIONS

When teaching regression and correlation, I show students
the aggregated data in Table 8.1, and Figures 8.7 and 8.8 from
Stigler’s (1986) book, but hide how Galton dealt with the fact
that men are generally taller than women. 1 ask how they would
deal with this “complication” if using the raw data today to
calculate the correlation between the height of the offspring and
the mid-parent.

It is easy to imagine a scatterplot of the heights of the 928
offspring in relation to their 928 “mid-parents,” and to visual-
ize the two data clouds—the one for sons lying several inches
above the one for daughters—that this would produce. Students
quickly realize that the single correlation coefficient calculated
from the ensemble is attenuated relative to the two separate cor-
relations for sons and for daughters. So, they suggest “partialing
out” the “effect” of sex; or “putting sex in the model”; or “ad-
justing for sex.” When challenged as to how they would explain
it to a journalist, they begin to see that “adjustment for sex” is
conceptually like adding so many inches to the height of each
female, or subtracting this amount for each male. Only a few
students have suggested the adjustment used by Galton. He tells
us that “All female heights were multiplied by 1.08”; that is, that
he “transmuted” them (1886, p. 247). Even though we did not
have the raw data to verify it, students and I usually agree that
this “proportional” scaling is a more elegant and biologically ap-
propriate adjustment than the additive one. But the empiricist in

The American Statistician, August 2004, Vol. 58, No. 3 237


James Hanley
237


FAMILY HEIGKTS.
60 t'fnc/ms f(i ('vw((/ 1'.).&/ (oS I'/u T(LM,)

( add

e — — -

|48 g0 T | 13 -2

b -5
alok 40 1/ 0
40

L85 S
/50
150

3B L 285>

>

/0 .c‘\, 6‘ '\5\

| 15:0 =18 |12:0, g0, 2.0

:F'ujfﬁn‘ Mottor Sons 2y ﬁrdu“l’f- {l(i‘()/(l‘

fiere. REF

,Dallf/".&"b o orddes of /augu" ‘

Q-2, (]'0' Q0

TR M
g0

50,
6'16‘,

48,
2.8,

30
2.5

6 |40 | 80 | q-&

[ |theo ! | 80 |16.8 g0 Y30 (13:00 | ho-5, 14 0

& |40 | 6.6 ‘ L0253, 1 180 b0} £ »

g 145 | 6.0 | 1 6iq

0 |40 | &8 \ S3-3% 4 Sl
! ! L

Yl | 1 10 210 14:0, 10-0 | §0, 70 y-0, 60, 35 }3?0%

2| Zaab i LG ‘ 50

| AP i

Figure 1. Photograph of the entries for the first 12 families listed in Galton’s notebook. Published with the permission of the Director of Library

Services of University College London.

me nevertheless wondered: would today’s additive model have
been less sharp than Galton’s multiplicative one?

And so, in 2000, I began my search for Galton’s “untrans-
muted” data, to determine whether modern-day data analysts,
despite stronger computers and user-friendly statistical proce-
dures, would find weaker correlations with the (default) additive
model than Galton did with his proportional one.

Galton’s two-way frequency table and smoothed frequency
plot did not identify which children—whom he had already
made “unisex”’—with the same mid-parental height belonged
to which families. Thus, I also hoped that the children would
still be found with their families, that is, before they were mar-
shalled into what Galton called “filial” arrays. I wished to in-
vestigate two additional questions: (i) among children with the
same mid-parental height, do their deviates from the regression
line segregate further along family lines, and how might we show
this familial variation graphically? (ii) how much would it mat-
ter if parental heights were treated as a family-level (i.e., second
level) variable in a multilevel analysis?

3. RAW DATA

Stephen Stigler directed me to the Galton Papers at Univer-
sity College London (UCL). Beverly Shipley, a post-graduate
student at UCL, located the material in March 2001. The data
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were exactly what I had wished, in a single notebook, family
by family, with sons and daughters identified, and with all fe-
male heights untransmuted. Because of the frail condition of the
notebook, photocopying was not permitted, and so she first tran-
scribed the heights of parents and children onto paper, and later
from there into a spreadsheet. In February 2003, I requested and
obtained permission to digitally photograph the material. We
have used these “hard copies” to double-check our data.

Galton obtained the data “through the offer of prizes” for the
“best Extracts from their own Family Records” (Galton 1889,
p- 72). Each family correspondent used an album designed by
Galton. The author’s Web site (Hanley 2004) shows photographs
of the cover, and of some pages from, the one completed “Record
of Family Faculties” (RFF) extant.

Figure 1 is a photograph of the top half of the first page of the
notebook entitled, in Galton’s handwriting, “Copies of original
data: RFF and special returns of brothers.” The figure shows the
entries for the first 12 families listed. Families are sorted ac-
cording to the father’s, and within these, the mother’s height. In
keeping with his promise to contributors, Galton had removed
all family identifiers. Within each family, sons are listed first, in
order of decreasing height, followed by daughters, sorted simi-
larly. All heights are entered as deviations from 60 inches. The
regression to mediocrity is evident in these extreme cases.


James Hanley
238


Child
78

72

66

60

(a)

54
63 66 69 72 75 63 66

(b) (c)

Mid-parent

69 72 75 63 66 69 72 75

Figure 2. Heights (in inches) of adult children in relation to their mid-parent height. (a) each daughter’s height “as is” (b) daughter’s height
multiplied by 1.08 (c) 5.2 inches added to daughter’s height. Daughters’ heights are shown in darker, and sons’ in lighter, symbols. Ellipses (75%)
are drawn based on the observed means and covariances. In all three panels, and in analyses for Figure 3, the mid-parent height is calculated as

(father’s height + 1.08 x mother’s height)/2.

The entire “listing” contains entries for 963 children (486
sons, 476 daughters) from 205 families ranging in size from 1 to
15 children. Some 934 children had numerical values (35 were
recorded as “about x.0 inches”). In 26 others (21 female, 5 male)
height was described verbally (“tallish,” “middle,” etc.); two
individuals were noted as “deformed” and one other as “idiotic.”
Although Galton (1886, p. 247; 1889, p. 77) referred to the
heights of 930 adult children, his table shows—and on page
91 in his 1889 text he speaks of—928 adult offspring. Because
I was unable—from his frequency distribution—to confidently
identify these 928 from among the 934 we found in the “Copies
of original data,” I will compare the various methods of analysis
using the 934.

4. ANALYSES

Multiplicative or additive: which model is sharper? Galton
used medians rather than means, and an ad-hoc method of fitting
a line to the nine datapoints. I used least-squares regression in
order to narrow our now-versus-then comparison to how Galton
and we might scale the daughters’ heights, that is, to the sharp-
ness of Galton’s multiplicative, versus the default modern-day
additive, scaling.

The raw data, and the unisex data, with female heights trans-
muted both by Galton’s transformation of both their mean and
variance, or just their mean, are shown in Figure 2. Contrary to
what Galton did in his Table and in Plate X, I show children’s
heights on the vertical, and the mid-parent height on the hor-
izontal axis. The way he sorted and organized the data in his
notebook—with each family in a different row, and the chil-
dren spread out along the row—may explain why he oriented

his frequency table, and the figure drawn from it, the way he did.
However, even though the diagram in Plate IX does not have an
explicitly marked horizontal axis (he uses the vertical axis for
both parents and children), it is clear from the nine datapoints
and the line of identity on this diagram that children’s heights are
on the vertical, and parental heights on the horizontal, axis—just
as we would orient them today.

Table 1 shows the correlations and regression coefficients ob-
tained by the various analysis methods. Rows 1 and 2 show, as
expected, that the correlation is greatly attenuated if one does
not take account of the sex of the offspring. The slope is largely
unaffected—the fact that it is lower in the ensemble (0.64) than
in each sex separately (0.66 and 0.71) can be partly explained
by the fact that the average mid-parent height is 69.3 inches in
daughters, greater than the corresponding average of 69.1 inches
for the sons, a sizable difference given the already relatively nar-
row range of mid-parent heights.

Rows 3 and 4 contrast the effect of multiplying daughters’
heights by 1.08 and the modern-day blackbox approach which,
in effect, adds 5.2 inches to each daughter’s height. Galton’s
external, “low-tech,” and biologically attractive scaling gives a
higher slope, and—as seen in Figures 2(b) and 2(c)—more sim-
ilar sex-specific ellipses. But the difference in slopes is quite
small (0.71 versus 0.69). The correlations obtained by the mul-
tiplicative and additive methods are identical to two decimal
places (0.50), and the RMSE’s agree to 1 decimal place (2.2
inches).

The R? of 0.63 for the analysis based on the multiple re-
gression strategy does not mean that this model is better than
those that produce R?’s of 0.23 to 0.26. Rather, the “improve-
ment” is because the data are different: by design, heights are
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Table 1. Regression Towards Mediocrity: Results of Different Modern-Day Strategies for Dealing With the Fact that Sons are Generally Taller than
Daughters*. Children’s adult heights are regressed on/correlated with mid-parent height (i.e., average of father’s and transmuted mother’s height).

Strategy r slope (b) RMSE* R?
Simple correlation/linear regression,
without regard to sex 0.32 0.64 3.4" 0.10
Sex-specific**:
simple correlation/linear regression
Daughters 0.51 0.66 2.0" 0.26
Sons 0.48 0.71 2.3" 0.23
Simple correlation/linear regression, after
daughters’ heights have been multiplied by 1.08 0.50 0.71 22" 0.25
Partial correlation/multiple linear
regression™*; “untransmuted” heights 0.50 0.69 22" 0.63

* RMSE: Root mean squared error.

** Daughters mean(SD): 64.1(2.4)", n = 453. Sons: 69.2(2.6)", n = 481; The corresponding values for their mid-parent heights are 69.3(1.8)"”

and 69.1(1.8)"".

already more homogeneous (single sex or unisex) in these latter
instances. In contrast, the analysis that yields the R? of 0.63 is
performed on the raw mixed-sexes data and thus “takes credit”
for “explaining” the heterogeneity in these raw data.

“Galton’s bend?” Nonlinear regressions, quadratic and cu-
bic, fitted to the data in Figure 2 did not significantly im-
prove the fit over a linear one. With mid-parent height (h,)
centered at c 69.2 inches, the quadratic equation was
0.701(h, — ¢) + 0.030(h, — ¢)? for “transmuted” daughters
(SE[0.030] = 0.019) and 0.713(h,, — ¢) + 0.014(h,, — ¢)? for
sons (SE[0.014] = 0.021). The coefficient of the quadratic term
was 0.022 (SE : 0.014, P = 0.11) when a single equation was
fitted to the pooled data. This curvature is a good deal less than
what Wachsmuth et al. (2003) found using the originally tabu-
lated frequencies for the pooled data; they applied their smoother
to the inverse regression, that of mid-parent on child. Interest-
ingly, I also found more curvature when I applied a smoother to
the inverse regression.

Even if it is not clear what criterion Galton used to fit his line,
there are also differences in the data used in the 1886 and 2003
analyses. Galton fitted his straight line (in Plate IX, 1886) using
only the medians in only nine filial arrays (he included in the
same “filial array” all the offspring whose mid-parent height was
in the same one-inch interval). In contrast, the 2003 analysis used
the midpoint of, and associated frequency for, each of the 1" x 1"
bins for each of /1 filial arrays; it was not clear what midpoints
the 2003 analysis used for the 18 open-ended bins, containing
36 offspring, at the edges of the frequency table. In a footnote
to the identical table, reprinted in his 1889 book, Galton tells us
that the topmost of the 11 filial arrays (i.e., the top row in his
11-row frequency table) with four children from five families—
an error which he acknowledged, but did not correct—was “not
considered at all” because of “the paucity of the numbers it
contains.” Nor does he seem to have used the bottom filial array,
although in the same 1889 footnote, he does assure us that this
array, with 14 children in 1 family, “which looks suspicious,
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64.1" +5.2” x (male?) + 0.69 x (midparental deviation from mediocrity of 69.2")

is correct.” Further evidence that he did not use the families
with the very tallest and very shortest mid-parents comes from
the fact that Galton’s iso-frequency contour for the bivariate
distribution (Plate X, 1886) is overlaid onto only seven rows
of smoothed frequencies, derived, he tells us, by taking two-
dimensional moving averages of the frequencies in the nine filial
arrays.

Incidentally, Galton’s notebook lists the heights of /5 (rather
than 14) adult children for this one (very short mid-parent, 64.9
inches) family: the 15 are shown in a column at the left side of
the scatterplots in Figure 2. To the immediate left of this large
(but short mid-parent) family are the two offspring from a family
with an even shorter mid-parent (64.4 inches); we were unable to
identify these two offspring in Galton’s frequency table. It is not
clear whether these and the remaining discrepancies (934 obser-
vations in the notebook versus 928 in the table) were simple data
handling errors, or deliberate data selectivity. Nor is it obvious
whether the “listing” shown in Figure 1 was compiled before
or after the data-analysis. If, as I suspect, all of the data anal-
yses were carried out from the frequency table, and the listing
was compiled only afterwards, then the discrepancies are easily
imagined. One must also wonder, in the case of Pearson and
Lee’s (1903) 78 two-way frequency tables, whether they ever
compiled a complete “data listing,” or whether the frequencies
were simply tallied directly from the original data forms.

Do the deviates from the regression line segregate further
along family lines? Galton fit his regression line using just nine
datapoints, each one corresponding to a “filial array,” that is, all
offspring with a mid-parent height in the same one-inch interval.
The shortest mid-parent category used was 64—65 inches and the
tallest was 72—73. The numbers of offspring in the 9 arrays used
ranged in size from 23 offspring of the 5 families with the shortest
mid-parents, to 219 offspring of 49 families with mediocre mid-
parents, to 19 offspring of 6 families with the tallest mid-parents.
(The separate weighted and unweighted regression analyses [
applied to the nine data points in Galton’s Plate IX suggest that
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when fitting his line “by straight edge” (Pearson 1930), Galton
gave equal weight to each of the nine medians).

Knowing which offspring are from which families, it is now
possible to estimate to what extent the deviates of the 934 off-
spring from the simple regression line segregate further along
family lines.

To represent and estimate the extent of the further segrega-
tion by family, one might model the height of the jth offspring of
family ¢ so that the deviation from the overall regression line is
partitioned into independent between- and within-family com-
ponents. One can write this random effects model as

height; ; = (" + 3" x height of mid-parent; + «; + €7 ;, (1)

where o to aigps are the between-family components, and the
g; ; are the n; within-family ones. Modern software can simul-
taneously estimate the standard deviations o and oy of these
two (between- and within-family) components. The estimates
of 0% and 03, were 0.96 in.? and 4.11 in.? when fitted using the
MIXED procedure in SAS (1996), and virtually the same when
fitted by WinBUGS (Spiegelhalter, Thomas, and Best 1999). The
resulting intraclass correlation of 0.96/(0.96 + 4.11) = 0.19
agrees with the pairwise (exchangeable) within-family correla-
tion of 0.19 estimated by a GEE approach.

Alternatively, taking it in two, albeit slightly less sophisticated
steps, one could first fit, and extract the residuals from, (Galton’s)
model

height; ; = 4 [ x height of mid-parent; + £, ;  (2)

and then subject the calculated e; ;’s to a one-way components
of variance analysis. But how to show this familial component in
a graphical way, using the original data in a simple dot plot that
amplifies the quite modest ICC and makes it visible to the human
eye? Incidentally, when Galton wished to show that there was
virtually no correlation between heights of fathers and mothers
(but had not yet developed an index of correlation), he did so
indirectly by showing that the variance of the sum of the parental
heights was only slightly greater than the sum of their variances!

If one computed the mean, €;, for family ¢, then even if o g were
zero, the amplitude of the series of means {€, . .., €05} would
vary across ¢ with the number of family members contributing
to each mean: oyy in single-offspring families, half this amount
in four-offspring families, and so on. Thus, to ensure that the
205 family-level deviates were all on the same scale, I scaled €;
upwards by nz1 2,

Transformations were also required when extracting and vi-
sually displaying the within-family variation in the e’s, in order
to ensure that (i) the scale was common both within and across
different-size families and (ii) within family ¢, only n; — 1 uncor-
related deviations from €; were selected from the n; correlated
ones. For example, suppose we knew that the deviation of a
selected child was greater than the average of all three within-
family deviations, that is, those of the selected child and its two
siblings; this contains information about the deviations of the
other two siblings. Therefore, if family ¢ had two or more oft-
spring, I converted the n; residuals into n; — 1 orthogonal differ-
ences. To do so, I first randomly ordered the n; family members
into a list, which for illustration will be indexed by k. For the

kth family member in this ordered list, [1 < k& < (n; — 1)], 1
then computed the difference between the residual of this kth
individual and the mean of the (n; — k) residuals of those family
members later in the list, to form the orthogonal differences

di e = [(ni—k)/(ni—k+1)]"/*x{e; ,—mean(e; k+1 10 €;n, )}

Note that each successive difference (the first minus the average
of the second and beyond, the second minus the average of the
third and beyond, etc.) was scaled up by a different amount to en-
sure a common amplitude both within and across different-size
families. The 172 families with two or more offspring yielded
729 orthogonal within-family differences. I ignored the fact that
the 934 residuals from model (2) have only 932 degrees of free-
dom, or that the residuals at the extremes of mid-parental height
are, by construction, slightly less variable.

The 729 scaled within-family differences are displayed in Fig-
ure 3; the 205 scaled means (average family deviations) are over-
laid on them. In an informal survey, where I asked students and
colleagues to visually judge which series had the greater ampli-
tude, a majority perceived the between-family series to be more
variable. The boxplot markers, which I added later, confirm that
there is indeed additional between-family variation—the vari-
ances of the 205 and the 729 computed quantities were 8.33 in.?
and 4.11 in.2, respectively. The detectability of this additional
component of familial variance was enhanced by the strategy
of amplifying the mean of the e’s from the same family by the
square root of the number of offspring: if n is the (average)
number of offspring per family, then the expected square of the
between-family deviations is 0%, + n X 0%, rather than the
o2, + 0% that serves as the denominator of the ICC. Had the
squares of the between-family quantities been ordered by, and
plotted against, family size, rather than the order shown, the fa-
milial component would have been even more obvious, and a%
estimable from the slope of the empirical relationship between
the squares and n.

The 205 average deviations include not just familial variation,
but also any lack of fit of the linear regression line. However,
when the deviations of the 934 heights in Figure 2(b) were mea-
sured from a quadratic regression curve, the estimates of o3, and
0% weresstill 0.96in.? and 4.11in.2, respectively—differing only
in the third decimal place from than those calculated from the
straight line model.

S. DISCUSSION

As can be seen by comparing the overlaid ellipses in Fig-
ures 2(b) and 2(c), scaling daughters’ heights multiplicatively,
so that their variance is also increased, does fit slightly better
than a simple additive shift. However, the “adjusted” correlation
and regression coefficient obtained from the two models were
quite similar in magnitude. In retrospect, this is probably not that
surprising. Transmuting a daughter who is 4’ 8’—the shortest
of the 453—using Galton’s model adds 4.5 inches to her height,
while the “same correction for all” model used in the default
modern-day analysis adds 5.2 inches. At the other extreme, the
5'10.5” daughter—the tallest in the dataset—is transmuted by
5.6 inches. Most discrepancies between the two methods are
much smaller than these, and thus quite small in relation to the
large range of heights. Given this, and the fact that the quality of
the reported heights was not completely standardized, the lim-
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Figure 3. Distribution of within- and between-family residuals from simple linear regression, after daughters’ heights have been multiplied by
1.08, of offspring height on mid-parent height. Families listed left to right, in same order as in Galton’s notebook. Larger darker dot: the average
residual for a family, multiplied by the square root of the number of offspring in the family, so as to put all 205 averages on the same scale. Smaller
lighter dot: orthogonal difference of within-family residuals (729 in all, from 172 families with two or more offspring; see text). Marginal distributions

shown on right. Boxplots show the 10th, 25th, 75th, and 90th percentiles.

ited impact of the choice of method of scaling is understandable.
[Pearson also surmised, from the weaker parent-child correla-
tions in females than in males (1896, Table II, p. 270; 1930, p.
18), that “it may well have been due to amateur measuring of
stature in women” (1930, p. 18).]

Pearson (1930, p. 8 and again on p. 15) discussed—and on the-
oretical grounds seemed to favor—yet another method of trans-
muting heights. He wondered why Galton, who suggested it
much earlier (1877, p. 283), changed methods later when deal-
ing with human stature. In his earlier method, Galton suggested:
“Suppose, for example, a female whose height was equal to the
average female height + 3° of female deviation, the equivalent
in terms of male stature is the average male height + 3° of male
deviation. Hence the female in question must be registered not in
feet and inches of her actual height, but in those of the equivalent
male stature.” (Galton actually worked with the median rather
than the mean, and with “Q” = half the interquartile range—his
measure of the “probable error’—rather than standard deviation.
Thus, a 3° deviation corresponds to approximately 3 x 0.67 =
2 standard deviations). Applying this method to the daughters’
heights before merging them with the sons’ heights yields a cor-
relation coefficient of 0.50, and a coefficient of regression of
0.72, a tiny improvement on the 0.71 obtained by the use of the
1.08. Pearson (1930, p. 15) noted that “practically, the two meth-
ods will only agree, if the ratio of the two variabilities is equal
to the ratio of the two means, i.e., if the so-called coefficients of
variability (c.v.’s) of the two sexes are equal.” In Galton’s data
the c.v. for daughters is 3.7%; for sons it is 3.8%.
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I have used Galton’s definition of mid-parent, so as to limit
comparisons to methods for dealing with heights of offspring. 1
will not discuss whether/how a mother’s height should be trans-
muted/combined with that of the father. Pearson addressed this
issue in detail in 1896, and again in 1930. The modern defini-
tion of a mid-parent (the simple average of the mother’s and fa-
ther’s heights, used in managing children with growth disorders)
was re-revisited by Cole (2000), using extensive contemporary
data. Possibly because of his work with the modern-day version,
Cole was under the impression that while Galton multiplied the
daughters’ heights by 1.08, he did not do the same for mothers.
But Galton states in his frequency table, and in his bivariate con-
tours diagram, that “all female heights were multiplied by 1.08"”
(italics mine). The median mid-parent of 68.25” used in his writ-
ings also suggests, and the raw data described here now confirm,
that he also transmuted mothers’ heights before averaging the
two. Cole (2000, p. 401) showed theoretically that “(i) the simple
average of the two parents’ heights does not treat the two par-
ents equally in centile terms; (ii) increasing the mother’s height
by a constant factor before averaging is a suitable way to com-
pensate.” In the several data series he examined, he found that
“the optimal value for the factor is close to 1.08”—vindicating
what Galton did in fact do. Cole arrived at conclusion (ii) by
averaging the two parents’ z-scores, a procedure close to that
suggested by Galton in 1877.

We leave the final word on the 1.08 to Galton (1889, p. 78),
and to his computer (italics mine).

The factor I used was 1.08, which is equivalent to adding a little less
than one-twelfth to each female height. It differs slightly from the fac-
tors employed by other anthropologists, who, moreover, differ a trifle
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between themselves; anyhow, it suits my data better than 1.07 or 1.09.
I can say confidently that the final result is not of a kind to be sensibly
affected by these minute details, because it happened that owing to a
mistaken direction, the computer to whom 1 first entrusted the figures
used a somewhat different factor, yet the results came out closely the
same.

One would require additional data before trying to estimate
how much of the familial 0% is attributable to nature (precon-
ception), and how much to nurture (post-conception). Despite
this, instructors should still find the dataset a useful starting point
when introducing multilevel models, and illustrating the effects
of using variables, such as mid-parental height, as if they were
offspring-level variables. I leave it to readers to predict, or if
unsure, to determine empirically, whether the point and interval
estimates of 4* and the other parameters in model (1) [or 3 in
model (2)] would be different if (a) in this dataset mid-parental
height were treated as an offspring- rather than a family-level
variable; (b) there were just 30 offspring, 2 families of size 15,
or 6 of size 5, or 15 of size 2; or (c) we had information on birth
order, and family size, income, and other circumstances when
these offspring were growing up.

6. CONCLUDING REMARKS
Galton, helping Pearson launch Biometrika (1901), wrote

(...) This journal, it is hoped, will justify its existence by supplying
these requirements either directly or indirectly. I hope moreover that
some means may be found, through its efforts, of forming a manuscript
library of original data. Experience has shown the advantage of occa-
sionally rediscussing statistical conclusions, by starting from the same
documents as their author. I have begun to think that no one ought to
publish biometric results, without lodging a well arranged and well
bound manuscript copy of his data in some place where it should be
accessible, under reasonable restrictions, to those who desire to verify
his work.

For close to a century, the important historical and pedagogic
data described here have resided only in the pages of the now-
frail notebook “Copies of original data: RFF” in the Galton Pa-
pers, out of reach of, or even unknown to, the many researchers
and teachers who might wish to use them (e.g., Wachsmuth et
al. 2003; Wilkinson 2003). For all we know, the last person to
consult and use them may have been Karl Pearson (I cannot

determine who added the penciled-in computations under the
sons’ heights, or to what purpose). Galton, with his flair for
the technological—for online access to his papers and biogra-
phies, see Tredoux (2004)—would have welcomed the Internet,
“computers” that follow instructions, and digital photography.
He would also have been pleased that, with the approval of Uni-
versity College London, digital photographs of the pages of his
notebook of heights, along with an electronic copy of the num-
bers they contain, and some other related photographs, are avail-
able at http://www.epi.mcgill.ca/hanley/galton.

[Received May 2004. Revised June 2004.]
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