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1. Evidence suggests that insufficient transparency is a common problem across much of ecology and 18 
evolution. Results and methods are often reported with insufficient detail thereby hampering 19 
interpretation and meta-analysis, and many results go entirely unreported. Further, these unreported 20 
results are often a biased subset. Thus the conclusions we can draw from the published literature, both 21 
from individual papers and from aggregated results, are themselves often biased.  22 
 23 
2. Journals and other institutions, such as funding agencies, influence the decisions researchers make 24 
about disseminating their results. Various existing policies of these institutions promote or facilitate 25 
practices that are not transparent. However, there is a movement across empirical disciplines, and now 26 
within ecology and evolution, to shape editorial policies to better promote transparency. This can be 27 
done by requiring or encouraging more disclosure, as with the now-familiar data archiving, or by 28 
developing an incentive structure promoting disclosure, such as pre-registration of studies and analysis 29 
plans.  30 
 31 
 32 
Abstract  33 
 34 
To make progress scientists need to know what other researchers have found and how they found it. 35 
Unfortunately, transparency is often insufficient across much of ecology and evolution. Researchers 36 
often fail to report results and methods with detail sufficient to permit interpretation and meta-analysis, 37 
and many results go entirely unreported. Further, these unreported results are often a biased subset. 38 
Thus the conclusions we can draw from the published literature are themselves often biased and 39 
sometimes may be entirely incorrect. Fortunately there is a movement across empirical disciplines, and 40 
now within ecology and evolution, to shape editorial policies to better promote transparency. This can 41 
be done by either requiring more disclosure by scientists or by developing incentives to encourage 42 
disclosure. 43 
 44 

45 
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Science is a uniquely effective tool for understanding the world, and ecologists and evolutionary 46 
biologists have built a robust body of scientific knowledge over the past century. However, several 47 
common practices are limiting progress in these fields. For science to progress, results and clear 48 
explanations of methods must be shared with other scientists.  Although this fundamental principle is 49 
widely understood, practices that cloud transparency of methods and results, such as selective reporting 50 
(see glossary), appear far more common than they should be. This is unlikely to be an issue of deliberate 51 
dishonesty, which we assume is rare in ecology and evolution. Instead, we believe that the unintended 52 
negative consequences of insufficient transparency are often unrecognized by many members of the 53 
scientific community. In addition, the institutions that shape our choices often inadvertently encourage 54 
or reward choices that obstruct transparency [1]. Without sufficient transparency, we are hindered in 55 
our ability to interpret published findings, conclusions based on published literature may be biased or 56 
wrong, and meta-analytical syntheses are weakened [2]. Although these challenges to transparency vary 57 
across disciplines and sub-disciplines, evidence suggests they are often common and present very real 58 
problems for the advancement of ecology and evolutionary biology. In this paper, we first review 59 
evidence of insufficient transparency in ecology and evolutionary biology, and then discuss new efforts 60 
in these fields and in empirical science in general to improve transparency and thus improve scientific 61 
progress.  62 
 63 
 64 
The problems 65 
 66 
Once researchers have collected and analyzed data, they commonly publish only a portion of the results 67 
derived from these data (Fig. 1). Such selective reporting may lead to publication bias (see glossary) if 68 
researchers preferentially publish certain types of results, such as those with the strongest or the most 69 
surprising patterns. However, selective reporting is not limited to the classic ‘file-drawer’ problem in 70 
which a study that does not produce the hoped-for result goes unpublished (e.g., [3]). For instance, 71 
researchers may conduct multiple alternative forms of an analysis and report only the one with the 72 
strongest relationships or lowest p-values. This practice has become known as ‘p-hacking’ (see glossary) 73 
[4, 5]. P-hacking and other forms of selective reporting can be masked by ‘HARKing’, or Hypothesizing 74 
After Results are Known (see glossary)[6]. We may convince ourselves of the validity of selective 75 
reporting in various ways. For instance, human cognitive tendencies, such as confirmation bias (see 76 
glossary) (Box 1)[7], can lead researchers to select evidence that lends the clearest support for a pre-77 
existing hypothesis. Alternatively, selective reporting may not seem problematic as researchers often 78 
tend to be more interested in the existence of patterns than in their absence. However, ignoring weak, 79 
negative, or absent patterns is a major hindrance to our understanding of the biological world. First, the 80 
absence of an effect or the presence of only a weak effect is itself important as we sort through 81 
explanations of how biological systems work. Second, any observed statistical relationship is an estimate 82 
of a true biological relationship, and as an estimate, it is inherently uncertain. Sampling variance results 83 
in some estimates being higher than the true value, and some lower (Type M errors; see glossary), and 84 
some being even opposite in sign (Type S error; see glossary) [8]. If we systematically eliminate the 85 
smaller or contradictory effect sizes (see glossary) from publication, we get a biased picture of the size 86 
of the true underlying effect, and under some circumstances this bias can be extreme [2]. Methods exist 87 
for estimating the effect of publication bias in meta-analysis, but these methods are imperfect because 88 
most are indirect and thus must make major assumptions about missing unpublished results whose true 89 
values we can never know [9]. Therefore, the clearest path towards a reliable average is minimizing bias 90 
in the original sample of statistical effects [2]. The selective reporting behind much publication bias 91 
clearly varies among sub-disciplines and with the type of data reported, but evidence suggests it is 92 
common in many areas of ecology and evolution, as in many other scientific disciplines. Most authors of 93 
this manuscript have engaged in selective reporting at one or more points in their pasts, sometimes at 94 
the request of reviewers or editors, and anecdotal evidence from conversations with others suggest it 95 
may be widespread and frequent. However, it is not just our personal experience that suggests selective 96 
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reporting is common. There is considerable published empirical evidence for publication bias in ecology 97 
and evolutionary biology. 98 
 99 
Under-reporting (see glossary) is the easiest form of selective reporting to document because we know 100 
the analysis was completed; the paper just fails to provide all the details of results or statistical methods. 101 
For instance, studies may include means with no indication of uncertainty around those means, p-values 102 
with no indication of the direction of the trend, or statistical results without the sample size for the 103 
particular subset of data examined. These practices all limit readers’ abilities to build an unbiased 104 
understanding of a system and severely limit the usefulness of data for meta-analysis. A long and 105 
growing list of surveys and meta-analyses has documented widespread under-reporting across many of 106 
our sub-disciplines. Studies in fields including conservation [10], plant ecology [11], behavioral ecology 107 
[12], ecosystem ecology [13, 14], community ecology [15], and others [16, 17] often find that around 108 
half of published articles lack at least one key piece of information regarding statistical relationships 109 
(Table 1). Further, where it has been examined these under-reported results were more likely to come 110 
from non-significant comparisons or patterns contradictory to the primary hypothesis [18]. Finally, even 111 
if authors report statistical results, they often do not report how the analyses were conducted in 112 
sufficient detail, which makes it impossible for readers to critique the statistical methodology and to 113 
replicate the analyses. 114 
 115 
Estimating the rate at which results go completely unreported is more challenging. Results could remain 116 
hidden from comparisons that authors decided were uninteresting. Unreported results might also come 117 
from alternative versions of analyses conducted with, for instance, different covariates, interactions, or 118 
subsets of data, as we might expect from p-hacking. One proposed method for identifying p-hacking is 119 
‘p-curve’ analysis, which predicts a clumping of p-values just below 0.05 if p-hacking is common [5]. 120 
Recently p-curve analysis was used to argue that p-hacking was having only modest impacts on biology 121 
[4]. Regrettably, this reassuring conclusion is unwarranted. First, when researchers can include or 122 
exclude covariates depending on their effects on p-values, p-values much smaller than 0.05 can often be 123 
generated in the absence of a real effect [19, 20]. Thus, p-curve analysis focused on a 0.05 threshold can 124 
dramatically underestimate p-hacking in fields where multiple covariates are common [19], such as 125 
much of ecology and evolutionary biology. In fact, p-values have been shown to clump under lower 126 
thresholds (0.01, 0.001, etc.) as well [21], as would be expected if p-hacking often ended with 127 
calculation of a “highly significant” p-value. However, the second problem with these analyses is that 128 
assumptions about the expected distribution of a collection of published p-values are almost certainly 129 
incorrect, and thus inferring bias from the ‘p-curve’ is untenable under most conditions [22]. 130 
 131 
There are, however, other ways to estimate the magnitude of selective reporting. We can compare rates 132 
of publication of statistically significant results with the observed distribution of statistical power (see 133 
glossary) and estimates of average strength of effect. Rates of publication of statistically significant 134 
effects are very high. In “Environment/Ecology” and “Plant and Animal Sciences”, 74% of 150 and 78% of 135 
200 statistical tests, each from a different randomly selected paper, were statistically significant and 136 
supported the researchers’ putative a priori hypotheses [23]. Similarly, in a cross-section of biological 137 
journals, many from the disciplines of ecology and evolution, only 8.6% presented non-significant tests 138 
of the main hypothesis [24]. Part of the explanation for these numbers is likely to be HARKing, in which 139 
authors choose their strongest patterns and build the paper around those results, either de-emphasizing 140 
or leaving out other results. While in some sub-fields of ecology and evolution researchers may often 141 
test hypotheses that are likely to be true, this is probably not the case across all of ecology and 142 
evolution. Further, even if most of our hypotheses were true, the proportion of statistically significant 143 
results should be much lower since many of our studies have low statistical power. This low power 144 
results from sample sizes that are often small, and average effect sizes that are also relatively small (|r| 145 
= 0.19 [25], which should actually be an overestimate [26]) and thus difficult to detect (Box 2). The 146 
resulting statistical power to detect effects of this observed average magnitude in the behavior, ecology, 147 
and evolution literature is in the neighborhood of 20% [27, 28] (Box 2). If we thus conclude that typical 148 
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power is about 20% and we assume that 74% of tested hypotheses are true, we would still expect only 149 
16% of findings to be statistically significant (Box 3) rather than 74%. This is a strong indication of 150 
HARKing and selective reporting. Further, we discuss evidence below which suggests that published 151 
statistically significant results may often be false or inflated relative to the true effect.  152 
 153 
The proportion of significant results that are false positives is, somewhat counter-intuitively, increased 154 
in studies with small samples and low power [29]. This increase happens because the probability of 155 
detecting a true positive declines as power is reduced but the probability of detecting a false positive 156 
remains fixed (typically at 0.05). As a consequence a greater proportion of positives will be false as 157 
power decreases (Box 3). This means that reports of significant findings with low sample size should be 158 
disproportionately likely to be incorrect [30], and of course such underpowered studies are common in 159 
much of ecology and evolutionary biology [27].  160 
 161 
Insufficient statistical power also hinders detection of real effects, and Type II errors (see glossary) 162 
should thus also be common in ecology and evolution [31]. In fact, we predict that Type II error, when 163 
they occur, will often go hand and hand with Type I error, as p-hacking extracts false positives from data 164 
while true relationships go undetected. As described above, the rarity of negative results in the 165 
literature suggests that Type II error is often concealed by HARKing, selective reporting, or both. 166 
 167 
Much of our focus in this paper is on null hypothesis tests because these tests remain the most common 168 
type of statistical analyses in ecology and evolution. However, it is important to note that most of the 169 
choices related to sample size and selective reporting that can bias null hypothesis tests can bias other 170 
threshold tests (e.g., Akaike information criterion: ΔAIC > 2 [32]) and can also generate misleading and 171 
inflated effect sizes. For instance, large effects reported from studies with small samples are likely to 172 
often be inflated, or even of the wrong sign [30]. Examination of 3867 ecological studies from 52 173 
previously published meta-analyses showed that studies with the largest effect sizes tended to have the 174 
lowest samples sizes [33]. Further, ‘p-hacking’ could also be considered ‘effect-size hacking’ since the 175 
same practices produce inflated effect sizes, and if combined with selective reporting, produce a 176 
distribution of published effects that is biased upwards.  177 
 178 
Given that studies with larger effects may be more likely to end up in journals with higher impact scores 179 
[34], perhaps high impact journals are often publishing studies with large effects despite their small 180 
samples and unreliability.  Although there is evidence that in some subsets of the published literature 181 
sample size and journal impact factor are negatively correlated, this trend appears to vary across study 182 
types, and when averaged across a large number of studies (n = 3867), impact factor was uncorrelated 183 
with sample size [33]. While this lack of correlation is certainly better than a consistent negative 184 
correlation, given that studies with larger samples produce more reliable results, it would actually be 185 
preferable to see a positive relationship between sample size and journal impact factor. Further, it is 186 
effect size, not sample size, that predicts the number of citations a study receives [33]. So, not only are 187 
published studies with small sample sizes more likely to report inflated effects (i.e. more prone to Type 188 
M errors), the unreliability of these studies does not dependably deter their publication in high impact 189 
journals or their accumulation of citations. 190 
 191 
It has long been established that as the number of statistical comparisons increases, the probability of 192 
observing patterns that result only from chance (i.e., false positives) also increases [35]. This happens 193 
both with multiple separate tests or if, instead of alternative tests, we combine multiple possible 194 
predictors in the same model [36]. Within a single model we might include a set of different equally 195 
plausible predictors of the variable of interest, or we might include multiple alternative interaction 196 
terms between our predictor of interest and different covariates. In a survey of 50 randomly selected 197 
studies from ecology and evolution, 28 studies (56%) used GLMs with two or more predictors [36], and 198 
none of these 28 considered any type of correction for multiple comparisons to counter the risk of 199 
inflated significance.  We could not locate other attempts to quantify failures to correct for multiple 200 
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comparisons, but uncorrected multiple comparisons appear common in at least some portions of the 201 
literature [12]. Although false positives from multiple comparisons in exploratory analyses need not be a 202 
major problem if we recognize the provisional nature of the results [35], two current practices in our 203 
disciplines make uncorrected multiple comparisons a severe issue. First, multiple comparisons are often 204 
hidden, with researchers conducting multiple tests but only reporting a subset of them. Thus the 205 
likelihood that a result is a false positive is concealed and the scientific community is misled about the 206 
probability that the result is true. Second, calls for tolerating a high false positive rate (to reduce Type II 207 
errors) emphasize the importance of validating findings with replication studies [35], but replications or 208 
other types of independent evaluation are currently far too rare to sort out the false from the true 209 
positives [37, 38].  210 
 211 
The problems outlined above are heavily influenced by the institutions that shape the decisions of 212 
researchers, including journals, funding bodies, and employers. Calls for individual scientists to improve 213 
transparency are not uncommon [e.g., 39, 40, 41], and scientists sometimes respond to these calls. 214 
However, individual scientists, like all people, make decisions in response to the institutions in which 215 
they operate [1]. Funders reward novelty, typically to the complete exclusion of replication, and journals 216 
preferentially publish statistically significant findings, especially if those findings are surprising. These 217 
factors alone would influence researchers’ decisions, but these incentives are even more influential 218 
because universities and research institutes often hire and promote scientists based on their record of 219 
acquiring grant money and the number and impact factors of their publications [1]. Thus to increase 220 
transparency, we should identify components of this incentive structure amenable to improvement.  221 
 222 
Some solutions 223 
 224 
There is growing recognition of the problems hindering empirical progress and of the role that 225 
institutions must play in shaping science in ecology, evolutionary biology, and beyond [42-44]. In 226 
November 2015, representatives (mostly editors-in-chief) from nearly 30 journals in ecology and 227 
evolution joined funding agency panelists and other researchers to identify ways to improve 228 
transparency in these disciplines. At this workshop, strong support emerged for the recently introduced 229 
Transparency and Openness Promotion (TOP) framework (https://cos.io/top/)[45]. TOP currently 230 
consists of eight guidelines that can be implemented by journals and funding agencies. Institutions can 231 
adopt whichever of the eight guidelines they choose, and they can implement these guidelines along a 232 
gradient of stringency. The rapid and extensive spread of support for TOP (>500 journals in < 1 year) 233 
across scientific disciplines appears to herald a revolution in transparency standards.  234 
 235 
Several TOP guidelines simply request or require more thorough reporting of methods, results, data, or 236 
analysis code. Ecologists and evolutionary biologists made important progress in this regard several 237 
years ago when a growing number of journals began requiring the archiving of data [46].  Calls for more 238 
expanded archiving are growing in ecology and evolution [47], and the TOP guidelines can facilitate the 239 
expansion of these types of disclosures. Interestingly, an incentive to archive in the form of a badge may 240 
be similarly effective [48] as requiring archiving [49] and could therefore eliminate much of the 241 
controversy regarding archiving [e.g., 50]. The TOP guideline titled ‘analysis and design transparency’ 242 
calls for discipline-specific guidance regarding what information should be disclosed in publications, and 243 
to that end, the workshop produced a document ‘Tools for Transparency in Ecology and Evolution’ 244 
(TTEE; https://osf.io/g65cb/) that provides checklist questions that journals can provide to authors, 245 
reviewers, and editors to facilitate transparent reporting. Promoting more thorough and consistent 246 
reporting of results and methods through TOP and TTEE should dramatically improve transparency, but 247 
here we also highlight two other TOP components that could have transformative impacts on our field.  248 
 249 
Pre-registration (see glossary), in which researchers register their study and data analysis plan prior to 250 
collecting data, can greatly improve transparency. Although requiring pre-registration (as in clinical trial 251 
research)[51] might thwart publication of valuable exploratory and serendipitous findings in ecology and 252 
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evolution, encouraging pre-registration where appropriate has large potential benefits. Most obviously, 253 
it makes unpublished results more discoverable [45], thus helping to reduce publication bias. Potentially 254 
more important, however, pre-registration of analysis plans ensures that we can identify genuine a 255 
priori planned tests, helping to improve confidence in results because they are unlikely to result from 256 
hidden multiple hypothesis testing and selective reporting. As pre-registration becomes more common, 257 
results that do not come from pre-registered analysis plans become viewed as exploratory, and thus 258 
provisional and less convincing than pre-registered results [52], providing a strong incentive to pre-259 
register studies. We acknowledge that exploratory work is hugely important in ecology and evolutionary 260 
biology and we do not wish to impede it, but it should be more consistently identifiable and it should be 261 
follow-up with planned, ideally pre-registered, tests [35]. A common concern is that pre-registration 262 
ignores the inevitable tweaking of methods that occurs as field projects evolve. However, alterations to 263 
methods or analysis plans can be justified in the published study [e.g., 48]. Reviewers and editors can 264 
decide if the reported methods adhered closely enough to the pre-registration to earn a pre-registration 265 
badge (https://osf.io/tvyxz/wiki/home/). Further, pre-registered analyses and exploratory results can be 266 
published in the same paper when the distinction between them is made clear. In an effort to further 267 
jump start the pre-registration process, the Center for Open Science recently announced the Pre-268 
registration Challenge, in which the first thousand researchers to publish pre-registered research will be 269 
awarded US$1000 each (https://cos.io/prereg/). Independently, institutions promoting systematic 270 
reviews in ecology and conservation have also been encouraging pre-registration 271 
(http://www.environmentalevidence.org/; http://cebc.bangor.ac.uk/). 272 
 273 
The final TOP guideline promotes replications (see glossary) of previously published studies. Replication 274 
to assess validity and generality of prior results is a core practice of science. Exact replication is not 275 
possible, especially in field studies, but various forms of replication, especially when combined with 276 
meta-analysis, are powerful tools for establishing the applicability of hypotheses [37]. Unfortunately, 277 
institutional incentive structures often work strongly against replication in ecology and evolution, 278 
especially replications that seek to closely match methods as part of the process of assessing validity 279 
[37]. Journals and funding bodies explicitly favor novelty. Of course progress requires novelty, but 280 
progress also requires rigorous evaluation of prior findings. Not all studies are of high priority for 281 
replication. The more interesting or important a finding, however, the more important it is to replicate 282 
that study. Allocating funding to replication would certainly increase its frequency, as would journals 283 
adopting policies that explicitly encourage submission of replications (e.g., 284 
http://biotropica.org/reproducibility-repeatability/). As with any other articles, journals can obviously 285 
reject less valuable replication studies. For instance, journals might require sample sizes larger than in 286 
the original study, review of methods prior to conducting the research (i.e., ‘registered reports’; see 287 
glossary) [53], or replications only of original studies that cross some threshold of impact or interest. 288 
Replication is an essential part of doing science in other fields, as, for example, anyone who remembers 289 
the ‘cold fusion in a jar’ debacle of 1989 can attest [54].  290 
 291 
As institutions in ecology and evolutionary biology more vigorously promote transparency, we will 292 
become better able to evaluate the results we read, the average result will be more reliable, and there 293 
will be clearer paths for empirical progress (Fig. 1). We need to deliberately shape the institutions in 294 
which we operate to best facilitate scientific progress. Not all institutions will be equally responsive to 295 
attempts at reform. However, we already know that journals can take deliberate steps to increase 296 
transparency [46], and in response to the TTEE workshop mentioned above, nearly 30 ecology and 297 
evolution journals are engaged in ongoing discussions about adopting TOP guidelines or have already 298 
adopted these guidelines. Funding agencies have also implemented data archiving policies [46] and 299 
could promote transparency in multiple other ways as guided by TOP. The proposals we review here are 300 
only a subset of possible solutions to insufficient transparency. We hope to stimulate a continuing 301 
exploration of these issues. This is an historic crossroads for the practice of science in ecology and 302 
evolutionary biology, and for empirical disciplines in general [45].   303 
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Glossary  315 
  316 
Blind observation: The observer (person making measurements) is unaware of the group membership 317 
(e.g., treatment condition) of the subject being measured 318 
 319 
Confirmation bias: The widespread human tendency to interpret observations as consistent with one’s 320 
belief about how the world works or to preferentially search for and recall such observations 321 
 322 
Effect size: A measure of study outcome that indicates the magnitude and direction of the outcome of 323 
each study. Effect sizes can be based on the magnitude of difference between groups or the strength of 324 
the correlation between variables. Effect sizes can be unstandardized (e.g., mean difference or 325 
covariance) or standardized (e.g., Cohen’s d or correlation coefficient).  326 
 327 
Exploratory analysis: conducting many graphical and/or statistical comparisons in an effort to identify 328 
previously unidentified relationships among variables in a data set 329 
 330 
False positive: In null hypothesis testing, a rejection of the null hypothesis when the null hypothesis is 331 
actually true (Type I error) 332 
 333 
HARKing: Hypothesizing After Results are Known – presenting a post hoc explanation for an exploratory 334 
result as though it were an a priori hypothesis. Many of us were taught to HARK and to write papers as 335 
though we were testing a priori hypotheses even if we were conducting exploratory analyses. Although 336 
philosophers debate the importance of distinguishing between a priori and post hoc hypotheses, 337 
HARKing is problematic even if one discounts this distinction. This is because HARKing often serves to 338 
conceal selective reporting of exploratory analyses (often without a deliberate attempt to deceive), and 339 
thus skews the distribution of reported results. 340 
 341 
Inflated effect size: An estimated effect size that is larger than the actual effect size, for instance 342 
because the researcher selected the covariate that led to the largest effect in the target relationship 343 
after testing multiple covariates 344 
 345 
Meta-analysis: The quantitative synthesis of the outcomes of different studies, based on combining 346 
effect sizes, to determine overall results across studies and sources of heterogeneity in outcomes among 347 
studies. Generally study outcomes are weighted by the precision with which the effects are estimated. 348 
Meta-regression is a variant of meta-analysis in which the effects of covariates are modeled statistically. 349 
 350 
p-hacking: A variety of practices that increase the odds of finding a statistically significant result by, for 351 
instance, conducting multiple versions of an analysis with different covariates, interactions, or subsets of 352 
data. Some processes that contribute to p-hacking, such as conducting multiple versions of an analysis 353 
with different interaction terms, may be pursued out of a sincere desire to discover the story the data 354 
have to tell. However, each additional version of the analysis increases the risk of a false positive or of 355 
an inflated effect, and unless we disclose all results from all versions of analyses and all decisions 356 
regarding data gathering and analyses, we will contribute to the biased distribution of effects in the 357 
literature. 358 
 359 
Pre-registration: A process by which planned studies, including methods and an analysis plan, are 360 
registered in a secure and accessible platform (e.g. website such as Open Science Framework; 361 
https://osf.io/) before commencement of the research. Once a pre-registration has been submitted, it 362 
cannot be altered. Pre-registrations can be embargoed to protect ideas prior to publication. 363 
 364 
Publication bias: A bias in the distribution of published effect sizes resulting from any number of factors, 365 
including selective reporting by authors and rejection of non-significant results by editors 366 
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 367 
Registered report: A study in which the rationale, methods, and analysis plan are submitted to a journal 368 
for review, and possible revision, with the objective of achieving in-principle acceptance based on the 369 
importance of the question and the quality of the study design, not the outcome, prior to initiation of 370 
the study.  371 
 372 
Replication: a study designed to replicate a previously published result, either by closely following the 373 
original methods in an effort to assess validity (‘direct’ or ‘close’ replication) or by designing a study 374 
inspired by the original concept in an effort to assess generality (‘conceptual replication’) 375 
 376 
Selective reporting: Reporting only a subset of analyses conducted. In medicine, a similar concept is 377 
often referred to as reporting bias. 378 
 379 
Statistical power: The probability of detecting a statistically significant effect if that effect actually exists. 380 
This probability is a function of the significance threshold, sample size, and strength of statistical effect. 381 
 382 
Type I error: Rejection of a null hypothesis when the null hypothesis is true (a ‘false positive’). 383 
 384 
Type II error: a failure to reject a null hypothesis when the null hypothesis is false (a ‘false negative’) 385 
 386 
Type M error: an error in estimating the magnitude of an effect 387 
 388 
Type S error: an error in estimating the sign of an effect 389 
 390 
Under-reporting: Reporting an analysis without sufficient details of analytical methods or results to 391 
allow for interpretation 392 
 393 
 394 
 395 

396 
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Text boxes  397 
 398 
Text Box 1  399 
 400 
Confirmation bias  401 
 402 
People have a strong tendency to interpret observations as supporting their existing worldview and to 403 
seek out evidence in support of this worldview [7]. This can play out in various forms of selective 404 
reporting as we convince ourselves that we are simply focusing our reporting on the real phenomena. 405 
Confirmation bias can thus help rationalize p-hacking and selective reporting, often by preventing us 406 
from recognizing our own subtle HARKing. Confirmation bias can also influence data gathering. Studies 407 
in ecology and evolution in which individuals gathering data were not blind to the treatment condition 408 
or the predicted outcomes showed stronger effects and higher rates of significance than studies with 409 
blinded observers [55, 56].  Blind observation (see Glossary) is quite rare in ecology and evolutionary 410 
biology [57] in part because in some studies blinding is nearly impossible. However, in a large sample of 411 
recent studies, 56% that could have benefited from blinding could also have implemented it with little 412 
difficulty (e.g., no additional personnel), and an additional 22% could have adopted blinding by 413 
employing an observer naïve to certain details of the study [57]. 414 
 415 
  416 
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Text Box 2 417 
 418 
Evidence of low power 419 
 420 
In a sample of 1362 statistical tests from 697 papers published in 2000 in 10 behavior, evolution, and 421 
ecology journals, the average power to detect a small effect (|r| = 0.1) was only 13-16% [27]. In other 422 
words, studies would only be expected to reject a false null hypothesis 13-16% of the time in the case of 423 
weak effects. Power to detect medium (|r| = 0.3) and large (|r| = 0.5) effects, though of course higher 424 
(40-47% and 65-72%, respectively), was still typically well below the commonly recommended threshold 425 
of 80%. Examined another way, the proportion of studies reaching this 80% power threshold to detect 426 
weak effects was 2-3%, 13-21% for medium effects, and 37-50% for strong effects [27]. Other analyses 427 
of power find similar results. For example, an analysis of studies published in Animal Behaviour in 1996, 428 
2003, and 2009 found, across all three years, an average power of just 23-26% for detection of medium 429 
effects and 1-2% for weak effects [28]. It thus appears that studies in ecology and evolution often lack 430 
power to detect small and medium effects, and this is particularly problematic because effects in 431 
ecology and evolution tend to be weak. Average effects across 43 meta-analyses in ecology and 432 
evolutionary biology were found to be weak to moderate (|r| = 0.18-0.19) [25]. Further, these rather 433 
low values are actually overestimates because averages of estimated absolute values of effect size are 434 
upwardly biased [26]. To detect these relatively small effects requires large samples (e.g., n = 207 to 435 
obtain an 80% probability of detecting a true effect of r = 0.193) [25], but obtaining sufficient power 436 
through large samples is rare [27]. 437 
  438 
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Text Box 3 439 
False-positive report probability (FPRP) 440 
 441 
In many sub-fields of evolution and ecology it remains common to use a significance threshold of 5%.  442 
This means that if our null hypothesis were true we would incorrectly reject it 5% of the time. However, 443 
we often incorrectly attribute a frequency of 5% to a different phenomenon:  the chance that a 444 
significant finding is a false positive. This is incorrect because the probability that a positive result is a 445 
false positive depends on three factors (1) the proportion of our hypotheses that are in fact true (π, the 446 
probability that a hypothesis is true), (2) the significance threshold (α), and (3) statistical power (1 – β, 447 
where β is the probability of making a type II error; Table I): FPRP = (α(1 –  π)/[α(1 –  π) + (1 – β)π]. With 448 
50% of our hypotheses true and statistical power of 20% (a power typical in ecology and evolution [25]), 449 
the chance that a significant finding is a false positive is 20%. This value is known as the false positive 450 
report probability [58]. This number is notably larger than 5%, but it becomes dramatically larger when, 451 
in pursuit of novelty, we turn our interest towards testing relatively unlikely hypotheses, those that in 452 
the Bayesian sense could be said to have a low prior probability. For instance, when only 10% of tested 453 
hypotheses are in fact true, the expected false positive report probability rises to 69% ((0.05(1 – 454 
0.1)/((0.05(1 – 0.1) + (0.2)0.1)) [58]! In fact, false positives could be even more prevalent. The above 455 
calculations assume complete and transparent reporting of the full set of analyses conducted, as 456 
promoted by pre-registration and other recently proposed transparency tools. If, in contrast, 457 
researchers make their choices of analysis strategy conditional on the outcome as with p-hacking  (i.e. 458 
preferring test variants that yield significance or stronger effects) then the false-report probability 459 
increases further. 460 
 461 

I. Four possible outcomes from a null hypothesis statistical test together with the probabilities of 462 
each outcome depending on whether the null-hypothesis is true 463 

 Null Hypothesis 
 True 

Alternate Hypothesis 
True 

Significant Finding False Positive: α True Positive: 1 – β 

Non-Significant 
Finding 

True Negative: 1 – α False Negative: β 

 464 
 465 
 466 

467 
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Tables 468 
 469 
Table 1. A sample of studies in ecology and evolution that quantify rates of under-reporting of important 470 
details of methods or results in the published literature.   471 
 472 

Citation Studies reviewed finding 

Ferreira et al. (2015) 99 studies of litter 
decomposition in streams as an 
effect of nutrient enrichment 

Estimates of decomposition rate presented 
without estimate of uncertainty in 54% of 
studies (even after requesting details 
directly from authors) 

Fidler et al. (2006) 78 articles published in 2005 in 
Conservation Biology and 
Biological Conservation 

58% missing at least one effect size 
51% missing at least one sample size 
85% missing at least one SE or SD 

Parker (2013) 48 studies of plumage color in a 
well-studied European songbird 
species 

409 of 997 main-effect relationships lacked 
information to estimate the strength and/or 
direction of the effect 

Zhang et al. (2012) 54 studies of forest 
productivity as a function of 
tree diversity 

29 studies failed to provide either estimates 
of variance associated with means or 
corresponding sample sizes 

 473 
 474 

  475 
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Figures 476 
 477 

 478 
Figure 1. ‘Business as usual’ in ecology and evolution allows and often promotes practices that keep 479 
many analyses hidden and this leads to biases in the published literature. For example, current practices 480 
(A) could result in only the three ‘unclouded’ graphs making it to publication, leaving the impression that 481 
all results were consistently positive. However, full transparency (B) will sometimes leave a very 482 
different impression of results. In this illustration, we see results that are more complicated and less 483 
consistent, and suggest a much smaller average effect, if any. 484 

485 
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