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ARTICLE

Transparency and trust in arti�cial intelligence systems

Philipp Schmidta, Felix Biessmanna,b,c and Timm Teubnerc,d

aAmazon Research, Berlin, Germany; bInformatik und Medien, Beuth University of Applied Sciences, Berlin, 
Germany; cEinstein Center Digital Future (ECDF), Berlin, Germany; dInstitute of Technology and 
Management, TU Berlin, Berlin, Germany

ABSTRACT

Assistive technology featuring arti#cial intelligence (AI) to support 
human decision-making has become ubiquitous. Assistive AI 
achieves accuracy comparable to or even surpassing that of 
human experts. However, often the adoption of assistive AI systems 
is limited by a lack of trust of humans into an AI’s prediction. This is 
why the AI research community has been focusing on rendering AI 
decisions more transparent by providing explanations of an AIs 
decision. To what extent these explanations really help to foster 
trust into an AI system remains an open question. In this paper, we 
report the results of a behavioural experiment in which subjects 
were able to draw on the support of an ML-based decision support 
tool for text classi#cation. We experimentally varied the information 
subjects received and show that transparency can actually have 
a negative impact on trust. We discuss implications for decision 
makers employing assistive AI technology.
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“The machine knows!” 

– Michael Scott 1

1. Introduction

Arti#cial intelligence (AI) and machine learning (ML) have become increasingly important 

for aiding human decision making in various #elds, including medical diagnosis, political 

predictions, policing, predictive maintenance, and many more (Esteva et al., 2017; 

Nickerson & Rogers, 2014; Susto et al., 2015). For a growing number of applications, ML- 

trained algorithms achieve performance comparable to or even surpassing that of 

humans (Szegedy et al., 2017). In light of the rapid progress of this ‘cognitive automation,’ 

the role of human decision makers, however, represents an often-overlooked factor 

(Ribiero et al., 2016). Speci#cally, recent cases show that many people dislike relying on 

AI and prefer to trust human experts, even if these experts are likely to be wrong (Polonski, 

2018). In light of this apparent clash, and if AI-based decision support systems2 are truly 

meant to bene#t people, understanding human users’ trust in such systems is key. It 

should be considered for at least three reasons.
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First, trust functions as an important prerequisite of technology acceptance, adoption, 

and use in general (Venkatesh et al., 2016) and for AI in particular (Siau & Wang, 2018). It is 

not surprising that people hesitate to put major decisions into the hands of an AI assistant, 

‘especially when that assistant makes decisions without providing a transparent reason-

ing for choosing one solution over a set of alternatives’ (Polonski, 2016, p. 1). Second, even 

once professionals have adapted AI-based support systems to inform their decisions, trust 

into such systems will be a prerequisite for them to actually base their decisions on the 

system’s predictions, classi#cations, and recommendations. After all, humans still have the 

#nal say on how to deal with the AI’s output in many cases. Third, next to questions 

related to the adoption of AI systems, understanding the processes governing human 

trust in AI is crucial to counteract the potential rami#cations and side-eAects of 1) 

mistakenly denied and 2) unfounded trust. If humans increasingly leverage AI to inform, 

derive, and justify decisions, it also becomes important to quantify when, how, why, and 

under which conditions they tend to overly trust or mistrust those systems.

Most recently, the Machine Learning community as well as the public debate have 

turned towards the comprehensibility of an AI’s decisions, including aspects such as 

transparency, traceability, and hence interpretability (Grzymek & Puntschuh, 2019; 

Koene et al., 2019; Rohde, 2018). The underlying idea behind this stream of research is 

often to foster trust in AI systems by rendering them more transparent, often referred to 

as explainable AI, or XAI. While a substantial body of literature is dedicated to new 

methods of interpretability (Guidotti et al., 2018; Samek, 2019), the relationship between 

trust and the transparency of an AI’s decision remains underrepresented in this research. 

This is why the driving and inhibiting factors of trust into AI are yet to be better under-

stood. Speci#cally, we argue that there are cases in which transparency can actually have 

a detrimental impact on trust into AI. This can, in turn, lead to suboptimal usage of AI, with 

potential rami#cation for decision makers employing such technology but, at least equally 

importantly, also for persons aAected by the outcomes (e.g. patients, defendants in trial; 

(Yong, 2018)). In this paper, we thus consider the following overarching research question: 

RQ: How does insight into a ML-based decision support tool a�ect human decision makers’ 

trust in its predictions?

We report the results of a behavioural experiment in which subjects were able to draw 

on the support of an ML-based decision support tool for text classi#cation. We deliber-

ately focus on a task that does not require expert domain knowledge. The motivation for 

this approach is that it allows for drawing conclusions that are not restricted to a given 

domain or profession. We experimentally varied the information subjects received on the 

tool’s internal process in two dimensions. First, an explanation of the AI’s prediction (by 

highlighting decisive words in the texts) was either shown or not. Second, a score on the 

tool’s classi#cation con dence was either provided or not. Our results challenge the 

common and popular narrative of providing highest possible transparency in order to 

build trust. Quite to the contrary, our results show that providing more insights into how 

an ML system arrives at its decision can have a negative eAect on trusting behaviour. 

Importantly, this eAect occurs predominantly for cases in which the ML system’s predic-

tions are correct, showing that improvident use of transparency within assistive AI tools 

can in fact impair human performance. Our #ndings have important implications for the 
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design and provision of algorithmic transparency where more insight may not always be 

preferable.

The remainder of this paper is organised as follows. In Section 2, we review related 

work on trust and interpretability of AI and motivate the focus variables of the present 

study. Next, Section 3 presents our experimental design, including task description and 

treatment structure. Section 4 reports our results which we discuss in Section 5. Last, 

Section 6 concludes.

2. Related work

Research on interpretability and user acceptance of AI can roughly be divided into three 

streams. First, there is a recent body of literature that explores how to make an AI’s inner 

decision logic visible from a mostly technical perspective. Second, research on technology 

acceptance considers AI and algorithmic decision support from a general user perspective. 

Third, few recent studies have looked into how speci#c methods for making an AI’s 

prediction transparent aAect user behaviour (e.g. in terms of trust in those predictions) 

on a single-decision level.

2.1. Technical approaches to algorithm transparency

Algorithm transparency and interpretability can be established through various means, 

depending on the application domain, the ML model used, and the type of the model’s 

input and output data. The most straightforward approach would be to #rst understand 

the modelling problem, then de#ne a generative parametric model, #t its parameters to 

the data, and then interpret these parameters. This is the classical approach in engineer-

ing and other disciplines. Unfortunately, for complex data sets, it can be diMcult to de#ne 

a generative model of the data. If one is primarily interested in making predictions given 

some input data, it is much easier to use predictive ML models, such as Neural Networks. 

These models can achieve impressive predictive performance but their inner workings are 

usually neither easy to access nor to interpret (Ren et al., 2015). The research on inter-

pretability methods aims at rendering these predictive models more transparent. One line 

of work in this context is the derivation of importance scores for each feature used in the 

prediction of a model. These scores can then be used to interpret the prediction in the 

feature space, for instance, one can inspect the top ranking features by highlighting 

words in text classi#cation (Horn et al., 2017; Ribiero et al., 2016) or mask the lowest 

ranking pixels in image classi#cation (Alber et al., 2018; Lundberg & Lee, 2017; Montavon 

et al., 2018; Ribiero et al., 2016). Such techniques have successfully been applied in 

algorithmic diagnosis and have uncovered sample-induced Naws such as the recognition 

of horses based on watermarks within the image (Lapuschkin et al., 2019). These feature 

scoring methods can be broadly categorised into two groups. The #rst group consists of 

model-agnostic explanations (Guidotti et al., 2018; Lundberg & Lee, 2017; Pacaci et al., 

2019; Ribiero et al., 2016), also referred to as black-box explanation methods. The second 

group of feature scoring methods are explanations that are tailored to speci#c model 

classes, for instance, explanations for neural networks (Alber et al., 2018; Montavon et al., 

2018; Simonyan et al., 2013; Zeiler & Fergus, 2014) or linear models (Haufe et al., 2014). 

Here, we will focus on the latter explanation method as it is eMcient to compute and was 
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shown to be superior in terms of explanation quality as compared to more expensive 

model-agnostic approaches (Schmidt & Biessmann, 2019).

2.2. AI, trust, and technology acceptance

The literature on organisational behaviour and psychology suggests that individuals’ 

intention to use a new technology is determined by perceptions and beliefs about the 

technology (Ajzen, 2014). In this regard, the Technology Acceptance Model (and its 

various descendants) represent suitable and often-applied frameworks to capture the 

behavioural aspects of technology adoption and acceptance. While the original model 

focussed on perceived usefulness and ease of use (Davis, 1989; Venkatesh & Davis, 2000), 

numerous extensions and variations have considered additional drivers, factors, modera-

tors, and outcomes within the broader area of technology acceptance (Venkatesh et al., 

2016). Among these, trust has emerged as one key driver of technology acceptance 

(Gefen et al., 2003).

Trust in technology should be diAerentiated from trust towards humans. In fact, depend-

ing on the speci#c de#nition of trust, in particular when it includes the willingness to accept 

strategic uncertainty, that is, when facing an actor with agency and intentions, it can be 

argued that there is no such thing as trust into machines. One of the most commonly 

adopted de#nitions refers to trust as the ‘willingness of a party to be vulnerable to the 

actions of another party based on the expectation that the other will perform a particular 

action important to the trustor, irrespective of the ability to monitor or control that other 

party’ (Mayer et al., 1995, p. 712). This understanding of trust is somewhat less strict in the 

sense that it does not explicitly require agency or intentions and would hence allow for an AI 

as the trustee. The notion of trust is typically conceptualised along the dimensions ability, 

benevolence, and integrity (Mayer et al., 1995). For technology, for instance, Söllner et al. 

(2012) propose to diAerentiate trusting beliefs along with the dimensions performance, 

process, and purpose – while Lippert and Swiercz (2005) argue for the dimensions utility, 

reliability, and predictability. Compared to trust towards humans, prior research has argued 

that people tend to have less trust towards AI by default, where ‘people are especially averse 

to algorithmic forecasters after seeing them perform, even when they see them outperform 

a human forecaster’ (B. J. Dietvorst et al., 2014, p. 1). This innate scepticism towards AI was 

termed as ‘algorithm aversion’. In follow-up work, B. Dietvorst et al. (2018) showed that 

people were more than twice as likely to rely on algorithmic forecasts if they were allowed to 

change a fraction of the AIs predictions compared to when they were bound what the AI 

predicted. Moreover, trust in ML is found to build up slower and to decrease faster than trust 

in humans (Dzindolet et al., 2003). This may partly be explained by the high media attention 

on instances in which AI went wrong, including a Google algorithm that classi#ed Afro- 

Americans as gorillas,3 self-driving vehicle accidents and near misses,4 Amazon’s Alexa 

device oAering adult content to children,5 or Microsoft’s Twitter chatbot that developed 

into a white supremacist within only one day.6

To create trust in AI-assisted tools, Hind et al. (2018) propose to include a supplier 

declaration of conformity (SDoC) which is a long-established procedure in other sectors 

such as transportation and telecommunication. Hengstler et al. (2016) present 

a comprehensive overview of existing case studies in transportation and medical sectors 

that allow insights into how #rms systematically increase trust in applied AI. Especially in 

4 P. SCHMIDT ET AL.



safety-critical applications, for instance, for self-driving vehicles, it was proposed to 

integrate physiological (Hutchins & Hook, 2017) and ethical factors (Adnan et al., 2018) 

as part of technology acceptance models.

2.3. Algorithm transparency and trusting behaviour

A representative EU survey tested for knowledge and participants’ perception of algo-

rithms (Grzymek & Puntschuh, 2019). Overall, while respondents see more advantages 

than disadvantages when it comes to algorithms, yet 78% responded that algorithms 

needed more rigorous control. At the same time, around half of the sample reported little 

to no knowledge about algorithms. Multiple studies found that trust into assistive AI 

technology can be increased most eAectively by confronting users with an easy to 

understand explanation of why a speci#c prediction was made (Herlocker et al., 2000; 

Poursabzi-Sangdeh et al., 2018; Zhao et al., 2019). The reported #ndings have implications 

for advice-giving-systems which are increasingly used on e-commerce platforms such as 

Amazon.com and Google Shopping. The degree of simulatability (Lipton, 2016), that is, 

how accessible model predictions are to humans, aligns well with the aforementioned 

eAects on trust.

When it comes to quanti#cation, it is important to note that trust is measured 

diAerently in diAerent research #elds. A straightforward approach used in many #elds is 

to ask subjects about their trusting beliefs or trusting intentions towards a certain entity, 

typically by means of standardised survey instruments (e.g. Gefen & Straub, 2003). 

Naturally, such survey scales can only partially assess trust as per the de#nition of making 

oneself vulnerable to the action of another party, as ticking boxes in a survey do not require 

the actual critical behaviour and hence is not associated with vulnerability. Self- 

assessments must thus be considered as a somewhat weak indicator. Behavioural trust, 

in contrast, infers trust by considering actual behaviour and can hence considered to be 

a stronger indicator. For instance, leaving one’s kids with a certain baby sitter suggests the 

parents to have trust towards that person. However, this indicator also comes with some 

caveats as well. Behaviour is complex and driven by a multitude of factors (e.g. monetary 

constraints, lack of alternatives, . . .). Behaviour will hence always represent a proxy for 

trust, where researchers must be aware of further potential drivers that determine 

behaviour.

Now, following this thought, trust towards an AI can be operationalised based on 

behaviour. Speci#cally, decision makers that draw on the assistance of an AI will ultimately 

depend on their decisions, for instance, #nancially or with regard to their reputation. At 

the same time, they have some uncertainty about the AI’s accuracy. In this sense, trust 

towards an assistive AI tool can be operationalised as the probability with which the 

decision maker follows the model’s prediction (Poursabzi-Sangdeh et al., 2018; Schmidt & 

Biessmann, 2019). As stated above, there will of course exist other, additional drivers of 

behaviour. The decision maker may, for instance, be convinced of a certain diagnosis 

a priori and the AI system incidentally makes the same prediction. While a single decision 

can hence not be considered a reliable clue, observing and comparing the frequency of 

multiple decisions – especially in relative terms to other groups or treatment conditions – 

will very well function as a behavioural proxy of trust.
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In behavioural decision making, other measures such as the weight of advice (Gino & 

Moore, 2007; Yaniv, 2004) is used to measure trust and when and how advice is accepted. It 

was found that several factors drive acceptance of advice, such as one’s own knowledge and 

con#dence, and whether tasks are perceived as diMcult or easy (Yaniv, 2004). In the 

mentioned studies, it was found that participants generally had a bias towards self- 

reliance in decision making, therefore discarding advice even in situations where it would 

have been bene#cial. The self-reliance bias could be corrected for when, over time, parti-

cipants were able to learn that the AI assistance is indeed superior (Dzindolet et al., 2003).

To summarise, the majority of the literature suggests that explanations and transpar-

ency of AI systems should lead to more trust into an AI’s prediction. Yet there is also 

evidence for algorithm aversion. In those cases of unjusti#ed mistrust in AI, should we 

expect that transparency helps to rebuild trust? Or should we expect the opposite, that is, 

would explanations decrease trust further in these cases? There is evidence that the 

mechanisms underlying the build-up and decay of human trust into AI systems are 

diAerent from those governing trust between humans or from human trust in classical 

technology that does not learn from data. But the exact conditions under which transpar-

ency aAects trust in AI systems are not well represented in the existing literature. This 

work explores several aspects of transparency in AI systems and probes the hypothesis 

that transparency increases trust in AI systems.

3. Methods

To address the outlined research question, we conducted an online experiment in which 

human participants take the role of decision makers in a series of classi#cation tasks. Given 

their high practicality and applicability for general audiences, we use text classi#cation tasks.

3.1. Classi�cation task

In the classi#cation task, participants were asked to classify movie reviews’ sentiment from 

the IMDb database as either positive or negative. The data used is publicly available and is 

described in more detail in (Maas et al., 2011). Subjects were incentivised to correctly 

classify as many reviews as possible by the prospect of a bonus payment. Importantly, 

participants had the prediction of an ML-based decision support tool at their disposal 

which predicted the movie review either to be positive or negative. A detailed description 

of the training procedure and the training data preparation is provided in Appendix B.

Participants engaged in 50 consecutive classi#cation tasks. All participants were exposed 

to the same reviews. Positive and negative reviews occurred equally often (25 times each) 

and had varying degrees of (relative) ease. Task ease is based on the frequency of correct 

(unaided) classi#cations from prior work (Schmidt & Biessmann, 2019). These values range 

between 0.5 (chance level performance) and 1.0. In order to avoid learning and adoption 

eAects, the true sentiment values were not revealed throughout the experiment.

We selected a set of reviews for which the ML-based decision support tool’s classi#ca-

tion accuracy was 80%. Moreover, this accuracy was symmetrical across positive and 

negative reviews. Given this design, all other conventional performance measures such 

as precision, recall, and speci#city also amount to 80%. Previous research on IMDb review 

classi#cation found that typical human accuracy ranges between 75% and 80% (Schmidt 
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& Biessmann, 2019). Participants were hence informed that the AI’s performance was 

similar to that of humans, while not perfect. This information was important to avoid 

participants employing strategies in which they simply copy the prediction of the AI 

system. We provide the experimental instructions in Appendix A.

Figure 1 shows a sample screenshot of the experiment’s UI. Depending on the condi-

tion, participants either saw the highlights and/or con#dence score. In this case, both 

word highlighting and con#dence were displayed.

3.2. Treatment structure

We considered two means by which the ML-based decision support tool ‘explained’ its 

predictions to participants. First, we considered the display of word highlighting within the 

movie reviews. Speci#cally, words that had a particular impact on the tool’s classi#cation 

were highlighted, typically highly positive or highly negative expressions. For each movie 

review, the three most relevant words were highlighted. The technical details on how 

these explanations were computed are described in Appendix C. Depending on the 

treatment condition, these highlights were either present or not. Second, we considered 

the display of a con dence score. With this score, the tool provided some insight into how 

certain it was about its prediction. The score is derived directly from the logistic regression 

estimates for positive (ppos) and negative (pneg) sentiment and is encoded on a scale from 

0% (purely guessing) to 100% (absolute con#dence). This score was either displayed or 

not displayed, depending on the treatment condition.

We considered each of the resulting 2 × 2 = 4 combinations of these two treatment 

variables (i.e. full-factorial design). To avoid cross-over and sequence eAects, each parti-

cipant engaged in exactly one of these conditions (i.e. between-subjects design). Figure 2 

summarises the treatment design. Subjects were allocated to treatments at random; there 

occurred no signi#cant diAerences across treatments with regard to age, gender, or 

individual disposition to trust.

3.3. Procedure and sample

Participants were recruited via the online platform Proli#c.ac (Palan & Schitter, 2018). They 

received a payoA comprising an unconditional part and a performance-contingent part. 

Figure 1. Screenshot of the labelling UI. The to-be-classified text is shown on top with the AI 
prediction, in this case including its confidence, below it. Participants were asked to select either 
a positive or negative sentiment for the given movie review and were then able to submit the answer.
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Speci#cally, they received an unconditional base payoA of GBP 1.50 and an additional 

payoA of GBP 0.80 if their classi#cation accuracy was equal to or above 85%. Importantly, 

participants were informed that the AI’s accuracy was below this threshold so that simply 

adopting the AI’s predictions would fail to qualify for the bonus payment.

After completing the classi#cation tasks, we surveyed participants’ on their general 

disposition to trust using validated survey instruments (Gefen, 2000). Overall, 200 parti-

cipants took part in the study, 103 of which were female. Participants’ age ranged 

between 18 and 71 years, with a mean of 29.1 and a median of 27 years. The great 

majority of subjects was from the UK (35%), other European (48%), or English-speaking 

countries such as the US, Canada, or Australia (12%). Average classi#cation accuracy was 

87% (minimum: 40%, maximum: 98%, median: 90%), where roughly 3 out of 4 participants 

quali#ed for the bonus payment.

4. Results

As a behavioural proxy for trust, we here consider how often subjects followed the AI’s 

prediction across the 50 tasks, that is, their average willingness to depend on the AI. As 

a #rst step of analysis, we consider the overall treatment e�ects of showing highlights and/ 

or the con#dence score on trusting behaviour. Figure 3 (left) illustrates trusting behaviour 

for the diAerent treatment conditions. We observe marked negative diAerences for both 

features. While showing highlights decreases trusting behaviour of about 1 to 1.5 percen-

tage points, showing the con#dence score has an eAect of roughly 2.5 to 3 percentage 

points. This reduction of trust based on the display of highlights and con#dence is also 

reNected in decreases in accuracy (Figure 3, right), where the drop in accuracy is particu-

larly strong when both elements are displayed.

Figure 2. Treatment design.
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To better understand the observed overall treatment eAects and to back up this #rst 

visual assessment statistically, we conduct a series of two-way random eAects logit 

panel regressions with repeated measures per subject. The basic regression equation is 

given as 

yit ¼ α þ

X4

n¼ 1
βn xni þ

X2

m¼ 1
γmxmt þ 2i þ �t þ μit 

where yit denotes whether or not subject i followed the AI’s recommendation for review 

t (and whether or not subject i classi#ed review t correctly, respectively). The variables in xi 
represent subject-speci#c factors that only depend on i, including the treatment dummies 

(Highlights, Con#dence Score), as well as gender and individual disposition to trust. 

Moreover, xt contains the task-speci#c variables (i.e. Task Ease, AI’s prediction correct/ 

incorrect). Last, ε, ξ, and μ denote subject- and task-speci#c errors, as well as the residual 

model error. These basic models (I(a) and II(a)) are then extended by interaction eAects 

(I(b) and II(b)). All results are summarised in Table 1.

Model I(a) con#rms the negative eAect of displaying the con#dence score (β1 = −.259, 

p< .05), while – overall – displaying highlights does not have a signi#cant eAect (β2 
= −.136, p= .173). To fully understand the eAects of the tested features, we control for 

the respective interactions with the AI’s correctness in Model I(b). Here, we see that the 

main treatment eAects are driven by those tasks in which the AI’s prediction is actually 

correct. For these cases, the transparency features have strong negative eAects (high-

lights: β1 = −.358, p< .01; con#dence: β2 = −.513, p< .001). The positive and signi#cant 

interaction eAects between the treatment variables and the dummy variable ‘AI is 

incorrect’ indicate that these eAects are close to zero in case the AI’s prediction is incorrect 

anyway (Highlights: −.358 + .436 = .078, Con#dence Score: −.513 + .494 = −.019). In other 

words, for incorrect AI predictions, subjects’ trusting behaviour does not (or only hardly) 

depend on the tested transparency features, while these features do make a substantial 

diAerence for correct predictions.

Controlling for task-speci#c properties, we see that Task Ease does not signi#cantly 

aAect trusting behaviour (γ1 = .106, p= .659). In contrast, the AI’s correctness has a strong 

eAect, where expectedly, trusting behaviour is consistently lower if the AI is incorrect (γ2 
= −3.863, p< .001). Last, none of the considered subject-speci#c control variables exerts 

any signi#cant eAects on trusting behaviour (females: β3 = −.053, p= .602, disposition to 

trust: β4 = .083, p= .128).

Figure 3. Overall treatment effects on Trust in AI (left) and Accuracy (right); standard errors indicated.
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Overall, we observe very similar results for subjects’ classi#cation accuracy which are 

summarised in Models II(a) and II(b). Here, again, accuracy suAers from showing highlights 

(β2 = −.321, p< .05) and the con#dence score (β2 = −.501, p< .01) for correct AI predictions, 

while these eAects are – by and large – annihilated for incorrect predictions.

4.1. Trust, task ease, and AI err

As a next step, we take a closer look at how speci#cally Task Ease and AI correctness 

aAected trusting behaviour and accuracy. To do so, Figure 4 displays Trust in AI (left) and 

Accuracy (right) diAerentiated by Task Ease (x-axis) and whether the AI was correct (blue) 

or not (red). As can be seen, both trust and accuracy are markedly higher in case the AI’s 

predictions were correct. In particular, this holds for tasks of equal diMculty.

Figure 4 allows for another interpretation. For the blue dots, Trust in AI should be 100% 

whereas for the red dots, it should be 0% (for perfect accuracy). As can be seen, the area/ 

gap between the blue dots and the 100% level is much smaller than the area between the 

red dots and the 0% level. Hence, in relative terms, trusting (and hence following) wrong 

Table 1. Two-way random effects logit panel regression results (*** p<.001; ** p< .01; * p< .05).

Dependent Variable Trust in AI Accuracy

Model I(a) I(b) II(a) II(b)

Coef. 
(SE)

Sig. Coef. 
(SE)

Sig. Coef. 
(SE)

Sig. Coef. 
(SE)

Sig.

Highlights −.136 −.358 ** −.217 −.321 *
(.100) (.122) (.132) (.152)

Confidence Score −.259 * −.513 *** −.198 −.501 **
(.101) (.124) (.133) (.154)

AI is incorrect −3.387 *** −3.863 *** −2.199 *** −2.612 ***
(.076) (.131) (.075) (.133)

Highlights × Incorrect .436 ** .209
(.139) (.146)

Confidence × Incorrect .494 *** .583 ***
(.140) (.147)

Gender: Female −.047 −.053 .052 .046
(.103) (.102) (.136) (.135)

Disposition to Trust .091 .083 .135 .127
(.056) (.055) (.074) (.073)

Task Ease .107 .106 3.148 *** 3.151 ***
(.241) (.241) (.270) (.270)

Intercept 2.648 *** 2.940 *** .356 .612
(.297) (.302) (.360) (.366)

N 9,672 9,672 9,672 9,672

Figure 4. Trust in AI and accuracy by task ease and AI prediction correctness.
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AI predictions is reNected in much larger error rates than deviating from correct predic-

tions. Note, however, that for these cases, the design features for transparency do not 

seem to contribute to mitigating the problem.

This reasoning is summarised in Table 2. As shown there, the human error rates (i.e. 

falsely trusting or not trusting the AI) depend on the AI’s correctness. Speci#cally, the error 

is more than six times higher when the AI’s prediction is incorrect (37.4%) versus when it is 

correct (6.2%). As shown in Figure 4, this observation is not driven by task ease but holds 

across the scale for diAerent levels thereof.

5. Discussion

Research on new methods of transparent AI is often considered key to building trust into 

AI systems. As the results of this experiment point out, higher levels of transparency may 

not necessarily imply higher levels of trust or ‘compliance’ when it comes to dealing with 

an AI’s predictions, classi#cations, or recommendations. This #nding challenges the 

common narrative on transparency but also aligns well with recent work (Poursabzi- 

Sangdeh et al., 2018). To the best of our knowledge, no related work has described the 

eAect of overly trusting wrong predictions. This eAect, as pointed out in the previous 

section, is especially reNected for diMcult tasks. An example for too much trust in wrong AI 

predictions with an explanation is shown in Figure 5: An incorrect AI prediction with high 

con#dence that is followed suit by humans. In this particular example, the accuracy 

reached by the subjects was 76 ± 5% (mean ± standard deviation) on average when 

explanations were shown and 85 ± 4% when not. The highlighted words (with positive 

sentiment) are intuitively understood and appear to lead subjects astray. If no explana-

tions are provided participants are less likely to focus only on these positive words and 

Table 2. Confusion matrix and human error types and rates.

Subject Trusts AI Human Error

No Yes Rate Type

AI Prediction incorrect 1211 725 37.4% False Positive
correct 483 7253 6.2% False Negative

Figure 5. Example for unjustified increase in trust when showing explanations. The AI incorrectly 
predicted positive sentiment since it ignored the negation and focused on the positive sentiment in 
some words. As the explanation highlighted these positive words but not the negation, transparency 
influences subjects to ignore the contextual information important to correctly predict the item as 
negative.
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more likely to also read the negation, which leads to higher accuracy. Note that negation, 

as many other often subtle linguistic phenomena like sarcasm, can be challenging even 

for sophisticated state-of-the-art AI systems.

This eAect of overly trusting wrong but intuitive predictions is however not what seems 

to drive the negative eAect of transparency on annotators performance. The estimates of 

Model I(b) in Table 1 demonstrate that the dominant factor are tasks in which the AI’s 

prediction is actually correct and explanations appear to decrease trust. An example of 

not enough trust in correct predictions due to transparency is shown in Figure 6. Here, the 

prediction was correct. However, as the explanations are neither related to positive nor 

negative sentiment intuitively, subjects tended to choose the opposite of what was 

predicted by the AI, possibly assuming that the prediction was incorrect due to the 

confusing highlighting. Subjects’ average accuracy in this example went down from 

96 ± 2% when no explanations were shown to 89 ± 3% when they were.

This example demonstrates that lack of trust can emerge from unintuitive explanations 

of ML models. Such mistrust is probably justi#able. While we are developing and using ML 

methods powerful enough to surpass the cognitive abilities of humans in some applica-

tions, many of these methods are far from being investigated suMciently to understand 

their behaviour (Zhang et al., 2017). Put simply, models with enough parameters can learn 

classi#cation rules that might just work well on that training data set, but might not be 

intuitive nor generalise well. An algorithm may in fact learn some Nawed sample-speci#c 

feature such as a horse website imprint or recognise boats based on the presence of water 

(Lapuschkin et al., 2019). Latter study demonstrated that explicability can help to debug 

ML systems. In this case, experts were dealing with the AI’s predictions and visualisations. 

Our results complement these #ndings with models, predictions, and explanations sub-

ject to the evaluation of a general clientele. If those #nd an AI’s explanation unintelligible 

(accessible), then transparency may lead to distrust (too much trust) into the prediction. 

Both approaches, debugging ML systems and calibrating human trust in AI, are important 

for a responsible use of such systems.

Our results indicate that there may exist cases when humans should trust an AI more 

than they actually do. Indeed, we #nd that an AI that reports on its con#dence may suAer 

from the ‘insecure overachiever’ syndrome. As shown in Figure 1, humans are more likely 

to ignore correct predictions when those are accompanied by an indication of con#dence. 

Examples (such as in Figure 6) indicate that this could be due to unintuitive explanations. 

Figure 6. Example for decrease in trust when showing explanations. The AI prediction was correct. But 
the explanation did not highlight words that could be intuitively related to either positive or negative 
sentiment from a human ‘common sense’ perspective.
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Such glitches in human-machine interaction could have detrimental consequences on the 

societal level (Rahwan et al., 2019). Just because the prediction of an AI is not intuitively 

comprehensible, people should of course not blindly distrust them. In fact, this sort of 

trust is required for synergetic eAects in human-machine interaction: algorithms can 

identify features and strategies that have thus far been unfamiliar or completely unknown 

to humans. This has, for instance, reportedly been the case for Alpha Zero’s approaches to 

play the games of Go and Chess.7 For sentiment analysis based on textual features, 

humans may intuitively look for signal words such as ‘amazing’, ‘great’, or ‘awful.’ An 

algorithm, however, may also recognise distinct patterns of punctuation such as an 

increased use of commas or exclamation marks, or words that are not intuitively related 

to one of the predicted classes. On the one hand, this may appear uncommon to humans 

and, when the AI supports its recommendation by such a feature, may lead humans to 

question its ability and correctness. It can, on the other hand, unlock new insights and 

improve rules for decision making in the long run.

5.1. Practical implications

Responsible use of AI technology requires the right level of user trust in the system. Our 

#ndings demonstrate that humans often fail to trust an AI when they should, but also that 

humans follow an AI when they should not. In particular, the #rst eAect is exacerbated when 

explanations are provided along with the AI predictions. These results have important 

practical implications for the design of AI systems in general and explainable AI in particular. 

Based on our #ndings, we propose to not only train AI systems before bringing them to 

bear – but also to ‘calibrate’ them to the human users that will ultimately interact with them. 

Building assistive AI systems and ensuring their responsible use hence requires a multi- 

disciplinary perspective to fully understand potential trust eAects. More concretely, human 

decision makers, for instance, policy-makers, judges, or medical practitioners that consult AI- 

based decision support should undergo thorough training of ML basics and diagnostics, 

learn about accuracy and false positive/negative errors, including illustrative examples for 

both unfounded trust and unfounded distrust in the provided predictions. In a way, also 

humans may have to be calibrated to the AI to improve outcomes. In practice this could be 

implemented through experiments on users of actual assistive AI systems.8

Another implication of our results is that the right level of trust depends on the 

explanations provided to humans about an AI’s prediction. Consequently, when design-

ing human-AI interaction, algorithmic transparency and interpretability should be eval-

uated and implemented carefully to allow for synergies. For instance, displaying 

explanations that decrease the accuracy of a human-AI team should be avoided. This 

opens up a research area in and by itself: Behavioural AI. Following Gary Kasparov’s call for 

mixed human-AI teams (Quach, 2018), we suggest that research is needed that system-

atically explores under which transparency regimes, mixed human-AI teams perform best, 

not only in terms of accuracy but also in terms of time needed for a decision.

Next to these application-speci#c considerations, on a more general level the respon-

sible usage and right level of trust in an AI also depend on cognitive biases related to 

technology acceptance of a society. These factors should therefore be considered when 

designing and deploying assistive AI to the general public. Our #ndings challenge the 

common narrative of the positive eAects of transparency and suggest that it is important to 
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not only provide transparency, but also to make sure users also understand the means of 

transparency. In other words, it is not enough to lighten up the black box – people also 

need to know whether the Nashlight uses regular or black light (to use the same metaphor).

5.2. Limitations and future work

In this study, we deliberately focussed on a task that does not require expert domain 

knowledge. This approach is motivated by allowing to draw conclusions that are not 

restricted to a given domain or profession.

As this study was intentionally conducted with a narrow focus for a particular task and 

model, future work should broaden the scope by including diAerent tasks and feedback 

mechanisms. The data set used in this study was deliberately chosen such that the model 

performed comparable to humans (that is, worse than it could have), and the model was 

not particularly sophisticated either. The question how varying performance would 

impact the eAect of transparency on trust into an AI will de#nitely deserve closer atten-

tion. More sophisticated systems will also pick up more of the language structure needed 

to correctly interpret the semantics of natural language. Better text classi#cation has the 

potential to learn representations of text that are possibly more similar to how humans 

process natural language. On the Nipside, these systems can also be more diMcult to 

interpret than the simple linear model used in this study. It is not unlikely that the 

inNuence of transparency on human trust will depend both on the model’s capability to 

produce highly accurate predictions as well as its complexity.

Future work should therefore further study AI-based decision support, not only for 

text but also other input domains such as images. Understanding how trust is driven 

by diAerent models and their transparency is a valuable contribution to the research 

community as well as a crucial element for decision makers across many domains.

5.3. Concluding note

We have studied how trust into an AI’s predictions is aAected by the presence of two 

auxiliary measures of transparency: relevant feature highlighting and con#dence scores. The 

idea that transparency will foster trust in (assistive) AI technology is one of the main drivers 

behind XAI research. In light of the public debate around XAI, our results challenge this 

popular narrative of the desirability of maximal algorithmic transparency. Contrary to that 

narrative and complementing previous work, we #nd that transparency can have negative 

eAects on trust and report cases of mistrust when an AI prediction is correct as well as too 

much trust when an AI prediction is wrong. Hence, responsible usage of AI systems will 

require both careful calibration of the AI system to perform well in terms of common 

performance metrics but also a ‘calibration’ of the level of human trust into its prediction.

Notes

1. https://www.youtube.com/watch?v=DOW_kPzY_JY.

2. Within the scope of this paper, we refer to Assistive AI, based on ML classi ers for decision 

support. For the sake of brevity, we will simply refer to this as ‘AI’ or ‘AI system’, knowing that 

represents a simpli#cation.
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3. https://twitter.com/jackyalcine/status/615329515909156865.

4. https://www.nytimes.com/2016/09/15/business/fatal-tesla-crash-in-china-involved-autopilot 

-government-tv-says.html; https://www.nytimes.com/2016/07/01/business/self-driving-tesla- 

fatal-crash-investigation.html.

5. https://www.entrepreneur.com/video/287281.

6. http://blogs.microsoft .com/blog/2016/03/25/learning-tays- introduction/#sm. 

00000gjdpwwcfcus11t6oo6dw79gw.

7. https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and- 

go.

8. In fact, performance tests of click-workers usually follow that idea.

9. Taken from https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extrac 

tion/_stop_words.py.
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Appendix A. Experimental Instructions

Welcome and thank you very much for participating in this experiment!

In this experiment, you will be asked to classify a series of IMDB movie reviews as either positive or 

negative. Your classi#cations will be compared to the review authors’ own classi#cation (i.e. the 

‘true’ review tendency). If you achieve an accuracy at least 85%, you will receive a bonus payment of 

0.80 £.

For your decisions, you will be able to draw on the help of an Arti#cial Intelligence (AI) classi#er. 

This AI was trained on a large amount of movie reviews and has an accuracy somewhat above 

average human accuracy. Note, however, that the AI is not perfect and that its accuracy is below the 

bonus payment threshold (see above). Simply adopting the AI’s prediction all the time will thus fail 

to qualify for the bonus payment with certainty. 

if (highlights) {

In addition to its prediction (positive or negative), the AI will highlight several keywords 

within the movie review that were particularly relevant for its prediction. In this sense, the 

AI attempts to ‘explain’ its decision to you.

}

if (con#dence) {

if (highlights) {

In addition to its prediction (positive or negative),

}

else {

Moreover,

}

the AI will indicate its con dence with regard to prediction. This score ranges from 0 to 

1, where lower scores mean that the AI is uncertain about its prediction (i.e. it thinks that it 

is close to guessing) while higher scores mean that the AI is con#dent about its prediction.

}

After you have submitted your classi#cation for one movie review, the next review appears on the 

screen. Overall, there will be 50 movie review to classify as either positive or negative.

After you have completed all classi#cation tasks, we will ask you to #ll out a short questionnaire. 

After that, a completion link will lead you back to Proli#c. Please note that it is important to conduct 

the entire experiment in order to qualify for any payouts.

Once again, thank you very much for taking part in this experiment!

Let’s start!

Appendix B. Machine Learning Model

The support tool used employed a classi#er that operated on unigram bag-of-words features (word 

frequency counts in each review), normalised by term frequency and inverse document frequency. 

English stopwords9 were removed prior to feature extraction. Bag-of-words feature vectors were 

used to train a regularised multinomial logistic regression model with stochastic gradient descent 

(SGD), using the python library sklearn and a regularisation parameter of 10−4 (Schmidt & 

Biessmann, 2019). Training data were the 25,000 movie reviews in the training data set of Maas 

et al. (2011), these data points were not used for anything but the training phase; model evaluation 

data as well as the data for the main experiment of this study were taken from the other 25,000 

movie reviews in the referred study’s test set.
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Appendix C. Explanation Generation

We establish algorithmic transparency by ‘explaining’ the AI’s predictions with word highlighting. 

More speci#cally we highlighted the top three words most relevant to the ML model prediction. This 

requires to compute feature importance scores for each word in a review. For computing such 

importance scores, one needs to choose from a plethora of methods (for more comprehensive lists, 

we kindly refer to Guidotti et al. (2018) and Samek (2019)). For this study, we employ the method 

proposed by Haufe et al. (2014), based on two reasons. For one, it is simple to implement 

and second it can be shown that this method compares favourably to other popular methods in 

empirical studies on interpretability quality (Schmidt & Biessmann, 2019). The generation of the 

importance scores for each word (or unigram feature; following Equation 6 from Haufe et al., 2014) 

yields class-speci#c feature scores of ak ¼ X`ykwhere ak is a d-dimensional vector of importance 

scores for each of the d words in the entire training corpus, X is a n-by-d matrix of bag-of-words 

features with n rows corresponding to the n reviews in the test data set and yk is a n-dimensional 

vector with the predictions of the ML model for class k. For simplicity of notation we here assume 

that both the data as well as the predictions are centred and normalised to unit variance. With this 

assumption the importance scores are simply the covariance between the predictions of each class 

and each bag-of-word feature. To generate the explanations (presented to participants as high-

lighted words for each review text), we selected the feature importance scores ak associated with 

the predicted class k, and ranked the words in a text according to the element-wise product of 

features xk and feature/prediction co-variances ak . The highlighted words were those that were 

present in the text and scored high in terms of their covariance between features and model 

predictions. In our study we chose to highlight the three most highly ranked words by the 

aforementioned score. A python notebook with the entire data preprocessing, training and gen-

eration of explanations is provided in the accompanying GitHub repository.
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