

CUREIDENTIAL BY Security Classification Officer, NASA LaRC SUBJECT TO GENERAL DECLASSIFICATION SCHEDULE OF EXECUTIVE ORDER 11052 AUTOMATICATLY DOWNCRADED ATTIMO YEAR INTERVALS AND DECLASSIFICD ON DEC 31 1981

TRANSONIC AERODYNAMIC CHARACTERISTICS OF THE 10-PERCENT-THICK NASA SUPERCRITICAL AIRFORM (U)

Changes D. Langes

Langley Research Center Hampion, Va. 23665

- NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1975

, Report No.	2. 0010111101111101111				
NASA TM X-3203				Report Date	
4. Title and Subtitle		OF THE		March 1975	
10-PERCENT-THICK NASA	SUPERCRITICAL AIR	RFOIL 31	(U) E	i, Performing Organiza	ation Code
7. Author(s) Charles D. Harris			٤	3. Performing Organiza L-9841	ition Report No.
Charles D. harris			10). Work Unit No.	
9. Performing Organization Name and Addre	55			505-06-31-02	
NASA Langley Research Cer Hampton, Va. 23665	iter		1	1. Contract or Grant	No.
			1:	3. Type of Report an	d Period Covered
2. Sponsoring Agency Name and Address				Technical Me	morandum
National Aeronautics and Sp Washington, D.C. 20546	ace Administration		1	4. Sponsoring Agency	Code
5. Supplementary Notes					
I6 Abstract					
which was designed for the moment data and surface-p	same normal-force co ressure distributions a	befficient. are presen	integra		
which was designed for the moment data and surface-p	same normal-force co ressure distributions a	pefficient.	Integra		
which was designed for the moment data and surface-pr 17. Key Words (Suggested by Author(s))	same normal-force co ressure distributions a	18. Distributio	Integrat nted, on Statement ential _	Available to U	
which was designed for the moment data and surface-pr 17. Key Words (Suggested by Author(s)) Supercritical airfoil	same normal-force co ressure distributions a	pefficient, are present 18. Distributio Confide	Integra nted, on Statement ential – Agencie	Available to U.	S. Governme
which was designed for the moment data and surface-pi 17. Key Words (Suggested by Author(s)) Supercritical airfoil Transonic aerodynamics	same normal-force co ressure distributions a	pefficient, are present 18. Distributio Confide	Integrat nted, on Statement ential – Agencie	Available to U. s and Their Co	S. Governme ntractors Or
which was designed for the moment data and surface-pi 17. Key Words (Suggested by Author(s)) Supercritical airfoil Transonic aerodynamics	same normal-force co ressure distributions a	pefficient, are present 18. Distribution Confide	Integrat nted, on Statement ential – Agencie	Available to U. s and Their Co	S. Governme ntractors O
which was designed for the moment data and surface-pr 17. Key Words (Suggested by Author(s)) Supercritical airfoil Transonic aerodynamics	same normal-force co ressure distributions a	18. Distributio Confide	Integrat nted, on Statement ential – Agencie	Available to U. s and Their Co New Subject	S. Governme ntractors Or : Category 0
which was designed for the moment data and surface -pr 17. Key Words (Suggested by Author(s)) Supercritical airfoil Transonic aerodynamics 19. Security Classif. (of this report)	same normal-force co ressure distributions a 20. Security Classif. (of Unclassified	pefficient, are present are present 18. Distribution 	Integrat nted, on Statement ential – Agencie	Available to U., s and Their Co New Subject 21. No. of Pages 136	S. Governme ntractors Or : Category 0 22. Price
which was designed for the moment data and surface -pi 17. Key Words (Suggested by Author(s)) Supercritical airfoil Transonic aerodynamics 19. Security Classif. (of this report) 19. Security Classif. (of this report)	20. Security Classified	pefficient, are present 18. Distributio Confide f this page)	Integrat nted, on Statement ential – Agencie <u>COM</u> BY Security C SUBJECT TO GEI SUBJECT TO GEI AT TWO YEAR IM	Available to U. s and Their Co New Subject 21. No. of Pages 136 FIDENTIAL Jassification Officer, NASA VERAL DECLASSIFICATION VERAL DECLASSIFICATION TERVALS AND DECLASSIFI	S. Governme ntractors Or 22. Price classified arc convictabe pon bec 31 1981

.

)

·

_

.

. тэр

TRANSONIC AERODYNAMIC CHARACTERISTICS OF THE 10-PERCENT-THICK NASA SUPERCRITICAL AIRFOIL 31 (U)

Charles D. Harris Langley Research Center

SUMMARY

=

Ξ

-

Refinements in a 10-percent-thick supercritical airfoil (airfoil 31) have produced significant improvements in the drag characteristics compared with those for an earlier supercritical airfoil (airfoil 12) designed for the same normal-force coefficient of 0.7. Drag creep was practically eliminated at normal-force coefficients between about 0.4 and 0.7 and was greatly reduced at other normal-force coefficients. Substantial reductions in the drag levels preceding drag divergence were also achieved at all normal-force coefficients. The Mach numbers at which drag diverges were delayed for airfoil 31 at normal-force coefficients up to about 0.6 (by approximately 0.01 and 0.02 at normal-force coefficients of 0.4 and 0.6, respectively) but drag divergence occurred at slightly lower Mach numbers at higher normal-force coefficients.

INTRODUCTION

An airfoil concept developed by Richard T. Whitcomb (refs. 1 and 2) which operates efficiently over a wide range of lift coefficients in the supercritical or mixed flow conditions of transonic flight has led to significant aerodynamic advances over the past several years. A variety of wind-tunnel and flight investigations (refs. 3 to 6) of several airplane configurations incorporating the supercritical airfoil concept have successfully demonstrated improvements in aerodynamic performance and maneuver capabilities with marked potential for both civilian and military application.

The impact on future aircraft design has been an incentive for expanding supercritical technology by establishing a broad base of systematic experimental data on supercritical airfoils. (See refs. 7 to 12, for example.) Much of the research effort has been focused on 10-percent-thick airfoils designed for section normal-force coefficients of about 0.55 (ref. 13) for application to advanced technology transports expected to cruise near the speed of sound. More recently, a research investigation was undertaken to develop an airfoil with a somewhat higher design section normal-force coefficient (about 0.70) for application to lower sweep, higher aspect ratio wings envisioned to cruise at Mach numbers near those of current transports.

CONFIDENTIAL

The purpose of this report is to present the aerodynamic characteristics of the resultant airfoil (designated as supercritical airfoil 31) and to show the substantial drag improvements that are observed when these characteristics are compared with those of an earlier supercritical airfoil (supercritical airfoil 12, circa 1970) designed for the same normal-force coefficient. The relative drag characteristics of the two airfoils are discussed and attention is called to selected associated pressure distributions.

SYMBOLS

Values are given in both SI and U.S. Customary Units. Measurements and calculations are made in U.S. Customary Units.

$$C_p$$
 pressure coefficient, $\frac{p_l - p_{\infty}}{q_{\infty}}$

C_{p,sonic} pressure coefficient corresponding to local Mach number of 1.0

c chord of airfoil, 63.5 centimeters (25.0 inches)

$$c_d$$
 section drag coefficient, $\sum_{Wake} c'_d \frac{\Delta z}{c}$

c'_d point drag coefficient (ret. 14)

 $\Delta c_{d,s}$ drag increment due to shock wave losses

c_m section pitching-moment coefficient about the quarter-chord point,

$$\sum_{\mathbf{l}} C_{\mathbf{p}} \left(0.25 - \frac{\mathbf{x}}{\mathbf{c}} \right) \frac{\Delta \mathbf{x}}{\mathbf{c}} - \sum_{\mathbf{u}} C_{\mathbf{p}} \left(0.25 - \frac{\mathbf{x}}{\mathbf{c}} \right) \frac{\Delta \mathbf{x}}{\mathbf{c}}$$

 c_n section normal-force coefficient, $\sum_l C_p \frac{\Delta x}{c} - \sum_l C_p \frac{\Delta x}{c}$

K surface curvature, reciprocal of local radius of curvature

M Mach number

2

CONFIDENTIAL

CONTRACTOR

	m	surface slope, dy/dx
	р	static pressure, newtons per meter 2 (pounds per foot 2)
· ·	Δpt	total-pressure loss, newtons per meter ² (pounds per foot ²)
	q	dynamic pressure, newtons per meter 2 (pounds per foot 2)
	R	Reynolds number based on airfoil chord
-	x	ordinate along airfoil reference line measured from airfoil leading edge, centimeters (inches)
	У	ordinate normal to airfoil reference line, centimeters (inches)
	Z	vertical distance in wake profile measured from bottom of rake, centimeters (inches)
-	α	geometric angle of attack of airfoil reference line, degrees
_	Subscripts	:
	l	local point on airfoil
	×	undisturbed stream
	Abbreviati	ons:
	I	airfoil lower surface
	u	airfoil upper surface
	Τ.Ε.	trailing edge
		APPARATUS AND TECHNIQUES

Models

The supercritical airfoil basic concept and detailed design philosophy are discussed in reference 2.

CONTRACTOR OF

<u>Background</u>.- During initial phases of the two-dimensional supercritical airfoil development program, emphasis was placed upon developing an airfoil with the highest drag divergence Mach number attainable at a normal-force coefficient of 0.7. The normal-force coefficient of 0.7 was chosen as the design goal since, when account was taken of the sweep effect, it was representative of lift coefficients at which the advanced technology near-sonic transports utilizing the supercritical airfoil concept were then expected to cruise. These initial phases resulted in supercritical airfoil 11 which has been reported in reference 9. This airfoil exhibited an undesirable creep or gradual increase in the variation of drag coefficient with Mach number of about 14 counts (c_d increment of 0.0014) between M = 0.50 and the drag divergent Mach number at the design normal-force coefficient.

Subsequent design studies of advanced technology transport configurations suggested that the near-sonic cruise lift coefficient requirements would be somewhat lower than originally anticipated. Consequently, the improved supercritical airfoil 26a (ref. 13) was developed with a design normal-force coefficient of about 0.55. The wind-tunnel tests required for this airfoil also provided the opportunity to explore the drag creep problem noted with airfoil 11. Airfoil 26a had no drag creep at normal-force coefficients up to about 0.6 and the drag divergence Mach number varied from approximately 0.82 at a normal-force coefficient of 0.30 to 0.78 at a normal-force coefficient of 0.80. As discussed in reference 13, these improved drag creep characteristics were largely attributed to a more favorable flow recompression over the forward upper surface and the elimination of a region of overexpansion near the three-quarter-chord station.

Recent emphasis on fuel economy has generated considerable interest in a fuelconserving aircraft envisioned to cruise at Mach numbers near those of current transports. Such an aircraft could utilize supercritical airfoil technology to achieve weight and drag reductions by permitting the use of thicker wings with higher aspect ratios and less sweep. Because the wings with higher aspect ratio would require airfoils with design normal-force coefficients higher than 0.55, a wind-tunnel program was initiated to develop an airfoil with a design normal-force coefficient of about 0.70 without incurring the troublesome drag creep problem of the earlier airfoil 11.

In order to apply the drag creep improvements of airfoil 26a, it was used as the starting point in extending the design normal-force coefficient to 0.70. Initially, the location of maximum thickness above the reference line (upper surface thickness) was moved forward from 0.40c to 0.38c and the rear of the airfoil (both upper and lower surfaces) was displaced downward by an amount which varied from 0.0c at the new position of maximum upper surface thickness to 0.01c at the trailing edge; thereby the aft camber was increased. Moving the position of upper surface maximum thickness forward by 0.02c simply compressed axially the forward upper surface and maintained the same general family resemblence to airfoil 26a.

In addition to the aforementioned changes, several experimental modifications were necessary during the investigation before arriving at the final configuration (airfoil 31). These modifications consisted of small curvature variations near the upper surface leading edge to control better the development of supersonic flow in this region and over the forward lower surface to flatten the forward lower surface pressure distribution.

<u>Wind-tunnel models. - Geometric characteristics of airfoil 31 are shown in fig</u>ures 1 to 3 and measured section coordinates are presented in table I. Airfoil 12, also defined in figures 1 to 3 and table I, differs very little from airfoil 11 (ref. 13) and has been selected as a basis of comparison because data were available over a wider range of off-design conditions than were available for airfoil 11.

The most significant dissimilarities over the forward region of the two airfoils are the reduced leading-edge radius (fig. 1) and modified curvature distribution (fig. 3) of airfoil 31. Over the rear region, airfoil 31 has increased aft camber (fig. 1), reduced trailing-edge declivity (fig. 2), and reduced surface curvatures over the rearmost 35 percent of the upper surface and generally over the rearmost 50 percent of the lower surface. Irregularities in the upper surface curvature distribution of airfoil 31 around the 10-percent-chord line are believed to account for small irregularities observed in the upper surface pressure distribution in this region for some test conditions. Small surface irregularities are greatly exaggerated when examined from the standpoint of local curvature, however, and these surface irregularities are not discernible in the slope distribution of figure 2. Both airfoils included a trailing-edge cavity (see the insert in fig. 1 and the photographs of fig. 4) which had a favorable effect on the wake as discussed in reference 9.

To simplify comparisons between supercritical airfoils, it has been the custom to present coordinates relative to a common reference line rather than the standard method of defining airfoils relative to a reference line connecting the leading and trailing edges. Presenting airfoil 12 and 31 coordinates in this manner introduces a discrepancy in angle of attack as conventionally defined. If this discrepancy, which amounts to approximately 0.23°, were taken into account, a curve of normal-force coefficient as a function of angle of attack for airfoil 31 would have to be displaced 0.23° in the positive angle-of-attack direction relative to airfoil 12.

The wind-tunnel models, mounted in an inverted position, spanned the width of the tunnel with a span-chord ratio of 3.43. They were constructed with metal leading and trailing edges and with a metal core around which plastic fill was used to form the contours of the airfoils. Angle of attack was changed manually by rotating the model about pivots in the tunnel side walls. A photograph and a drawing of one of the airfoils installed in the tunnel are shown in figures 4 and 5, respectively.

Wind Tunnel

The investigation was conducted in the Langley 8-foot transonic pressure tunnel (ref. 15). This tunnel is a continuous-flow, variable-pressure wind tunnel with controls that permit the independent variation of Mach number, stagnation pressure and temperature, and dewpoint. It has a 2.16-meter-square (85.2-inch-square) test section with filleted corners so that the total cross-sectional area is equivalent to that of a 2.44-meter-diameter (8-foot-diameter) circle. The upper and lower test-section walls are axially slotted to permit testing through the transonic speed range. The total slot width at the position of the model averaged about 5 percent of the width of the upper and lower walls.

The solid side walls and slotted upper and lower walls make this tunnel well suited to the investigation of two-dimensional models since the side walls act as end plates and the slots permit development of the flow field in the vertical direction.

Boundary-Layer Transition

Based on the technique discussed in reference 16, boundary-layer transition was fixed along the 28-percent chord line on the upper and lower surfaces of the models in an attempt to simulate the full-scale Reynolds numbers shown in figure 6 by providing the same relative trailing-edge boundary-layer-displacement thickness at model scale as would exist at full-scale flight conditions. The simulation technique, which requires that laminar flow be maintained ahead of the transition trip, is limited on the upper surface to those test conditions in which shock waves or steep adverse pressure gradients occur behind the point of fixed transition so that the flow is not tripped prematurely. Full-scale simulation on the lower surface would be valid through the Mach number range of the investigation since laminar flow can be maintained ahead of the trip for all conditions. The transition trips consisted of 0.25-cm-wide (0.10-in.) bands of No. 90 carborundum grains.

Measurements

Surface-pressure measurements. - Normal force and pitching moments acting on the airfoils were determined from surface static-pressure measurements. The surfacepressure measurements were obtained from a chordwise row of orifices located approximately 0.32c from the tunnel center line. Orifices were more concentrated near the leading and trailing edges of the airfoil to define the pressure gradients in these regions. In addition, a rearward facing orifice was included in the cavity at the trailing edge (identified at an upper surface x/c location of 1.00). Actual orifice locations are included in table II. The transducers used in the differential pressure scanning values

to measure the static pressure at the airfoil surface had a range of $\pm 68.9 \text{ kN/m}^2$ (10 lb/in²).

Wake measurements. - Drag forces were determined from vertical variations of the total and static pressures measured across the wake with the profile drag rake shown in figure 5(b). The profiles, schematically illustrated in figure 7, represent the momentum losses as indicated by stagnation-pressure deficits across the wake. The middle section of these profiles reflects viscous and separation losses in the boundary layer, whereas the "wings" of the profile reflect direct losses in stagnation pressure across the shock waves.

The rake was positioned in the vertical center-line plane of the tunnel, approximately 1 chord length rearward of the trailing edge of the airfoil. The total-pressure tubes were flattened horizontally and closely spaced vertically (0.36 percent of the airfoil chord) in the region of the wake associated with skin-friction boundary-layer losses. Outside this region, the tube vertical spacing progressively widened until in the region above the wing where only shock losses were anticipated, the total-pressure tubes were spaced apart about 7.2 percent of the chord. Static-pressure tubes were distributed as shown in figure 5(b). Each static pressure measured was used over a section of the rake to determine local flow conditions in the vicinity of the static-pressure tube rather than using an average of all the static pressures measured. The rake was attached to the conventional center-line sting mount of the tunnel; this arrangement permitted it to be moved vertically to center the close concentration of tubes in the boundary-layer wake. The transducer in the differential-pressure scanning valve connected to totalpressure tubes intended to measure boundary-layer losses had a range of $\pm 17.2~{
m kN/m^2}$ (2.5 lb/in^2) , and the transducers in the values for measuring shock losses and static pressure had a range of $\pm 6.9 \text{ kN/m}^2$ (1 lb/in²).

Reduction of Data

Calculation of c_n and c_m . - Section normal-force and pitching-moment coefficients were obtained by numerical integration (based on the trapezoidal method) of the local surface-pressure coefficient measured at each orifice multiplied by an appropriate weighting factor (incremental area).

Calculation of c_d .- To obtain section drag coefficients, point drag coefficients were computed for each total-pressure measurement in the wake by using the procedure of reference 14. These point drag coefficients were then summed by numerical integration across the wake, again based on the trapezoidal method. Drag increments due to shock wave losses ($\Delta c_{d,s}$) were determined from integration of the drag measured across the wings (fig. 7) of the wake profile.

AND DESIGN TO MANU

7

Wind-Tunnel-Wall Effects

Two major types of wind-tunnel-wall interference effects which may be treated separately are solid and wake blockage at zero lift and lift-induced interference. According to reference 17, blockage effects are theoretically small for this particular model-tunnel configuration (Mach number correction would be on the order of 0.003 at M = 0.80; consequently, no corrections have been applied to the data to account for blockage effects. Lift interference manifests itself as an effective upward inclination (relative to the tunnel center line) of the stream approaching the inverted model. Reference 17 indicates that this flow angularity is proportional to the amount of lift generated by the model and would result in the aerodynamic angle of attack being less than the measured geometric angle of attack. Experience has indicated, however, that the correction required to account for lift-interference effect is generally much smaller than would be predicted by the theory of reference 17. Because of this uncertainty and since the forces and moments were obtained by surface-pressure and wake measurements which would be unaffected by angular corrections, the uncorrected geometric angles of attack are used in the results presented herein. Data comparisons are made on the basis of equal normal-force coefficient rather than angle of attack.

TEST CONDITIONS

Tests were conducted at Mach numbers from 0.50 to 0.82 for a stagnation pressure of 0.1013 MN/m^2 (1 atm). The stagnation temperature of the tunnel air was automatically controlled at approximately 322 K (120° F) and the air was dried until the dewpoint in the test section was reduced sufficiently to avoid condensation effects. Resultant test Reynolds numbers based on the airfoil chord length are as shown in figure 6. Based on flat-plate skin-friction losses and assuming laminar flow to the point of fixed transition, the variation in Reynolds number indicated in figure 6 would produce an estimated decrease in drag of approximately 2 counts (cd increment of 0.0002) between M = 0.50and M = 0.80. This variation in drag with Mach number has not been taken into account in the data presented herein.

PRESENTATION OF RESULTS

The experimental data reported herein are presented in the following figures:

	Figure
Force and moment characteristics	8
Variation of section drag coefficient with Mach number	9
Drag increment due to shock-wave losses	10

Figure

9

Chordwise pressure distributions at -

_																													4 4
M = 0.50		Ŧ				•					•	•		•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	11
M = 0.60					_																								12
	•	•	•	•	•	·	·	•	•	•	•	-	-																13
 M = 0.70	•	•	٠	•	•	·	•	•	٠	•	•	•	•	٠	٠	٠	• ,	٠	•	.•	٠	•	·	•	•	•	•	•	10
M = 0.74															•.	• .		., •	•	•	•	•	•			•		•	14
M = 0.76																													15
36 0 77																													16
M = 0.77	•	٠	•	•	•	•	•	•	٠	•	•	,	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	
M = 0.78												•		•	٠	•	•			•	•	٠	•	•	•	•	•	٠	17
M = 0.79																													18
	·																												19
M = 0.80	•	•	•	٠	•	٠	•	٠	•	•	٠	•	٠	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	10
M = 0.81											•		,	•								٠	•	•	•	·	•	•	 20
M = 0.82		_	_	_	_	_																		Ŧ					21
					-		-																						

In addition to the graphical presentation of chordwise pressure distributions, the pressure distributions for airfoil 31 are presented in table II. Surface pressure distributions of airfoil 12 are presented in reference 13.

RESULTS AND DISCUSSION

Normal-Force and Pitching-Moment Characteristics

If the previously discussed angle-of-attack increment due to the choice of reference line for the two airfoils were taken into account, the curve of normal-force coefficient as a function of angle of attack for airfoil 31 in figure 8 would be displaced in the positive angle-of-attack direction by about 0.23° relative to airfoil 12. The remaining difference between the normal-force curves for the two airfoils would be due to the increased camber of airfoil 31. With this in mind, figure 8 does indicate that because of its greater aft camber, airfoil 31 generated more lift (larger normal-force coefficient) than airfoil 12 through the range of test conditions. The differences in pitching moment between the two airfoils varied with both Mach number and normal-force coefficient but was generally less than 0.01.

Drag Characteristics

The drag characteristics of the two airfoils may be divided into three primary areas of interest: first, relative drag levels at the lowest test Mach number (M = 0.50); second, drag-creep characteristics; and third, drag-divergence characteristics. The term drag creep is used herein to denote the gradual increase of drag coefficient as Mach number increases between M = 0.50 and the drag divergence Mach number at a given normal-force coefficient.

TI ID LITT AL

Drag characteristics at M = 0.50. - Figure 9 indicates substantially reduced drag levels for airfoil 31 at Mach numbers below drag divergence through the range of normalforce coefficients. At M = 0.50, the lower drag level of airfoil 31 is related to reduced momentum losses within the boundary layer due to less adverse pressure gradients over the airfoil. As shown in figure 11, several regions of reduced adverse pressure gradient which influence boundary-layer development are identifiable. On the upper surface there was a reduction in the magnitude of the leading-edge pressure peak (less negative pressure coefficient) due to the combined effects of smaller leading-edge radius and less positive geometric angle of attack required to achieve the same normal-force coefficient as with airfoil 12. A similar reduction in the leading-edge negative pressure coefficient occurs on the lower surface (see fig. 11(b)) at low normal-force coefficients. Reduced adverse pressure gradients may also be noted in the upper surface trailing-edge pressure recovery and on the shoulder of the lower surface (around the 65-percent chord line) leading into the lower surface cusp; both are attributable to reduced surface curvatures in these regions. (See fig. 3.) Overall, there was a more gradual pressure recompression on the upper surface of airfoil 31 from the leading-edge peak to the trailing edge, whereas on airfoil 12 there was an expansion or acceleration of the flow around the 80-percent chord line that resulted in a more negative pressure coefficient from which the flow must recover.

<u>Drag creep</u>.- As the Mach number increases beyond 0.50 at $c_n = 0.4$, airfoil 31 maintains an approximately 8- to 12-percent lower drag level than airfoil 12. (See fig. 9.) The drag creep characteristics of the two airfoils appear to be similar except for the delay in drag divergence Mach number of about 0.01 for airfoil 31. The gradual increase in drag coefficient starting at about M = 0.60 and continuing until drag divergence was due to increased viscous losses in the boundary layer since there were no discernible shock losses (fig. 10) until about M = 0.80. Data are not available on airfoil 12 for comparison with airfoil 31 at normal-force coefficients much below 0.4 but the drag creep of airfoil 31 appears to be greater at $c_n = 0.3$ than at $c_n = 0.4$. The more pronounced drag creep at $c_n = 0.3$ than at 0.4 was due to the sharper peak pressure distribution over the forward lower surface associated with the lower angle of attack. Compare, for example, figure 12(a) with figure 12(c) and figure 13(a) with figure 13(c).

At normal-force coefficients between 0.4 and 0.7, drag creep has been practically eliminated on airfoil 31 because of the improved recompression over the forward upper surface and suppression of the flow expansion near the 80-percent chord line. (See, for example, figs. 14(e) and 15(e).)

At a normal-force coefficient of 0.7, a peak begins to appear in the drag at M = 0.70 (fig. 9) and becomes more pronounced as the normal force increases beyond 0.70. This peak is due to the appearance and subsequent strengthening of the shock wave

COMPLETE AND

in the forward upper surface recompression (figs. 10 and 13) and to the effect of these shock waves on the boundary layer.

Although drag creep has not been entirely eliminated on airfoil 31 at the higher normal-force coefficients, the magnitude has been reduced substantially below that of airfoil 12. The falloff in drag after M = 0.70 for airfoil 31 may be better understood by comparing the pressure distributions for M = 0.70 (fig. 13(g)) and M = 0.76(fig. 15(f)). Between M = 0.70 and M = 0.76, the character of the flow changes from a type with leading-edge peak followed by an abrupt recompression near the leading edge to a type where the leading-edge peak is lower and the shock is moved well to the rear. Even though the strength of the shock does not change significantly, as indicated by figure 10, the reduced pressure jump across the shock combined with the more rearward location apparently produces a less adverse shock—boundary-layer interaction with a corresponding reduction in overall drag.

The overall improvements in viscous losses in the boundary layer for airfoil 31 due to less adverse pressure gradients and shock—boundary-layer interactions are also indicated by the fact that the difference in shock losses between the two airfoils (fig. 10) do not account for the difference in total drag at Mach numbers greater than 0.70.

<u>Drag divergence</u>. - The Mach numbers at which drag diverges were delayed for airfoil 31 at normal-force coefficients up to about 0.6 (by approximately 0.01 at $c_n = 0.4$ and 0.02 at $\dot{c_n} = 0.6$) but occurred earlier at higher normal-force coefficients. (See fig. 9.)

The pressure distributions for M = 0.79 shown in figures 18(b), 18(c), and 18(d) illustrate the reason for the delay in drag divergence for airfoil 31 at the lower normal-force coefficients. At this particular Mach number the curvature distribution over the rear upper surface of airfoil 12 accelerated the flow into a second supersonic pocket at the 80-percent chord line with attendant shock-wave development. (See fig. 10.) The reduced upper surface curvature over the rearmost 35 percent of airfoil 31 (fig. 3) greatly suppresses this zone of supersonic flow and thus delays drag divergence.

At normal-force coefficients greater than about 0.6, the increased upper surface curvature over the midchord region of airfoil 31 (fig. 3(a)) produces a more rapid rearward movement of the shock wave than for airfoil 12 and results in earlier drag divergence. The pressure distributions for M = 0.78 and a normal-force coefficient of approximately 0.8 (fig. 17(f)), for example, show higher local induced velocities over the midchord region of airfoil 31 with the shock wave in a more rearward location. As Mach number increases from 0.78 to 0.79 (fig. 18(f)), the shock wave on airfoil 31 moves further rearward and begins to merge with the trailing-edge pressure recovery with rapid increases in drag. Figure 18(f) also shows the flow expanding ahead of the shock on air-

foil 31; thus, the flow enters the shock at a higher local Mach number with greater shock losses (fig. 10).

The trade-off between reduced drag levels preceding drag divergence through the range of normal-force coefficients and reduced drag divergence Mach numbers at the higher normal-force coefficients (fig. 9) calls attention to the compromises which are sometimes necessary in the design of airfoils for practical applications over a range of operating conditions.

CONCLUDING REMARKS

Refinements in a 10-percent-thick supercritical airfoil (airfoil 31) have produced significant improvements in the drag characteristics compared with an earlier supercritical airfoil (airfoil 12) designed for the same normal-force coefficient (0.7). Drag creep was practically eliminated at normal-force coefficients between about 0.4 and 0.7 and greatly reduced at other normal-force coefficients. Substantial reductions in the drag levels preceding drag divergence were also achieved at all normal-force coefficients. The Mach numbers at which drag diverges were delayed for airfoil 31 at normal-force coefficients up to about 0.6 (by approximately 0.01 and 0.02 at normal-force coefficients of 0.4 and 0.6, respectively) but occurred slightly lower at higher normal-force coefficients.

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., January 22, 1975.

REFERENCES

- 1. Whitcomb, Richard T.; and Clark, Larry R.: An Airfoil Shape for Efficient Flight at Supercritical Mach Numbers. NASA TM X-1109, 1965.
- Whitcomb, Richard T.: Review of NASA Supercritical Airfoils. ICAS Paper No. 74-10, Aug. 1974.

ardination of the state is the distribution

3

-

Ξ

Ξ

= _ _

= ...

- 3. Anon.: Supercritical Wing Technology A Progress Report on Flight Evaluations. NASA SP-301, 1972.
- Langhans, Richard A.; and Flechner, Stuart G.: Wind-Tunnel Investigation at Mach Numbers From 0.25 to 1.01 of a Transport Configuration Designed To Cruise at Near-Sonic Speeds. NASA TM X-2622, 1972.
- 5. Bartlett, Dennis W.; and Re, Richard J.: Wind-Tunnel Investigation of Basic Aerodynamic Characteristics of a Supercritical-Wing Research Airplane Configuration. NASA TM X-2470, 1972.
- Ayers, Theodore G.: A Wind-Tunnel Investigation of the Application of the NASA Supercritical Airfoil to a Variable-Wing-Sweep Fighter Airplane. NASA TM X-2759, 1973.
- McGhee, Robert J.; and Bingham, Gene J.: Low-Speed Aerodynamic Characteristics of a 17-Percent-Thick Supercritical Airfoil Section, Including a Comparison Between Wind-Tunnel and Flight Data. NASA TM X-2571, 1972.
- 8. Ferris, James C.: Static Aerodynamic Characteristics of a Model With a 17-Percent-Thick Supercritical Wing. NASA TM X-2551, 1972.
- 9. Harris, Charles D.: Wind-Tunnel Investigation of Effects of Trailing-Edge Geometry on a NASA Supercritical Airfoil Section. NASA TM X-2336, 1971.
- Harris, Charles D.; and Blackwell, James A., Jr.: Wind-Tunnel Investigation of Effects of Rear Upper Surface Modification on an NASA Supercritical Airfoil. NASA TM X-2454, 1972.
- 11. Harris, Charles D.: Aerodynamic Characteristics of Two NASA Supercritical Airfoils With Different Maximum Thicknesses. NASA TM X-2532, 1972.
- 12. Harris, Charles D.: Aerodynamic Characteristics of Two 10-Percent-Thick NASA Supercritical Airfoils With Different Upper Surface Curvature Distributions. NASA TM X-2977, 1974.
- 13. Harris, Charles D.: Aerodynamic Characteristics of an Improved 10-Percent-Thick NASA Supercritical Airfoil. NASA TM X-2978, 1974.

- 14. Baals, Donald D.; and Mourhess, Mary J.: Numerical Evaluation of the Wake-Survey Equations for Subsonic Flow Including the Effect of Energy Addition. NACA WR L-5, 1945. (Formerly NACA ARR L5H27.)
- 15. Schaefer, William T., Jr.: Characteristics of Major Active Wind Tunnels at the Langley Research Center. NASA TM X-1130, 1965.
- Blackwell, James A., Jr.: Preliminary Study of Effects of Reynolds Number and Boundary-Layer Transition Location on Shock-Induced Separation. NASA TN D-5003, 1969.
- Davis, Don D., Jr.; and Moore, Dewey: Analytical Study of Blockage- and Lift-Interference Corrections for Slotted Tunnels Obtained by the Substitution of an Equivalent Homogeneous Boundary for the Discrete Slots. NACA RM L53E07b, 1953.

TABLE I. - SECTION COORDINATES

[c = 63.5 cm (25 in.); airfoil 12 has a leading-edge radius of 0.0212c; airfoil 31 has an upper surface leading-edge radius of 0.0169c and a lower surface leading-edge radius of 0.0176c]

		(y/c) _u	$(y/c)_{l}$	(y/c) _u	(y/c) ₁
	x/c	Airfoi	1 12	Airfo	il 31
-	0.0	0.0	0.0	0.0	0.0
	.01	.0181	0182	.0159	0164
	02	.0232	0237	.0209	0 2 15
	.03	.0267	0274	.0244	0250
	.04	.0294	0304	.0271	0274
	.05	.0316	-,0328	.0294	0 2 95
	.06	.0335	0348	.0313	0314
	.07	.0351	0365	.0329	0330
	.08	.0366	0381	.0344	0344
	.09	.0378	0394	.0357	0358
	10	.0390	0406	.0369	-,0370
	.11	.0401	0417	,0380	0381
	.12	.0410	04 2 7	.0391	0392
	.13	.0419	0435	.0401	0402
	.14	.0427	-,0443	.0410	0411
	.15	.0434	0450	.0418	-,0420
	.16	.0440	0457	.0426	-,0427
	.17	.0447	0462	.0433	0434
	.18	.045 2	0468	.0440	0440
	.19	.0457	-,0472	.0446	0446
	.20	.0462	-,0476	.0452	0452
	.21	.0466	0480	.0457	0457
	.22	.0470	0484	.0462	0462
	.23	.0474	-,0487	.0467	0467
	.24	.0477	0489	.0471	0471
	.25	.0480	0492	.0475	-,0475
	,26	.0483	0494	.0478	0479
	.27	.0486	0495	.0481	0482
	.28	.0488	0497	.0484	0485
	.29	,0490	0498	.0487	0488
	.30	.0492	0499	.0489	0491

x/c	(y/c) _u	(y/c) ₁	(y/c) _u	(y/c) ₁
	Aiı	foil 12	Air	rfoil 31
0.31	0.0493	-0.0499	0,0491	-0.0493
.32	.0495	0500	.0493	0495
.33	.0496	0500	.0495	0497
.34	.0497	0500	.0497	0498
.35	.0498	-,0500	.0498	0499
.36	.0499	0499	.0499	0499
.37	.0499	0499	.0500	0499
.38	.0500	0498	.0500	0499
.39	.0500	0497	.0500	0498
.40	.0500	0495	.0500	0497
.41	.0500	0494	.0500	0495
.42	.0500	0492	.0500	0493
.43	.0499	0490	.0499	0491
.44	.0499	0488	.0498	0488
.45	.0498	0486	.0497	0485
.46	.0498	0483	.0495	0482
.47	.0497	0480	.0493	0478
.48	.0496	0476	.0491	0474
.49	.0495	0472	.0489	0470
.50	.0493	0468	.0487	0465
.51	.0492	-,0463	.0485	0459
.52	.0490	0458	.0482	0453
.53	.0489	0452	.0479	0446
.54	.0487	0446	.0476	0439
.55	,0485	0438	.0473	0431
, 56	.0482	0430	.0469	0422
.57	.0480	0421	.0465	0413
.58	.0478	0411	.0461	0403
. 59	.0475	0400	.0457	0392
.60	.0472	0388	.0453	0381
.61	.0469	0375	.0448	0369
.62	.0465	0360	.0443	0356
.63	.0462	0343	.0438	0342
.64	.0458	0325	.0433	0327
.65	,0454	0305	.0428	0311

TABLE I. - SECTION COORDINATES - Continued

		(y/c) _u	(y/c) ₁	(y/c) _u	(y/c) ₁
	x/c	Airfo	il 12	Airfo	oil 31
	0.66	0.0450	-0.0282	0.0422	-0.0294
	67	.0445	-,0258	.0416	0277
	68	.0440	0234	.0409	0260
	.69	.0435	0210	.0402	0242
	.70	.0430	0188	.0395	0224
	.71	.0424	-,0167	.0387	0206
	.72	.0418	-,0146	.0379	0188
	.73	.0411	-,0126	.0371	0171
	.74	.0404	-,0107	.0363	-,0154
	.75	.0397	0090	.0354	0137
	76	.0389	0073	.0345	0121
	.77	.0380	-,0057	.0336	0105
	.78	.0371	0042	.0326	0089
	.79	.0361	0028	.0315	0074
	.80	.0351	0015	.0304	0060
	.81	.0340	0003	.0292	0047
	.82	.0329	.0007	.0280	0035
	.83	.0316	.0017	.0267	0024
	.84	.0303	.00 2 5	.0254	0014
	.85	.0289	.0031	.0240	0006
	.86	.0275	.0036	.0225	0.0
	.87	.0259	.0040	.0210	.0005
	.88	.0242	.0042	.0194	.0007
	.89	.0224	.0042	.0176	.0007
	.90	.0206	.0040	.0157	.0005
	.91	.0186	.0036	.0137	.0001
	.92	.0164	.0030	.0116	0005
	.93	.0142	.0021	.0093	0014
	.94	.0118	.0010	.0069	0026
	.95	.0093	0005	,0044	0041
	.96	.0066	0022	.0019	0059
	.97	.0038	0043	0008	0080
	.98	.0008	0067	0037	0105
	.99	0024	0095	0068	0133
	1,00		0127		0164

TABLE I. - SECTION COORDINATES - Concluded

(a) $a = -1, 9^{\circ}$												
CP AT -												
×/C	4=0.50	M≈0.60	M=0.70	M=0.74	M=0.76	M=0.77	M=0.78	M=0.79	M=0.80	M=0.81	M=0.82	×/c
					UPF	'ER SURFACE	I.					
	1		Τ	1	Т	T	T	1	T			
.000	1.063	1.084	1.118	1.135	1.143		1.151	1.152	1.162	1.162	1.166	0.000
-011	040	-022	-162	.180	-214		.239	.256	.268	.280	-263	.002
.029	287	260	006	- 175	- 168		.086	.119	•118	.146	.146	.015
.044	- 293	278	256	236	213		- 192	105	089	090	071	.029
.069	309	298	276	264	250		239	225	221	162	145	.044
.098	349	349	354	344	336		342	325	329	324	310	- 09.9
.199	320	325	330	330	328	1	325	320	319	317	315	.147
-248	327	337	360	350	- 352	Ì	349	354	356	350	345	. 199
•298·	320	330	332	- 350	354	1	356	362	- 3/9	380	374	. 24 8
. 348	315	334	~.355	369	376		390	- 395	398	397	397	. 298
. 399		335	363	387	397		410	415	427	433	- 451	.399
.497	- 1/9	34 /	376	397	410		430	440	447	442	467	. 44 8
.547	346	365	- 397	- 423	410		- 431	~.440	440	492	488	.497
.599	345	366	402	434	443	1	- 474	- 489	491	492	496	• 547
•648	348	365	402	430	-,452		478	485	530	- 551	550	.549
.750	169	- 199	431	462	479		517	534	529	588	590	.699
. 799	379	405	- 444	474	493	1	560	588	614	653	661	. 750
• 84 8	371	389	-,417	437	441	1	450	- 662	670	/16	727	• 799
•899	325	-,328	344	343	334		325	314		261	073	-848
.950	- 179	168	145	133	117	ł	105	090	082	068	065	.950
- 76 7	068	095	068	049	042		034	019	017	014	019	.969
.989	029	011	020	010	.002		.010	.019	+020	.013	.003	.980
1.000	.007	.022	.041	.047	.058	1	.045	- 049	.044	.034	+019	•989
							•	1			1 .024	11.000
						CK SURFACE						
.007	•005	065	006	.020	.027		.034	.063	.097	.069	.103	. 007
.020	418	485	- 583	-,367	~ 333		300	281	271	235	220	.011
.030	465	545	627	703	734	1	- 730	531	521	495	444	• 0Z 0
.046	413	471	577	606	646	1	725	746	762	695	665	.030
.068	364	418	486	517	554		611	661	677	- 664	- 660	.046
.150	104	394	461	498	529		577	583	601	651	646	.100
.200	271	322	367	396	501		552	602	630	622	646	.150
-250	246	304	343	388	401		432	503	501	646	651	.200
-300	256	313	346	386	408		446	463	459	579	- 659	.250
-349	- 255	307	348	374	410		~.455	475	501	431	652	-349
450	236	268	- 298	326	356		377	379	388	399	-+632	.400
.501	211	233	269	284	-, 297		366	-,354	363	362	291	•450
•551	190	213	240	25 Z	261		276	261	275	320	292	.501
-600	140	156	-,164	159	167		174	160	163	- 161	157	- 600
.550	025	046	032	014	014		016	~.004	007	.005	.014	.650
.751	.237	.225	• 1 3 4	•149	-156		.152	-160	.166	.176	.183	.700
.801	308	. 303	.331	.344	.354		.263	.281	.290	• 298	.304	.751
.852	.375	.373	. 396	.409	.404		.406	• • • • • • • • • • • • • • • • • • • •	-425	• 188 454	• 383	-801
.901	.421	.403	.424	-451	.449		.451	.455	.468	497	.497	-852 -901
949	. 413	.405	432	• 434	.445		-456	.457	.473	.489	.483	.930
.967	.339	.342	.370	. 102	.4 <u>5</u> 3 .794		-424	.459	.453	. 468	.465	.949
.990	.208	.205	.225	.243	.249		- 398	-405	-413	•419	-423	.967
.998	.003	.001	.017	.030	.026		.024	.038	.034	+ 201	-254	-990
<u>1</u>												• 778

· · · · · · · · ·

-

-

TABLE II. - SURFACE PRESSURE DISTRIBUTIONS FOR SUPERCRITICAL AIRFOIL 3

(a) = -1.09

	(b) $a = -0.93$												
		·····		-	C	P AT -							
×75	M=0.50	M=0.50	M=0.70	M=0.74	M=0.76	M=0,77	M=0.78	M=0.79	M=0.80	M=0.81	M=0.82	X/C	
					UPPE	R SURFACE							
0.000	1.072	1.098	1.137	1.153	1.159		1.170	1.176	1.173	1.179	1.182	0.000	
.002	.222	. 307	.452	. 52 7	.550		.589	•613	-050	- 079	.059	.002	
+011	326	214	~.163	080	- 140		- 135	114	~.097	069	037	.015	
.315	426		- 457	- 200	390		356	325	303	267	246	.029	
	491	480	461	441	426		405	383	357	-+341	309	.044	
. 06.9	467	467	451	444	427		418	407	398	375	331	.069	
.098	475	431	507	530	532		527	521	514	495	464	.098	
.147	421	436	458	468	467		484	482	466	459	- 445	.147	
.199	406	432	449	457	478		485	483	481		- 503	. 26 8	
.248	383	404	- 449	- 469	485		- 447	- 492	- 518	516	509	.298	
.298	380	401	420	434	- 441		~ 476	478	448	478	- 493	.348	
.348	- 369	- 302	- 631	- 455	473		- 494	535	527	- 489	506	. 399	
.397	- 372	- 430	430	463	482		513	500	559	535	510	.448	
697	- 364	395	431	455	477		499	543	591	586	561	.497	
547	1/5	401	- 447	476	503		540	528	582	594	585	• 54 7	
.599	372	403	449	476	505		546	573	580	621	592	.599	
. 843	371	401	440	474	504		531	591	582	653	644	.048	
.699	384	417	463	499	530		564	~.576	620	682	015	.750	
. 15.)	393	- 427	- 470	506	545		-,602	- 507	- 680	- 807	- 810	.799	
.799	- 399	429	472	495	- 457		- 455	643	410	405	472	.848	
.843	376		- 433	- 347	- 341		325	312	288	241	206	. 899	
.899	328	346	152	130	119		104	095	084	069	071	.950	
- 96.9	108	101	075	053	046		035	027	022	021	036	. 96 9	
.980	462	055	028	010	~,008		.005	.007	.006	.005	023	• 98 0	
.989	026	019	.009	.023	.021		.032	.033	.030	.026	009	.989	
1.000	,005	.013	.034	.039	.043		.044	.044	.041	.034	.003	1.000	
					LCW	ER SUPFACE							
		1					200	374	300	273	263	.007	
.007	.286	.283	.264	+212	.276		037	- 046	038	032	- 046	.011	
110.	.026	.017	- 314	038	- 254		254	261	274	278	284	.020	
.020		254	316	363	383		396	403	414	420	449	.030	
.046	- 274	- 262	310	362	361		386	400	419	443	450	.046	
.068	219	253	295	~.318	333		353	367	376	389	-+416	.068	
.100	228	237	300	320	345		367	377	-,388	- 405	439	100	
.150	230	256	302	315	332	1	360	387	403	428	- 431	.200	
-200	210	238	284	302	- 307		- 332	- 343	360	- 375	- 413	.250	
.250	217		- 209	281	293		310	314	334	345	370	. 300	
44.0	200	- 225	- 263	- 289	302		329	348	369	391	455	. 34 9	
400	18A	193	237	254	265		284	302	313	318	352	- 400	
450	194	200	245	248	267		273	292	312	311	338	.450	
.501	- 183	~.182	219	227	244		251	262	277	280	299	.501	
.551	170	176	200	213	213	1	226	226	231	- 251	- 150	600	
.600	126	126	135	132	135	I	147	13/	140	.019	- 190	.650	
-650	020	007	002	.004	.006	1	.174	180	182	182	.183	.700	
./00	• 126	-146	.284	.790	- 295		.297	. 30 5	.307	. 313	. 301	.751	
1	. 126	.353	.369	378	.380	l	, 383	.388	+392	. 399	.389	.801	
.852	. 198	.417	.440	.453	.456	1	.453	.454	.462	.463	.456	.852	
901	. 430	.455	.468	.490	.487		.497	.502	.508	.507	•497	+ 901	
.930	.415	.437	.457	.481	.481		. 494	+485	.489	.495	-487	.930	
.949	.391	.417	.440	.461	- 462		.463	-478	.4/3		416	047	
.967	•337	.377	.393	-406	•413		.418	- 420	- 260	267	239	.990	
.990	• 193	.215	.234	-251	.248	1	.017	.013	-004	.009	036	.998	
.998	-+029	009	.007	.012	.014		1		L		1	1	

TABLE II. - SURFACE PRESSURE DISTRIBUTIONS FOR SUPERCRITICAL AIRFOIL 31 - Continued

*.,

CP AT -												
×/c	M=0.50	M=0.60	M=J.70	M=0.74	M=0.76	M=0.77	M=0.78	M=0.79	M=0.80	M=0.81	M=0.82	X/C
					UPP	ER SURFACE						
0.000	1.053	1.092	1.139	1.149	1.155		1.169	1.175	1.179	1.182	1.187	0.000
.002	.041	.139	.320	. 398	-447		.488	-517	.539	.574	,-603	-002
.0115	502		300	332	299		118	016	168	023	- 107	.011
.029	035	624	589	569	- 515		465	441	411	382	326	.029
.044	581	593	571	576	546		509	479	470	438	403	.044
.069	526	537	542	- 544	538		520	490	483	430	418	.069
.098	532	562	593	604	623		625	605	577	553	522	-098
.199	471	492	496	526	534		545	598	- 563	- 552	- 546	100
.248	414	435	- 474	517	538		559	572	572	559	544	.248
.298	411	442	481	485	494		564	571	580	580	562	. 298
.348	- 404	423	467	489	508		516	474	540	554	559	. 34 8
.399	399	428	47C	494	515		575	560	563	561	569	.399
- 440	390	409	461	498	509		553	- 609	562	- 594	566	.448
.5+7	390	422	472	502	533		559	611	609	- 625	607	547
.599	3 84	415	466	499	528		580	585	644	646	642	.599
.643	381	418	460	494	521		560	592	676	666	671	.648
.599	193	429	479	512	549		572	600	707	687	707	. 699
. 150	- 400	- 435	- 484	522	562		626	635	742	769	756	.750
.844	385	404	440	451	- 459		454	565	- 380	- 383	- 409	.199
. 399	329	342	349	34 3	339		325	308	266	223	191	.899
. 450	170	163	149	133	120		105	097	075	066	080	.950
.909	105	096	071	055	045		034	031	019	026	051	.969
.980	059	053	025	016	010		.004	.005	.002	000	041	.980
.989	023	011	.309	-018	. 023		+027	.028	.023	.019	+.031	.989
1.000	• 103	.018	.028	.038	.038		.040	.042	.035	.026	022	1.000
					LCW	ER SURFACE						
.007	. 413	. 192	. 195	. 391	. 390		. 391	- 386	.379	. 353	- 354	. 00.7
.011	.128	.121	.129	.109	.094		.089	.075	.067	.051	.047	.011
.020	036	085	084	124	125		119	146	144	152	190	.020
.030	127	185	206	246	249		270	261	313	317	337	.030
.046	139	178	214	230	255		275	279	300	309	341	.046
-100	171	195	210	251	231		248	-+215	- 300	296	- 302	.068
.150	- 184	200	242	269	272		289	304	328	338	367	.150
.200	172	199	221	- 244	262		277	287	303	329	346	.200
•250	177	204	221	247	266		284	284	306	316	350	. 250
.300	182	189	210	236	236		251	272	293	306	337	. 30 0
-349	172	198	227	254	266		289	293	322	345	- 420	• 349
.450	-,167	103	-,201	-, 222	-, 231		241	201	-+212	291	321	.400
.501	154	165	192	203	218		230	234	245	259	286	.501
.551	151	162	182	189	188		195	210	218	230	242	.551
.600	097	104	110	116	120		118	127	126	141	143	.600
.650	006	002	.013	- C1 2	.020		.025	.026	.024	.014	.015	.650
.700	+129	.149	-167	•177	-187		.190	.182	.194	.188	.182	.700
.801	. 11/	.200	-282	- 295	.301		. 31.3	د اد₊ ۹۵۲	-312	- 308	• 302 304	• 751
.852	.402	.422	.455	.451	.464		.475	466	470	463	.461	.852
.901	.440	.448	.483	.489	.501		.512	.506	.507	.498	.500	.901
.930	.417	.440	.474	.478	.488		.501	.501	.497	. 495	.488	.930
.949	.410	.413	.453	.454	.466		.478	.477	.479	.473	.470	.949
.967	. 347	.365	.409	.410	.417		.426	.429	.428	- 421	.413	.967
.990	+195	.213	.234	• 242	•256		.262	• 262	.260	.247	•233	.990
	+.020	-+010	.003	.007	+011		.012	+015	•007	~.915	056	• 99 8

Ē

TABLE 11. - SURFACE PRESSURE DISTRIBUTIONS FOR SUPERCRITICAL AIRFOIL 31 - Continued

(c) $\alpha = -0.4^{c}$

CONTRELIM

TABLE 11 SURFACE PRESSURE DISTRIBUTIO	S FOR SUPERCRITICAL AIRFOIL 31 - Continued
---------------------------------------	--

(d) $\alpha = 0.1^{\circ}$

	CP AT -													
x/5	M=0.50	M=0.60	M=0.70	₩=0.74	M=0.76	M=0.77	M=0.78	H=0.79	M=0.80	M=0.81	M=0.82	x/C		
					UPPE	R SURFACE					<u> </u>			
0.000	1.010	1.063	1.112	1.135	1.151		1.160	1.171	1.171	1.178	1.179	0.000 .002		
-002	697	.020	482	364	327		261	214	197	129	110	.011		
.015	767	752	623	498	444	Į –	388	330	311	255	225	.015		
.029	771	815	778	727	-,697	Į	604	583	606	537	509	.044		
.044	704	722	131	121	660	Į	638	606	575	- 543	483	.069		
.059	607	651	701	754	745	Į	735	715	675	635	597	.098		
.147	499	527	605	638	687	Į	712	714	655	637	609	-199		
.199	484	-,517	549	593	619	Į	704	687	675	656	640	.248		
•248	462	492	- 531	553	560		695	708	687	668	660	. 298		
.298	450	485	514	-,550	574	-	596	699	695	673	664	.348		
. 399	428	453	506	541	573	1	514	688	704	698	679	- 399 - 44 A		
.448	426	448	497	537	563	1	560	642	710	713	700	.497		
.497	410	430	484	518	531	1	637	605	724	737	727	.547		
.547	417	441	- 490	529	556	1	604	621	683	728	737	.599		
.648	404	-,428	480	518	541	1	586	617	688	714	733	+646 400		
.599	412	438	496	533	561	1	- 588	- 620	180	806	825	.750		
. 150	409	440	497	535	563	ŀ	558	- 643	561	879	880	. 799		
.799	1 + • 413	430	483	448	455	ł	448	427	369	348	342	. 84 8		
.399	016	339	349	340	330	l	315	296	254	196	191	- 899		
.950	170	159	145	123	-,111		100	087	072	055	092	.969		
. 16 9	101	091	068 - 026	051	042	ł	.002	.004	.011	009	053	. 98 0		
.980	060	050	024	.016	.022	l	.028	.029	.026	. 006	046	. 98 9		
1.000	.005	.015	.025	.032	.032	L	.040	.039	.037	.011	036	1.000		
	_				LOW	ER SURFACE								
. 007	.557	.529	.534	.530	.507		.501	.498	.493	.479	.464	.007		
.011	.254	257	.265	. 241	.224		.232	.217	-204	.179	.188	.011		
. JZ 0	.088	.065	.056	.021	.032		.038	.001	-,135	179	192	.030		
.030	026	03/	066	109	118		148	156	164	210	216	.046		
.046	086	063	110	~.139	142		- 133	161	163	198	211	.068		
.100	103	118	144	160	178	1	175	194	202	226	264	.100		
.150	120	143	167	191	206	I	208	217	231	246	280	.200		
.200	127		167	194	19/	1	205	231	233	258	288	.250		
- 250	142	148	163	191	196		191	218	220	252	275	.300		
.349	145	164	182	204	219	1	225	252	256	293	319	- 549		
.400	129	141	160	188	192	1	204	- 219	221	250	271	.450		
.450	- 133	158	173	194	202	1	189	201	208	224	- 254	. 50 1		
.501	132	147	150	168	173	1	171	- 183	188	205	217	.551		
.600	- 089	084	079	097	104	1	101	107	100	117	133	.600		
.650	.012	.015	.028	.025	.025	1	.038	.033	.704	.198	.188	.700		
.700	-146	.158	.181	185	.190		.324	.320	.331	.317	.313	.751		
.751	.250	. 159	. 392	.397	.398	1	.420	.407	.408	.408	•394	.801		
.801	.410	.432	.451	.462	.466		.486	. 470	.481	.478	.470	- 85 2		
.901	. 441	.457	.496	.497	.503	1	•524	-515	519	.508	.504	.930		
.930	.424	,451	.481	.484	.490	1	.513	487	489	. 481	.469	.949		
•949	• 399	• 422	.473	408	.418		.431	.431	.437	.429	.406	.967		
404	.194	.212	.243	. 249	. 251		.271	.261	-262	.249	.225	. 990		
.998	018	013	.004	003	.006	1	.011	.010	.013		-+004			

TATA TAXYON T

× /5												
	M=0.50	M=0.60	M=U.70	M=0.74	M=0.76	M=0.77	M=0.78	M=0.79	M=0.80	M=0.81	M=0.82	×/c
	UPPER SURFACE											
0.000	- 948	1,009	1.078	1.114	1.127	1,139	1 1 1 10	1 147	1 1 5 9	1		
-032	334	- 218	.040	.124	.204	.239	.267	.299	.346	.379		.002
.011	951	8/3	634	535	474	419	379	330	273	228		.011
.029	942	940	-1.005	902	813	779	746	689	648	589		.029
.044	d2L	866	956	950	896	849	829	782	738	671		.044
.009	455	717	825	848	- 805	782	771	723	645	610		.069
.147	562	592	648	781	864	867	842	810	772	713		.147
. 199	533	564	618	607	808	808	794	766	740	693		. 199
.248	503	531	595	618	768	761	792	778	752	717		.248
. 148	468	- 496	553	603	504	732	781	779	759	731		•298
.399	452	489	542	580	593	486	772	774	763	742		. 399
-448	440	476	533	571	594	561	769	776	770	752		.448
.547	433	465	519	561	592	597	192	798	787	771		.497
.599	422	456	502	- 548	590	616	484	831	836	- 819	1	-599
.648	- 416	446	493	537	567	581	543	809	860	848	1	.648
.750	- 424	453	502	546	582	586	604	593	864	854	1	.699
.799	415	442	489	512	532	543	567	465	468	-,907	1	•750
.848	389	413	~.443	447	454	455	448	- 426	319	311	1	.848
.899	325	345	338	334	326	322	322	295	220	188		.899
969	102	090	063	123	110	104	107	085	065	089		.950
.980	- 059	050	024	016	006	000	.000	.013	301	058		.980
.989	020	014	.006	.013	-022	.024	.027	.037	.023	039		.989
1.055	.004	.012	.023	.025	.037	.036	.043	.052	.031	023		1.000
					LOW	ER SURFACE						
.007	.654	.651	.659	.623	.600	.606	.619	. 599	.568	.574	1	.007
.011	.349	+416	.370	.378	.338	• 335	.335	.325	.313	.284	ĺ	.011
.030	.074	.054	.029	.021	•158	-141	005	- 027	- 094	.081		•020
.046	.043	.038	006	- 02 3	044	043	038	061	075	098		.046
.068	.005	.001	012	049	053	061	056	066	072	109		.068
.150	013	078	107	083	101	129	097	106	133	153]	.100
.200	082	101	120	134	144	136	137	147	169	201	1	200
.250	098	113	124	141	159	150	162	170	184	208	1	.250
.300	118	125	126	138	154	149	159	160	174	205	1	.300
.400	100	117	- 129	151	-,166	155	-,161	173	191	243	1	.349
.450	118	123	144	159	176	164	173	177	200	223		.450
.501	108	119	134	145	163	154	161	160	185	195		+501
.600	063	066	069	073	088	139	145	156	160	175		•551
.650	.025	.035	.038	.048	.043	.049	.055	.054	.053	.040		.650
.700	• 163	-174	.192	.200	-198	.208	.214	-214	.209	• 208		.700
./51 .801	.203	- 283	.309	.314	-320	.323	.330	• 336	.335	. 320		.751
.852	.414	.436	.468	.474	.472	.486	.489	489	.420	-415		- 80 1 - 85 7
.901	. 444	.468	•500	.504	.504	.522	- 522	.519	.520	.505		.901
.930	.434	.455	.489	•492	•499	.510	.512	-510	.513	.505		.930
.967	.353	.382	.407	420	.476	-480	-491	.496	.494	•478		.949
.990	.199	.218	.244	. 252	.248	.263	.267	.272	.258	.238		.990
. 998	025	018	001	.002	→. 005	.013	.013	.017	001	053		. 99 8

ŝ

TABLE H. - SURFACE PRESSURE DISTRIBUTIONS FOR SUPERCRITICAL AIRFOIL 3I - Continued

(e) $\alpha = 0.6^{\circ}$

TABLE 11. - SURFACE PRESSURE DISTRIBUTIONS FOR SUPERCRITICAL AIRFOIL 31 - Continued

(f) $a = 1.1^{\circ}$

-

CP AT -												
x/c	M=0.50	4=0.60	M=0.70	M=0.74	M=0.76	M=0.77	M=0.78	₩=0.79	M=0.80	M=0.81	M=0.82	x/c
					UPP	ER SURFACE		4				
0.000	.886	.946	1.043	1,092	1.099	1.114	1.126	1.132	1.147			0.000
	577	433	-+114	+025	.106	.115	.179	.204	.274			.00 Z
• 311	-1.157	-1.085	809	663	564	513	461	- 430	370			.011
179	-1 079	=1.167	-1.165	-1.015	912	881	839	778	713			.029
.044	972	-1.026	-1.275	-1.108	-1.010	985	930	896	809			.044
- J69	~.765	864	-1.036	-1.059	974	931	913	845	774			.069
- 348	754	780	878	-1.039	962	938	905	848	780			-098
.147	628	668	118	-1.014	917	943	912	873	- 934			.199
.248	- 549	585	645	526	91.0	904	894	- 859	813			.248
.298	- 531	563	632	615	901	907	886	862	813		1	.298
- 343	502	538	598	615	886	882	873	846	916			. 348
. 399	483	519	576	613	834	891	883	868	838			+ 399
- 44 5	- 467	506	- 562	605	478	- 880	- 890	- 804	960			497
.547	451	493	- 541	587	572	- 543	- 908	901	876			.547
.599	440	479	532	569	585	482	907	916	893			.599
.548	428	467	517	556	572	505	873	937	922		1	.648
-599	437	467	520	564	592	558	441	957	941			.699
.750	- 433	462	- 497	- 574	543	- 539	- 449	401	- 483			.799
.348	395	422	442	456	- 462	- 460	393	311	308			. 848
. 899	352	344	338	335	333	328	294	226	190		[.899
.950	169	160	132	120	111	109	095	075	078			. 95 0
.959	099	090	064	054	041	037	025	024	055			.969
.980	057	050	026	013	003	.005	.011	.003	040			.980
1.000	.002	.009	.016	.020	.039	.047	.050	.030	026			1.000
		•									•	
					LON	ER SUPPACE						
-007	.756	.758	.121	.712	. 716	.701	. 695	.670	.643			.007
	.514	.522	.487	.464	.444	.461	.429	.415	.376			.011
.320	.315	.291	.274	• 256	.246	.239	.232	.218	.198			. 02 0
	.153	.161	.127	.108	.087	.097	-104	• 06 2	.033	1	1	.030
.040	- 082	.105	-065	-036	.026	.034	.052	.019	021			.068
.100	. 324	.009	005	018	026	037	023	051	071		1	.100
.150	028	048	057	-,065	073	072	074	095	126		1	.150
.200	039	054	065	-,086	075	084	093	105	122			.200
-250	062	068	084	112	102	103	108	126	142		l	.300
149	085	130	-,122	- 129	132	- 139	137	160	185			.349
-400	069	088	100	114	117	122	123	138	160		1	.400
.450	094	110	110	131	128	130	143	145	161			.450
-501	089	104	108	120	119	116	128	144	160			- 501
• 551	044	097	058	061	056	058		068	085			.600
.650	039	.041	.057	.06 2	.061	.069	.067	.062	.052	1		.650
.700	.174	.179	.203	.205	.219	.223	•231	.218	.216		l	.700
.751	.272	-294	.317	.325	.334	.335	.340	.338	.326		1	.751
.801	• 359	.378	.402	.413	•422	.429	-433	.427	.425	l	1	.801
- 552	- 420	.471	508	.513	.520	.530	.501	529	.519			.901
.930	.437	.463	.491	.504	.515	.523	.528	.519	.507			.930
.949	.415	.435	.469	.480	-484	.497	.496	.492	.486	1		.949
. 96 7	.361	.379	-410	.424	.431	-438	.447	-438	-424	I		.967
-990	.196	- 020	- 240	- 245	.268	.072	.029	-002	049			- 998
• 3 4 6	- • V2L	1020	1 -+001			1	+ 467	1 .002		1	i i	1

23

(g) $\alpha = 1.6^{\circ}$												
CP AT -												
x/c	M=C.5J	4=0.60	4≐0.70	M=0.74	M=0.76	M=0.77	M=C.78	M=0.79	4=0,80	M=0.81	4=0.82	X/C
					UPPE	ER SURFACE						
0.000	. 786	- 679	. 999	1,051	1.066	1.085	1.095	1.113	1.119			0.000
.302	828	- 645	254	089	009	.046	. 37 3	.128	.177			.002
.011	-1.421	-1.351	-,965	765	668	-,619	563	- 501	445			.011
.315	-1.405	-1.417	-L.396	- 935	810	754	689	617	788	1		.029
• J2 9	-1.242	- 1.304	-1.287	-1.208	-1.113	-1.049	-1.000	934	- 891	1		.044
.044	-1.102	847	-1.289	-1.182	-1.070	-1.013	982	914	862			.069
	818	874	-1.209	-1.174	-1.080	-1.042	987	941	866			-098
.147	-,682	729	605	-1.145	-1.069	-1.023	981	934	896			.147
.179	628	670	711	-1.111	-1.047	-1 002	972	- 938	898			.748
-248	582	617	-,015	-1.046	-1.021	-1.002	974	931	480			.298
-298		561	629	544	971	- 954	953	911	861			.348
349	508	- 547	622	507	980	958	954	909	877			.399
.448	493	52 5	59Z	563	963	963	950	916	881		1	.448
.497	476	524	566	558	985	984	964	- 932	901			-491
.547	474	502	566	586	676	987	977	- 951	922		1	599
.599	- 462	- 475	528	556	475	- 897	-1.015	- 991	- 970			.648
.040	45)	479	533	570	- 510	420	-1.037	-1.014	991			.699
.750	443	470	517	555	536	420	544	-1.026	911			.750
.799	432	460	493	521	511	429	378	445	422			.799
.848	-,400	-,421	437	- 456	448	396	312	310	307	i		.545
.899	332	343	329	335	323	291	224	193	- 125	1		.950
.950	176	- 159	-+132	119	038	029	019	04#	121			.969
.909		046	328	008	.001	.008	.011	027	115			.980
.984	026	010	.000	.019	.031	.031	.035	018	116		1	.989
1.030	001	.002	.012	.032	.051	.056	.047	012	096	1		1.000
					LOW	ER SURFACE						
			+05	.792	.790	. 768	.763	. 738	.728			.007
.011	.613	.617	.577	.552	.537	. 52 3	.514	.497	.472		1	.011
.020	.415	.392	.367	.338	.341	.329	.310	.289	.270			.020
.030	.268	.231	.223	- 202	.208	.190	.178	-144	.122			.030
.048	.177	.180	.150	•142	.138	.120	•118	+103	.000			.048
.06.8	.143	.132	•107	-103	.108	.032	.027	.006	017	1]	.100
1 .150	-015		011	014	01Z	014	028	037	071	1	1	.150
.250	005	012	024	020	031	037	042	065	078	1		.200
.250	030	039	056	047	058	064	070	082	104		1	.250
.300	049	059	060	067	064	068		096	125	1		.349
.349	1.59	- 069	- 094	- 087	086	081	091	113	145	1	1	.400
400	080	084	101	089	096	102	111	128	165	1	1	.450
.501	072	079	094	099	094	096	097	120	-+155	1	1	.501
.551	080	078	095	088	058	090	092	105	149	1	1	.551
.600	039	041	045	038	032	02 7	033	053	J83		1	-600
•656	.050	-056	.068	.078	+081	.084	1001	.226	.713	1		.700
.700	181	•185	.322	.332	.236	.349	.348	.342	.326	1		.751
	.363	.378	.407	.419	.434	.438	.439	.437	.416	1		.801
.852	.431	.444	.474	.490	.501	.501	.511	.498	.478	1		.852
.901	.453	.477	.504	.516	.533	.532	-543	.526	.521	1		.901
.930	.442	.457	.489	.502	.516	.520	.529	• • • • • •	•500	1		. 940
•949	.418	+438	+465	481	.443	. 50 3	.500	.478	414	1		.967
.967	.100	.212	.741	257	280	.279	.280	.250	.204		1	.990
.998	025	017	013	. CC2	.016	. 02 8	. 026	~.025	121		l.	.998
L	1	1	1	L	1	L	1	1	L	1	<u> </u>	J

TABLE 11. - SURFACE PRESSURE DISTRIBUTIONS FOR SUPERCRITICAL AIRFOIL 31 - Continued

Generative ?

24

.

TABLE II. - SURFACE PRESSURE DISTRIBUTIONS FOR SUPERCRITICAL AIRFOIL 31 - Continued

(h) a = 2.1°												
CP AT -												
x/c	M=0.50	M=0.60	M=0.70	M=0.74	M=0,76	M=0.77	M=0.78	M=0.79	M=0.80	M=0.81	M=0.82	x/c
UPPER SURFACE												
0.000	.670	. 794	.953	1.001	1.041	1.055	1.070					0,000
.002	-1-153	828	364	186	097	071	638					.011
.011	-1.702	-1.643	-1.125	-1-016	903	837	- 748					.015
.015	-1.442	-1.607	-1.414	-1.219	-1.093	-1.046	966					.029
.044	-1.282	-1.470	-1.502	-1.297	-1.187	-1-149	-1.058		1	1		.069
.069	966	-1.001	-1.443	-1.257	-1-170	-1.110	-1.042					.098
.098	897	981	-1.444	-1.280	-1.155	-1.120	-1.042	1				.147
.147	/40	721	577	-1.203	-1.132	-1.081	-1.032					.199
- 248	633	674	580	-1.173	-1.112	-1.066	-1.024	1				298
.298	594	643	64I	-1.152	-1.088	-1.061	-1.026					. 348
. 348	564	601	632	-1.129	-1.085	-1.052	-1.021					.399
. 199	~.538	- 515	617	-1.497	-1-069	-1.050	-1.009					.448
.448	521	530	572	443	-1.079	-1.055	-1.026		1			-497
.547	- 494	528	57C	486	-1.082	-1.063	-1.042					599
.599	474	507	555	512	-1.046	-1.067	-1.052					. 64 8
- 648	467	494	536	- 549	420	-1.015	-1.086	1				.699
.699	- 465	- 492	524	- 547	412	487	683	1				.750
.799	- 442	461	499	519	421	369	412		1			.799
. 545	407	423	431	-,453	392	314	304	1				. 899
. 899		339	328	343	302	- 244	066			1	1	. 95 0
. 450	166	158	125	047	030	025	035					.969
.969	100	051	072	007	.010	.013	017	1	1			.980
.989	026	016	.005	.029	.044	.039	005	1	1			1.000
1.000	Q08	.002	.021	.047	.060	.055	003	<u> </u>	<u> </u>			1
					LOW	ER SURFACE						
007	904	. 903	.880	.859	.851	.822	.806	1				.007
.011	.715	.692	.659	.628	.621	.610	•582					.020
.020	.503	.486	.453	.444	.422	.399	.3/3					.030
.030	. 368	.329	•313	, 293	.205	.205	177	1				.046
-046	.259	.195	.179	.175	.169	.166	.128					.068
.100	.134	.127	.106	.101	.103	.089	.070					.150
.150	. 965	.058	.057	+C55	.048	.021	-015	1	1	1	1	200
.200	.034	.021	.015	- 023	009	025	040		1	1		. 250
.250	.005	010	024	031	030	040	046	1				.300
.349	033	045	054	05 2	057	064	083	1				- 400
.400	033	039	046	050	041	057	077	1				.450
.450	044	058	069	064	069	070	091					.501
.501	036	062	065	063	~. 059	069	077				1	.551
.551	023	020	023	013	006	023	027			1	l	-600
.650	.063	.068	.082	.093	.101	•092	.088	1	1	1		.700
.700	.193	. 20 1	.221	.242	-244	+241	.231	1	1	ł	1	.751
.751	.290	. 30 I	.327	• 348	.443	444	.429		1	1		.801
.801	.3/3	.305	-483	504	514	.514	.505	1				.852
.852	.462	.489	.513	.528	.543	.539	.530	1	1	1	1	.901
,930	.442	.465	.496	.516	.526	.524	-522	1	1			.949
.949	.425	.441	.463	-491	.507	•502	-489	1	1			.967
.967	.366	.388	413	.434	286	.280	.256	1			1	.990
.990	-, 021	-, 128	014	.018	.035	.024	026	1	1		1	• 998
		1	1	1		J	l					

TABLE II SURFACE	PRESSURE DISTRIB	UTIONS FOR SUPER	RCRITICAL AIRFOI	L 3I - Concluded
------------------	------------------	------------------	------------------	------------------

(i) $\alpha = 3.1^{\circ}$

CP AT -												
x/c	N=0.50	M=0.60	H=0.70	M=0.74	M=0.76	M=0.77	M=0.78	M=0.79	M=0,80	M=0+81	H=0.82	x70
	UPPER SURFACE											
0.000	.386	.598	. 842	. 919	.967	1.001					Т	0.000
•00Z	-1.696	-1.140	564	384	257	189						+002
-015	-2-163	-2.197	-1. 300	-1.109	-1.078	878						• 011
.029	-1.867	-2.282	-1.633	-1.367	-1.249	-1.158						.015
.044	-1.325	-2.140	-1.700	-1.432	-1.313	-1.245	Į	•			1	.044
.069	-1.151	-1,059	-1.641	-1+400	-1.292	-1.221						.069
.098	-1.053	-1.057	-1.638	-1.417	-1.318	-1.250						.098
.147	861	898	-1.585	-1.415	-1.307	-1.242						.147
.748	707	745	-1.482	-1.338	-1.255	-1.190		1				•199
.298	666	707	-1.391	-1.317	-1.242	-1.175				}		298
.348	622	658	466	-1.288	-1.220	-1.159						.348
.399	598	620	518	-1.288	-1.218	-1.160		1	1			.399
.448	575	596	544	-1.270	-1.204	-1.162					1	.448
• 497	540	566	541	-1.271	-1.204	-1.170						.497
-599	513	-,540	556	-1+2/1	-1.215	-1.109		1				•547
.648	- 496	511	536	- 465	-1.240	-1.201			1			
. 699	486	502	540	401	861	838	1	1				.699
.750	- 477	485	526	394	489	538						.750
•799	452	453	508	406	389	432	1	1				.799
.848	416	413	445	-• 379	293	328			1			.848
.950	161	- 147	341	108	214	- 126	1					.899
.969	091	076	058	037	019	093						.950
.980	055	043	017	.001	.009	088	1					- 980
.989	025	019	. 019	.039	.032	062	1	1	1			.989
1.000	004	008	.033	.064	.037	055	L		1			1.000
					LOW	ER SURFACE						
.007	1.017	1.003	.965	.955	. 938	. 923					T	.007
.011	.844	.821	.774	.774	.740	. 721		1		1	1	.011
.020	.652	+650	.607	• 572	•559	+ 521						+020
.030	3478	.179	+440	• 435	.405	• 378		{	[.030
.068	.306	.306	.298	285	.263	- 257		1				.046
.100	.229	.219	.217	.207	.186	.180				ļ	1	.100
-150	.147	.137	.140	.131	.121	.110		1		1	1	.150
.200	.108	.100	.106	.107	.092	.079		1			1	.200
.250	.071	.064	.072	.071	.054	.045					1	.256
.300	.042	.03/	+045	.049	.038	.023		1			1	.300
400	.015	.017	.013	.014	.005	021	1		1		1	-349
+50	004	004	007	- 005	016	040		1	1			420
.501	013	017	007	001	018	050		1	1			.501
.551	925	026	024	007	033	046			ļ			.551
.600	.006	.012	.022	.027	+014	008		1				.60u
.000	-085	.091	• 111	• 1.30	• 123	• 105	1	1	1	1		.650
.751	. 307	.317	- 346	. 374	.365	.359			1		ł	.700
.801	.378	.404	.439	452	.452	444		1	1			.801
.852	.448	.464	. 498	.519	.515	.507		1	1			.852
.901	.470	.489	• 535	.547	.549	•536			1			.901
.930	.452	•473	• 514	.529	.523	.516						019.0
.949	167	-450	•488	.506	• 506	•484		1				•949
.990	.197	.213	267	289	.279	- 228						.967
.998	032	041	.012	.034	.014	085		l	1			998
		1	1	1	1	1	1	1	1	1	1	1

CONTRACT OF A

----- Airfoil 12 ---- Airfoil 31

27

the second second second

and a second and a second s

(a) Upper surface.

Figure 2. - Chordwise distribution of airfoil surface slopes.

CALL TO FILMTA L

(b) Lower surface.

Figure 2. - Concluded.

TOENTIAL

Figure 3.- Chordwise distribution of airfoil surface curvatures.

(b) Lower surface.

Figure 3.- Concluded.

Figure 4.- Photographs of model in tunnel.

(a) Airfoil mounted in tunnel.

Figure 5.- Apparatus dimensions in terms of chord (c = 63.5 cm (25.0 in.)).

CONTRACTOR IN THE

(b) Profile drag rake.

Figure 5.- Concluded.

TINTA

Figure 6. - Variation of Reynolds number with Mach number.

Figure 7.- Schematic of wake profiles.

Figure 8.- Comparison of force and moment characteristics of supercritical airfoils 12 and 31.

ONTRO DE LA

38

ł

\$

39

A TOPOLOGICA PER

CONTROLAL T

÷ A LULIN I LILL

,

ENIGHAI

41

i

SUNT IDENTIFIE

Figure 8. - Continued.

COMPRESENTITIA

CONTRACTOR

 43

CONTIDENTIAL

CONFIDENTIAL.

C AT IDEN I'M

COTTA IL MARY AREAS

CONTIDENTIAL

CONTIDENTIALS

Figure 9.- Variation of section drag coefficient with Mach number of supercritical airfoils 12 and 31 at various normal-force coefficients.

49

CONTRACTOR

Figure 9. - Continued.

, COMENDEMENAL

CITI ID BIVILLE

51

1.00

COANT IL LIN AND

HORMEIA) ²

ATTACK PLANT

5**3**

Figure 10.- Drag increment due to shock-wave losses.

DENTIAL T

Figure 10. - Concluded.

, () Tc.

Figure 11. - Chordwise pressure distribution. M = 0.50.

Ξ

TT 10 MIT 11

Figure 11. - Continued.

CARLEY PROPERTY A.

Figure 11. - Continued.

59

ALL AD LON I TANK

CONTIDENTS

Figure 11. - Continued.

LAND IN THE L

63

CONTRACTOR OF

Figure 12.- Chordwise pressure distribution. M = 0.60.

· ·

65

-- --

LOWEID EN

STATISTICS IN THE

C

Figure 12. - Continued.

. . .

1.0000000

ALT DEPARTMENT A

Figure 12. - Continued.

69

Figure 12. - Continued.

71

CUNTIDA

Figure 12. - Continued.

A TAXABLE PARTY AND A PARTY AND A

 $\mathbf{72}$

73

.

COMPLEX .

Figure 13.- Chordwise pressure distribution. M = 0.70.

COMPLEXIA

75

Distribution of the second sec

Media Mariana a serie a serie a serie a consta de maria a maria a serie a maria a serie a maria na serie a ser 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 -

Figure 13. - Continued.

FORTIDENT

CONTRACTOR A LINE

77

.

.

and the state of the statement

T T D. T. D. WARD WINDOW DRAMMENT D. D. D. D. D. D. D. WARD WINDOW DRAME DRAME D

TRATE AND INCOME.

ANT PAT

79

1.000

.

. . .

CALENDERVICE

ONTENDENTS

I DUNIIAD

CONTRACTOR VI

Figure 14.- Chordwise pressure distribution. M = 0.74.

83

CAMEUDENT

Figure 14.- Continued.

85

J.

Figure 14. - Continued.

- - r

Figure 14. - Continued.

INTIAL

Figure 14. - Continued.

THE REAL PROPERTY IN

Figure 14. - Concluded.

i litri I litina

nd. ...

į.

the second se

HALL IN THE PARTY NAME

91

Figure 15. - Chordwise pressure distribution. M = 0.76.

93

and the second s

CONTEMP ENTER

TIMENTIAL

COMPUNENT

95

1

.

Figure 15. - Continued.

,

HEALTHAN

97

• • • • ; COMPANY EN LINE

Figure 15. - Continued.

99

THE REPORT FROM

ONTER DENTE

A THE PARTY AND

Figure 16. - Continued.

103

CLONITITI FINANCA A
THE STATE

CATIDENTIAL .

105

The second second second

Figure 17. - Continued.

107

CONTRACTOR OF THE OWNER OWNE

CONTRACTO

CUTT

CONTRIDENTAL

110

,

ONITING TIME A

CONTRUE FINIST A STOR

AND TO THE I THE

COMPRESSION TAL :

LIGHTAN

.

Figure 18. - Continued.

AND THEAT

0.1

-1.6

-1.5

ŵ

1

Figure 18. - Continued.

.

THE REAL PROPERTY AND ADDRESS OF

HENTIAL \$

CONTRIBUNTING

Figure 19. - Continued.

ONT ID DIT 11

125

.

-

чź.

WENT ALL LAND

127

=

CONT ID CALIFORNIA

A LEADER DINKEN AL

129

ll - -----

LONITURE PROPERTY AND

COMPTOENTIAL

131

....

ONTRA LAT

133

.

134

a the e

135

or construction of the second s

IN THE PROPERTY INTERTY IN THE PROPERTY IN THE PROPERTY INTERTY INTERTY INTERTOPICAL PROPERTY INTERTY INTERTY

L-9841

NASA-Langley, 1975

136

ŝ