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TRANSONIC SHOCKS IN 3-D COMPRESSIBLE FLOW PASSING
A DUCT WITH A GENERAL SECTION FOR EULER SYSTEMS

SHUXING CHEN

Abstract. This paper is devoted to the study of a transonic shock in three-
dimensional steady compressible flow passing a duct with a general section.
The flow is described by the steady full Euler system, which is purely hyper-
bolic in the supersonic region and is of elliptic-hyperbolic type in the subsonic
region. The upstream flow at the entrance of the duct is a uniform supersonic
one adding a three-dimensional perturbation, while the pressure of the down-
stream flow at the exit of the duct is assigned apart from a constant difference.
The problem to determine the transonic shock and the flow behind the shock
is reduced to a free boundary value problem of an elliptic-hyperbolic system.
The new ingredients of our paper contain the decomposition of the elliptic-
hyperbolic system, the determination of the shock front by a pair of partial
differential equations coupled with the three-dimensional Euler system, and
the regularity analysis of solutions to the boundary value problems introduced
in our discussion.

1. Introduction

This paper is devoted to the study of a stationary three-dimensional compressible
flow passing a duct with a general section. Assume that the upstream flow at the
entrance of the duct is a given supersonic gas flow, which becomes subsonic across a
transonic shock front at some place in the duct. Then the whole flow in the duct is
expected to be determined. Since in any supersonic flow the upstream part is always
not influenced by its downstream part, our problem is to determine the location of
the transonic shock and the flow, which is a subsonic one, behind the shock front
under some conditions at the lateral wall and the exit of the duct. Such a physical
problem often arises in wind tunnel, a nozzle and jet propulsion. Early in 1948
Courant and Friedrichs gave the first systematical analysis on this problem from a
mathematical point of view ([10]). Later, T.P.Liu [15, 16], T.P.Liu and H.M.Glaz
[11] studied the existence and stability of transonic shock in a quasi one-dimensional
case. Recently, G.Q.Chen and M.Feldman [2, 3], Z.Xin and H.Yin [21] also studied
the stability of transonic shock by using the model of potential flow equation. In [9]
this problem in the model of two-dimensional Euler system is also studied. The new
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5266 SHUXING CHEN

features of the study in this paper are: the flow is governed by a three-dimensional
full Euler system, and the duct has a general section, which may not be a rectangle
as assumed in [2, 3] and other references. Since the full Euler system is hyperbolic
in a supersonic region and is of elliptic-hyperbolic type in a subsonic region, then
the related boundary value problem arising in our analysis is more complicated
than the problem for potential flow equation in [2, 3, 21]. Meanwhile, because the
section of the duct is not a rectangle, we could not make an extension to eliminate
the lateral boundary as was done in [2, 9], so that more sophisticated analysis on
the regularity and estimates of the solution to related boundary value problems
are required. The detailed description of these points will be given later. Besides,
due to the arbitrariness of the section of the duct in our study, by using a simple
coordinates transformation the result in this paper can also be applied to the case
when the lateral boundary of the duct is perturbed.

Physical problems involving transonic shocks often occur in other cases in gas
dynamics (e.g. see [4, 6, 8, 10, 20]). Besides, there is also another case for com-
pressible flow passing a duct, where the upstream flow at the entrance is subsonic,
while the downstream flow at the exit is supersonic. In this case the flow will be a
smooth transonic flow generally, and the equation prescribing the flow becomes a
mixed type equation [1, 14, 18, 19].

The flow pattern we are going to study is a perturbation of a background flow,
which is a uniform supersonic flow at the entrance that passes across a plane shock
through a given point, and then becomes a uniform subsonic flow. The purpose of
this paper is to prove the existence and the stability of the perturbed compressible
flow including transonic shock under some conditions.

Suppose that the upstream flow is slightly perturbed, and keeping supersonic,
then the downstream supersonic flow ahead of any possible shock front is deter-
mined. Across a shock, the flow becomes subsonic. Since in a subsonic region any
change of flow parameters in the downstream part will influence the whole flow field,
then the boundary condition at the exit plays an important role in determining the
flow field in the subsonic region, as well as the position of the transonic shock. It
seems to be natural to give the pressure at the exit of the duct. However, even in a
uniform upstream flow case the pressure at the exit has been determined by the up-
stream flow. Then in a general perturbed case the pressure of the downstream flow
cannot be completely assigned. According to our analysis a reasonable formalation
is to assign the pressure of the downstream flow apart from a constant difference.
It means that the pressure is given in a space with codimension one. The way to
give the boundary condition at the exit is similar to the case for the equi-valued
boundary problems of elliptic equations. As a complement of this freedom we let
the unknown shock front pass a given point in the duct. Such a restriction is always
necessary in dealing with a duct with constant section.

As mentioned in many papers [2, 3, 17, 21] the perturbed supersonic flow ahead
of the transonic shock can be easily determined by the data at the entrance. It
turns out that we only need to pay attention to determine the flow in the subsonic
region, which is located in between the transonic shock front and the exit, and is
surrounded by the lateral wall of the duct. To determine the solution of the Euler
system in that region, we are led to solve a free boundary value problem of the
elliptic-hyperbolic system, where both the flow parameters and the location of the
shock front are unknown. The free boundary value problem is solved by using an

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRANSONIC SHOCKS IN 3-D EULER SYSTEMS 5267

iterative process composed of two steps: solve a fixed boundary value problem in
a domain with an approximate shock front as part of its boundary, and update
the location of the approximate shock front by using Rankine-Hugoniot conditions.
Then the solution can be found by using the fixed point theorem in a suitable
Banach space.

To solve the fixed boundary value problem of the Euler system, which is an
elliptic-hyperbolic system in the subsonic region, the whole system should be de-
composed to a canonical form, in which the elliptic part and the hyperbolic part
are separated at the level of the principal part of the system. Due to the complexity
of the characteristic varieties for the three-dimensional Euler system we resort to
symbolic calculus to complete the decomposition. Moreover, we remark here that
in the process of integration of the elliptic part and the hyperbolic part of the sys-
tem some new difficulties appear and a corresponding technique is required. For
instance, to avoid the loss of derivatives in the process of integrating equations we
first estimate divergence and rotation of the velocity rather than the velocity itself.
Besides, to integrate an elliptic sub-system we have to deal with a boundary value
problem of an elliptic equation in a domain with corners, which will generally de-
crease the regularity of the solution, so that the corresponding estimates are weaker
than those in a smooth domain.

Another new ingredient of our analysis is the determination of the function de-
scribing the shock front. From two of the Rankine-Hugoniot conditions we obtain
derivatives of the function prescribing the shock front with respect to two variables,
which leads to an overdetermined system containing two partial differential equa-
tions. The two equations defined on the temporarily fixed boundary are coupled
with the Euler system defined in the subsonic region. Meanwhile, the condition of
solvability of the pair of differential equations leads to a new boundary condition,
which will be added to the three remaining Rankine-Hugoniot conditions to deter-
mine the solution of the Euler system in the subsonic region. Then the remaining
work is to establish all necessary estimates for the corresponding linearized problem
and by using iteration to obtain the solution to the original nonlinear problems.

The remaining part of this paper is arranged as follows. In Section 2 we give a
mathematical formulation of the physical problem and reduce it to a free boundary
problem in the subsonic region with a shock front as its free boundary. In Section
3 we temporarily fix the shock front and then concentrate on solving the fixed
boundary value problem. The main work here is to reduce the Euler system to a
canonical form, in which the elliptic part and the hyperbolic part are separated at
the level of principal part. Accordingly, we obtain corresponding boundary value
problems for these two parts, as well as a differential system of first order on shock
front. The nonlinear boundary value problem is decomposed in Section 4. Then
we derive corresponding linearized sub-problems and establish necessary estimates
for the solution to these sub-problems in Section 5. Afterwards, based on these
estimates we can solve the nonlinear fixed boundary problem in Section 6. Finally,
the nonlinear free boundary problem and the original physical problem are solved
in Section 7.

2. Mathematical formulation

Given a duct with constant section Q = (−1, 1) × Ω, where Ω is a domain in
R

2 with C2 boundary ∂Ω containing the origin O inside. Consider the motion of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5268 SHUXING CHEN

a compressible flow in the duct Q. The motion can be described by the three-
dmensional Euler system

3∑
j=1

∂xj
(ρuj) = 0,(2.1)

3∑
j=1

∂xj
(ρukuj + pδkj) = 0, k = 1, 2, 3,(2.2)

3∑
j=1

∂xj
(ρEuj) = 0,(2.3)

where δkj = 1 if k = j and δkj = 0 otherwise, ui stands for the velocity component
of the flow along the xi axis, and p, ρ, E and S stand for the pressure, density, total
energy and entropy respectively. For polytropic gas

p = (γ − 1) exp(
S − S0

cν
)ργ ,(2.4)

E = e +
p

ρ
+

1
2
|u|2 =

γp

(γ − 1)ρ
+

1
2
ρ |u|2 ,(2.5)

where e =
1

γ − 1
p

ρ
is the internal energy, |u|2 =

3∑
i=1

u2
i . Obviously, ρ can be written

as a function of p and S as ρ = ρ(p, S). For our convenience, we often write
U = (u1, u2, u3, p, S)t to denote the unknown functions in the flow field, and use

a = (
∂p(ρ, S)

∂ρ
)

1
2 to denote the sound speed.

For C1 solutions, the system (2.1)-(2.3) can be written in the following symmetric
form:

(2.6)
3∑

j=1

Aj(U)∂xj
U = 0,

where

(2.7) Aj(U) =

⎛
⎜⎜⎜⎜⎝

ρuj 0 0 δj1 0
0 ρuj 0 δj2 0
0 0 ρuj δj3 0

δj1 δj2 δj3 ρ−1a−2uj 0
0 0 0 0 ρuj

⎞
⎟⎟⎟⎟⎠ , j = 1, 2, 3.

If U has discontinuity on a surface

(2.8) Σ : x1 = f(x2, x3),

then the Rankine-Hugoniot conditions across Σ hold:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[ρu1] = ∂x2f [ρu2] + ∂x3f [ρu3],
[ρu1u2] = ∂x2f [ρu2

2 + p] + ∂x2f [ρu2u3],
[ρu1u3] = ∂x2f [ρu2u3] + ∂x3f [ρu2

3 + p],
[ρu2

1 + p] = ∂x2f [ρu1u2] + ∂x3f [ρu1u3],
[ρEu1] = ∂x2f [ρEu2] + ∂x3f [ρEu3],

(2.9)

where [·] denotes the jump of the corresponding quantity across Σ.
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In this paper we assume that any flow in our study moves basically along the
axis of the duct Q. The section x1 = −1 is called the entrance of Q, and the
section x1 = 1 is called the exit of Q. On the lateral wall (−1, 1) × ∂Ω the flow
satisfies the impermeability condition �u · �n = 0. Assume that Ub is a gas flow
in the duct Q, which is a constant supersonic flow U−

b = (u−
b1, 0, 0, p−b , S−

b ) at
x1 < 0, and becomes a constant subsonic flow U+

b = (u+
b1, 0, 0, p+

b , S+
b ) across a

shock front S0 : x1 = 0, where (U−
b , U+

b ) satisfies Rankine-Hugoniot condition (2.9)
and the entropy condition p+

b > p−b . In the whole paper Ub is called background
flow or background solution. Next we are going to study its three-dimensional
perturbation.

Suppose that the supersonic flow U−
b is perturbed at the entrance of the duct;

how does the perturbation influence the flow in the whole duct? It is well known
that for the supersonic flow the downstream part can be completely determined
by its upstream part. Hence the supersonic flow ahead of the transonic shock can
be determined by the data of the upstream flow at the entrance. Assume that
the flow also passes a transonic shock through a given point (e.g. the origin) and
then becomes a subsonic flow. Then we are required to give a suitable boundary
condition at the exit of the duct to determine the subsonic flow in between the
transonic flow and the exit.

The main purpose of this paper is to prove the stability of the background
solution (or all solutions near to it) under three-dimensional perturbation. It is
found that if the pressure of the subsonic flow at the exit is given apart from a
constant difference, then in the whole duct a solution of the Euler system with a
shock front passing through a fixed point can be determined. Meanwhile, the flow
field with transonic shock in the whole duct is slightly perturbed, and their change
can be controlled by the perturbation of the data at the entrance. To describe such
a conclusion precisely, we formulate the following problem:

(P) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

System (2.6) in Q,

Rankine-Hugoniot conditions (2.9) on Σ,

U = U(−1) on x1 = −1,

p = p+
b + g(x2, x3) + const on x1 = 1,

un = 0 on (−1, 1) × ∂Ω.

Here un is the normal component of the velocity u on the lateral boundary of the
duct, U(−1) is the given data describing a supersonic flow near to U−

b , g(x2, x3)
is a given function defined on Ω, and const is an unknown constant, which will be
determined with the solution U together.

The main result of this paper is the following theorem.

Theorem 2.1. Assume that U(−1) ∈ H4(Ω) satisfies consistence conditions on

{x1 = −1, (x2, x3) ∈ ∂Ω} and g(x2, x3) ∈ C2(Ω) satisfies
∂g

∂n
= 0 on ∂Ω. Then

the problem (P) has a unique entropy weak solution (U−, U+; Σ), where Σ is a
surface defined by the equation x1 = f(x2, x3) with f(0, 0) = 0, U− is defined
in −1 < x1 < f(x2, x3), (x2, x3) ∈ Ω, and U+ is defined in f(x2, x3) < x1 <
1, (x2, x3) ∈ Ω. Furthermore, the number const in (P) is also determined, and the
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following estimates hold: ∥∥U− − U−
b

∥∥
C1,α ≤ C0ε,(2.10) ∥∥U+ − U+

b

∥∥
C1,α ≤ C0ε,(2.11)

‖f‖C2,α(Ω) ≤ C0ε,(2.12)

|const| ≤ C0ε,(2.13)

where α is a constant determined later, and the constant C0 depends only on the
background solution and α.

The above theorem is also valid in the two-dimensional flow discussed in [9]. In
this case the duct becomes a domain in two parallel lines, while the condition at
the exit is to determine pressure of the flow up to a constant difference.

As mentioned in Section 1, the solution U− ∈ H4 ahead of the shock front can
be easily determined by using the theory of quasilinear hyperbolic system; we only
need to concentrate on looking for the solution U+ in the subsonic region, as well
as the location of the shock front x1 = f(x2, x3). Therefore, problem (P) can be
reduced to a free boundary value problem as follows:

(FB) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

System (2.6) in Qf : f(x2, x3) < x1 < 1,

Rankine-Hugoniot conditions (2.9) on Σ,

p = p+
b + g(x2, x3) + const on x1 = 1,

un = 0 on (−1, 1) × ∂Ω,

where U− in (2.9) is given, satisfying ‖U− − U−
b ‖ ≤ ε. Obviously, once problem

(FB) is solved, problem (P) is also solved. Therefore, the proof of Theorem 1 is
reduced to

Theorem 2.2. Under the assumption of Theorem 2.1 problem (FB) has a unique
solution U+ defined in Qf = {x2, x3) ∈ Ω, f(x2, x3) < x1 < 1}, where

(2.14) Σ : x0 = f(x1, x2), f(0, 0) = 0

is a part of the boundary of the domain for the unknown functions U+. Furthermore,
the number const can be determined along with the solution of (FB) and satisfies

(2.15) |const| ≤ C0ε,

and the following estimates of the solution hold:∥∥U+ − U+
b

∥∥
C1,α ≤ C0ε,(2.16)

‖f‖C2,α ≤ C0ε(2.17)

with C0 depending only on U±
b and α.

The Rankine-Hugoniot conditions (2.9) contain the derivatives of an unknown
function f . It will be convenient later, if we can give boundary conditions on the
shock front without the appearance of the unknown function f . Looking at the
second and the third equations in (2.9) as a linear algebraic system of ∂x2f and
∂x3f , we can solve these partial derivatives as:

(2.18) ∂xi
f = −Φi/Φ1, i = 2, 3,
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where

Φ1
∆= −[ρu2

2 + p][ρu2
3 + p] + [ρu2u3]2,(2.19)

Φ2
∆= [ρu1u2][ρu2

3 + p] − [ρu1u3][ρu2u3],(2.20)

Φ3
∆= [ρu1u3][ρu2

2 + p] − [ρu1u2][ρu2u3].(2.21)

Obviously, if U(−1) is near to U−
b , then the solution U− in the supersonic region

is also a small perturbation of U−
b . The fact implies

Φ1 ≈ −[p]2 �= 0,

so that equation (2.18) makes sense.
Equation (2.18) is employed to modify the approximate shock front. To make

the equation solvable the following condition should be satisfied:

(2.22) ∂x2

(
Φ3

Φ1
(f(x2, x3), x2, x3)

)
= ∂x3

(
Φ2

Φ1
(f(x2, x3), x2, x3)

)
.

Besides, since the velocity on both sides of the shock front is parallel to the bound-
ary, then f(x2, x3) should satisfy

∂f

∂n
= 0 on ∂Ω,

which can be verified directly by the Rankine-Hugoniot conditions.
Substituting (2.18) into the other three equations in the Rankine-Hugoniot con-

ditions we obtain

G1(U, U−) ∆=
3∑

j=1

[ρuj ]Φj = 0,(2.23)

G2(U, U−) ∆=
3∑

j=1

[ρu1uj + pδj1]Φj = 0,(2.24)

G3(U, U−) ∆=
3∑

j=1

[ρEuj ]Φj = 0.(2.25)

Then the free boundary value problem (FB) can also be written as follows:

(2.26) (FB1) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

System (2.6) in Qf ,

Gi(U, U−) = 0 on Σ, i = 1, 2, 3,

p = p+
b + g(x2, x3) + const on x1 = 1,

un = 0 on (−1, 1) × ∂Ω,

f satisfies (2.18), f(0, 0) = 0.

We remark here that (2.22) can also be written as

(2.27) G4(U, U−) ∆= −D2(Φ3/Φ1) + D3(Φ2/Φ1) = 0,

with

(2.28) Dk := ∂xk
+ (∂xk

f)∂x1 , k = 2, 3.

(2.28) (or (2.22)) is an addtional condition on shock front, and is also the solvability
condition on the differential system of first order (2.18).
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Remark 1. For the solution to problem (FB1), the shock front Σ is perpendicular
to ∂Ω. To prove this fact we denote the normal direction of ∂Ω by �n, and the two
tangential directions of the shock front by �τ1, �τ2. Then denoting the velocity on
both sides of Σ by �v±, we have

�v+ · �n = 0 = �v− · �n,

�v+ · �τ1 = �v− · �τ1,

�v+ · �τ2 = �v− · �τ2.

Now suppose that �n, �τ1, �τ2 are linearly independent; then we must have �v+ = �v−,
which violates the fact that �v has discontinuity on the shock front Σ. Hence, if
Σ is a real shock front, we must have �n ∈ {�τ1, �τ2}. The fact indicates that Σ is
perpendicular to the boundary of the duct.

3. Fixed boundary value problem

3.1. Reduction to the fixed boundary value problem. To solve the free
boundary value problem (FB1) we decompose it to two problems. One is a fixed
boundary value problem determining the downstream flow field behind an approx-
imate shock front, the other one is a problem modifying the shape of the shock
front. Such an outline has been employed in many papers (e.g. [5, 6, 9]), where the
authors also studied free boundary value problems involving shock fronts.

Set

Ση = {f(x2, x3) ∈ C2,α(Ω) : f(0, 0) = 0, ‖f‖C2,α(Ω) ≤ η},(3.1)

Oδ = {U ∈ C1,α(Qf ) : ‖U − U+
b ‖C1,α(Qf ) ≤ δ},(3.2)

with

(3.3) δ < δ0 < 1/2, η < η0 < 1/2,

where δ0, η0 are small constants depending only on the background solution and
will be chosen later. For any f ∈ Ση, denote by Sf the surface x1 = f(x2, x3). Then
we can define a fixed boundary value problem (NL) in Qf : {f(x2, x3) < x1 < 1}
as follows:

(3.4) (NL) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

System (2.6) in Qf ,

Gi(U, U−) = 0 on Σ, i = 1, 2, 3, 4,

p = p+
b + g(x2, x3) + const on x1 = 1,

un = 0 on (−1, 1) × ∂Ω.

Meanwhile, the problem to update the shock front is

(3.5) ∂xi
f# = −Φi/Φ1, i = 2, 3, f#(0, 0) = 0.

(3.5) is a problem for a system of partial differential equations of first order. The
equation G4(U, U−) = 0 in (3.4) is nothing but the condition of solvability of
problem (3.4), so that the problem is solvable.

Later we will show in Section 7 that f �→ f# determines a contract mapping
T : Ση → Ση, provided ε0 in Theorem 2.2 is sufficiently small. Then by the fixed
point theorem we will obtain a unique fixed point f in Ση which is the shock front
required in problem (FB1). Correspondingly, the solution U of problem (NL) is
exactly the desired subsonic state behind the shock front Sf .
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3.2. Transformation of the domain. The boundary value problem (NL) is de-
fined in Qf , whose left boundary Sf is determined by the function f(x2, x3). To
avoid the trouble caused by the change of the location of the boundary Sf in the
process of seeking the solution to each fixed boundary value problem (NL), we
introduce a C2,α homeomorphism to fix the boundary. The homeomorphism is

(3.6) Ψf :

⎧⎪⎪⎨
⎪⎪⎩

y1 =
x1 − f(x2, x3)
1 − f(x2, x3)

,

y2 = x2,

y3 = x3,

which transforms Qf to Q0 = (0, 1) × Ω, and transforms the boundary Sf and
x1 = 1 to S0 : y1 = 0 and S1 : y1 = 1, respectively.

Obviously,

(3.7)

⎧⎪⎪⎨
⎪⎪⎩

∂x1 =
1

1 − f(y2, y3)
∂y1 ,

∂xi
=

(y1 − 1)∂if

1 − f(y2, y3)
∂y1 + ∂yi

, i = 2, 3.

Hence the operator Dk defined on y1 = 0 by (2.28) is nothing but ∂yk
.

By using the transformation (3.6), problem (NL) can be written in (y)-coordi-
nates. First, system (2.6) is transformed to

(3.8)
3∑

j=1

Bj(U)∂yj
U = 0 in (0, 1) × Ω,

where

(3.9)

{
B1(U) = A1(U) + (y1 − 1)(A2(U)∂2f + A3(U)∂3f),
Bk(U) = (1 − f)Ak(U), k = 2, 3.

The boundary conditions on y1 = 0, y1 = 1 and the lateral wall keep the same
form as before. Therefore, we obtain a problem in the y-coordinate system, which
is still called (NL).

3.3. Decomposition of system. The Euler system (3.8) in the subsonic region
is an elliptic-hyperbolic composite system, whose characteristic polynomial has a
real eigenvalue with multiplicity 3 and a pair of conjugate complex eigenvalues. To
solve the boundary value problem of the composite system (3.8) we will first reduce
the system to a canonical form, in which the elliptic part and the hyperbolic part
are separated in the principal level.

The symbol of the differential operator in (3.8) is

(3.10) b(y, ξ) =
3∑

j=1

Bjξj .

Here for the notational simplicity we take ξk as the symbol of ∂k rather than
1√
−1

∂k. Denote by λ the root of det(λB1 − ξ2B2 − ξ3B3), which has one real root

λh with multiplicity 3 and two conjugate complex roots

λ± = λR ±
√
−1λI .
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Direct calculation shows that

(3.11) λh(ξ) =
ρ

β
(1 − f)(ξ2u2 + ξ3u3),

where
β = ρu1 + (y1 − 1)ρ(u2∂2f + u3∂3f).

We notice that β �= 0 for small u2 and u3.
Furthermore,

(3.12) λ±(ξ) = λR(ξ) ±
√
−1λI(ξ),

where
λR(ξ) = B/A, λI(ξ) =

√
AC − B2/A,

with

A = −1 + β2/(ρa)2 − (y1 − 1)2((∂2f)2 + (∂3f)2),
B = B(ξ2, ξ3) = (1 − f)

(
(y1 − 1)(∂if)ξi + βuiξi/(ρa2)

)
,

C = C(ξ2, ξ3) = (1 − f)2
(
(uiξi)2/a2 − (ξ2

2 + ξ2
3)

)
.

Here and after the same index i in a product means summation for i = 2, 3; for
instance, uiξi means u2ξ2 + u3ξ3. Due to ((u1)+b /a+

b )2 − 1 < 0 the discriminant
AC − B2 is positive, so that λI is real-valued provided δ0, η0 are small enough.

Corresponding to these eigenvalues the generalized left eigenvectors of (3.10) are

l
(i)
h (ξ) (i = 1, 2, 3) and l±(ξ) = lR(ξ) ±

√
−1lI(ξ),

where

l
(1)
h =

(
−λh(ξ)(y1 − 1)∂2f + (1 − f)ξ2 λh 0 0 0

)
,

l
(2)
h =

(
−λh(ξ)(y1 − 1)∂3f + (1 − f)ξ3 0 λh 0 0

)
,

l
(3)
h =

(
0 0 0 0 1

)
,

and

lR(ξ) = ((f − 1)ρu1)−1(λR(ξ) (f − 1)ξ2 + (y1 − 1)∂2fλR(ξ)

(f − 1)ξ3 + (y1 − 1)∂3fλR(ξ) (1 − f)ρuiξi − βλR(ξ) 0),

lI(ξ)=((f−1)ρu1)−1
(

λI(ξ) (y1−1)∂2fλI(ξ) (y1−1)∂3fλI(ξ) −βλI(ξ) 0
)
.

Correspondingly,
(3.13)

(lRB1)(ξ)=− 1
ρu1

(
ρuiξi (y1−1)∂2fρuiξi−βξ2 (y1−1)∂3fρuiξi− βξ3 0 0

)
,

so that

(3.14) (lRB1)(∂)U = ∂2u2 + ∂3u3 − f3(U, f),

where
(3.15)

f3(U, f) =
∑

i=2,3

ui

u1
∂iu1+

y1 − 1
u1

(∂2fu3∂3u2−∂3fu3∂2u2+∂3fu2∂2u3−∂2fu2∂3u3).

Similarly,

(3.16) (lIB1)(ξ) =
1

(1 − f)ρu1

(
0 0 0 AλI(ξ) 0

)
,
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so that

(3.17) (lIB1)(∂)U =
A

(1 − f)ρu1
λI(∂)p.

By the definition of eigenvectors we have

(3.18)
(

lR(ξ)
lI(ξ)

)
b(y, ξ) =

(
ξ1 + λR(ξ) −λI(ξ)

λI(ξ) ξ1 + λR(ξ)

) (
(lRB1)(ξ)
(lIB1)(ξ)

)
.

Notice that �R(ξ) is a polynomial of ξ; then the corresponding operator �R(∂) is a
differential operator. Meanwhile, all elements of �I(ξ) have a common factor λI(ξ),
i.e.

(3.19) �I(ξ) = λI(ξ)�̂I = λI(ξ)((f −1)ρu1)−1(1 (y1−1)∂2f (y1−1)∂3f −β 0).

Therefore, we can derive the elliptic part of (3.8) by acting �R(∂) and �̂I on (3.8).

Consider the action of lR(∂) on (3.8). Since both lR(∂) and
3∑

j=1

Bj∂j are differ-

ential operators, then by using the Leibnitz formula we obtain

(3.20) (∂1 + λR(∂))v +
1 − f

ρu1
(∂22 + ∂33)p + f̃1(U, f) = 0,

where

(3.21) v = (lRB1)(∂)U = ∂2u2 + ∂3u3 − f3(U, f),

with f3 being given as (3.15).
The term f̃1(U, f) in (3.20) is a quadratic form of u2, u3,∇U, f,∇f,∇2f and

(U − U+
b ), while the degree of ∇2f is at most 1. Such terms can be estimated by

C(δ2 + δη). Moreover, the difference U− − U−
b is measured by ε, whose smallness

plays the basic role to ensure the convergence of the iterative process. Later on, all
such small terms dominated by C(δ2 + δη + ε) will be simply called “good terms”.
For instance, f̃1(U, f) in (3.10) and f3(U, f) in (3.15) are both good small terms.

Let λ1 > 0 denote the value of
1 − f

ρu1
at f = 0, U = U+

b . Then (3.20) can be

rewritten as

(3.22) ∂1v + λ1(∂22 + ∂33)p + f1(U, f) = 0,

where f1 is also a small good term.
Now consider the action of l̂I on (3.8). From (3.18) we have

(3.23) �̂
3∑

j=1

Bj∂j = (lRB1)(∂)U + �̂B1 · (∂1 + λR(∂))U,

which implies

(3.24) v +
A

(1 − f)ρu1
(∂1 + λR(∂))p = 0.

Let λ2 > 0 denote the value of
−A

(1 − f)ρu1
at f = 0, U = U+

b . Then (3.24) can be

written as

(3.25) v − λ2∂1p = f2(U, f),
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where

(3.26) f2(U, f) = − A

(1 − f)ρu1
λR(∂)p − (λ2 +

A

(1 − f)ρu1
)∂1p

is a good small term.
Substituting the expression of v into (3.21) and then taking integration on Ω,

we have a relation∫∫
Ω

(λ2∂1p + f2(U, f) + f3(U, f))dy1dy2(3.27)

=
∫∫

Ω

(∂2u2 + ∂3u3)dy1dy2 =
∫∫

∂Ω

�u · �ndy1dy2 = 0.

We now turn to study the hyperbolic part of system (3.8); we regard the equation
of conservation laws of momentum and energy in the Euler system as transport
equations. Since directly applying these equations to estimate the components of
U other than p may cause loss of regularity, then in the process of estimating
velocity we first estimate its rotation and divergence. Such a technique will provide
the regularity of velocity as good as that for pressure, so that it is helpful in dealing
with the compressible flow in a duct with a general constant section.

The velocity vector �u can be decomposed to a sum of a rotation free part �u1

and a divergence free part �u2. In fact, denote by ∆−1
0 the solution operator of

the homogeneous Dirichlet problem of the Poisson equation on Ω; then q = ∆−1
0 f

satisfies
∆q = f in Ω, q = 0 on ∂Ω.

Then any vector �u in Ω can be decomposed as

�u = �ua + �ub,

where �ua = ∇∆−1
0 (div �u), �ub = �u − �ua. Obviously, div �u1 = div �u, so that �ub is

divergence free, while �ua is rotation free.
Notice that d = div �u can be obtained from the equation of conservation law of

mass:

(3.28) div �u = −1
ρ
�u · ∇ρ.

Moreover, denote �ω = rot �u = (ω1, ω2, ω3). Then direct computation yields

(3.29) D�ω + (div �u) · ω −∇�u · �ω + ∇(
1
ρ
) ×∇p = 0,

where ∇�u is the tensor ∇�u = (∇u1,∇u2,∇u3), and D is the transport operator

(3.30) (u1 + (y1 − 1)ui∂if)∂1 + (1 − f)ui∂i,

obtained by applying (3.7) to the operator
3∑

i=1

ui∂xi
.

The system (3.29) is an ordinary differential system for �ω with coefficients de-
pending on the unknown function U . Regarding the coefficients as known (as we
will do in the process to look for the solution of a linearized problem in the next
section), the system can be integrated by using the data on y1 = 0.

Once d = div �u and ω = rot �u are obtained, we can regard the equality of the
vector field

(3.31) ∆�u = ∇d −∇× ω
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as an equation for �u in Q0. Finally, the equation

Ds = 0(3.32)

is still available, because its integration is simple and will not cause any loss of
regularity.

3.4. The boundary conditions. In this subsection we write the boundary con-
ditions on S0 in a form with a linear principal part. This is also a preparation of
the linearization in Section 5.

Because of Gi(U+
b , U−

b ) = 0 for 1 ≤ i ≤ 3, the condition Gi(U, U−) = 0 can be
written as

∇+Gi(U+
b , U−

b ) · (U − U+
b )(3.33)

= ∇+Gi(U+
b , U−

b ) · (U − U+
b ) − (Gi(U, U−

b ) − Gi(U+
b , U−

b ))

+(Gi(U, U−
b ) − Gi(U, U−))

∆= gi(U, U−),

where ∇+Gi(U, U−) is the gradient of Gi(U, U−) with respect to the variable U .
Direct computation shows that

∂(G1, G2, G3)(U, U−)
∂U

∣∣∣
(U+

b ,U−
b )

(3.34)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−ρ[p]2 0 0 −u1
[p]2

a2

[p]2pu1

Cνa2

−2ρu1[p]2 0 0 −[p]2(1 + (u1
a )2)

[p]2pu2
1

Cνa2

−[p]2(
3
2
ρu2

1 +
γp

γ − 1
) 0 0 −γ[p]2u1

γ − 1
− [p]2u3

1

2a2

[p]2pu3
1

2Cνa2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The determinant of the sub-matrix composed by the first, fourth and fifth columns
is

pρu1[p]6(u2
1 − a2)

(γ − 1)Cνa2
,

which is not zero for U− = U−
b , U = U+

b . Therefore, for U ∈ Oδ the corresponding
sub-matrix of (3.32) is also nonsingular. It turns out one can rewrite (3.33) as

(3.35) ui − (ui)+b = hi(U, U−), i = 1, 4, 5,

where hi are linear combinations of gj (j = 1, 2, 3) with constant coefficients de-
pending only on U±

b . (3.33) can be employed to determine the initial condition of
u1, ρ, S for the linearized problem.

In order to solve u2, u3 on the boundary S0, we use the equation G4 = 0, which
can be written as

(3.36) D3Φ2 − D2Φ3 = (Φ2D3Φ1 − Φ3D2Φ1)/Φ1.

Direct calculation yields

D3Φ2 = [ρu2
3 + p]ρu1D3u2 + [ρu2

3 + p]D3(ρu1)u2 − [ρu2
3 + p] · D3(ρ−u−

1 u−
2 )

+[ρu1u2]D3[ρu2
3 + p] − D3([ρu1u3][ρu2u3]),

D2Φ3 = [ρu2
2 + p]ρu1D2u3 + [ρu2

2 + p]D2(ρu1)u3 − [ρu2
2 + p] · D2(ρ−u−

1 u−
3 )

+[ρu1u3]D2[ρu2
2 + p] − D2([ρu1u2][ρu2u3]).
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Then by denoting

(3.37) λ4 = (p+
b − p−b )ρ+

b u+
1b

the equality (3.36) can be rewritten as

(3.38) ∂2u3 − ∂3u2 = f4(U, U−) on S0,

where f4(U, U−) is a good small term.
Therefore, u2, u3 on S0 satisfy the problem

(3.39)

⎧⎪⎨
⎪⎩

∂2u2 + ∂3u3 = f2 + f3 + λ2∂1p in Ω,

∂2u3 − ∂3u2 = f4 in Ω,

n2u2 + n3u3 = 0 on ∂Ω.

In view of the second equation of (3.39), we can define Φ by

(3.40)
∂Φ
∂y2

= u2,
∂Φ
∂y3

= u3 −
∫ y2

0

f4(τ, y3)dτ.

Then Φ satisfies

(3.41) ∂2
2Φ + ∂2

3Φ = ∂3g∗ + f∗,

where f∗ = f2 +f3 +λ2∂1p, g∗ =
∫ y2

0

f4(τ, y3)dτ. The boundary condition in (3.39)

is reduced to

(3.42)
∂Φ
∂n

= n3g∗.

The problems (3.41) and (3.42) are Neumann problems of the Poisson equation.
The solvability condition for the problem is

(3.43)
∫

∂Ω

n3g∗d� =
∫∫

Ω

(∂3g∗ + f∗)dy2dy3,

i.e.
∫∫

Ω

f∗dy2dy3 = 0, which is nothing but the condition (see (3.27))

(3.44)
∫∫

Ω

λ2∂1pdy2dy3 +
∫∫

Ω

(f2 + f3)dy2dy3 = 0.

Therefore, under condition (3.44) Φ can be determined up to a constant difference,
and then (u2, u3) = ∇Φ is uniquely determined.

From the first three equations in (2.6) we have

(3.45) Duj = −1
ρ
∂xj

p, j = 1, 2, 3;

then the transversal derivatives of ui on S0 can be estimated by ∇p. On the other
hand, all tangential derivatives of ui on S0 can be derived by solely using the value
of ui on S0. Therefore, all first order derivatives of ui, as well as the vorticity �ω on
S0, can be determined by using the value of ui, p,∇p on S0. The value of vorticity
on S0 is then the initial datum on S0 for the system (3.29).

Moreover, we have an equation for �u in the domain Q0 as (3.31). Its boundary
condition on S0 is of Dirichlet type. The condition on the exit S1 is of Neumann
type (or oblique derivative is given), because of the transport equation (3.45). As
for the condition on the lateral boundary we first have

(3.46) �u · �n = 0, on (0, 1) × ∂Ω.
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Denote by τ the tangential direction of ∂Ω; then uτ , u1 are two tangential compo-
nents of �u on (0, 1) × ∂Ω. Due to (3.46) we have

(3.47) un = 0,
∂un

∂τ
= 0,

∂un

∂y1
= 0, on (0, 1) × ∂Ω.

Therefore, if �ω = rot�u is known on (0, 1) × ∂Ω, the derivatives
∂uτ

∂n
,
∂u1

∂n
are also

known. Hence the condition on the lateral boundary for (3.31) is

(3.48) un = 0,
∂uτ

∂n
and

∂u1

∂n
are known on (0, 1) × ∂Ω.

4. Decomposed form of (NL)

In this section we first decompose problem (NL) into several coupled sub-
problems.

I. Elliptic problem for p.
The pressure p satisfies an elliptic equation (3.20). On the boundary S1 it satisfies

the condition assigned in (3.4), and on the boundary S0 it satisfies (3.35) with i = 4
and the integral equality (3.27). As for the condition on the lateral boundary for p
we use the transport equations

Dui +
1
ρ

∂p

∂xi
= 0 (i = 1, 2, 3).

Because of un = 0 and n1 = 0 on the lateral boundary of the duct, then n2u2 +
n3u3 = 0. Hence

∂p

∂n
= n2

∂p

∂x2
+ n3

∂p

∂x3
= −n2Du2 − n3Du3

= u2Dn2 + u3Dn3 =
∑

i,j=2,3

uiuj∂inj .

The right hand side of the above equality is a second order small quantity, which
is denoted by f5(U, f), and can be treated as the term f1(U, f). Therefore, the
boundary value problem of the elliptic equation in Q+ for the function p is

(4.1) (Pp) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2∂11p + λ1(∂22 + ∂33)p = f1(U, f) − ∂1f2(U, f) in Q+,

p − p+
b = h4(U, U−) on S0,

p − p+
b = g + const on S1,∫

S0

λ2∂1pdy2dy3 = −
∫

S0

(f2(U, f) + f3(U, f))dy2dy3,

∂p

∂n
= fn(U, f).

We remark here that the compatibility conditions on {0} × ∂Ω hold because the
system and all boundary conditions are nothing but the linear combinations of
equalities in the Euler system, the Rankine-Hugoniot conditions on S0 and the
boundary condition �n · �u = 0 on the lateral boundary, while these conditions are
compatible at {0} × ∂Ω.
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II. Determine the velocity on S0.
Regard �u∗ = (u2, u3) as a vector field defined on S0. Then (3.39) can be written

as

(4.2)

⎧⎪⎨
⎪⎩

div �u∗ = f∗(U, f) in Ω,

rot �u∗ = f4(U, f) in Ω,

u∗n = 0 on ∂Ω,

where f∗(U, f) = f3(U, f) + f2(U, f) + λ2∂1p. Looking at f4(U, f) as a function of

(y2, y3), define g∗ = −
∫ y2

0

f4(τ, y3)dτ as in Section 3. Then we solve a Neumann

problem of the Poisson equation

(4.3) (P∗) :

⎧⎪⎪⎨
⎪⎪⎩

∆Φ = ∂3g∗ + f∗ in Ω,
∂Φ
∂n

= n3g∗ on ∂Ω,

Φ(0, 0) = 0.

Here the solvability of (P∗) is ensured by (3.44). Once Φ is obtained, we can define
(u2, u3) = ∇Φ − (0, g∗) and obtain the solution of (4.2).

III. Determine the vorticity �ω in Ω.
The value of the velocity �ω on S0 can be determined according to the method

described at the end of Section 3. Indeed, u1 = (u1)+b + h1(U, U−) is from (3.33),
and u2 and u3 are given by (P∗); then ∂y2�u, ∂y3�u on S0 are determined. Moreover,
∂y1�u can be determined by (3.45). Therefore, the initial data of �u on S0 is obtained.
Then we can solve the solution �ω of the problem

(4.4) (Pω) :

{
system (3.29) in Q+,

initial condition �ω = rot�u on S0.

IV. Determine the velocity of �u and S in Q+.
The value of the entropy S on S0 is given by (3.33). Then S in the domain Q+

is determined by

(4.5) (Ps) :

{
DS = 0 in Q+,

S − (Sb)+ = h5(U, U−) on S0.

The velocity �u in Q+ is the solution of the problem

(4.6) (Pu) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∆�u = ∇(−1
ρ
∇ρ · �u) −∇× ω in Q+,

�u is given on S0,

D�u = −1
ρ
∇p on S1,

un = 0,
∂uτ

∂n
and

∂u1

∂n
are given on (0, 1) × ∂Ω,

where the equation comes from (3.31), and the boundary condition on the lateral
boundary are (3.48). Since �n, �τ in (4.6) stand for the normal direction and the
tangential direction on the lateral boundary, then in order to solve problem (Pu)
we have to use domain decomposition and partition of unity. The details will be
given later.
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5. Linearized form of (NL) and related estimates

The linearized form of (NL) consists of the linearization of (Pp), (P∗), (Pω), (Ps)
and (Pu). Notice that all these nonlinear sub-problems have been written as linear-
like forms, i.e. each equation keeps its principal linear part on the left hand side
and leaves all nonlinear higher order terms on the right hand side. Then by sim-
ply assuming all unknowns U and f on the right hand side be given, we obtain
corresponding linearized problems. The corresponding linearized problems are as
follows:

(5.1) (Pp)′ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2∂11p + λ1(∂22 + ∂33)p = f̂1 in Q+,

p − p+
b = ĥ4 on S0,

p − p+
b = g + const on S1,∫

S0

λ2∂1pdy2dy3 = ĉ,

∂p

∂n
= f̂n on (0, 1) × ∂Ω

where ĉ is a given constant, while “const” in the third equation is a constant to be
determined together with p. Then

(5.2) (P∗)′ :

⎧⎪⎪⎨
⎪⎪⎩

∆Φ = ∂ĝ∗ + f̂∗ in Ω,
∂Φ
∂n

= n3ĝ∗ on ∂Ω,

Φ(0, 0) = 0,

and (u2, u3) = ∇Φ.
Similarly, we derive the linearization of (Pω), (Ps) and (Pu) as follows:

(Pω)′ :

{
system (3.29) in Q+,

�ω = �ω0 on S0,
(5.3)

(Ps)′ :

{
DS = 0 in Q+,

S − (Sb)+ = ĥ5 on S0,
(5.4)

(Pu)′ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆�u = f̃ in Q+,

�u = �d0 on S0,

D�u = �d1 on S1,

un = 0,
∂uτ

∂n
=

∂u1

∂n
= 0 on (0, 1) × ∂Ω.

(5.5)

To solve (5.5) we should use the localization method. Let {Ων} be an open

covering of Ω̄ as
ν0⋃

ν=1

Ων ⊃ Ω̄, where each Ων is an open set with smooth boundary.

Let {ην} be a corresponding partition of unity, i.e. ην ∈ C∞
c (Ων) for each ν, and

ν0∑
ν=1

ην ≡ 1 on Ω̄. For our convenience we may also let each ην satisfy
∂ην

∂n
= 0.
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Now if �u is the solution of (5.5), then �uν = ην�u satisfies

(5.6) (Pu)′ν :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∆ �uν = ην f̃ − (∆ην)�u − 2
3∑

j=1

(ην)yj
(�u)yj

in Q+,

�uν = ην
�d0 on S0,

D �uν = ην
�d1 on S1,

(uν)n = 0,
∂(uν)τ

∂n
=

∂(uν)1
∂n

= 0 on (0, 1) × ∂Ω.

Furthermore, by introducing the coordinate transformation τν , problem (Pu)′ν can
be reduced to a problem for �vν = �uν ◦ τ−1

ν in τν(Ων ∩ Ω̃). This is a standard
boundary value problem of the elliptic equation for the component of �vν . Finally,
when we solve �vν , then �uν = �vν ◦ τν is also obtained.

In order to solve (NL) via its linearization, we also have to derive a series of
estimates for the solution to the linearized problem (5.1)–(5.6). The basic estimates
are given in a C1,α Hölder space, though the regularity estimates can be improved
in some cases. In the sequel the notation f ∈ C−1,α with α > 0 means f =

∑
i ∂ifi

with all fi ∈ C0,α. Meanwhile, ‖f‖C−1,α means the sum
∑

i ‖fi‖C0,α .
For problem (Pp)′, we define pg and pc as the solutions to

(5.7)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2∂11pg + λ1(∂22 + ∂33)pg = f̂1 in Q+,

pg − p+
b = h4 on S0,

pg − p+
b = g on S1,

∂pg

∂n
= 0 on (0, 1) × ∂Ω

and

(5.8)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2∂11pc + λ1(∂22 + ∂33)pc = 0 in Q+,

pc = 0 on S0,

pc = 1 on S1,
∂pc

∂n
= 0 on (0, 1) × ∂Ω.

Because pc is not a trivial solution, then
∂pc

∂n
> 0 on S1 according to the Hopf

maximum principle. Therefore, we can take p = pg + c0pc, where

(5.9) c0 =

1
λ2

ĉ −
∫

S0

∂1pgdy2dy3∫
S0

∂1pcdy2dy3

.

Obviously, p = pg + c0pc satisfies (Pp)′, and the constant const in (5.1) takes the
value c0. By using the theory of elliptic equations in a domain with piecewise
smooth boundary (see [12, 13]) we have
(5.10)
‖p‖C1,α(Q+)≤C(‖f̂1‖C−1,α(Q+)+‖h4‖C1,α(S0)+‖g‖C1,α(S1)+‖f̂n‖C0,α((0,1)×∂Ω)+|ĉ|),
while the constant c0 can also be controlled by the right hand side of (5.10).

For problem (P∗)′ we first have estimate (see [12])

‖Φ‖C1,α(Ω) ≤ C(‖ĝ∗‖Cα(Ω) + ‖f̂∗‖Cα(Ω));
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then

(5.11) ‖ �u∗‖Cα(Ω) ≤ C(‖ĝ∗‖Cα(Ω) + ‖f̂∗‖Cα(Ω)).

Since the function ĝ∗ depends on the first derivatives of U, f , then applying the
estimate (5.11) to (4.2), one will meet the difficulty of loss of derivatives. To get
rid of it we have to derive an estimate of ‖ �u∗‖C1,α(Ω) by using the right hand side
of (5.11). To this end we directly use (4.2) rather than (4.3)

Let 1 ≡ Σην be a partition of unity, �u = Σην �u∗ = Σ�u∗ν . Then �u∗ν satisfies

(5.12)

⎧⎪⎨
⎪⎩

div �u∗ν = ην f̂∗ −∇ην �u∗ in Ω,

rot �u∗ν = ην f̂4 −∇ην �u∗
⊥ in Ω,

�n · �u∗ν = 0 on ∂Ω.

Fix ν and simply denote �u∗ν by (v2, v3) in a given coordinate system Oz2z3, which
can be a rotation of Oy2y3; then the equations in (5.12) are

(5.13)

⎧⎪⎨
⎪⎩

∂v2

∂z2
+

∂v3

∂z3
= gν1,

∂v2

∂z3
− ∂v3

∂z2
= gν2.

The boundary condition still takes the form

(5.14) v2n2 + v3n3 = 0.

It is easy to derive from (5.13)

∆v2 = ∂z2gν1 + ∂z3gν2,(5.15)

∆v3 = ∂z3gν1 − ∂z2gν2.(5.16)

Besides, by differentiating the condition n2v2 + n3v3 = 0 along ∂Ω we obtain

−∂z2(n2v2 + n3v3)n3 + ∂z3(n2v2 + n3v3)n2 = 0.

By using (5.13) and (5.14) we obtain

−2n2n3
∂v2

∂z2
+ (n2

2 − n2
3)

∂v2

∂z3
− ∂n2

∂z2
n3v2 +

∂n3

∂z2
v2n2(5.17)

+
∂n2

∂z3
n2v2 +

∂n3

∂z3

n2
2

n3
v2 + n2

3gν2 + n2n3gν1 = 0.

When n3 �= 0, the problem (5.15), (5.17) is a regular oblique derivative problem of
the Poisson equation; hence the solution v2 satisfies the estimate

(5.18) ‖v2‖C1,α(Ω) ≤ C(‖gν1‖Cα(Ω) + ‖gν2‖Cα(Ω)).

By using the system (5.13) once more we have the estimate for v3:

(5.19) ‖v3‖C1,α(Ω) ≤ C(‖gν1‖Cα(Ω) + ‖gν2‖Cα(Ω)).

Now if n3 = 0 at some point in the support of v2, then by taking each Ων sufficiently
small we have n2 �= 0 in this support. Hence we can derive an oblique derivative
condition for v3 similar to (5.17). Combining it with equation (5.16) we can derive
the estimate (5.19) for ‖v3‖C1,α(Ω) by similarly using the theory of elliptic equations
and then by using the system (5.13) to obtain the estimate for ‖v2‖C1,α(Ω).
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Notice that (v2, v3) are the components of �u∗ν in fact. When we establish the
estimate ‖�u∗ν‖C1,α(Ω) for each ν, then by making summation with respect to ν and
by using the estimate (5.11) we have

‖ �u∗‖C1,α(Ω) ≤ C(‖f̂4‖Cα(Ω) + ‖f̂∗‖Cα(Ω) + ‖ �u∗‖Cα(Ω))(5.20)

≤ C(‖f̂4‖Cα(Ω) + ‖f̂∗‖Cα(Ω)).

For problem (Ps)′ a simple integration gives

(5.21) ‖S − S+
b ‖C1,α(Q+) ≤ C‖ĥ5‖C1,α(Q+).

For problem (Pω)′, since the system (3.29) is a homogeneous system, and the
coefficients of the derivatives of �ω are C1,α smooth, then we can easily obtain
Cα estimates of �ω via the theory of ordinary differential systems. Indeed, the
characteristics of the operator D are

(5.22) y2 = η2(y20, y30, y1), y3 = η3(y20, y30, y1),

where y20, y30 are the values of y2, y3 on S0, and
∂(y2, y3)

∂(y20, y30)
�= 0 in the whole Q+.

Then by integrating the system of (3.29) along characteristics we obtain

ωk =
∑

j

Fkj(y1, y20, y30)ωj0(5.23)

=
∑

j

Fkj(y1, ζ2(y1, y2, y3), ζ3(y1, y2, y3))ωj0(y2, y3),

where ζ2, ζ3 are the inverse of (5.22), and Fkj (1 ≤ k, j ≤ 3) depend on U, f , and
are C0,α smooth at least. Furthermore, the estimate

(5.24) ‖�ω‖C0,α(Q+) ≤ C(‖�ω‖C0,α(S0) + ‖ζj‖C0,α(Q+)) ≤ ‖�u‖C1,α(Q+)

holds.
Finally, to obtain the estimate of �u we can first estimate �uν via problem (P̃u)′ν ,

and then via transformation and summation establish

(5.25) ‖�u‖C1,α(Q+) ≤ C(‖f̃‖C−1,α(Q+) + ‖ �d0‖C1,α(S0) + ‖ �d1‖C0,α(S0)).

6. Existence of problem (NL)

In this section we will establish the existence of the nonlinear fixed boundary
problem (NL) for any f ∈ Ση. Regarding the decoupled form of (NL) derived in
Section 5 as a mapping defined on C1,α(Q+), we are going to prove that T has a
fixed point in Oδ, where δ ≤ δ0 is sufficiently small.

For any f ∈ Ση, U ∈ Oδ, the expression of fk(U, f) with 1 ≤ k ≤ 4 in (3.22),
(3.25), (3.14), (3.38) satisfy

(6.1) ‖f1(U, f)‖C−1,α(Q+) +
4∑

k=2

‖fk(U, f)‖C0,α(Q+) ≤ C(δ2 + δη + ε) = Ce,

where e = δ2 + ηδ + ε, and C is a constant independent of δ, η, ε. Meanwhile,
hi(U, U−) with i = 1, 4, 5 in (3.33) satisfy

(6.2) ‖hi(U, U−)‖ ≤ C(ε + δ2) ≤ Ce.
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Then the right hand side of (Pp) satisfies

‖f1(U, f) − ∂1f2(U, f)‖C−1,α(Q+) ≤ Ce,

|
∫

S0

(f2(U, f) + f3(U, f))dy2dy3| ≤ Ce.

Hence (5.10) yields

(6.3) ‖p‖C1,α(Ω+) ≤ Ce.

Furthermore, the estimate (5.20) implies

(6.4) ‖(u2, u3)‖C1,α(S0) ≤ Ce,

(5.21) implies

(6.5) ‖S − S+
b ‖C1,α(Q+) ≤ Ce,

and (5.24) implies

(6.6) ‖�ω‖C0,α(Q+) ≤ Ce.

Here we have employed (6.4) and (3.45).
Finally, we give the estimates on the right hand side of the equation in problem

(Pu). That is,

(6.7)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖∇(−1
ρ
∇ρ · �u)‖C−1,α(Q+) ≤ Ce,

‖∇ × �ω‖C−1,α(Q+) ≤ Ce,

‖u‖C1,α(S0) ≤ Ce,

‖ − 1
ρ
∇p‖C0,α(S1) ≤ Ce.

Then the inequality (5.25) gives the estimate of �u:

(6.8) ‖�u‖C1,α(Q+) ≤ Ce.

Let δ0, η0, ε be sufficiently small. We can confirm TU ∈ Oδ according to above
argument, so that T is an inner mapping from Oδ to Oδ.

Next we prove that T is also a contractive mapping. Indeed, assume that
U (1), U (2) are two elements in Oδ. Letting

Ũ ≡ U (1) − U (2) = (u(1)
1 − u

(2)
1 , u

(1)
2 − u

(2)
2 , u

(1)
3 − u

(2)
3 , p(1) − p(2), S(1) − S(2)),

we derive the equation for Ũ and establish its estimates. For our later convenience
we replace the function f ∈ Ση on the right hand side of all inequalities by f (1) or
f (2) (f (1) = f (2) = f in this section). First p̃ satisfies
(6.9)

(P̃p) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2∂11p̃ + λ1(∂22 + ∂33)p̃ = f1(U (1), f (1)) − f1(U (2), f (2))
−∂1f2(U (1), f (1)) + ∂1f2(U (2), f (2)) in Ω,

p̃ = h4(U (1), U−) − h4(U (2), U−) on S0,

p̃ = const on S1,∫
S0

λ2∂1∂pdy2dy3 = −
∫

S0

(f2(U (1), f (1)) − f2(U (2), f (2))

+f3(U (1), f (1)) − f3(U (2), f (2)))dy2dy3,
∂p̃

∂n
= 0 on (0, 1) × ∂Ω.
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Like (6.1) we have
(6.10)
‖f1(U (1), f (1))− f1(U (2), f (2))‖C−1,α(Q+)

+
4∑

k=2

‖fk(U (1), f (1))−fk(U (2), f (2))‖C0,α(Q+)

≤C(δ + η + ε)(‖U (1)−U (2)‖C1,α(Q+)+‖f (1) − f (2)‖C2,α(Ω))
∆= Cẽ;

then (5.10) implies

(6.11) ‖p̃‖C1,α(Q+) ≤ Cẽ.

Moreover, �̃u∗ = (u(1)
2 − u

(2)
2 , u

(1)
3 − u

(2)
3 ) satisfies

(6.12)

⎧⎪⎨
⎪⎩

div�̃u∗ = f∗(U (1), f (1) − f∗(U (2), f (2)) in Ω,

rot�̃u∗ = f4(U (1), f (1) − f4(U (2), f (2)) in Ω,

ũ∗n = 0 on ∂Ω.

By (6.10) we have a similar estimate for ‖f∗(U (1), f (1))−f∗(U
(2)
∗ , f (2))‖C0,α(Q+);

then by using (5.20) we have

(6.13) ‖�̃u∗‖C1,α(Ω) ≤ Cẽ.

To estimate �̃ω = �ω(1) − �ω(2), we use (5.16). It is easy to have

�̃ω =
∑

j

(F (1)
kj (y1, ζ

(1)
2 (y1, y2, y3), ζ

(1)
3 (y1, y2, y3))ω

(1)
j0 (y2, y3)(6.14)

−(F (2)
kj (y1, ζ

(2)
2 (y1, y2, y3), ζ

(2)
3 (y1, y2, y3)))ω

(2)
j0 (y2, y3)

=
∑

j

(F (1)
kj − F

(2)
kj )ω(1)

j0 +
∑

j

F
(2)
kj (ω(1)

j0 − ω
(2)
j0 ).

Then for U ∈ Oδ, f ∈ Ση,
(6.15)
‖�̃ωk‖C0,α(Q+) ≤ C(δ + η + ε)(‖U (1) − U (2)‖C1,α(Q+) + ‖f (1) − f (2)‖C2,α(Ω)) ≤ Cẽ.

Finally, for the right hand side of (4.6) we have

‖∇(− 1
ρ(1)

∇ρ(1) · �u(1)) −∇(− 1
ρ(2)

∇ρ(2) · �u(2))‖C−1,α(Q+)(6.16)

≤ C(δ + η + ε)(‖U (1) − U (2)‖C1,α(Q+) + ‖f (1) − f (2)‖C2,α(Ω)) ≤ Cẽ,

‖∇ × �ω(1) −∇× �ω(2)‖C−1,α(Q+) ≤ ‖�̃ω‖C0,α(Q+) ≤ Cẽ,

‖ − 1
ρ(1)

∇p(1) +
1

ρ(2)
∇p(2)‖C0,α(S1) ≤ Cẽ.

Then by using (4.6) we also obtain

(6.17) ‖�̃u‖C1,α(Q+) ≤ Cẽ.
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Summing up, for small δ, η, ε we establish the contraction of the mapping T , so
that the solution to problems (Pp), (P∗), (Pω), (Ps), (Pu) is obtained by using the
principle of contractive mapping. Hence problem (NL) is also solved. That is,

Theorem 6.1. For small δ0 we can take η0 and ε0 sufficiently small, such that for
any U− ∈ Kε, f ∈ Ση with ε < ε0, η < η0, problem (NL) admits a unique solution
U ∈ Oδ.

We remark here that the above argument is valid for both cases f (1) = f (2) = f
and f (1) �= f (2). The estimate for the case f (1) �= f (2) will be employed in the next
section.

7. Solution to the free boundary value problem

As we did in Section 2, the free boundary value problem (FB1) is decomposed as
the fixed boundary value problem (NL), which has been solved in the last section
and is a problem to update the location of the shock front. The latter is problem
(3.5), which involves a system with two first order equations. Since the solution U
of (NL) satisfies the boundary condition G4 = 0 (see (2.27)), then for any given
U ∈ Oδ, the problem

(7.1)

⎧⎨
⎩

∂f#

∂xi
= −Φi

Φ1
, i = 2, 3,

f#(0, 0) = 0,

has a unique solution. Now for any given f ∈ Ση with η ≤ η0, we find a solution
U of problem (NL) in Oδ by using the result of the last solution. Then from (7.1)
we obtain f#.

Notice that for sufficiently small δ and ε,

[p] = p − p− = (p − pb
+) + (pb

+ − pb
−) + (pb

− − p−)

≥ pb
+ − pb

− − Cε − δ ≥ 1
2
(pb

+ − pb
−);(7.2)

then (2.19) implies

(7.3) |Φ1| ≥
1
8
(pb

+ − pb
−)2.

Meanwhile,

(7.4) ‖[ρu2
2], [ρu2

3], [ρu1u2], [ρu1u3], [ρu2u3]‖C1,α(S0) ≤ C(δ + ε).

Hence

(7.5) ‖f#‖C2,α(S0) ≤ ‖Φ2/Φ1‖C1,α(S0) + ‖Φ3/Φ1‖C1,α(S0) ≤ C(δ + ε).

For given η, we choose a sufficiently small ε and δ = C0ε, such that ‖f‖C2,α(S0) ≤ η.
Hence Tf : f �→ f# is a mapping for Ση to Ση.

One can also prove the contraction of the mapping Tf . In fact, by taking f (1), f (2)

in Ση and solving (7.1) we obtain f#(j) = Tff (j) with j = 1, 2. Then f̃# =
f#(1) − f#(2) satisfies

(7.6)

⎧⎪⎨
⎪⎩

∂f̃#

∂xi
= −Φ(1)

i

Φ(1)
1

+
Φ(2)

i

Φ(2)
1

, i = 2, 3,

f̃#(0, 0) = 0.
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Since both Φ(1)
1 and Φ(2)

1 satisfy (6.3), we have

(7.7) ‖ − Φ(1)
i /Φ(1)

1 + Φ(2)
i /Φ(2)

1 ‖C1,α(S0) ≤ C‖U (1) − U (2)‖C1,α(Q+),

where U (j) is the solution of (NL), which corresponds to f (j)(x2, x3) describing the
approximate shock front. Notice that the argument provided in Section 5 is also
available for the case f (1) �= f (2). Therefore, by using the result there we have
(7.8)
‖U (1) −U (2)‖C1,α(Q+) ≤ C(δ +η + ε)(‖U (1) −U (2)‖C1,α(Q+) +‖f (1) −f (2)‖C2,α(S0)),

which leads to

(7.9) ‖U (1) − U (2)‖C1,α(Q+) ≤ C ′(δ + η + ε)‖f (1) − f (2)‖C2,α(S0).

Combining (7.9), (7.6) and (7.7), we obtain

(7.10) ‖f#(1) − f#(2)‖C2,α(S0) ≤
1
2
‖f (1) − f (2)‖C2,α(S0),

provided δ0, η0, ε0 are chosen sufficiently small. (7.10) obviously implies the ex-
istence of the fixed point of the mapping Tf . Hence the fixed point f together
with the corresponding solution U of (3.4) in Qf solve the boundary value problem
(FB1). Then according to the analysis in Section 2, problem (FB), as well as the
original problem (P), is also solved correspondingly.
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