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1 Introduction

Networks of workstations (NOWs) have repeatedly been suggested as computational engines [3]. In such

an environment, however, individual nodes become available or unavailable as the workstation owner goes

away or returns. To be truly useful, a parallel processing system for a NOW must be able to adapt to a

continually changing pool of available nodes. Ideally, this adaptation should be transparent, allowing the

user to program in a relatively standard way, without requiring any special-purpose code in the application.

Such an adaptive parallel processing system is also useful in other environments, but in this paper we focus

on a NOW, because there adaptivity is a requirement, not just an added feature.

Recent parallel programming models like HPF [13] or OpenMP [20] shelter the user from having to deal

with some aspects of parallel programming, such as the number of nodes, the low-level details of iteration

or data partitioning, or the communication of data between nodes. These properties simplify parallel

programming, but, in addition, they also provide the foundation for transparent adaptive parallelism. Since

aspects like the number of nodes are handled by the system and not the user, it becomes possible to change

them adaptively without user intervention.

We focus in this paper on the emergingOpenMP standard [20]. In anOpenMP program, the programmer,

roughly speaking, speciÞes what pieces of the code can be run in parallel. The number of processes executing

these parallel constructs need not be hardwired. Therefore, adjusting the number of processes at runtime can

be done transparently. Furthermore, OpenMPÕs execution model, consisting of a succession of sequential

code and parallel constructs, naturally suggests efÞcient adaptation points at the beginning or the end of

these parallel constructs.

One of the main technical challenges in supporting adaptivity on a NOW is to transparently move

application data around at the time of adaptation, either moving it to newly joining nodes or moving it off

leaving nodes. We rely on a software distributed sharedmemory (DSM) runtime system [15] to automate this

process and to avoid any need for user intervention. Automatic data distribution is themain advantage of such

systems, regardless of adaptivity. Here, that same feature is used to support automatic data re-distribution

after an adaptation has taken place.

Our adaptive system is an extension of the TreadMarks DSM system [2], and uses the SUIF compiler

toolkit [1] to generate TreadMarks code from OpenMP programs [17]. We demonstrate the performance

of our system for different rates of adaptation and compare the results with non-adaptive runs of the same

applications on the non-adaptive base TreadMarks system. We analyze the factors contributing to the cost

of node joins and leaves. We conclude that for moderate rates of adaptation, the cost of adaptation is well

within acceptable range and is a cost well worth paying for the added ßexibility and functionality.

This paper then presents the following contributions:

1. The design of a transparent adaptive parallel computation system using an emerging industry-standard
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programming paradigm (OpenMP). No code is added to the application speciÞcally to obtain adap-

tivity;

2. Experimental evidence that the system provides good performance on a moderate-sized NOW and for

moderate rates of adaptation.

2 Background

OpenMP uses the fork-join model of parallel execution. An OpenMP program begins execution as a single

process, called themaster process 1. When the master process enters a parallel construct, it forks a team of t

processes (one of them being the master process), and work is continued in parallel among these processes.

Upon exiting the parallel construct, the processes in the team synchronize (join the master), and only the

master continues execution (see Figure 1). A program may fork and join in this way any number of times.

Each OpenMP parallel construct is thus executed using t processes, with the opportunity to change the

number t at every new fork. The degree of parallelism need only be constant during the execution of one

parallel construct [20].

-- this code is executed sequentially and only by the master --

#pragma OMP for

for(i=0; i<MAX; i++) {

-- the iterations of this loop are divided among all processes --

}

#pragma OMP end for

-- this code is executed sequentially and only by the master --

Figure 1: Pseudo-code for OpenMP C parallel for construct.

OpenMP is designed for a shared memory environment. To run OpenMP programs on a NOW, we

compile OpenMP to the TreadMarks distributed shared memory (DSM) system [2]. TreadMarks is a user-

level software DSM system that runs on commonly available Unix systems and onWindowsNT. TreadMarks

provides multithreaded parallel programming primitives similar to those used in hardware shared memory

machines, namely, process creation, shared memory allocation, and lock and barrier synchronization.

To support OpenMP-like environments, recent versions of TreadMarks include Tmk wait, Tmk fork

and Tmk join primitives, speciÞcally tailored to the fork-join style of parallelism expected by OpenMP

and most other shared memory compilers [1]. Tmk wait causes the slaves to wait for the next Tmk fork

issued by the master. In the master, Tmk wait has no effect. Tmk fork is a one-to-all synchronization:

the master process causes all waiting slave processes to start executing. Tmk join is the converse all-to-one

synchronization: all processes, including both the master and the slaves, need to execute Tmk join before

the master can continue. The slaves return to the Tmk wait state after they execute Tmk join.

Compiling an OpenMPC program to TreadMarks is fully automated. The compiler is based on the SUIF

pre-processor [1]. The body of each parallel loop is encapsulated into a new procedure. In the master, the

loop is replaced by a call to Tmk forkwith as argument a reference to the procedure embodying the parallel

loop. Additional code generated inside this procedure lets each process Þgure out, based on its TreadMarks

process identiÞer and the total number of processes, which iterations of the loop it should execute. The

procedure terminates with a call to Tmk Join, which causes a return to the waiting state in the slaves. When

1The OpenMP document uses the term thread. In our distributed implementation of OpenMP, these threads execute as Unix

processes on different nodes. We therefore consistently use the term process.
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all processes have executed Tmk Join, the master proceeds with any further sequential code and/or calls

Tmk fork to execute the next parallel loop.

3 Transparent adaptation

We present the added functionality for transparent adaptation in this section; the implementation is discussed

in Section 4.

Each node normally executes one process. When a new node becomes available and starts participating

in a computation, this is called a join event. When a node withdraws, we speak of a leave event. An adapt

event is either a join or a leave event.

A request for an adapt event may occur anytime, but it is usually only executed at the next adaptation

point. OpenMP provides natural adaptation points at the beginning or the end of the execution of a parallel

construct. At these points, joins and leaves can be handled efÞciently by increasing or decreasing the number

of processes and re-partitioning the loop iterations among them.

Join events have the nice property that the system can always delay its response. If the event arrives

while the system is not at an adaptation point, the system simply ignores the availability of an extra node

until the computation reaches the next adaptation point. We call this behavior a (normal) join; Figure 2.a

depicts such a situation.

Leave events are more complicated to handle since presumably the workstation node is needed for some

other, higher-priority task. For a leave event, if the computation can reach the next adaptation point within a

speciÞable time limit, termed the grace period, we let the leave events take effect there. In this case, handling

the leave event is greatly simpliÞed since it is processed at a time when the system is free to determine the

number of processes. We call this a normal leave. Figure 2.b depicts this case: a leaving process reaches an

adaptation point within the grace period and is terminated at the adaptation point.
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Figure 2: (Normal) join (a), normal leave (b), and urgent leave (c).

If the computation does not reach an adaptation point within the grace period, then the current process

is migrated to another node in the system. The process is then executed on that node by multiplexing

until the next adaptation point is reached. At that time, processing proceeds as in the case of a normal

leave. We call this sequence an urgent leave, it is depicted in Figure 2.c. Urgent leaves cause much more

data to be moved than normal leaves, because all intermediate data of the migrating process needs to be

transferred. In addition, if a computation is balanced for t processes, multiplexing one node may idle the

t− 2 non-multiplexed nodes for some time.

Since adaptation points are reached fairly frequently (in many applications several adaptation points are

reached per second), urgent leaves are typically not needed. The concept of a grace period allows Þne tuning

the management of the workstation nodes, since this period can be node-speciÞc (and may even vary during
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a day). The owner of a workstation node is not denied service during the grace period; however, the node is

shared with the computation that occupies a node.

Finally, the system also provides checkpointing to recover from catastrophic failures such as a crash,

power ßicker, or a machine reboot.

4 Implementation of the adaptive system

In this section we elaborate on how to run applications adaptively and how we have added support for

adaptivity to the standard TreadMarks system. These changes are purely TreadMarks-internal, without

any changes to the standard TreadMarks API or the operating system, so we can run standard TreadMarks

programs, and we can convert OpenMP programs automatically to TreadMarks programs, using the same

compiler we used for the non-adaptive version [17].

Each node recognizes join and leave events and communicates those to the master. How these events

are generated is beyond the scope of this paper. E.g., a daemon may generate events at set times according

to an operational schedule, or a load sensor may be employed to make load-dependent decisions.

4.1 Join events

The master spawns a new process on the speciÞed host. While all processes continue normally, the new

process asynchronously sets up network connections Þrst to all other slave processes, then to the master.

Therefore, when the master receives this connection request, it knows that the new process has set up all its

other connections and is ready to join the computation.

A central idea of our implementation is to use the garbage collection mechanism from the non-adaptive

TreadMarks system to simplify the adaptation. During execution, both the non-adaptive and the adaptive

version of TreadMarks accumulate a variety of consistency information, primarily twins, diffs, and write

notices [2]. When the memory allocated for these data structures becomes exhausted, TreadMarks initiates a

garbage collection. This step removes all these internal data structures, and leaves each memory page either

valid and up-to-date, or invalid but with its Òowner ÞeldÓ pointing to a node with a valid copy of the page.

When all current processes have arrived at the adaptation point, the master initiates a garbage collection.

This step updates the shared memory state and removes the memory consistency information, so much less

data needs to be propagated to the joining node. In particular, it sufÞces for the master to send the joining

process a message describing where an up-to-date copy of every shared memory page is located and what

protocol is used (single or multiple writer).

The process identiÞers are (re)assigned, and the total number of processes is reset (as applicable). Then

the master sends the next Tmk fork message to the new set of processes, and each process determines a

(new) iteration partitioning based on its process identiÞer and the total number of processes, using the code

generated by the OpenMP compiler.

Such a re-partitioning of the iteration space typically causes a re-distribution of the data. This re-

distribution, if any, happens during further execution of the application, as a result of processes fetching

pages on a page fault, using the normal DSM mechanisms.

4.2 Leave events

The handling of normal leave events is similar to the handling of join events. When all processes have

reached the adaptation point, the master initiates a garbage collection, as for a join. Here too, the garbage

collection leads to a substantial simpliÞcation of the adaptation. As a result, it sufÞces for the master to fetch

all pages exclusively owned by the leaving process and invalid on the master, and to send a message to all

other processes that it is now the owner of those pages. Finally, the master sends the Tmk fork message,
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as for a join.

Urgent leave events

When aprocess needs tomigrate to another host, a newprocess is Þrst created on that host, and the interprocess

communication connections are set up to this process. All processes then wait for the completion of the

migration. We rely on a modiÞed version of the libckpt library to implement migration [21]. Libckpt

is designed for checkpointing to disk and for recovery from that checkpoint, but we have modiÞed it to write

out the heap and the stack of the leaving process to the newly created process, and then start that process.

4.3 Fault tolerance

We use checkpointing for fault tolerance and include a brief description of it here because fault tolerance is

a natural complement to adaptivity.

Whereas a distributed computation normally requires a consistent checkpoint [6] or some formofmessage

logging [12] to guarantee correct recovery, we can avoid much of this complication by limiting checkpoints

to the OpenMP adaptation points. At these points in the execution, the slave processes do not have any

private ÒprocessÓ state (such as a stack) that needs to be recovered; they only have shared memory state.

Only the master process has process state that needs to be recovered.

Checkpointing is therefore done periodically but only at an adaptation point. First, a garbage collection

is invoked to bring shared memory into a well-deÞned state. Second, the master collects all pages for which

it does not have a valid copy. Finally, the master uses the libckpt library to checkpoint itself to disk.

No checkpointing by slave processes is required, avoiding the considerable complexity of checkpoint and

recovery coordination.

4.4 Current limitations

The master node, which executes the master process, can migrate but it currently cannot perform a normal

leave.

Adaptivity is limited to programs that repeatedly fork and join. Applications that fork once at the

beginning and join once at the end run non-adaptively. We are adding support for adaptive execution of such

applications in our next implementation.

It should also be understood that it is quite possible in OpenMP for the user to explicitly code the iteration

partitioning in terms of the process identiÞers and the number of processes. Clearly, adaptivity will not have

any beneÞt for such applications or if the user explicitly inhibits adaptivity by setting the switch that OpenMP

provides for this purpose.

5 Performance

5.1 Experimental environment

We use a switched, full-duplex 100Mbps Ethernet network, connecting 8 300Mhz Pentium II machines.

Each machine has a 512K bytes secondary cache and 256M bytes of memory. The machines run FreeBSD

2.2.6, and use UDP sockets to communicate with each other. The roundtrip latency for a 1-byte message

is 126 microseconds. The time to acquire a lock varies between 178 and 272 microseconds. The time for

getting a diff varies between 313 and 1,544 microseconds, depending on the size of the diff. A full page

transfer takes 1,308 microseconds.
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Size Iterations # Nodes Time(seconds) Number/amount of transfers

(shared memory) Standard Adaptive Pages (4k) MB Messages Diffs

Gauss 3072 x 3072 3072 8 243.46 242.14 80,577 320.54 236,453 0

(48 MB) 4 398.07 397.23 41,463 164.62 129,021 0

1 1,404.20 1,408.95 0 0 0 0

Jacobi 2500 x 2500 1000 8 215.06 216.17 58,041 254.50 221,631 27,993

(47.8 MB) 4 361.38 362.88 30,741 131.17 115,840 11,994

1 1,283.63 1,287.02 0 0 0 0

3D-FFT 128 x 64 x 64 100 8 83.50 81.95 198,471 779.23 416,570 0

(42 MB) 4 138.20 133.51 170,115 667.16 354,018 0

1 289.90 285.94 0 0 0 0

NBF 131072 atoms 100 8 535.89 534.74 353,056 1,388.27 1,182,292 0

80 partners 4 714.78 715.36 183,600 721.85 618,443 0

(52 MB) 1 2,398.79 2,299.20 0 0 0 0

Table 1: Execution times and network trafÞc on non-adaptive and adaptive system with no adapt events.

Network trafÞc is identical on both systems.

Average time per adaptation (seconds)

Leaving process Gauss Jacobi 3D-FFT NBF

8 proc. 6 proc. 8 proc. 6 proc. 8 proc. 6 proc. 8 proc. 6 proc.

end 4.19 4.60 2.77 3.78 1.87 2.50 1.01 2.81

middle 5.13 5.38 6.25 8.75 4.17 5.07 1.79 3.96

Table 2: Average cost of repeated adaptations between n and n− 1 processes for n = 8 and n = 6 .

5.2 Applications

Weuse a group of standard application kernels to assess the performance of our adaptiveDSMsystem. Jacobi

and Gauss are simple numerical codes. 3D-FFT comes from the standard NAS benchmark suite. It performs

a 3-dimensional FFT transform using a sequence of 3 1-dimensional transforms, with a transposition of the

matrix between the second and the third transform. NBF (Non-Bonded Force) is the kernel of a molecular

dynamics programs. It simulates the force interactions between molecules. It is included as an example of

an irregular application (i.e., an application in which the array indices are not linear expressions in the loop

variables).

5.3 Key overall results

In the absence of adapt events, there is no cost to supporting adaptivity compared to the non-adaptive

base system.

Table 1 shows the applications and the amount of shared memory used, and compares the runtimes on

the non-adaptive TreadMarks 1.1.0 system and our adaptive system without any adaptations. The results

demonstrate that in the absence of adapt events the overhead of the adaptive system is virtually nil. The

slight performance gain of our system in some cases is coincidental. More importantly, the network trafÞc

is identical in both systems.

Using a reasonable grace period (3 seconds), the system supports rates of adapt events of several

adaptations per minute without signiÞcant performance degradation.

The average adaptation delay is calculated by comparing the measured runtime for the adaptive run with

the computed time of a non-adaptive run for the same average number of nodes. Since the average number

of nodes is always an integer in the non-adaptive case (but the average is a real number with adaptivity), we

interpolate the results of the non-adaptive executions to obtain the reference execution time.

The cost of an adapt event varies, even for a single application. For instance, the process id of the leaving

process may signiÞcantly affect the amount of data to be moved, as demonstrated by the schematic example
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Process id

Data space
(before leave)

Process id

Data space
(after leave)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6

(a)

Process id

Data space
(before leave)

Process id

Data space
(after leave)

0 1 2 3 4 5 6 7

0 1 2 4 5 6 7

(b)

Figure 3: Effect of process id of leaving node: node 7 (a) and node 3 (b) require different data re-distribution

(shaded). Up to 50% of the data space is moved for node 7, up to 30% for node 3.

in Figure 3. Many other factors affect the cost of joins and leaves, as documented in Section 5.4.

Table 2 provides an indication of the the range of the adaptation cost for each application. Leaves and

joins are performed alternately, at most a single join or a single leave per adaptation point. Leaves are

performed either by the ÒendÓ process, the one with the highest process id, or by the ÒmiddleÓ process with

the id 4 or 3.

The main result is that the cost of an adaptation is typically on the order of 2-5 seconds for applications

such as those in Table 1. We performed measurements ranging from 1 to 20 adapt events in one application

run. Space limitations prohibit a detailed discussion, but the important results show that adaptation with 8

processes is always cheaper than with 6 processes, and even the worst case for any number of adaptations

with 6 processes is below 10 seconds per adaptation.

The cost of adaptations is low enough so that a moderate rate of adaptations can be tolerated with

reasonable performance. This cost has to be weighed against the ßexibility of using additional nodes as they

become available, or the ability to continue when a node withdraws.

The above measurements are performed with a sufÞciently long grace period to ensure that all leaves

are normal leaves. For the applications in Table 1, the average time between successive adaptation points is

0.1-0.2 seconds for Gauss, Jacobi and 3D-FFT, and about 2.5 seconds for NBF.

The cost of adaptation by migration alone is substantially higher.

We measured the cost of migrating a process from one node to another. These measurements address

this Òwhat-ifÓ scenario: what is the overhead if all leaves are urgent leaves?

Two components determine the direct cost of migration: (i) the cost to create a new process on the new

host (approximately 0.6 to 0.8 seconds), and (ii) the cost to move the processes image (at a rate of approx.

8.1 MByte/s). For Jacobi, this cost is about 6.7 seconds, for 3D-FFT 6.13 seconds, for Gauss 6.9 seconds,

and for NBF 7.66 seconds. The total cost of an urgent leave is the sum of the migration cost above plus

the cost of a normal leave (performed at the next adaptation point) plus the cost of multiplexing until the

adaptation point is reached (see Figure 2.c).

The main beneÞt of adapting with normal leaves and joins is that the application can change the number

of processes during its execution. That processing of the joins and normal leaves is a few seconds faster than

the direct cost of migration is an additional advantage. Furthermore, if we only had migration, the execution

time after the adaptation might well double after the adaptation; the multiplexing shown in Figure 2.c

continues until the end or until another node becomes available.
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5.4 Micro analysis of adaptation costs

To understand the cost of handling adapt events, we report some micro measurements. The advantage of a

DSM (the ßexibility provided to the programmer) also makes it difÞcult to obtain accurate data for the real

cost of adaptation (the sum of the cost of maintaining the consistency information and the transfer cost for

all pages). Unfortunately, simply counting the number of page fetches in both adaptive and non-adaptive

runs does not provide a good indication of the overhead. For instance, when a page fetch occurs after

an adaptation, it is difÞcult to distinguish whether this page fetch would have occurred even without the

adaptation, or whether it was caused by the adaptation. In fact, the garbage collection and the relocation of

data to the master on a leave may cause certain page fetches not to occur after adaptation, while they would

have occurred in a non-adaptive execution.

We therefore use the following method to measure the overhead of single adapt events from m to n

processes: We record statistics starting at the adaptation point where the adaptation occurs, and we subtract

the results of a non-adaptive run of n processes with statistics-recording started at the same adaptation point.

The difference reßects exactly the effects of the adaptation: In the adaptive run we begin our measurements

with a data distribution for m processes, but the application does no more work on m processes before

adapting, so the statistics show exactly the work performed on n processes plus the data re-distribution and

timing.

(The full paper will have more detailed results to support the claims of this section - they are omitted

here due to lack of space.)

Key cost component: the cost of adaptation is proportional to the maximum network trafÞc per link

generated by the adapt event.

Aswe use a switched Ethernet, the network performance of individual links is independent of each other,

so the link with the most trafÞc is the bottleneck.

An applicationÕs problem set size is typically proportional to the amount of sharedmemory used. Running

the applications with smaller problem set sizes results in proportionally smaller adaptation costs.

The cost of adaptation decreases as the number of processes increases.

For a given application run, the total amount of data to be re-distributed is nearly constant for any

adaptation from x to x + n processes, regardless of x. Since almost the same amount of data is distributed

over a larger number of links as x increases, the resulting network trafÞc is spread over more links with

increasing x, and the maximum per link decreases signiÞcantly.

The cost per adaptation decreases as more processes join or leave at the same time.

All adapt event signals received between two successive adaptation points are handled at the next

adaptation point, so the system may perform several joins or leaves or both simultaneously. Handling

multiple adapt events together is much cheaper than adapting at successive adaptation points, because every

additional concurrent join and/or leave costs less. As such, the numbers reported in Table 2 are a little

pessimistic, since they always report on a single leave or a single join at an adaptation point.

The cost of adaptation decreases as more adaptations happen during the execution.

Many applications do not access all the shared memory they own in every iteration. At a leave, only the

accessed pages need to be transferred, even if the leaving processÕ data partition is much larger. So the more

recently a process had previously joined, the fewer data must be transferred.

Other factors

Furthermore, the process id reassignment algorithm, the ids of leaving/joining processes, the number of

pages owned by leaving processes, the number of pages accessed after adaptation Ñ all affect the cost of

adaptation.
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6 Related work

Various systems have been developed to allow sequential computations to use idle time on networked nodes.

These systems include, among others, Butler [19], Condor [16], and many process migration systems such

as, e.g. Sprite [7]. Our work distinguishes itself from these systems by its support for parallel computations.

Cilk-NOW [4], Dataparallel-C [18], Piranha [5], and various migration-based systems (e.g., Milli-

pede [11] or versions of PVM [14]) support adaptive parallel computation on NOWs.

Blumofe and Lisiecki [4] describe the Cilk-NOW system for adaptive and reliable parallel execution of

functional Cilk programs on networks of workstations. Programs need to be written in the Cilk language.

Only functional Cilk programs are supported by Cilk-NOW. Nodes may join and leave an ongoing compu-

tation at any time, although, as with all systems, there is some Òlag timeÓ before the computation effectively

leaves the node. Joining nodes ÒstealÓ work, under the form of a closure, from a randomly chosen node

that is already participating in the computation. Leaving nodes return their unÞnished closures to one of

the remaining nodes. Various mechanisms make this work stealing efÞcient. Fault tolerance is achieved by

a combination of transactional subcomputations and checkpointing. In contrast to Cilk-NOW, our system

is not restricted to functional programs. Furthermore, although unmodiÞed Cilk programs can be run on

Cilk-NOW, our system has the advantage of supporting unmodiÞed programs written in an industry standard

form, based on a more general programming model. Finally, we take advantage of the inevitable Òlag timeÓ

to attempt a more efÞcient form of adaptation.

Nedeljkovic and Quinn [18] describe a system for executing Dataparallel C [9] programs on NOWs.

Dataparallel C contains data distribution statements, and programs are compiled to execute in parallel on

virtual processors. Each virtual processor executes a C program augmented with communication statements

inserted by the compiler. The runtime system then allocates some number of virtual processors to physical

processors. To adapt to various load conditions, the number of virtual processors on a particular physical

processor is adjusted. In addition, the data sections associatedwith amoving virtual processormust bemoved

as well. In the absence of an underlying shared memory platform, Dataparallel C is limited to programs

for which the compiler can fully analyze the program to the point where it can generate communication

statements, and discover exactly what data must be moved when a virtual processor moves. Furthermore,

the use of virtual processors deprives the compiler of optimization opportunities. Our system avoids this

limitation by using an underlying shared memory platform.

Piranha [5] supports adaptive parallelism for programs using the Linda tuple space. In Piranha, the

programmer needs to provide three routines: a feeder routine to oversee the adaptive computation, a

piranha routine to perform the actual computation, and a retreat routine to output to the tuple space

whatever information is necessary for the computation to continue after a process leaves. Piranha processes

may come and go at any time. Piranha requires the adoption of the tuple space as a parallel programming

model, and, in addition, requires the programmer to write special code to achieve adaptivity (the retreat

routine, and some modiÞcations to the piranha routine for mutual exclusion). Instead, our system uses

an industry standard programming model, and requires no modiÞcations.

As compared to migration-based systems [11, 14], we use migration only if the grace period expires.

We have documented the beneÞts of doing so, compared to the relatively small cost.

Fully automatic data management distinguishes our approach from systems such as AdaptiveMultiblock

PARTI [8], where the application programmer must add communication schedules for this purpose by hand.

Also, this system requires a skeleton process to be left on a leaving node where our system can completely

remove processes from a node.

Ioannidis and Dwarkadas use a DSM as a platform for load balancing [10]. To adjust the load (e.g., in

response to competing use on a node), the iterations of a loop are partitioned based on a sophisticated strategy

that tries to avoid rebalancing the computation too often. Their system explicitly deals with competing loads

on a node but therefore does not handle the departure of a node.
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7 Discussion and concluding remarks

We provide transparent adaptive parallel execution of OpenMP programs onNOWs. This system is a version

of the TreadMarksDSMaugmented to support adaptivity. The systemworks through iteration re-partitioning

at the end of parallel loops Ð its efÞcient mode of operation Ð or throughmigration Ð a less efÞcient procedure

only executed when necessary.

It is instructive to observe what properties of the resulting system are dependent on which design deci-

sions. The use of OpenMP, besides being an industry-standard, allows transparent iteration re-partitioning,

because the compiler generates the iteration-partitioning code such that it is executed at the beginning of

each parallel construct. It is possible for the user to write TreadMarks code that does the same, but this is not

the typical way TreadMarks programs are written (iteration partitioning is done once in many programs, as

soon as the number of nodes becomes known). This result is not speciÞc to OpenMP: the same techniques

can be used for other contexts that do not Þx the number of processes (nodes), e.g., when compiling the

Fortran90 or HPF array statement[22].

The use of TreadMarks allows automatic distribution and communication of data, both during regular

computation and after adaptation. Otherwise, the compiler would face the difÞcult task of generating

communication code, or the user would have to write it. The use of a grace period allows the system to most

often execute adaptations by iteration re-partitioning, with migration as a backup solution. This aspect of

the system is not speciÞc to TreadMarks, but could be achieved by any suitable DSM system.

We have described a prototype implementation and demonstrated that it exhibits good performance in

a small NOW. There is no cost for the provision of adaptivity in the absence of adaptation. The perfor-

mance penalty incurred for moderate rates of adaptations appears acceptable in the face of the augmented

functionality.

Our current system delivers good performance but many opportunities for improvement are yet to be

explored. Better process id reassignment strategies and a reduction of the bottleneck of transferring a leaving

processÕ pages via the master process offer much room for improved performance in the future. The grace

period also gives rise to a new use of compiler optimization that we have started to explore. In this paper, we

equate adaptation points with the entry or exit into a concurrent construct, i.e., in many cases, the start or end

of a parallel loop written by the user. However, the compiler can control the frequency of adaptation points

by transformations similar to loop tiling or strip mining. Depending on the degree of ßexibility required,

the compiler can generate code that determines at runtime the trip counts or tiling of the loops, subject to

the characteristics of the execution environment.

Shared memory on a NOW provides an attractive platform because it provides application-transparent

access to a large memory. Transparent management of leaving and joining nodes allows computations to

continue for a long period of time; they are no longer bounded by the time an individual workstation is

present in the pool of compute servers. Both features, a large memory and a long lifetime, are essential to

execute demanding applications on networks of commodity workstations.
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