
ARTICLE

Transparent and flexible fingerprint sensor array
with multiplexed detection of tactile pressure and
skin temperature
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We developed a transparent and flexible, capacitive fingerprint sensor array with multiplexed,

simultaneous detection of tactile pressure and finger skin temperature for mobile smart

devices. In our approach, networks of hybrid nanostructures using ultra-long metal nanofibers

and finer nanowires were formed as transparent, flexible electrodes of a multifunctional

sensor array. These sensors exhibited excellent optoelectronic properties and outstanding

reliability against mechanical bending. This fingerprint sensor array has a high resolution with

good transparency. This sensor offers a capacitance variation ~17 times better than the

variation for the same sensor pattern using conventional ITO electrodes. This sensor with the

hybrid electrode also operates at high frequencies with negligible degradation in its perfor-

mance against various noise signals from mobile devices. Furthermore, this fingerprint sensor

array can be integrated with all transparent forms of tactile pressure sensors and skin

temperature sensors, to enable the detection of a finger pressing on the display.
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A
s mobile devices such as smartphones and smart watches
become more ubiquitous and utilized in diverse areas of
our daily lives, the importance of personal security on

these devices is also rapidly escalating. Biometrics, which uses
information about the human body, can be used to provide
security on these smart devices because of the unique inherent
characteristics of every person. Biometrics usually refers to
technologies for measuring and analyzing the characteristics of
the human body, such as retinas, irises, voice patterns, facial
patterns, and fingerprints, which are unique for each person.
Therefore, biometrics is a promising approach for ensuring user
privacy. In terms of technical difficulties and cost issues, finger-
print recognition is the preferred technique among those that
have been implemented so far. A variety of physical mechanisms
have been exploited to capture electronic images of a human
fingerprint, including optical, capacitive, pressure, and acoustic
methods1. Optical fingerprint sensors use frustrated refraction
over a glass prism. The finger is illuminated from a light-emitting
diode (LED), while a photodetector transmits the image through
a lens2,3. Thermal-detection-based fingerprint sensors can be
made from a pyroelectric material that can detect temperature
differences. This sensor scans the surface of the finger, measuring
the heat transferred from the sensor to the fingerprint4,5. In the
case of pressure-type fingerprint sensor, the principle of sensing is
based on the piezoelectric effect. When a finger is placed over the
dielectric top surface of the sensor, only the ridges come in
contact with the individual sensor cells6. Ultrasound fingerprint
sensors use the principle of medical ultrasonography in order to
create visual images of the fingerprint. Ultrasonic sensors use
high-frequency sound waves to penetrate the epidermal layer of
skin. The reflected ultrasonic energy is measured using piezo-
electric materials7,8. The capacitance is changed due to the dis-
tance of each ridge (closer) or valley (further) from the fingerprint
sensor. Thus, a fingerprint image can be determined by the
measurement of this voltage output signals over time at each
capacitor of the sensor array9. Currently, capacitive fingerprint
sensors that are used in mobile devices, especially in smartphones,
are still opaque, and implemented either within an activation
button or in areas on the back of these devices. In order to
enhance the usability of mobile devices, a display that occupies a
relatively larger area of the total device size has the highest
priority in terms of product design. Thus, apart from the display,
the space needed for other components (e.g., bezels, buttons, and
sensors) needs to be reduced or completely eliminated on the
front side of products10. As such, the development of transparent
fingerprint sensors within a display is highly sought after. These
invisible sensors can allow users to simply place their finger on
the screen and identify the print, rather than on a button. For the
transparent form of capacitive fingerprint sensors, transparent
electrodes with high electrical conductance and high optical
transmittance (T) are essential and necessary for sensor opera-
tions in high-frequency ranges. The high operation frequency
(~1MHz) of the fingerprint sensor can distinguish noise from the
display (<200 kHz)11. Also, the high conductance of the trans-
parent electrode can minimize the delay between the two adjacent
electrodes. However, the sheet resistance (Rs) of conventional
transparent electrode materials, such as indium tin oxide (ITO),
carbon nanotubes, graphene, fine metal meshes, or metal nano-
wires, is too high to allow for high-frequency signals that drive
the capacitive fingerprint sensors in terms of noise from mobile
devices. Moreover, in the case of metal electrodes, the width of
electrode lines is limited in terms of obtaining high transparency
due to their nontransparency. As a result, the capacitance change
between fingerprint ridges and valleys is very low.

Here, we report an unconventional approach for the fabrica-
tion of a transparent, flexible fingerprint sensor array with

multiplexed detection of tactile pressure and finger skin tem-
perature for mobile devices. Transparent, flexible electrodes of
this multifunctional sensor array were formed using random
networks of a hybrid nanostructure based on ultra-long silver
nanofibers (AgNFs) and fine silver nanowires (AgNWs)12–14.
These invisible percolative networks exhibit excellent optoelec-
tronic properties (Rs of ~1.03Ω/sq T of 91.04% in the visible light
region) and outstanding reliability against mechanical bending. In
addition, the fingerprint sensor using the AgNF–AgNW hybrid
electrode has high resolution (318 capacitors per inch (CPI)) with
good transparency (89.05%). This resolution sufficiently satisfies
the criteria set by the Federal Bureau of Investigation (FBI) for
extracting fingerprint patterns (resolution > 250 CPI)15. The
individual single cell of this sensor array (covered by a top pas-
sivation layer with a thickness of 100 μm) presents static capa-
citance of 100 ± 0.05 fF under an untouch condition, and detects
4.2 ± 0.07 fF of the capacitance variation between the ridge and
valley of a fingerprint under a touch condition. Also, our sensor
array operates reliably at a high frequency (1 MHz) with negli-
gible degradation in its performance against noise signals from
mobile devices. In order to prevent the fingerprint forgery using
artificial fingerprints, temperature of human finger skin can be
detected using temperature sensors to distinguish real and
counterfeit fingerprints with improving security levels further. In
addition, to replace the operation of pressing the activation but-
ton of smartphones with a finger, transparent pressure sensors
were located on the display for sensing tactile pressures. For this
purpose, pressure-sensitive field-effect transistors (FETs) were
formed using the transparent layers of the oxide–semiconductor
channel and the dielectric elastomer with the transparent
AgNF–AgNW electrodes and located between the transparent
fingerprint sensor array. Pressure-sensitive FETs were formed
using the transparent layers of the oxide–semiconductor channel
and the dielectric elastomer with the transparent AgNF–AgNW
electrodes, and the thickness of this elastomer was decreased by
applying pressure with the increasing capacitance of the
metal–elastomer–semiconductor structure. In addition, a trans-
parent temperature sensor was also integrated into this array to
monitor the temperature range of human finger skin, which
enables the recognition of artificial fingerprints, thus improving
security.

Results
Fabrication process of the multiplexed fingerprint sensor.
Figure 1 and Supplementary Figs. 1–3 show the overall fabrica-
tion process for this multifunctional fingerprint sensor array. The
red numbers in Fig. 1 were related to Supplementary Figs. 1–3 to
increase the clarity of Fig. 1. In the first step of the fabrication, a
suspension of Ag nanoparticles (NPK Korea, average diameter:
40 ± 5 nm, solvent: ethylene glycol, concentration: 50 wt%) was
electrospun continuously onto a colorless polyimide (c-PI) film
(thickness: 25 μm) using a nozzle (inner nozzle size: 0.33 mm,
outer nozzle size: 0.64 mm), and then thermally annealed at
150 °C for 30 min to coalesce the Ag nanoparticles into
electrically conductive AgNFs with an average diameter of 338 ±
35 nm (Supplementary methods)12, 13, 16. This thermal annealing
step did not break the AgNFs, and the single fibers were long
enough to minimize the number of junctions between one-
dimensional metallic geometries, which leads to a significant
reduction of Rs while maintaining large open spaces in the net-
works for high transmittance. However, these large open areas
can significantly increase the resistance of AgNF networks when
they are patterned as fine electrodes with narrow widths because
locally disconnected areas are produced by etching AgNFs. For
these narrow patterns such as the bottom electrodes (width:
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65 μm, space: 15 μm) of the fingerprint sensors and the source
(S)/drain (D) (width: 15 μm) of pressure-sensitive FETs, random
networks of AgNWs (average length of AgNWs: 30 ± 7 μm, dia-
meter: 20 ± 5 nm) were successively electrosprayed on top of
the electrospun AgNF networks using a suspension of AgNWs
(B 424-1, Nanopyxis) and a nozzle (nozzle inner diameter:
0.64 mm). These sprayed AgNWs can bridge across the locally
disconnected, open areas of AgNF networks to preserve the
resistance of these narrow electrode patterns. After photo-
lithographically patterning the AgNF–AgNW hybrid networks as
transparent electrodes, a sputter was used to deposit a 2-μm-thick
SiO2 layer, which was then patterned as the dielectric layer of the
fingerprint sensors while uncovering the channel part of the
pressure-sensitive FETs. For uniform deposition of this SiO2 layer
on the AgNF–AgNW hybrid (r.m.s. roughness of 126 nm,

Supplementary Fig. 4), the substrate was rotated at the speed of
36˚/s during SiO2 deposition with the deposition rate of 0.1 nm/s.
As shown in Supplementary Fig. 5, this SiO2 layer was deposited
on the AgNF–AgNW hybrid structure without any significant
voids or delamination. To form a temperature sensor, a 300-nm-
thick layer of poly(3,4-ethylenedioxythiophene):polystyrene sul-
fonate (PEDOT:PSS) was patterned on the SiO2 surface, instead
of the AgNF–AgNW hybrid (Supplementary Fig. 6). After
depositing the 2-μm-thick SiO2 layer again with the opening of
the channel part of the pressure sensor, an amorphous layer of
indium gallium zinc oxide (IGZO) (thickness: 25 nm) was sput-
tered as the semiconducting channel (between S/D) of the
pressure-sensitive FETs. Separately, transparent electrodes of
AgNF–AgNW hybrid networks were patterned as gate electrodes
of these pressure-sensitive FETs on a dielectric cover layer before
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Fig. 1 The fabrication process for the multiplexed fingerprint sensor
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spinning a silicone elastomer layer (Ecoflex 0030, thickness of 30
μm). For this cover layer, thin glass layers with varied thicknesses
(100–500 μm) or transparent cellulose composite films (thickness:
100 μm, with BaTiO3 nanoparticles) (average diameter: 50 nm) or
AgNFs (average diameter: 300 nm, average length: 220 μm) were
embedded as fillers to increase the dielectric constants (k) of these
films17–20. After turning over this sample, the elastomer surface
was exposed by an ozone-producing ultraviolet lamp and then
bonded to the SiO2 top layer of the fingerprint sensor sample.

Characteristics of AgNF–AgNW hybrid electrodes. Figure 2
presents the properties of AgNF–AgNW hybrid electrodes for the
transparent fingerprint sensor array. The electrospun AgNFs have
diameters of an order of magnitude larger than the diameter of
AgNWs (average diameter of AgNF: 338 ± 35 nm, AgNW: 20 ± 5
nm) and are continuous to form random networks with large
open spaces. Although these ultra-long AgNF networks are
advantageous for obtaining low Rs with relatively high transpar-
ency, the large empty spaces of these networks can be dis-
advantageous for patterns of fine electrodes. The electrosprayed
AgNWs (electrospray duration: 5 s) partially filled the vacant
areas of the AgNF networks by bridging across individual AgNFs
and forming conductive paths to preserve the resistance of these
narrow electrode patterns (Fig. 2a, b). The area fraction of the
AgNF and AgNW networks, which can be controlled by the
electrospinning duration, determines Rs and T of the transparent
AgNF–AgNW hybrid electrode. Both Rs and T decrease as
their area fraction increases, as shown in Supplementary Fig. 7.
Figure 2c presents Rs of the resulting AgNF–AgNW hybrid net-
work as a function of its T in the visible light range (wavelength:

550 nm). As a transparent electrode, the AgNF–AgNW network
formed by electrospinning for 4 s (area fraction of AgNFs: 0.034)
with successive electrospraying for 5 s (area fraction of AgNWs:
0.03) exhibited a significantly low Rs value of 1.03 ± 0.08Ω/sq
with a transmittance of 91.04% (Supplementary Fig. 8). This
optoelectronic property was superior to that of other transparent
conducting materials, such as ITO (Rs > ~50Ω/sq), networks of
metal nanowires (Rs > ~20Ω/sq), or chemical vapor deposition-
synthesized graphene (Rs > ~100Ω/sq for undoped cases). In
addition, Rs of the AgNF–AgNW hybrid electrode decreased
further to ~0.012 ± 0.0008Ω/sq with T of 24.11% by increasing
their densities. AgNF–AgNW hybrid networks can be photo-
lithographically patterned using wet etching without any sig-
nificant increase in the resistance, compared to the cases where
only singular components of AgNWs or AgNFs were used with
no hybrid structure (Fig. 2d, Supplementary Fig. 9, and Supple-
mentary Table 1). Also, we performed the adhesion test of the
AgNF–AgNW networks on a PI film by immersing them for 5
min each in deionized (DI) water, acetone, isopropyl alcohol, and
tetramethylammonium hydroxide-based photoresist developer
(AZ 300 MIF). The sheet resistance (Rs) and area fraction of these
AgNF–AgNW networks degraded negligibly, which suggested
that the AgNF–AgNW networks had good adhesion and could
withstand the conventional photolithography process (Supple-
mentary Table 2). Patterning the percolated networks can sig-
nificantly change their Rs (Fig. 2e). For example, the Rs of the
AgNF network (without hybrid forms) showed a large variation
by changing the widths of patterns because locally disconnected
areas were produced by etching NFs, and became nonconductive
for a width below ~200 μm, which was similar to the vacant space
of its network. This Rs dependence on width can yield undesirable
local changes in the resistance of circuits, and hence can limit the
use of AgNFs in the design of compactly integrated circuits that
require fine electrode geometries. On the other hand, the
AgNF–AgNW hybrid structure exhibited a negligible dependence
of Rs on the pattern widths, and it had a significantly low Rs even
for narrow patterns with widths <100 μm. This enabled the fine
patterns of transparent electrodes required in fingerprint sensors
that need to detect the period between the ridges and valleys of
human fingers (~100 μm)9,21,22. Figure 2f shows the relative
change in resistance of the AgNF–AgNW hybrid electrode that
was formed on a c-PI film (thickness: 25 μm) as a function of the
radius of curvature and the corresponding bending-induced
strain (ε). No significant change in resistance was observed even
when the electrode was bent to a radius of curvature as small as
60 μm (ε < 20.8%), which indicates the superb flexibility of
AgNF–AgNW networks. The stretchability of a hybrid electrode
was measured by forming AgNF–AgNW networks on a poly-
dimethylsiloxane (PDMS) sheet, as shown in Supplementary
Fig. 10. Stretching this sample up to 90% (in tensile strain) uni-
axially resulted in a slight increase in Rs from the initial Rs of
~1.03Ω/sq. Also, to investigate its durability against repetitive
stretching and releasing, the Rs of this sample was measured
during repetitive deformation (15,000 cycles of 70% strain
stretching). Supplementary Fig. 10 shows that Rs remained almost
constant throughout this cyclic test, indicating its excellent
reliability against such deformation.

Characteristics of the fingerprint sensor array. Based on the
AgNF–AgNW hybrid electrode’s superb optoelectronic property
and its patternability, a transparent and flexible fingerprint sensor
array was demonstrated. Figure 3a shows the structure of this
array, which consisted of the driving and sensing electrodes using
the AgNF–AgNW networks, and a transparent dielectric layer
(sandwiched between these electrodes) of 2-μm-thick SiO2. The
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top surface of this sensor array can be passivated with a trans-
parent cover layer of glass, polyethylene terephthalate (PET), or a
cellulose film with varied thicknesses. The static capacitance (C)
between two parallel electrodes is calculated as C ¼ ε

wl
d
þ 2πεl

log 4d
hð Þ
,

where ε is the permittivity of the dielectric layer (SiO2) between
two parallel electrodes, w is the width of the overlapped area, l is
the length of the overlapped area, d is the thickness of the
dielectric layer, and h is the thickness of the electrode22,23. Based
on this equation, C of the designed fingerprint sensor is 100 fF
(l: 65 μm, w: 65 μm, and d: 2 μm). Figure 3b presents a photo-

graph of this fingerprint sensor array, and Supplementary Fig. 9
shows optical micrographs (dark field) of this sample as

magnified images. This transparent sensor array has 80 × 80
electrodes or 6400 capacitor nodes in an area of 6.4 mm × 6.4
mm, which translates to 318 CPI and therefore satisfies FBI cri-
teria. As shown in Fig. 3c, this resulting array (without the
CNF+AgNF cover layer) exhibited a high transparency of
89.05% in the visible light range. Supplementary Fig. 11 presents
transparency with different cover layers (PET, glass,
CNF+ BaTiO3, and CNF). This sensor array detects fingerprints
by measuring the capacitance at each addressable electrode, and
thus, the dielectric constant (k) of the protective cover layer,
which is located between the active surface of the fingerprint
sensor and the finger, is directly related to the fingerprint sensor
sensitivity24–26. Glass has high optical transmittance (~90.54%),
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an outstanding mechanical reliability, and relatively high dielec-
tric constants (e.g., gorilla glass, k= 7.2)27. Although glass has
been used extensively as the protective cover layer for capacitive-
type fingerprint sensors, its fragility limits its use for flexible
devices. Also, conventional, transparent plastic films, such as PET
(k= 3.1), polyethylene (PE) (k= 2.2), PI (k= 3.4), and poly-
carbonate (PC) (k= 2.9), exhibit a relatively low k and modest
mechanical properties for withstanding wear and scratch damage.
As such, they are also not suitable for the cover layer of finger-
print sensors, which requires a high k and outstanding mechan-
ical durability as well as a high T.

In this study, we tested five different transparent films: glass
slide, PET, cellulose nanofibers (CNFs) film, the CNF film
embedded with BaTiO3 nanoparticles (CNF+ BaTiO3, the
content of the TiO2 nanoparticle: 1 wt%, and average size: 25
nm), and the CNF film embedded with AgNFs (CNF+AgNF,
the content of AgNFs: 1.2 wt%, average length of AgNFs: 200 ±
20 μm, and average diameter of AgNFs: 380 ± 35 nm)17,20, as the
cover layer (thickness of these layers: 100 μm) of the fingerprint
sensor array. Although CNF films are advantageous due to their
high transparency and good mechanical flexibility and durability,
the low dielectric constants of pristine CNF films (k= 1.4–3.0)
still limit their use as the cover layer of this fingerprint sensor
array19,20,28–30. Embedding nanofillers of metals (AgNFs) or
ceramics (BaTiO3 nanoparticles) into the CNF film can
significantly increase k17,31–33. Figure 3d and Supplementary
Fig. 12 compare the T (at 550 nm) and k values of these cover
layers. Here, k values were measured at 1 MHz, which is the
operating frequency of the transparent fingerprint sensor array.
Among these five different cover layers, the CNF film with AgNFs
(CNF+AgNF) presented the highest k value of 9.2 with good
transmittance of ≈90%. Figure 3e shows the change in the
capacitance (ΔC) of a single cell from the sensor array with this
CNF+AgNF layer at an operating frequency of 1 MHz
(untouched static capacitance, 100 fF) by touching a finger on
the top surface of this cover layer and then slipping sideways as
shown in Supplementary Fig. 13. When the valley of the
fingerprint was touched onto the fingerprint sensor, the
capacitance was reduced from 100 ± 0.08 to 80 ± 0.12 fF. Con-
secutively, the fingerprint was slid, and the ridge of the fingerprint
was located with reducing the capacitance from 80 ± 0.12 to 76 ±
0.09 fF. In addition, we measured ΔC using these five different
films covering the fingerprint sensor array. Among these samples,
the highest k case (the fingerprint sensor using a CNF+AgNF
cover layer) presented the largest capacitance change (Fig. 3f).
Figure 3g shows the two-dimensional fingerprint mapping results
using a fake fingerprint (size: 2 mm × 2mm). This sensor array
recognized a ΔC (from the ridge to the valley of the fingerprint) of
4.03%, and the difference between the fake fingerprint pattern
and the mapping image from the sensor array was negligible.

Entire circuit system for the fingerprint sensor array. Figure 4a
illustrates the entire circuit system composed of this fingerprint
sensor array as a touch screen panel (TSP), a driving unit, and a
receiving unit. The TSP consists of the driving electrode and the
sensing electrode arranged in parallel, and mutual capacitors are
placed between these electrodes. When a finger touches the fin-
gerprint TSP, the difference in the mutual capacitance occurs
dependent on the difference in the depths of the ridges and valleys.
This circuit system obtains the fingerprint image by sensing the
mutual capacitance. The transmitters send driving signals to the
driving electrodes in a time-division manner. The transmitter is
composed of a reference generator, a selection block, a buffer, and
a multiplexer (MUX). A receiver is designed based on a fully
differential circuit, which has the advantage of detecting low

differences in capacitance. A fully differential receiver is composed
of an MUX, a differential charge amplifier (DCA), a differential
gain amplifier (DGA), a multiplier, a low-pass filter (LPF), an
analog-to-digital converter (ADC), and a microcontroller unit
(MCU). The output of DCA is proportional to the difference in
the adjacent capacitors, and a DGA amplifies the output of a DCA.
A multiplier and a LPF block any noise signals, and the ADC
converts the analog signals to digital signals. In this way, a fin-
gerprint image can be obtained by processing the digital signal.

Figure 4b, c presents optical micrographs of a fully differential
receiver for fingerprint recognition and a high-voltage transmit-
ter. Figure 4d shows the measurement results using the
fingerprint system. These results indicate the analog outputs of
the proposed IC and the fingerprint TSP. When a differential
receiver senses a mutual capacitance under the ridges or the
valleys (CRR, CVV), the output of the receiver is 281 mV as shown
in Fig. 4d. When a differential receiver senses a mutual
capacitance under the ridges and the valleys (CVR), the output
of the receiver is 797 mV as shown in Fig. 4d. Comparing the
adjacent capacitance of the whole fingerprint TSP, it is possible to
make a capacitive contour map. Figure 4e shows the output
waveform of the fingerprint sensor. The output voltage of this
sensor is ~0.30–0.83 V with a frequency of 1 MHz. A fingerprint
was slipped on the fingerprint sensor with 10 μm/s and the output
voltage was measured. A driving circuit applied the signal with 1
V at 1MHz to the electrode, and then 500 ± 4 mV of the output
voltage was obtained according to the positions of the ridges and
valleys of the fingerprint. In order to integrate this transparent
fingerprint TSP on a display, it is necessary to have reliable
operations of this TSP in high-frequency ranges to avoid noise
from the display (<200 kHz) in mobile applications. Figure 4f
presents the difference in the output voltages under the ridges and
the valleys against various noise signals. This transparent
fingerprint TSP operated reliably at a high frequency of 1 MHz
with negligible degradation in its performance against typical
noise signals (1, 10, 50, and 100 kHz) from mobile devices, due to
the significantly low Rs of AgNF–AgNW hybrid electrodes. In
comparison, another fingerprint TSP was fabricated with identical
structures where transparent ITO (thickness: 100 nm,
Rs: 30Ω/sq) and AgNWs (Rs: 11.3Ω/sq) were used as the driving
electrode and the sensing electrode, instead of the AgNF–AgNW
hybrid networks. As shown in Fig. 4g and Supplementary Fig. 14,
the fingerprint TSP using the AgNF–AgNW hybrid had the
largest difference in output voltages under the ridges and the
valleys, while the fingerprint TSP (covered by a 500-μm-thick
glass layer) using AgNWs or ITO could not distinguish the ridges
and valleys.

Multiplexed fingerprint sensor array. As the level of device
integration continually increases, the multifunctionality of sen-
sors becomes increasingly important for mobile smart devices.
Figure 5 describes the integration of this fingerprint sensor array
with tactile pressure sensors and skin temperature sensors, all of
which have transparent and flexible forms, to enable the detection
of a finger pressing on the display. This facilitates the removal of
activation buttons on smart devices. Additionally, the ability to
recognize artificial fingerprints improves security. Figure 5a pre-
sents a photograph of this integrated, multifunctional sensor
array. All transparent sensors for the fingerprint, pressure, and
temperature are located in the central transparent region inside
the outer bezel areas to interconnect these sensors to the readout
circuit using Cr/Au electrodes. Figure 5b shows schematic layouts
of this array. In the case of pressure sensors, we fabricated
pressure-sensitive FETs with local air gaps as a dielectric layer
between the channel (IGZO) and the top-gate electrode, for good
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electrical properties and high reliability under ambient condi-
tions, due to the clean interface between IGZO and air (supple-
mentary information)34. Here, an elastomeric dielectric layer
(Ecoflex 0030, thickness: 20 μm) was located on the 4-μm-thick
air gap (below a 100-μm-thick, transparent cover layer of the
CNF+AgNF hybrid), and its thickness can decrease by applying
pressure with increasing the capacitance of IGZO FET. Five
pressure sensors were located on the four corners and at the
center of the fingerprint sensor array. The thickness of this air gap
on the channel part reduces with an increase in the capacitance of
the gate–air dielectric–IGZO structure when this pressure-
sensitive FET is pressed by a normal mechanical force, which
increases the S/D current (ID) of this FET (Supplementary Fig. 16)
Supplementary Fig. 17 shows a SEM image of a pressure sensor
that was located between neighboring electrodes of fingerprint
sensors. ID versus top-gate bias (VG) characterization of this FET
was measured at an ambient condition, and its representative
transfer and output curves are presented in Supplementary

Fig. 18a, b. This air-dielectric FET shows the n-channel behavior,
with the mobility, on/off ratio, and threshold voltage of
69.7 cm2/V/s, 1.11 × 106, and 10 V, respectively, in a linear
regime. The air-dielectric layer becomes thinner, thus resulting in
a higher ID with increasing pressure. Supplementary Fig. 19
presents the plot of the normalized change in drain current
(ΔID/Io) versus applied pressure, extracted at VD= 10 V and VG

= 30 V. The detectable maximum pressure value is ~1.6 MPa and
ΔID saturates beyond this pressure range, in which the sensitivity
is calculated as ~1.78 × 10−3 kPa−1 at a lower pressure regime
(below 350 kPa) and ~9.65 × 10−5 kPa−1 at a higher pressure
regime (above 350 kPa). This pressure sensor is capable of
detecting a wide range of pressure, which is of significant
importance, representing a potential beyond the range of the
gentle touch of human fingers to object manipulations (from 10
to 100 kPa)35,36. When pressure was applied on this device, the
real-time detection curve of ΔID/Io, as shown in Fig. 5c presents
distinctive step-like features. Figure 5d shows the recovery
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behavior in pressure sensing with negligible hysteresis during
repeated loading–unloading tests with a pressure of 300 kPa. This
pressure sensor operates with a response time of 32 ms and a
recovery time of 56 ms.

PEDOT:PSS was used as a transparent, temperature-sensitive
material, and Supplementary Fig. 20 presents a SEM image of this
PEDOT:PSS pattern (as a temperature-sensitive resistor) integrated
with the fingerprint sensor array. The initial resistance value (Ro) of
this temperature sensor was 8.5 kΩ, and temperature modulated its
normalized resistance (R/Ro) linearly in the range between 30℃
and 45℃ (Fig. 5e). PEDOT:PSS typically exhibits a negative
temperature coefficient (NTC)37–39, and the average temperature
coefficient of resistance (TCR) of this sensor was 0.03% per ℃.
Furthermore, to observe the reliability of temperature sensing, the

resistance change of the temperature sensor was measured and
converted to temperature. Temperature was controlled by a hot
plate (30–45℃), and the temperature sensor exhibited linear NTC
behavior in this temperature range. The hysteresis level was
negligible. As shown in Fig. 5f, the temperature can be measured
reliably and repeatably for 30 times in a cyclic test.

Figure 5g presents representative graphs for the simultaneous
detection of a fingerprint, tactile pressure, and skin temperature
using this transparent and flexible device for a series of finger
touches with a 100-μm-thick, transparent cover layer of the
CNF+AgNF hybrid. For simultaneous sensing, fingerprint
sensors were connected to the circuit system using a peripheral
connecting device. At the same time, the same peripheral
connecting device and the pressure and temperature sensors
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were connected to two sourcemeters, the system switch, and the
relay card, as shown in Supplementary Fig. 21. Here, the blue and
red lines show the change in the output voltage of the fingerprint
sensor (including the elastomeric layer) at ridge and valley
positions, respectively. When the finger touched this device, an
additional voltage drop of about 500 mV was generated in the
ridge area, compared to the valley area. Also, the pressure-
sensitive FETs monitored the tactile pressure from touching a
finger repeatedly for five times (~100 kPa on the green line of
Fig. 5g), and the temperature sensor detected the temperature of
the finger skin each time the finger made contact with it (the
purple line). Figure 5h, i shows an original image of a human
fingerprint and the image scanned from this fingerprint sensor
array, respectively. The differences in the capacitance between the
ridges and valleys were about 4.03%, and the pattern of the
original fingerprint and its scanned result matched with negligible
deviations. Furthermore, the multiple array of pressure-sensitive
FETs was located with a spacing of 1.3 mm inside this fingerprint
sensor array, and hence the singular touch of a finger pressed
multiple pressure sensors simultaneously. For example, Fig. 5j
shows a color gradation contour plot of the resultant signals
(ΔID/Io) detected from five different pressure sensors by the single
touch of a finger. When these five different FETs were pressed
selectively, the signals (ΔID/Io) only changed according to the
corresponding sensor position (Supplementary Fig. 22). In order
to measure the flexibility of this transparent sample with the
multifunctional sensor array, it was wrapped on various
cylindrical supports with different curvatures. Supplementary
Fig. 23 shows the relative difference in the capacitance change
between the ridges and valleys measured from a fingerprint
sensor as a function of bending-induced strain. There was no
significant change during bending to a radii of curvature as small
as 3.1 μm.

Discussion
In this paper, we described the fabrication of a transparent and
flexible fingerprint sensor array with multifunctional detection of
finger pressure and skin temperature using AgNF–AgNW hybrid
networks as high-performance transparent electrodes. The high
resolution of this fingerprint sensor array (318 CPI) sufficiently
satisfies the criteria set by the FBI for extracting fingerprint pat-
terns, and its good transparency (89% in the visible light regime)
enables its integration into a display. The sensing capability, in
terms of capacitance variation (between a ridge and a valley) is up
to 17 times better than that of an identical sensor structure using
conventional ITO electrodes. Furthermore, the low Rs of the
AgNF–AgNW hybrid electrodes can drive this sensor array at 1
MHz reliably to handle typical noise from mobile devices or
displays. The demonstration of its integration with pressure and
temperature sensors, all of which had transparent and flexible
forms, indicates the potential for replacement of the activation
button on smartphones. Additionally, the ability to recognize
artificial fingerprints further improves security.

Methods
Formation of AgNF–AgNW hybrid electrodes. We used an electrospinning
process to fabricate a continuous network of Ag nanofibers (AgNFs) with an
average diameter of 338 ± 35 nm using a suspension of Ag nanoparticles (NPK,
Korea; average diameter: 40 ± 5 nm; solvent: ethylene glycol; concentration= 50 wt
%) as an ink. The electrospinning height was 15 cm, the applied voltage between
the nozzle tip and the ground was 11.5 kV, and the inner and outer diameters of
the nozzle were 0.33 and 0.64 mm, respectively. The environmental temperature
and relative humidity were 17 °C and 4%, respectively. The electrospun fibers were
annealed at 150 °C for 30 min in air (relative humidity: ~25%). AgNWs (Nanopyxis
Co. Ltd.) with an average diameter of 30 (±5) nm and length of 25 (±5) mm which
were dispersed in DI water (3 mg/ml) were electrosprayed on top of the AgNF
random network. The electrospraying height was 15 cm, the applied voltage

between the nozzle tip and the ground was 9.5 kV, and the diameters of the nozzle
were 0.33 mm.

Formation of high-k CNF films. A total of 2,2,6,6-tetramethyl-1-piperidine-1-oxyl
(TEMPO)-oxidized CNFs (0.3 wt%) about 20 nm in diameter and 1-micron long
(University of Maine, Orono, ME, USA) were used to prepare a high-k CNF film.
To fabricate a high-k and transparent CNF film, BaTiO3 nanoparticles (Sigma
Aldrich) and AgNFs were mixed in an aqueous suspension of CNFs (0.3 wt%) with
various concentrations, followed by vacuum filtration. The obtained CNF film was
thoroughly dried by hot pressing at 60 °C for 10 h, under the pressure of 10MPa,
and was then peeled off from the filter. Next, an epoxy-based hard polymer (SU-8,
Microchem) was coated by the dip-coating method and the CNF film was obtained.

Characterization of fingerprint sensors. The capacitance changes of the finger-
print sensor were measured by a probe station (Keithley 4200-SCS and Agilent
E4980A). Capacitance measurements were conducted at 1-MHz frequency with a
1-V AC signal using an Agilent E4980A Precision LCR Meter. When using a
fingerprint recognition IC for fingerprint detection, a transmitter IC sends 1-MHz
and 1-V AC signals to the driving electrodes of the fingerprint TSP. A receiver IC
receives current from the sensing electrodes which is proportional to the mutual
capacitor of the fingerprint TSP and converts these current signals to the voltage
signals. By comparing these voltage signals, it is possible to make a fingerprint
image. For artificial noise input test, typical noise signals (1, 10, 50, and 100 kHz, 1
V) were applied to the driving electrodes with fingerprint operation AC signal (1
MHz, 1 V) using an independent signal generator (Keysight 33520B). Output
voltages with different noise signals were measured at the sensing electrodes which
were connected to the receiver IC circuit.

Characterization of pressure and temperature sensors. The electrical perfor-
mances such as transfer and output characteristics of the pressure sensor and resis-
tance of the temperature sensor were characterized by a probe station (Keithley
4200-SCS). Pressure was applied and measured by a motorized vertical test stand
(Mark-10 ESM301) in combination with a force gauge (Mark-10 M5-2). Heat was
applied by a hot plate. To test the pressure- and temperature-sensing performances, a
homemade measuring system was built to collect electric signals when the device was
under applied force and heat. For the measurements of the pressure distribution on
five pressure sensors and temperature, two sourcemeters (Keithley 2400), a system
switch (Keithley 3706), a relay card (Keithley 3723), and peripheral devices were used.
The output signals were exhibited using the Labview-based programmed software.

Data availability. Data supporting the findings of this study are available within
the article and its supplementary information files and from the corresponding
author upon reasonable request.
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