

Proc. ACM Symposium on User Interface Software
and Technology (UIST'92, Monterey, California,
USA), ACM Press, 1994, pp. 171-180.

TRANSPARENCY AND AWARENESS
IN A REAL-TIME GROUPWARE SYSTEM

Michel Beaudouin-Lafon and Alain Karsenty

Laboratoire de Recherche en Informatique (CNRS URA 410)
Université de Paris-Sud - Bâtiment 490

91405 ORSAY Cedex - FRANCE
(33) 1-69-41-69-10, mbl@lri.fr
(33) 1-69-41-65-91, ak@lri.fr

ABSTRACT
This article explores real-time groupware systems from the
perspective of both the users and the designer. This
exploration is carried out through the description of
GroupDesign, a real-time multi-user drawing tool that we
have developed. From the perspective of the users, we
present a number of functionalities that we feel necessary in
any real-time groupware system: Graphic & Audio Echo,
Localization, Identification, Age, and History. From the
perspective of the designer, we demonstrate the possibility
of creating a multi-user application from a single-user one,
and we introduce the notion of purely replicated architecture.

INTRODUCTION
An important part of the work in the field of CSCW concerns
case studies in the context of design by a group, and a
number of systems have been developed for this purpose. It
was stated in a recent article [15] that "there seems to be a
focus on technology for the sake of technology, without
much thought about what people actually need." It is true
that many groupware systems require special facilities like
conference rooms equipped with computers, or high-tech
gear to support video telepresence. On the other hand, the
work on the software aspects of CSCW is still at its
beginning: most applications are dedicated, and very few
tools exist. We believe that the user-interface issues of
groupware systems should be studied more carefully,
especially for real-time (or synchronous) systems.

We advocate transparent groupware systems, that is,
systems that do not require special settings or hardware, and
that integrate smoothly with the way computers are used
today. Hence, we are interested in extending the most
widespread models of interaction to integrate the new
dimension introduced by the group. We see the notion of
awareness as the key to this transparency. By this we mean
that each user should be aware of what the others are doing,
to facilitate coordination, but not suffer from constraints
related to the group, such as floor control.

To investigate the notions of transparency and awareness,
we have developed a real-time multi-user drawing tool called
GroupDesign. The reasons are two-fold. First, most
existing real-time groupware tools are pixel editors or text
editors. Our tool is a structured graphics editor, which we
feel more representative of direct manipulation systems.
Second, we did not want to create the system from scratch,
and we had an existing single-user extensible drawing tool
at hand. This was an opportunity to understand the issues
involved in turning a single-user application into a multi-
user one, and to get some insight into an appropriate
architecture for real-time groupware.

This approach led us to explore real-time groupware systems
from two perspectives: the users', and the designer's. From
the perspective of the users, we present a number of
functionalities that we feel necessary in any real-time
groupware system. This can be paralleled with the
functionalities that have been identified for single-user
systems, such as help, undo, semantic feedback, etc. From
the designer's point of view, we demonstrate the possibility
of creating a multi-user application from a single-user one,
and we present the notion of purely replicated architecture.

The paper is organized as follows. The next section
describes the related work. We then describe the system and
its architecture. In particular, we present the distributed
algorithm that implements the purely replicated
architecture. The last section discusses the important
aspects of this work with respect to the perspectives we
have previously described. We close the paper with a
conclusion and an outline of future work.

RELATED WORK
Within the domain of real-time multi-user editors, Grove
[10] is the closest to our system, although it is dedicated to
text editing. Transparency is supported by concurrent
editing at the keystroke level, while awareness is supported
by clouds and aged text. Cognoter and Argnoter [23] also
share some similarities with our system, in that the
members of a group can simultaneously edit a diagram. The
concept of WYSIWIS interface, which was invented when
these tools were created, is a main theme of the work we
present in this article.

A number of other tools are less closely related to our work.
rIBIS [21] is a multi-user hypertext system that allows both
loosely coupled and tightly coupled group work. Unlike our
system, the tightly coupled mode requires a turn-taking floor
control. Aspects [3] is a commercial product for shared

Beaudouin-Lafon & Karsenty - GroupDesign - 2 -UIST'92

editing of structured drawings. However, it provides few
groupware features and it requires the locking of objects.
BoardNoter [23] and Commune [19] are painting tools
dedicated to tightly coupled meetings. With such bitmap
editors, there is no need to address the question of conflicts.
CaptureLab [12] and Timbuktu [7] use floor control to take
over a different computer, and cannot be considered multi-
user editors.

Our system is different from many groupware systems in that
it addresses loosely coupled groups instead of tightly
coupled ones, and distant users instead of face-to-face
meetings. This has a significant impact on the groupware
features that are needed.

On the side of architecture and tools for creating groupware
systems, most authors recognize that a replicated
architecture is worth the difficulties it raises. MMConf [8]
has an architecture close to ours, but it encourages turn-
taking floor control because when running an open floor,
the events are not guaranteed to arrive in the same order at
all sites. On the other hand, MMConf is a toolkit, whereas
the groupware features of our system are currently integrated
in the application. DistEdit [16] is a toolkit for
programming multi-user text editors. It relies on the ISIS
toolkit [4] for the distributed aspect of the architecture. This
may cause performance problems, as stated by the authors,
because of the concurrency control algorithms implemented
by ISIS. Grove also uses a replicated architecture [11], with
concurrency control being achieved by a technique called
operation transformation: operations which arrive out of
date are transformed so that they can be executed without
disrupting the session. If there are n operations, this
technique requires n2 transformation procedures, some of
which are not trivial to write. Our system uses a similar
architecture with a simpler concurrency control scheme.
Finally, LIZA [14] is a toolkit that uses a central process
with replicated clients, and RendezVous [20] is an example
of a centralized application.

The notions of transparency and awareness are put in
relation by Lauwers and Lantz [18] in the context of shared
window systems. We are trying to do, at the application
level, something similar to what these authors propose for
window systems: identify functionalities, propose
implementation, and develop tools.

SYSTEM OVERVIEW
GroupDesign is a multi-user drawing tool for structured
graphics. It runs on Apple Macintosh computers connected
by AppleTalk. The architecture is replicated: an instance of
the application (a replica) runs on the computer of each user.

A GroupDesign diagram is a set of pages, either independent
or connected in an hierarchical way. Within a page,
graphical objects (rectangles, texts, etc.) and connectors
(links between objects) can be edited as in MacDraw. The
complexity of a diagram is such that one can have a large
number of users working on different pages. GroupDesign
uses a relaxed WYSIWIS paradigm [22]. A strict WYSIWIS
approach would not have allowed users to work
independently on different diagram areas. The document is
the same for all replicas but each user has his or her own
view of the diagram (e.g. users have an independent control
over the scroll bars and window placement).

Whereas a meeting involves a few users during a short time,
GroupDesign sessions can last indefinitely with
participants entering and leaving during the session. This
new freedom created a new problem however. For instance, a
user may enter in the middle of a session without knowing
the recent history of the document. If changes have been
made to the diagram, and the user does not agree with the
changes, he or she needs a means of identifying the user(s)
who made the change to discuss it with them. The features
we provide to compensate for the lack of group memory are
History, Age and Identification, which allow one to be
informed of when, how and by whom changes have been
made to the diagram.

We have also developed real-time features to provide the
group with a means of understanding simultaneous actions
on the document. Those features are Graphic & Audio Echo,
Localization, and Teleconference. Finally, we developed a
feature that we call Time-Relaxed WYSIWIS. It gives users a
way to have privacy while working.

Most of the groupware features use color to identify each
user. The name of the users and their associated colors
appear in a menu. In the following paragraphs are more
details about the groupware features.

Graphic & Audio Echo
We define Echo as the representation of a user's action upon
other users' interface. We designed the echo to be
comprehensible yet not too distracting. Thus, one can
choose to observe the group at work or decide to focus on a
task without being disturbed. The echo is graphic if users
share a common view of the diagram or audio if operations
occur out of the window.

Graphic Echo is a two-phase process, as illustrated below.
The first phase takes place when an operation is initiated,

user group

phase 1 presses the mouse
on the rectangle.

“move” icon displayed
on top of the rectangle
(Fig.1). The icon has
the user's color attribute.

drags the rectangle
to the new position.

the icon is still
displayed (Fig. 1).

phase 2 releases the mouse.
The rectangle is
drawn at the new
position.

the icon is erased and the
rectangle is moved
smoothly to the new
position (Fig. 2).

Figure 1 - busy icon Figure 2 - animation

Beaudouin-Lafon & Karsenty - GroupDesign - 3 -UIST'92

Alain's view

Heather's view

Michel's view

Figure 3 - Localization

and uses an icon which has the same function as the busy
signal of the Colab [23]. The second phase takes place
when the operation is completed, and uses animation to
make it easy to understand the operation.

An icon displayed in an object indicates that a change is
about to be made by another user. Its shape indicates which
operation is underway, and its color indicates the author of
the operation. While the icon is displayed, the object is
partially locked. A user can still modify the object unless
the operations are not compatible - such as moving an
object being moved.

We developed Audio Echo to cover non-visible operations,
since Graphic Echo does not cover modifications occurring
outside of the window view. The Arkola bottling plant
simulation [13] showed that sound can play a significant
role in groupware systems. In GroupDesign a sound is
associated with every graphical operation.

The graphic and audio echo are modes that users can enable
or disable. Users can also control the set of operations for
which an echo is provided.

Localization and Identification
Localization makes it possible to coordinate views with
another user. It is a strict WYSIWIS feature for a relaxed
WYSIWIS interface. In this mode the participants' front

window is displayed as a rectangle with their assigned color
so that users can see each other's current view. Selecting a
user's name from the menu “teleports” one’s view to the area
currently viewed by that user. Thus, one can have both an
independent view of the diagram and be able to synchronize
views with another user. This gives the users a sense of
territory - when they modify objects, they are aware if other
users are currently viewing the changes.

Figure 3 is an example of three users in the same session
viewing an overlapping part of a page. Heather is in
Localization mode and thus can see Alain's and Michel's
views. Localization alone is not sufficient to identify who
has just modified a diagram, since several users can view the
same part of the diagram. Moreover, once the changes are
done, there would be no means to identify each user's
operations. The Identification feature is used to identify the
name of the users who modified the diagram. Identification
is done through colors: every object is displayed with the
color corresponding to either the user who created it or to
the last user who modified it. This is useful to discuss design
issues on a particular area of the diagram without disrupting
the session participants. Using Identification, one can
contact the specific users who made the changes.

Both Localization and Identification are modes. They do not
interfere with the drawing activity, but add information
about users to the participants.

Beaudouin-Lafon & Karsenty - GroupDesign - 4 -UIST'92

Age and History
The only time-related information usually available
concerning a diagram is the last time it was saved into a file.
No information is given about the last date of modification
of the objects in the diagram. In a multi-user application
this information is important. For instance, if many
objects in the same area have been recently modified, this
area is probably a "hot spot" of the group's activity.

The age of objects is displayed using colors which vary from
red (recently modified) to blue. Age allows one to find out
when objects have been modified - but not how. This is why
we also provide the History feature. The last actions of the
group can be replayed using a control panel similar to a tape
recorder. The type of operation and the name of the user who
did it are displayed when an operation is replayed either
forward or backward. Whenever one enters this mode, the
system is off-line. It gets other users' operations but keeps
them in a queue to process them as soon as the user closes
the control panel.

History is a command, thus one cannot change the diagram
when replaying the last actions. On the other hand, Age is a
mode. This mode is incompatible with Identification
because both use the color of objects to convey their
information.

Teleconference
This feature is used when users want to work in a tightly
coordinated way. Teleconference allows a subset of the
group to work under an almost strict WYSIWIS interface. By
"almost strict" we mean that the users see each other's
windows modifications (resize, scroll, etc.), but not the
movements of the cursor (for performance reasons). Note,
however that the application still runs an open floor, unlike
most systems that operate in strict WYSIWIS mode.

Teleconference is useful when some members of the session
want to discuss a particular design issue. In this situation,
additional communication channels are needed (e.g.
audio/video links). We could also consider adding a
telepointing facility to the system. In the current version it
is possible to use a GroupDesign object as a telepointer.

Time-Relaxed WYSIWIS
This feature is complementary to the Teleconference mode,
in that it gives a user some privacy during a session. In this
mode, the user's current modifications do not appear on the
participants' windows. When satisfied with the resulting
diagram one can decide to commit himself or herself and the
participants' diagram is then updated. This feature is useful
in a variety of circumstances. If a user is not familiar with
the application, it might be inhibiting to show his or her
clumsiness to the group, for instance. Another example is
that users can modify the diagram, and if they are not
satisfied with the result, they can cancel their modifications
without disrupting the session.

ARCHITECTURE
We have implemented what we call a purely replicated
architecture. A replica of the application runs on each
computer. Unlike many systems that use a replicated
architecture, GroupDesign does not use any central process
for the coordination of the replicas, nor does it give a

special role to the user who first launches a session. All
replicas are strictly identical, and no other process is
required. The replicas communicate by sending each other
events through LocalTalk, using the facilities of the Apple
Event Manager of Apple's new System 7.0 [1].

From Design to GroupDesign
We neither built GroupDesign from scratch nor modified the
code of an existing program; rather we used an existing
application, MetaDesign, that we modified through its
programming interface, called Design/OA.

MetaDesign is a graphical editor from MetaSoftware Corp.
used to create logical diagrams made of nodes and
connectors. Nodes automatically maintain their
connections when they are moved, making graphics easy to
change. A diagram can be made of different pages, either
independent or connected in an hierarchical way. A page can
be attached to a node, so that when double-clicking in the
node, the page opens with a subdiagram in it.

Design/OA [9] is a set of functions to customize, extend and
tailor MetaDesign. It contains three categories of
functionalities: to install filter functions to intercept and
control user actions, such as creating a node; to extend and
customize MetaDesign’s menus; and to create and modify
diagrams, the same way one would do manually with
MetaDesign.

We have built GroupDesign with Design/OA as follows.
Filter functions have been installed to intercept the user
actions and broadcast them to the other replicas. We have
added two menus, one for the control of the groupware
features, the other to display the user names and their
associated colors. Finally, we have used the functions that
modify the diagram to handle the events coming from the
other replicas.

Using Design/OA made our task much easier than starting
from scratch. Design/OA makes it possible to completely
change the features, look, and feel of MetaDesign so that we
have not been limited by the interface when building
GroupDesign.

Managing the replication
The main advantage of a replicated architecture is the
possibility of having an interface with a response time as
short as for a single-user interface. This is achieved by
using a high-level asynchronous protocol. This protocol is
implemented in a software layer which is mainly
independent of the application. This means that the
technology we have used to turn a single-user application
into a multi-user applies to many other applications,
although we have not come to the point where we can
provide a groupware toolkit for that purpose, like DistEdit
[16] or MMConf [8].

The protocol consists of events being sent by the replicas
to describe the commands carried out by each user. An event
contains an operation, defined as a triple (object, op-code,
arguments). The protocol is asynchronous because a replica
never waits for a reply from the other replicas. This requires
a distributed algorithm that ensures that the events are
processed at each site in a compatible way.

Beaudouin-Lafon & Karsenty - GroupDesign - 5 -UIST'92

type
Site = positive integer; (* site numbers *)
Time = positive integer; (* clock values *)
Seq = positive integer; (* sequence numbers *)
Identifier = integer; (* object identifiers *)
OpCode = (Alive, Create, …);(*application operations *)
Args = (* description of operation arguments *);
ObjectPtr = (* pointer to an application object *);
Event = record

op : OpCode; (* operation to carry out *)
objId : Identifier; (* id of object, or nullId *)
args : Args; (* arguments of operation *)
time : Time; (* logical time of sender *)
seqno : Seq; (* seq number of sender *)
sender : Site; (* site number of sender *)

end;
EventList = list of Event;

const
timeOut : Time := 10; (* timeout for Alive events *)
nullId : Identifier := 0; (* id for ops without object *)
nullArg : Args := (* an 'empty' argument record *);

var
sites : set of Site; (* sites in the session *)
me : Site; (* identifier of this site *)
localTime : Time; (* logical clock of this site *)
seq : Seq; (* seqno of last event sent *)
(* associative table mapping obj-ids to objects *)
objectTable : array [Identifier] of ObjectPtr;
(* list of recent events, sorted by ascending time *)
recent : EventList;
(* list of events for objects not yet created *)
delayed : EventList;
(* seqno of last event received in sequence *)
lastSeq : array [Site] of Seq;
(* time of last event received in sequence *)
lastClock : array [Site] of Time;

(* list manipulation procedures *)
procedure Insert (var el: EventList; before, e: Event);
procedure Append (var el: EventList; e: Event);
procedure Remove (var el: EventList; e: Event);

(* send an event to a site *)
procedure SendEvent (s: Site; e: Event);

(* application-dependant functions *)
procedure Apply (op: OpCode; o: ObjectPtr; a: Args);
function Create (id: Identifier; a: Args) : ObjectPtr;

Figure 4 - Declarations for the algorithm

The basic idea is to use a logical clock [17] at each site to
timestamp events sent by this site. Each replica keeps a list
of received events. When a replica receives an event with
timestamp t, it should undo any operations triggered by
events with a more recent timestamp, then handle the
received event, and finally redo the operations. However, if
the operation contained in the received event commutes with
the more recent ones, then it is not necessary to undo and
redo those operations. Similarly, if the received operation
is masked by a more recent one, i.e., if applying op1 and
then op2 is identical to applying op2 , then the received
operation can be discarded. For instance, if one user moves
a rectangle and another changes its color, the operations
commute and thus can occur in different orders at different
sites. If a user sets the color of an object to red (event e1 at
time t1) and another sets it to green (event e2 at time t2 >
t1), a third replica receiving e2 then e1 will handle e2 and
discard e1.

In GroupDesign, except for the creation of objects, for any
couple of operations (op1, op2), if op1 and op2 are equal
then op2 masks op1, otherwise op1 and op2 commute. Two
operations are equal if their object and op-code are equal. In
particular, this means that objects are independent, i.e., for
any two different objects A and B , any operation on A
commutes with any operation on B. This also means that
operations are independent, i.e., the result of applying two
different operations to the same object does not depend on
the order of the operations. Under the above condition, a
received event is always handled immediately, without
having to undo and redo operations. The creation of objects
is a special case since it is impossible to apply operations
on objects which have not been created yet. Events carrying
such operations are stored in a separate list which is
examined each time an object is created.

The management of logical clocks makes it possible for two
events to be sent by different replicas at the same logical
time, causing a conflict. Fortunately, the probability of
such a conflict is quite low because the time window within
which it can occur is very small. For instance, user A should
change the color of an object to green, and user B should
change it to red before the event is received from A. Would
this happen, we use the total ordering of events defined by
Lamport [17]. As a consequence, the operation of one of the
users is executed while the other one is discarded and the user
notified.

In the Time-Relaxed WYSIWIS mode, conflicts may occur
more often because they are detected only when the user
commits. Hence, there is a conflict for each object modified
by a user in this mode which has also been modified by
another user. We have decided that the user in the time-
relaxed mode has his or her conflicting operations canceled,
in order to disrupt the least number of users. This is not a
satisfactory solution, and we need more experience with the
usage of this feature to devise a better one. These conflicts
can be minimized, though. A user in time-relaxed mode is
signaled to the group. Using the localization feature, one
can avoid modifying the objects viewed by the user in time-
relaxed mode.

Description of the algorithm
The types and data structures used by the algorithm are
shown in figure 4. Each event contains a description of the
operation (object-id, op-code, arguments) and bookkeeping

data (clock, sequence number, and site number of sender).
The object-id is assigned by the replica that first creates the
object. It is a unique identifier obtained by concatenating a
unique local identifier and the site number. Each replica
manages an associative table that maps identifiers to
objects. Although we use an array objectTable in the
declarations of figure 4, a real implementation should use a
better scheme, like a hash-table, because an array would be
too large and too sparse.

The implementation of the algorithm is shown in figures 5
and 6. It is straightforward, except that it ensures that the set
of received events does not grow indefinitely. This set is
used when "old" events arrive, in order to detect conflicts
and to determine whether the operation has been masked.
Events can be discarded from this set if their logical clock is

Beaudouin-Lafon & Karsenty - GroupDesign - 6 -UIST'92

such that no older event will ever arrive. The algorithm
stores in the array lastClock, the logical clock of the last
event received in sequence from each site, using the sequence
number sent with each event and the auxiliary array lastSeq.
Any event older than the minimum value of lastClock can be
discarded. However, this is not sufficient to ensure a
bounded size to the set of received events. Indeed, if a site is
idle, it is not sending events, therefore the minimum value
of lastClock stays the same and the size of the set never
decreases at the other sites. Therefore, if the current site has
not been sending events in the last timeOut logical clock
ticks, then it sends an "Alive" event to signal that this site
is still alive. This event will update the lastClock array of
the other sites, giving them the opportunity to reduce the
list of recent events.

For the sake of simplicity, we have not described the
handling of deleted objects in the algorithm. When an
object is deleted, it should be marked as such in the
objectTable. The “Execute” procedure should discard
operations on deleted objects and be cautious with deleted
objects that have not been created yet.

Designing the set of operations
The events carry operations which describe the
modifications made by users to the document. However, a
distinction must be made between the commands that the
user can use and the actual operations that are sent by means
of events between sites. The design of the set of commands
must be driven by the task space that the application
addresses and the conceptual model of the application, as for
any interactive system. The design of the set of operations,
however, must be driven by the constraints of the distributed
algorithm, namely the fact that identical operations must
mask each other and non-identical ones must commute.
Although this was achieved quite easily with GroupDesign,
it might not be the case in other applications. In such
cases, one must resort to the undo-execute-redo scheme for
operations that do not commute nor mask. Another
possibility consists in transforming the operation, as done
in Grove [11].

Some commands are specified instantaneously, such as the
selection of an object, the activation of a menu command,
etc. Each such command corresponds to a single operation.
Other commands need a certain amount of time to be
specified. For instance, creating or moving an object
involves dragging the mouse, some menu commands
actually open a dialogue box for the specification of
additional arguments, and the command is executed only
when the user hits the OK button. In GroupDesign, such
commands are translated into two operations. The first one
is sent when the commands starts, so that the other sites can
provide an echo of the command and lock the appropriate
objects for the operation being specified, thus reducing the
risk of conflict. The second operation is sent when the
command finishes, or when it is aborted. It describes the
command itself, as if it had been specified instantaneously.
This is how GroupDesign implements the two phase echo
described in a previous section.

(* broadcast an operation executed locally *)
procedure Send (op: OpCode; id: Identifer; args: Args)
var

s : Site;
event : Event;

begin
(* construct event *)
event.op := op; event. objId := id;
event.args := args; event.time := localTime;
event.seqno := seq; event.sender := me;

(* send it to other sites *)
for s in sites do

if s ≠ me then SendEvent (s, event) endif;
endfor;

(* update local state *)
localtime := localTime + 1;
lastClock [me] := localTime;
seq := seq + 1;
lastSeq [me] := seq;

end;

(* handle an incoming event *)
procedure Receive (event: Event)
var

e, recentEv : Event;
found : boolean := false;

begin
if event.time > localTime then

(* event newer than anything in recent *)
Execute (event);

e lse
(* find a more recent event with same operation *)
for e in recent do

if e.time ≥ event.time and e.op = event. op
 and e.objId = event. objId then

found := true;
recentEv := e;
break; (* exit for-loop *)

endif;
endfor;

if found then
if recentEv.time = event.time then

(* conflict : use total ordering of Lamport *)
if recentEv.site < event.site then

Execute (event);
e lse

(* conflicting operation discarded *)
(* notify user *)

endif;
e lse

(* masked operation ignored *)
endif;

e lse
(* event commutes with all events in recent *)
Execute (event);

endif;
endif;

(* update local state *)
Update (event);

end;

Figure 5 - Main procedures of the algorithm

Beaudouin-Lafon & Karsenty - GroupDesign - 7 -UIST'92

(* update local state after receiving an event *)
procedure Update (event: Event)
var

e : Event;
s : Site;
found : boolean := false;

begin
(* update local time *)
localTime := max (localTime, event.time) + 1;

(* update lastClock, and insert event in recent *)
for e in recent do

if e.sender = event.sender
 and e.seq = lastSeq [e.sender] + 1 then

(* revent eceived in sequence *)
lastSeq [e.sender] := e.seq;
lastClock [e.sender] := e.time;

endif;
if not found and event.time > e.time then

(* insert event, keeping recent sorted *)
found := true;
Insert (recent, e, event);

endif;
endfor;

(* discard useless events from recent *)
for e in recent do

if e.time ≤ min (lastClock)
then Remove (recent, e);
else break;

endif;
endfor;

(* send alive event if inactive for a long time *)
if localTime > lastClock [me] + timeOut

then Send (Alive, nullId, nullArgs); endif;
end;

(* execute the operation contained in an event *)
procedure Execute (event: Event)
var

e : Event;
object : ObjectPtr;

begin
if event.op = Alive then (* do nothing *)
elsif event.op = Create then

(* create object and store it *)
object := Create (event.objId, event.args);
objectTable [event.objId] := object;
(* execute delayed operations on this object *)
for e in delayed do

if e.objId = event.objId then
Apply (e.op, object, e.args);
Remove (delayed, e);

endif;
endfor;

e lse
(* delay operation if object does not exist yet *)
object := objectTable [event.objId];
if object = NIL

then Append (delayed, event)
else Apply (event.op, object, event.args)

endif;
endif;

end;

Figure 6 - Auxiliary procedures for the algorithm

Newcomers
A newcomer is a site entering a session which is already
running. Unless the session starts synchronously for all
users and no newcomer is accepted, every site but the first
one is a newcomer. Handling a newcomer means transferring
a known state to it, to let every other site know of its
existence so that it can receive events from them, and to
decide when the newcomer can start to behave like a normal
site. Moreover, several newcomers entering the same
session simultaneously must be handled correctly. In the
rest of this section, we sketch out the algorithm for
handling newcomers.

The algorithm is based on the fact that the state S of a site
can be characterized by stateTime, an array of clock values
indexed by site numbers, as follows: S corresponds to the
execution of a set of events E such that each event e of E
verifies e.time ≤ stateTime [e.sender].

The algorithm proceeds as follows: the newcomer multicasts
the other sites and gathers their logical clocks. The other
sites can then start to send events to the newcomer. These
events are stored by the newcomer in a list and processed
once the newcomer is initialized. The newcomer then asks a
site to transfer a state that corresponds at least to the clocks
it has gathered. The transferring site sends its state and the
corresponding stateTime array to the newcomer. It also
commits to forward to the newcomer any events older than
the stateTime array that it has not yet received. When the
transfer is complete, the newcomer can process the events
received from the other sites, and start to behave normally.

DISCUSSION
The context in which a groupware system is to be used has
an important impact on its features. A number of systems
have been designed to support a group activity in face-to-
face meetings, or with video telepresence. In such a context
there are few users, and a tight coupling between them. As a
result it is quite easy to monitor the activity of the whole
group.

The context we have chosen is one of a loose coupling with
a potentially large number of users. With this setting, the
granularity of the group work is larger: instead of several
users working on the same task, each user is assigned a
different task, in the context of the more global activity of
creating the document.

In the next section we analyze how transparency and
awareness support the group work under this loose coupling.
We then analyze the features that we propose from the user's
point of view. Finally we discuss the impact of a purely
replicated architecture on the engineering of groupware
systems.

Transparency and Awareness
For the end-user, transparency means that the system does
not bring obstacles in the way of the task he or she is
carrying out. In the context of a groupware system, this
means that the system should not impose unnecessary
constraints. Floor control is such a constraint: in a system
that requires one active user at a time, a user must wait to
take the floor to do something. An open floor system
relieves this constraint. Another constraint is strict
WYSIWIS. Relaxing WYSIWIS creates some well-known

Beaudouin-Lafon & Karsenty - GroupDesign - 8 -UIST'92

problems [23] due to the fact that the reference to an object
by a user may not be understandable to another user.

Transparency in GroupDesign is characterized by an open
floor, and by a range of relaxed WYSIWIS features. We have
not implemented turn-taking protocols, because we believe
that an open-floor supported by social protocols and a good
awareness of the group is more efficient and closer to real
life. Also, it is much easier to implement floor control in an
open-floor system, than to implement parallel activities in
a system designed for turn-taking.

The variations of WYSIWIS that we offer range from almost
strict WYSIWIS in Teleconference mode, to a very loose
WYSIWIS in time-relaxed mode. We believe that strict
WYSIWIS is only meaningful in a face-to-face meeting,
where one wants to see another user's screen at the level of
cursor movements; most of the time such a tight coupling
justifies a floor control. The almost strict WYSIWIS
provided by GroupDesign is adapted to distant users, because
it works at the level of views and operations. We think that
a more strict approach would not give much more
transparency, and would be extremely difficult to implement
efficiently (if even possible in our setting).

Referring to the four dimensions of WYSIWIS identified by
Stefik et al. [22], we can say that our system gives control
over relaxing WYSIWIS in time, population, and
congruence of views, but not in display space. Relaxation
of the time constraint is controlled by the time-relaxed
mode, in which a user explicitly commits his or her
changes. Relaxation of the population is possible to some
extent because one can use the teleconference mode with
only a subset of the group. Relaxation of congruence is
provided when the teleconference mode is not active,
because each user can independently move and resize a
window, and scroll and zoom its contents. Moreover, the
fact that each user can be in a different mode (Localization,
Identification, Age, Echo) is also a relaxation of the
congruence. The display space to which WYSIWIS applies
is fixed, however, because only GroupDesign windows are
subject to WYSIWIS.

Another aspect of transparency is the ability to observe the
document. Not only is a user able to navigate
geographically in the document, but he or she is also able to
navigate in time and over the dimension of users.
Navigation over time is achieved by the Age and History
functions. Navigation over the dimension of the users is
carried out by means of the Identification and Localization
functions. These features actually provide the articulation
between transparency and awareness. Transparency is
conveyed by the navigational aspects of these functions,
while the awareness is conveyed by their modal aspect. For
instance, the Localization mode displays the areas viewed
by the other users. This supports awareness in the sense
that the information is brought to the user without
interfering with his or her task, so that it is taken into
account subconsciously.

Awareness of the other users of the group is further conveyed
by the echo of commands, which we see as essential. The
challenge of a good echo is to provide an accurate, non-
disturbing and efficient feeling of what the other users are
doing. Because echo must be in real time, it also raises
implementation issues, so that the choice of a particular

echo is a trade-off between what is feasible and what is
desirable.

What would be an ideal echo? The first idea that comes to
mind is to provide other users with the feedback given by
the user carrying out the operation, following a strict
WYSIWIS approach. For instance, if a user moves an object
around, then the shadow of that object should move on all
the screens. Beside the problem of the efficient
implementation of this, we do not believe this is the best
echo. When I am moving an object, the feedback is
appropriate because I can anticipate it: I know that I am
moving the mouse. But if a user sees an object moving
around by itself he will probably be quite surprised, because
he cannot anticipate it.

The two-phase echo we provide has proved more
appropriate: when an icon appears in an object, the user
knows that something is going to happen to it, and the
shape of the icon indicates what. Moreover, the object is
locked for the operations that are incompatible with the one
displayed by the icon. Then the object moves, or changes
shape, or disappears. The animation provided by
GroupDesign in this second phase is important, because
other users are not anticipating the effect of the command
(unlike the user who initiated that command). As
demonstrated by Card et al. [6], immediate response
animation gives enough time to the other users to
understand what is about to happen.

Existentialism at the Interface
In a single user application, a user should always be able to
answer the following questions: Where am I? How did I get
here? What can I do now? This should also be the case in a
multi-user application. Each user should be able to answer a
variant of these questions: Where are we? How did we get
here? What can we do now?

Where are we? This question is related to the global state of
the document, and the individual state of each user. The
global state of the document can be observed by the usual
navigation commands (scrolling, zooming). The individual
state of each user consists in the part of the document he/she
is currently editing. The Grove editor [10] used clouds to
visualize a part of a text under modification by another user.
This is appropriate for a text document, where the
modifications are localized. This is not the case with a
drawing tool. The Localization mode of GroupDesign makes
the areas of the document being visualized by the other users
visible. It provides less information than the clouds, which
track both the location and the activity of each user. On the
other hand, the Localization gives a sense of territory which
is more stable over time than the clouds.

Another feature to answer the question "Where are we?" is
Identification. This mode shows who created or last
modified each object. We do not provide any ownership
feature that would give access rights and the like. Rather, we
prefer to give the users simple and efficient ways to know
who did what, so that they can decide by themselves whether
they should or should not modify an object. Identification,
like other features (especially History), tend to make the
document transparent in the sense that everybody can
understand why the document is like it is.

Beaudouin-Lafon & Karsenty - GroupDesign - 9 -UIST'92

How did we get here? Because a document can be edited by
several users over a long period of time and possibly across
several sessions, keeping the history of the document
becomes an important issue. In a single-user application,
this is less important because the user easily remembers the
sequence of operations that led to the current state of the
document: he only has to manage his own time. In a multi-
user application, the times of each user are intertwined to
form the global time of the document, which cannot be
easily reconstructed by a user. The Age and History features
are meant to help users reconstruct this global time.

The Age mode is comparable to the aged text of Grove [10].
In the same way as Localization creates a map of territories
of the different users, Age gives a time map which is easy to
read. In addition to this dynamic display of the time map,
the History command gives a way to navigate in time.

What can we do now? Answering this question means that a
user can know which actions are possible in the current
context, and which are not. The partial locking that occurs
at the first phase of echo keeps the user from modifying an
object being modified by another user. This shows the user
what he cannot do. Moreover, the non-intrusive aspect of
echo works at the subconscious level and prevents most
conflicts, as already noted with Grove [10].

The ability to completely avoid such conflicts is a trade-off,
and in GroupDesign conflicts are greatly reduced by the
echo, but are still possible. Our experience to date is that
conflicts never happen in practice, thanks to the response
time of the network.

Engineering groupware systems
Implementing real-time groupware systems is a challenge.
Not only has one to devise new interaction techniques and
artifacts, but one also has to face the difficulty of
implementing a distributed system. We see as essential for a
real-time groupware system to provide an immediate
response to each user's actions. This requires some degree of
replication, implemented by a distributed algorithm. We
have chosen in GroupDesign to replicate the whole
application. Beyond the immediate response time that our
distributed algorithm ensures, this has three main
advantages. First, it is possible to transform an already
existing application into a groupware one. Second, it is
fault-tolerant since each replica is autonomous. Finally, a
user can seamlessly switch between a single-user and multi-
user usage of an application. This last property is important
for the acceptance of groupware by end-users, as explained
by Baecker [2].

Replicating the whole application might not be feasible
with other systems, or it might not be desirable. In such
situations, the best architecture probably is to centralize the
functional core of the application and to replicate its
interface. The notion of pure replication can still be applied
to the user interfaces of such a system, encouraging a better
separation between user interface and functional core.
Indeed, the communications between the replicas of the user
interface will bypass the functional core in order to achieve
the kind of functionalities that we have introduced in this
article (Echo, Localization, etc.), which are independent of
the functional core.

Before gaining more experience with such mixed
architectures, pure replication, as implemented by the
distributed algorithm that we have presented, is best suited
to shared editing tools. In order for the properties of
independence of objects and operations to be met, the
documents being edited must be structured in some way. A
shared bitmap editor could not be implemented, because each
pixel should be an object, which is not realistic. A shared
text editor could be implemented, provided that the
granularity of editing be defined. For instance, each
sentence could be an object. The partial locking that occurs
at the first step of the two-phase echo would then prevent
two users from editing the same sentence at the same time,
but a user would be able to edit a sentence while another
changes its font or format. This is not completely
satisfactory since the granularity is imposed by the
replication algorithm and cannot be changed during the
session. We are currently specifying a more general version
of the algorithm in order to handle dependent objects and/or
operations, so as to do away with these constraints.

CONCLUSION AND FUTURE WORK
We have presented a real-time groupware system for the
shared editing of structured diagrams. We have emphasized
two important characteristics of this system: transparency
of the system and awareness of the group. We consider these
two properties as central to any real-time groupware editor.
We have shown that the implementation of the system with
a purely replicated architecture is both simple and powerful.

Preliminary user testing has shown that the features we
propose, once explained to the users, are easily understood.
Conflicts never happen in practice, except in time-relaxed
WYSIWIS, because the protocol is lightweight compared to
the network bandwidth. Finally, GroupDesign alone cannot
support the whole coordination task. This led us to develop
a separate application to allow users to communicate with
each other by typing text in a shared window.

In our approach, we rely on the users to structure their group
work around the features of the tools they use, in the same
way users adapt their work to the applications they have at
hand. We expect new working processes to emerge from the
group that may not have been anticipated by an a
priori analysis.

Our future work will take three directions. The first is the
investigation of further general functionalities for real-time
groupware. The second is the evaluation of these features in
real-life settings. The last is the definition of a groupware
toolkit to support the purely replicated architecture.

ACKNOWLEDGMENTS
This work is partially supported by Apple France. We thank
MetaSoftware for providing us with MetaDesign and
Design/OA, and Heather Sacco for enhancing the readability
of this article.

REFERENCES
1 . Apple Computer, Inside Macintosh, Volume VI,

Addison Wesley, Reading, MA, 1991.

2 . Baecker, R., New Paradigms for Computing in the
Nineties. In Proc. Graphics Interface '91, (Calgary,
Alberta, 3-7 June 1991), pp. 224-229.

Beaudouin-Lafon & Karsenty - GroupDesign - 10 -UIST'92

3 . von Biel, V., Groupware Grows Up. In MacUser,
June 1991, pp. 207-211.

4 . Birman, K., Cooper, R., Joseph, T., Kane, and K.,
Schmuck, F., The ISIS System Manual, June 1989.

5 . Buxton, W., and Moran, T., Europarc's Integrated
Interactive Intermedia Facility (IIIF): Early
Experiences. In Proc. IFIP WG8.4 Conference on
Multi-User Interfaces and Applications (Heraklion,
Greece), S. Gibbs and A. A. Verrighn-Stuart (eds).
North Holland, 1990.

6 . Card, S. K., Mackinlay, J. D., and Robertson, G. G.,
The Information Visualiser, an Information
Workspace. In Proc. CHI'91 (New Orleans, LA,
April 1991), pp. 181-188. ACM, New York, 1991.

7 . Coleman, Dale, Timbuktu vs. Carbon Copy Mac:
Close Race. In MacWeek (September 11, 1990), pp.
181-188.

8 . Crowley, T., Milazzo, P., Baker, E., Forsdick, H.,
and Tomlinson, R., MMConf: An Infrastructure for
Building Shared Multimedia Applications. In Proc.
Third Conference on Computer-Supported Coopera-
tive Work (Los Angeles, CA., October 1990). ACM,
New York, 1990.

9 . Meta Software Corporation, Design/OA Manual, 150
CambridgePark Drive, Cambridge, MA, March 1989.

1 0 . Ellis, C.A., Gibbs, S.J., and Rein, G.L., Groupware
Some Issues and Experiences. In Communications of
the ACM, January 1991, Vol. 34, No 1, pp. 39-58.

1 1 . Ellis, C.A., and Gibbs, S.J., Concurrency Control in
Groupware Systems. In Proc. ACM SIGMOD'89
Conference on the Management of Data, (Seattle WA,
May 1989). ACM, New York, 1990.

1 2 . Elwart-Keys, M., Halonen, D., Horton, M., Kass, R.,
and Scott, P., User Interface Requirements for Face to
Face Groupware. In Proc. CHI'90 (Seattle, WA, April
1990), pp. 303-312. ACM, New York, 1990.

1 3 . Gaver, W. W., Smith, R. B., and O'Shea, T., Effective
Sounds in Complex Systems: The Arkola Simulation.
In Proc. CHI'91 (New Orleans, LA, April 1991), pp.
85-90. ACM, New York, 1991.

1 4 . Gibbs, S. J., LIZA: An Extensible Groupware
Toolkit. In Proc. CHI'89 (Austin, TX, May 1989),
pp. 29-35. ACM, New York, 1989.

1 5 . Henninger, S., Computer Systems Supporting
Cooperative Work: A CSCW'90 Trip Report. In
SIGCHI Bulletin, July 1991, Vol. 23, No 3, pp. 25-
28.

1 6 . Knister, M. J., and Prakash, A., DistEdit: A
Distributed Toolkit for Supporting Multiple Group
Editors. In Proc. Third Conference on Computer-
Supported Cooperative Work (Los Angeles, CA,
October 1990). ACM, New York, 1990.

1 7 . Lamport, L., Time, Clocks and the Ordering of
Events in a Distributed System, Communications of
the ACM, July 1978, Vol. 21, No. 7, pp. 558-565.

1 8 . Lauwers, J. C., and Lantz, K., Collaboration
Awareness in Support of Collaboration Transpa-
rency: Requirements for the Next Generation of
Shared Window Systems. In Proc. CHI'90, (Seattle,
WA, April 1990), pp. 303-312. ACM, New York,
1990.

1 9 . Minneman, S. L., and Bly, S. A., Managing a Trois:
a Study of a Multi-User Drawing Tool in Distributed
Design Work. In Proc. CHI'91 (New Orleans, LA,
April 1991), pp. 217-224.

2 0 . Patterson, J. F., Hill, R. D., and Rohall, S. L.,
Rendezvous: An Architecture for Synchronous Multi-
User Applications. In Proc. Third Conference on
Computer-Supported Cooperative Work (Los
Angeles, CA, October 1990). ACM, New York,
1990.

2 1 . Rein, G. L., and Ellis, C. A., rIBIS: A Real-Time
Group Hypertext System. In International Journal of
Man Machine Studies, Vol. 34, No 3, March 1991,
pp. 349-368.

2 2 . Stefik, M., Bobrow, D.G., Foster, G., Lanning, S.,
and Tartar, D. WYSIWIS revised: Early Experiences
with Multiuser Interfaces. In ACM Transactions on
Office Information Systems, Vol. 5, No 2, April
1987, pp. 147-186.

2 3 . Stefik, M., Foster, G., Bobrow, D. G., Keneth, K.,
Lanning, S., and Suchman, L., Beyond the
Chalkboard: Computer Support for Collaboration and
Problem Solving in Meetings. In Communications
of the ACM, January 1987, Vol. 30, No 1, pp. 32-
47.

