
TAMBIS - Transparent Access to Multiple Bioinformatics Information
Sources.

Patricia G. Bakera, Andy Brassa, Sean Bechhoferb, Carole Gobleb, Norman Patonb, Robert
Stevensb.

aSchool of Biological Sciences,
Stopford Building,
University of Manchester,
Oxford Road,
Manchester, M13 9PT
U.K.
Telephone: 44 (161) 275 2000
Fax: 44 (161) 275 5082

bDepartment of Computer Science,
University of Manchester,
Oxford Road,
Manchester, M13 9PT
U.K.
Telephone: 44 (161) 275 6142
Fax: 44 (161) 275 6236

pbaker@manchester.ac.uk
abrass@manchester.ac.uk
seanb@cs.man.ac.uk

carole@cs.man.ac.uk
norm@cs.man.ac.uk
stevensr@cs.man.ac.uk

Abstract

The TAMBIS project aims to provide transparent access to
disparate biological databases and analysis tools, enabling
users to utilize a wide range of resources with the
minimum of effort. A prototype system has been
developed that includes a knowledge base of biological
terminology (the biological Concept Model), a model of
the underlying data sources (the Source Model) and a
‘knowledge-driven’ user interface. Biological concepts are
captured in the knowledge base using a description logic
called GRAIL. The Concept Model provides the user with
the concepts necessary to construct a wide range of
multiple-source queries, and the user interface provides a
flexible means of constructing and manipulating those
queries. The Source Model provides a description of the
underlying sources and mappings between terms used in
the sources and terms in the biological Concept Model.
The Concept Model and Source Model provide a level of
indirection that shields the user from source details,
providing a high level of source transparency. Source
independent, declarative queries formed from terms in the
Concept Model are transformed into a set of source
dependent, executable procedures. Query formulation,
translation and execution is demonstrated using a working
example.

Introduction
The biological community is a distributed one with a
culture of sharing and rapid dissemination of information.
Each separate area of molecular biology generates its own
data and therefore its own information sources, including

those for protein sequences, genome projects, DNA
sequences, protein structures and motifs. Also available
are a range of specialist interrogation and analysis tools,
each typically associated with a particular database
format. Frequently the information sources have different
structures, content and query languages; the tools have no
common user interface and often only work on a limited
subset of the data.
When biologists need to ask questions of multiple sources
they must perform the following tasks during query
formulation and execution:
• identify sources and their locations
• identify the content/function of sources
• recognise components of a query and target them to

appropriate sources in the optimal order
• communicate with sources
• transform data between source formats
• express syntactically complex queries and
• merge results from different sources.

Many biologists still use collections of stand-alone
resources (many of which are Web-based) to formulate
and execute queries. This means that all of the tasks listed
above must be carried out by the user. This places a
burden on biologists, most of whom are not
Bioinformatics experts, and limits the use that can be
made of the available information. The greater the number
of the above tasks that are taken on by the system, the
greater the transparency of the overall task of query
formulation and execution. There are examples in the

biological community of systems which seek to relieve
the user of some of this burden by easing access to
multiple, heterogeneous information sources; however,
these systems vary in their degree of transparency.
The Sequence Retrieval System (SRS) (Etzold 1996), for
example, attempts source interoperation using predefined
hypertext links with which the user can navigate between
sources. A form-based interface allows the user to ask
complex, although restricted, queries over multiple
sources that are executed simultaneously. Queries
composed of sub-queries, which have to be executed in a
given order, must be issued separately by the user, and the
results of one sub-query piped into another by hand.
While SRS provides the user with transparency from
communication (i.e. location, connection protocols and
query language) with sources, it does not hide them, and
provides no guidance as to which source is most
appropriate for a given query.
The Collection Programming Language (CPL) is a
functional programming language that allows data to be
described and manipulated as complex data types such as
sets, lists and records. These data types are suitable for
modelling biological data and have been used to do so in
the BioKliesli system (Buneman 1995) where biological
sources are given a CPL driver and a set of functions to
manipulate data. CPL/BioKliesli thus acts as a
multidatabase language and provides ways of
manipulating and piping results, allowing the user to
formulate complex, ad hoc queries. The details of location
and access to these data sources are hidden; however, the
identification of which data source to use and the
construction of the query in CPL is still left to the user.
Comparable facilities are provided by P/FDM (Kemp
1996), which also uses a functional language, although
P/FDM has a more object-oriented type system and has its
own local database.
(Markowitz 1995) uses an object model, the OPM, as a
common data model for the sources and a suite of OPM-
based tools for exploring them. Each source either has an
OPM schema or is retro-fitted with one via a view
mechanism. A multidatabase directory describes how
each database is linked to another. However, there is no
attempt at hiding the databases from the user, who is still
expected to identify them and navigate through them.
Queries can be specified via a multidatabase query
language OPM-QL, or using a Web interface.

The Transparent Access to Multiple Bioinformatics
Information Sources (TAMBIS) project aims to provide
the user with the maximum source transparency using (i)
a canonical representation of biological terminology
against which the user can formulate queries and (ii)
mappings from terms in the representation onto terms in
external sources. TAMBIS therefore provides a level of
indirection between the user and the external sources
which removes from the user the necessity to perform the
tasks listed above. In order to do this TAMBIS adopts the
three layer model of the classical mediator/wrapper
architecture (Wiederhold 1992), a schematic view of
which is illustrated in figure 1.
Layer 1 comprises a knowledge base (conceptual modela)
of biological terminology and a knowledge-driven user
interface. Using the interface, the user combines terms
from the knowledge base to form declarative, source
independent queries. Layer 2 is a mediation layer that (i)
identifies the appropriate sources to satisfy a query and
(ii) rewrites the query to a series of source dependent
ordered procedures. Layer 3 comprises external sources
wrapped with a consistent structural model, providing a
common interface that affords communication and
network transparency. Where possible TAMBIS exploits
existing technologies. Layer 3, therefore, currently utilizes
CPL/BioKliesli although the long-term intention is to use
CORBA wrapped services (Roduerigez-Tome 1997).
The conceptual model is central to the TAMBIS
architecture. Its use in driving query formulation and
facilitating source integration, is novel in the biological
domain. The emphasis on the model in this paper is,
therefore, commensurate with its importance.

The Architecture
Although a detailed description of the TAMBIS
architecture is outside the scope of this paper, a general
overview is appropriate. The five main components of the
TAMBIS architecture are:
• The biological Concept Model (knowledge base)
• The knowledge-driven graphical user interface (GUI)
• The Source Model
• The Query Transformation Module
• The Query Execution Module

The Biological Concept Model
Some bioinformatics researchers recognise that semantic
schema and data matching would be greatly aided by a
comprehensive thesaurus of terms (Davidson 1995) or a
reference ontology of biological concepts (Karp 1995). In

a Because the biological knowledge base is a conceptual
model of biological terminology, the words ‘concept’ and
‘term’ are used interchangeably in this paper.

Figure 1. TAMBIS three layer, mediator/wrapper architecture.

order to share standardised and unambiguous information,
controlled vocabularies, or terminologies, can be used as a
framework for expressing and communicating ideas in a
consistent manner. The TAMBIS biological Concept
Model describes such a terminology. This knowledge
base covers terms associated with proteins and nucleic
acids, their component parts and their structures,
biological functions and processes, tissues and taxonomy.
The terminology has two key aspects:
• it is compositional, resembling a dictionary of

elementary terms that are assembled according to a
restricted grammar to form new complex composite
terms. These composite terms can in turn be
components in new compositional terms, so the
terminology is recursive. For example, the term
‘Motif’ can be combined with the terms
‘isComponentOf’ and ‘Protein’, to create a new
composite term ‘Motif which isComponentOf
Protein’. This in turn could be combined with the

terms ‘hasFunction’ and ‘Hydrolase’ to form a
composite term ‘Motif which isComponentOf Protein
and hasFunction Hydrolase’; this term is both a
concept and a query.

• it is a classification scheme that organises terms into
a hierarchy based on the ‘isa’ relationship (also
known as the subsumption relationship). For
example, ProteinSequence ‘isa’ more specialised kind
of Sequence.

To be truly effective, such a terminology needs to be
represented in a scheme that can reason about the inferred
relationships between terms and their components, can
control the formation of terms, and can automatically
classify terms based on their components so that the
hierarchy takes care of itself. As terms are changed the
scheme should also dynamically reclassify them to ensure
the hierarchy’s correctness.
Description Logics (DL), also known as Terminology

Knowledge-Driven Graphical User Interface

Biological Concept Model

Layer 1
Query formulation

Query
Transformation

Source Model Layer 2
Query planning and
translation
(source mediation)

Layer 3
Query execution

declarative query

ordered execution
 plan

Source
1

Source
2

Source
3

(wrapped sources)

Logics, are a family of logics explicitly designed to
represent taxonomic and conceptual knowledge of an
application domain on an abstract level; for an overview
see (Borgida 1995). DLs are usually given a Tarski style
declarative semantics, which allows them to be seen as
sub-languages of first order predicate logic. In the
TAMBIS project we use the GRAIL DL (Rector 1996),
developed at Manchester. Briefly, a DL is an ‘isa’-based
classification system that allows a recursive,
compositional model to be built from terms and binary
relations. A base term can be combined with any number
of relation-term pairs (or criteria) to create a more
complex term. Any of these terms can be composite
(complex) or elementary. Figure 2 gives a small fragment
of the GRAIL classification, omitting the term
constructors. In this example ‘Motif’ is the base term and
‘isComponentOf Protein’ is the criterion with which it is
combined. GRAIL supports the automatic classification of
concepts into ‘isa’ hierarchies by reasoning about the
component descriptions of the concepts. Therefore,
‘Protein Motif’ would be classified automatically as a
child of ‘Motif’ and a parent of ‘Poecilia Reticulata
Protein Motif’ based on its definition. Only 3 of the 11
‘isa’ relationships shown in figure 2 have been hand-
crafted by the knowledge modeller. DLs support multi-
dimensional classification so that the same concept can be
classified in many ways, thus allowing for the different
user views of a concept. The classification is dynamic so
as the description of a concept is further elaborated it is
automatically reclassified. Description Logics therefore
support the incremental description of terms.
The classification hierarchy supports imprecise and
general queries and query exploration by moving around
the hierarchy. The compositional nature of the
representation allows for the flexible construction of
queries at varying levels of complexity and abstraction. In
DLs the modelling language and the query language are
the same thing; to find the concept you define it and the
classifier classifies it. If it is sound then it is positioned in
the hierarchy and you can ask for its parent, children or
the instances it describes. If it is unsound then it doesn’t
classify and, therefore, cannot appear in a query.
A whole family of knowledge representation systems
have been built using DLs and recent work has provided a
sound formal basis for several DLs along with results
concerning their complexity (Donini 1991). Significantly
large models are now being produced, for example the
Galen-In-Use medical model (Rector 1997) expressed in
GRAIL is some 10,000 concepts and relations.
DLs are expressive, and usually have complete and
decidable reasoning. However, the conflict when applying
any DL is between computational tractability and
expressiveness; GRAILs terminological language is less

expressive than most other DLs but it compensates for
this by supporting a powerful set of assertion axioms and
a multi-layer sanctioning mechanism. These sanctions
decree whether two concepts are permitted to be related
via some relationship and so constrain the construction of
complex concepts. Sanctions ensure that only
semantically valid concepts are formed and that a large
number of complex concepts can be inferred from a
sparse model. As only reasonable concepts can be inferred
from the model the user is allowed to construct only those
queries that it is reasonable to ask. For example, in figure
2, asserting that ‘SequenceComponent isComponentOf
Protein’ is legal, is sufficient to infer that ‘Motif
isComponentOf Protein’ without having to create it or
position it until it is asked for. Therefore, only a small
number of constraints need be asserted in order that a
large number of concepts can be inferred.
In TAMBIS the biological Concept Model is used to:
• describe the metadata of the underlying data sources,

representing an over-arching universal schema
• express queries in the modelling language
• drive a GUI user interface for query formulation
• mediate between the various data sources by

exploiting the biological concept hierarchy to assist
in the identification and resolution of equivalences or
near equivalences – similar approaches have been
taken in non-biological projects, for example SIMS
[Arens93].

As (Markowitz 1995) and (Davidson 1995) suggest,
integration is costly and the quest for an agreed schema
futile. However, our biological terminology does not
attempt to force a global schema representing a consistent
integrated view of all the component databases. Instead it
seeks to describe what is in the component databases and,
rather than resolve conflicts, it acknowledges them and
indicates possible equivalences.

The Knowledge-Driven User Interface
Queries are formulated against the biological concept
model in the GRAIL language. It would be inappropriate
for biologists to learn either GRAIL or the contents of the
knowledge base. Instead, TAMBIS provides a forms
based GUI that is driven by the terminological model. The
interface supports two tasks:
• exposure of the terminological model and
• guided query formulation and manipulation.

During the query formulation process the model may be
browsed to find what can sensibly be said of a concept of
interest. A convenient mechanism for browsing the model
without query formulation is provided by the navigation

Figure 2. A simplified fragment of the TAMBIS GRAIL model showing the power of auto-classification; the only ‘isa’ relationships that
have been ‘hand-crafted’ by the knowledge worker are indicated by the solid arrows. All the other terms are implied by the sanctioning
scheme and automatically and dynamically classified upon request, as indicated by the broken arrows. The solid lines indicate the
sanctioned relationships between terms. It is these relationships that allow the construction of all of the composite terms shown.

tool. Figure 3 shows the navigator focused on the concept
‘Protein Structure’. The concept currently in focus
occupies the center of the frame and related concepts from
the Knowledge Base are displayed around it. The model
may be browsed by promoting any of the related concepts
to be the central concept. The new central concept is then
surrounded by all its related concepts.
Having identified a concept of interest, for example
‘motif’, the user may want to form a query based on that
concept. A Query Manipulation tool gives the user an
option to add more information about the concept (or
specialise the concept) by presenting all the legitimate
criteria that can be applied to the concept ‘motif’ (see
figure 4).
The user may choose one or many of these criteria. If they
chose, for example, ‘isComponentOf Protein’, the query
is equivalent to the English expression “find all protein
motifs”. Having constructed the query the user may
manipulate the whole query or any of its component sub-
queries by (i) the addition or removal criteria or (ii) the
replacement of terms with more specialized or more
general terms. Figure 5a shows a query that has been
built by further specialisation of the term ‘Protein’ in the
above query by addition of the criterion

‘hasOrganismSource PoeciliaReticulata’. The query is
equivalent to the English expression “find all motifs
occurring in guppy proteins”.
It is important to appreciate that in TAMBIS the term
concept is interchangeable with the term query. Therefore,
in constructing a concept (a description of what you the
user wants) the user is constructing a query (“what things
exist that fit the description I have just given?”).

Query Planning and Translation
Queries expressed in GRAIL are declarative and source
independent. GRAIL queries thus specify what
information is required, but neither how it should be
obtained nor from where. It is the role of the query
planning and translation layer to provide this additional
information. This layer takes as input a GRAIL query and
generates as output an execution plan in CPL. The
planning and translation process is broken into three main
steps:
• Translation into a Query Internal Form (QIF): The

GRAIL query is unnested and certain query
constructs are simplified.

• Query Planning: A search algorithm considers
alternative evaluation orders for the components of

isComponentOf hasOrganismSource

Motif
<isComponentOf (Protein hasOrganismSource

PoeciliaReticulata) hasFunction Hydrolase>.

Motif

SequenceComponent

Motif isComponentOf Protein

Motif hasFunction Hydrolase.

SequenceComponent isComponentOf
Protein

SequenceComponent
hasFunction Hydrolase.

Protein

Function

hasFunction

Organism

Poecilia
reticulata

Hydrolase

the QIF generated at step 1, with a view to
identifying both valid and efficient ways of
evaluating the query.

• Code Generation: The query plan that results from
the planning phase is converted into a CPL program
for execution.

The following subsections elaborate on the above steps,
both detailing what is done at each stage and outlining the
auxiliary data structures that are required.

Translation into Query Internal Form (QIF). GRAIL
queries are intrinsically nested structures. However,
nested language structures generally imply some
evaluation order, so we follow a number of earlier query
planners in unnesting the source query prior to query

optimisation (Paton 1990, Fegaras 1997). The QIF is a list
of query components, each of which is a tuple (Base,
Variable, Criteria, Cost, Cardinality) representing the
evaluation of part of the query. Base is the base concept
of the component, Variable is the name of the variable
used to store values retrieved as a result of evaluation the
component, Criteria represents the set of criteria
associated with Base, Cost is an estimate of the cost of
evaluating the component, and Cardinality is the size of
the collection that it is anticipated will result from
evaluating the component. Values for Cost and
Cardinality are computed by the planner. Figure 5a shows
an example query that is equivalent to the English query
“find all motifs in Poecilia reticulata (guppy) proteins”.
The GRAIL representation

Figure 3. TAMBIS prototype user interface navigation tool showing the navigation of the concept ‘Protein Structure’. The
central term is surrounded by related terms. Each related term is coloured according to its relationship with the central term.
There are four possible relationships: parent terms - concepts immediately above it in the hierarchy with which it has an ‘isa’
relationship e.g. ‘Structure’; child terms - concepts immediately below it in the hierarchy which have ‘isa’ relationships with
it e.g. ‘Protein Tertiary Structure’; defining terms – relation-term pairs that form part of its definition eg. ‘is structure of
Protein’; sanctioned terms - concepts with which it has appropriately sanctioned relationships but which do not form part of
the concept’s definition eg. ‘is determined by Method of Determining Structure’.

Figure 4. An example from the TAMBIS user interface prototype showing the relationships that can be used to specialise the
concept of ‘motif’.

of this query is “Motif which isComponentOf (Protein
which hasOrganismSource PoeciliaReticulata)” (figure
5b). The initial QIF of this query is shown in figure 5c.
Each term (concept) in a criterion is itself represented by
a query component and is associated with the variable
used to store instances that result from the evaluation of
the component. The other form of mapping that takes
place during the translation to QIF is the simplification of
components where appropriate – for example the removal
of query components which exist only to support certain
modelling strategies employed by the knowledge worker.
The mapping into the QIF is defined as a set of rewrite
rules of the form:

rewrite <concept template>
as <QIF component>
if <condition>

The concept template is capable of matching concepts
with specific structures in the biological Concept Model,
the QIF component is as described above, and the
condition makes tests involving the Concept Model and
the Source Model. However, conditions never refer to the
specific functions that may be used to evaluate a query, as
planning is the sole preserve of the planner described
below.

Query Planning. The query planner seeks to identify
both legal and efficient ways of evaluating queries given
the available CPL functions. The planner exploits the
augmentation heuristic (Swami 1989), which essentially
involves examining all the query components in a query,
selecting the most promising for initial evaluation, and
repeating the process for the remaining components. The
Source Model is central to the planning process, as it
indicates which CPL functions can be used to evaluate
which query components. Lack of space prevents a
detailed description of the Source Model, but the
following are the principle components:
• Concept Iteration: Concept iteration information is a

triple (Concept, FunctionSignature,
ArgumentMapping), where Concept is a concept from
the Concept Model, FunctionSignature is the
signature of a CPL function, and ArgumentMapping
is a description of how input parameters for the CPL
function should be obtained.

• Criterion Evaluation: Criterion evaluation
information indicates how the criteria of a concept
can be evaluated in CPL. This is described using
tuples of the form (Concept, Criterion,
FunctionSignature, ArgumentMapping), where
Concept is the base concept to which the criterion is
applied, Criterion is the criterion in question and
FunctionSignature and ArgumentMapping are as
described for concept iteration.

• Coercion: CPL functions may retrieve values of
different CPL types to represent the same concept.
For example, retrieval of protein information from a
specialist protein database such as SWISSPROT
yields a complex record structure that contains
significant amounts of information about the protein.
Retrieval of information from a motif database such
as PROSITE, however, is likely to yield only the
accession numbers. This means that the query planner
needs to know things like how to obtain a detailed
description from an accession number and vice versa.
Such relationships are described using tuples of the
form: (CPL_type, CPL_type, mapping_function)

• Costing: Information on the anticipated cost of
evaluating a CPL function and the likely cardinality
of the result is stored using tuples of the form:
(FunctionSignature, Cost, Cardinality).

The planner has two principle components, the search
algorithm described at the start of this sub-section and a
list of rules that indicate under which circumstances
specific techniques may be used to evaluate a query
component. Such rules are of the form:

 Rewrite <QIF Component>
 as <Function List, Cost, Cardinality>
 if <condition>
 given <variables>

The QIF Component is as described above, the Function
List is a list of CLP functions with bound arguments, the
Cost is an estimate of how long it will take to evaluate
each of the functions in the Function List, and the
Cardinality is the total number of concepts given the set
of bound variables. The condition invariably refers to the
functions that are available in the Source Model and the
set of bound variables.

Code Generation. The code generator takes as input an
ordered list of query components and their associated
functions, and generates a single CPL program that binds
together the CPL functions. The code generator is
straightforward, and makes a single pass through its
inputs in generating the execution plan (figure 5d).
For result presentation, TAMBIS makes use of a CPL
function that transforms its data structures into HTML for
display using a WWW browser (figure 5e).

Project Status
The prototype Biological Model is well populated by
concepts describing those areas required for the
construction of common queries, such as queries about
protein structure and nucleic acid coding signals. The
model currently contains around 1500 concepts and has
the capability to infer many more. The biological concept
model will become better populated as the prototype

system is used to elicit user requirements. The prototype
user interface is currently implemented in SmallTalk. It
has much of the functionality that it is envisaged will be
needed in the final system, although the look and
behaviour of the interface is likely to change as the final
implementation will be in Java to facilitate its use on the
World Wide Web. We are currently eliciting general user
requirements from academia and industry by means of a
questionnaire. This is ensuring that the Concepts Model
allows the formulation of the kinds of questions that
biologists want to ask. No formal user evaluation of the
prototype knowledge-driven user interface has yet been
performed, although it is envisaged to play a major part in
the development of the system. A Java implementation of
the query transformation module is in place, although its
accuracy has not yet been evaluated. A more sophisticated
planner will be needed in the future. There are currently
15 wrapped sources including the BLAST suite of
programs, SwissProt, Prosite, BLOCKS amd PRINTS.
The Source Model has mappings between a range of CPL
functions acting on these sources and the corresponding
concepts in the biological model. These mappings dictate
the number of queries that can be answered by TAMBIS
and so the development of a more comprehensive Source
Model is the next priority task. As suggested by
(Davidson 1995), this approach is high cost but high
benefit, and there are still many challenges to address –
issues such as: tools for adding new sources; changes in
sources; incorporation of CORBA sources; dynamic
query optimisation based on network performance; user
intervention and results attribution.

Summary
The TAMBIS project is pursuing a novel approach that
will yield an integrated solution to the problem of
disparate biological databases and analysis tools. The
common schema (Biological Knowledge Base) is
represented in a Description Logic, presenting the user
with a rich description of the domain from which they
may flexibly and intuitively construct and modify queries.
The queries are deconstructed, rewritten into a common
query language and dispatched to one or more wrapped
resources. The use of a knowledge base and wrapped
resources removes the need for the user to know (i) which
are the appropriate resources to use and (ii) how to access
them, thus greatly reducing the time taken to analyze their
data.

Acknowledgements
The TAMBIS project is funded jointly by the
EPSRC/BBSRC Bioinformatics Programme and by
Zeneca Pharmaceuticals, whose support we are pleased to
acknowledge.

 c)
 [(Motif, Motif-1, [(isComponentOf Protein, Protein-1)], -1, 1),
 (Protein, Protein-1, [(hasSourceOrganism PoeciliaReticulata,
null)], -1, -1)]

Figure 5. An example showing the stages in the information retrieval process using TAMBIS. a) The knowledge-driven GUI
allows the user to construct a declarative, conceptual and source independent query. The query formulated at the interface is
represented in GRAIL as shown in b). c) The single GRAIL query is transformed into query internal form (QIF). d) The QIF
is transformed into a functional, source-dependent query in CPL. e) The results from the CPL wrapped sources are presented
to the user via a Web browser.

d)
{Motif-1|
\Protein-1<-get-sp-entry-by-os("POECILIA+RETICULATA"),
Motif-1<-do-prosite-scan-by-entry-rec(Protein-1)}

b)
Motif which isComponentOf (Protein which
hasOrganismSource PoeciliaReticulata)

 a)

e)

References
Arens Y, Chee C.Y., Hsu C-H, Knoblock C.A. Retrieving
and Integrating Data from Multiple Information Sources,
in Journal on Intelligent and Cooperative Information
Systems, 2:127-158,1993.

Borgida A., Description Logics in Data Management.
IEEE Transactions on Knowledge and Data Engineering,
7(5): 671-682, 1995.

Buneman P., Davidson S.B., Hart K., Overton C. and
Wong L. A Data Transformation System for Biological
Data Sources In Proceedings of VLDB, Sept. 1995
(Zurich, Switzerland).

Davidson S.B., Overton C., Buneman P., Challenges in
Integrating Biological Data Sources, Journal of
Computational Biology Vol 2, No 4, 1995.

Donini, F., Lenzerini, M., Nardi, D., Nutt, W., ‘The
Complexity of
Concept Languages’, KR-91, pp151-162, 1991.

Etzold T, Ulyanov A, Argos P, SRS: information retrieval
system for molecular biology data banks. Methods
Enzymol. 1996, 266: 114-128.

Fegaras L. An experimental optimizer for OQL. Technical
Report TR-CSE-97-007, CSE, University of Texas at
Arlington, 1997.

Karp P, A Strategy for Database Interoperation, in Journal
of Computational Biology, 1996.

Kemp G.J.L. and Gray P.M.G., Using the Functional Data
Model to Integrate Distributed Biological Data Sources,
Proc. 8th Int. Conf. on Scientific and Statistical Database
Management, IEEE Press, 176-195, 1996.

Markowitz, V.M., and Ritter, O., Characterizing
Heterogeneous Molecular Biology Database Systems,
Journal of Computational Biology, 2(4), 1995.

Paton, N.W. and Gray, P.M.D., Optimising and Executing
Daplex Queries Using Prolog, The Computer Journal, Vol
33, No 6, 547-555, 1990.

Rector A.L., Bechhofer S., Goble C.A., Horrocks I,
Nowlan W.A., Solomon W.D., The GALEN modelling
language for medical terminology, in AI in Medicine
1996.

Rector A. and Horrocks I. Experience building a Large,
Re-usable Medical Ontology using a Description Logic
with Transitivity and Concept Inclusions. AAAI Spring
Symposium on Ontological Engineering, 1997.

Rodriguez-Tome P, Helgesen C, Lijnzaad P, Jungfer K, A
CORBA server for the radiation hybrid database.
Proceedings of the ISMB 1997, 5:250-253.

Warren D.H.D., Efficient Processing of Interactive
Relational Database Queries Expressed in Logic, Proc.
7th VLDB, 272-281, 1981.

Wiederhold G. Mediators in the Architecture of future
Information Systems, IEEE Computer 21(3) March 1992,
pp. 38-50.

