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Abstract

We introduce FlowComb, a network management frame-

work that helps Big Data processing applications, such as

Hadoop, achieve high utilization and low data processing

times. FlowComb predicts application network transfers,

sometimes before they start, by using software agents in-

stalled on application servers and while remaining com-

pletely transparent to the application. A centralized de-

cision engine collects data movement information from

agents and schedules upcoming flows on paths such that

the network does not become congested. Results on our

lab testbed show that FlowComb is able to reduce the

time to sort 10GB of randomly generated data by 35%

while changing paths for only 6% of the transfers.

1 Introduction

Recent years have witnessed the emergence of appli-

cations and services (e.g., social media, e-commerce,

search) that generate massive collections of data (also

known as Big Data). To analyze the data quickly and ef-

ficiently and extract value for customers, these services

use distributed frameworks (e.g., Map/Reduce, Dryad)

deployed in cloud environments (e.g., Amazon AWS,

Microsoft Azure, Google Apps). The frameworks split

the data across clusters of hundreds or thousands of com-

puters, analyze each piece in parallel, and then transfer

and merge the results across the cloud network. To re-

duce the running costs of the cloud provider (who man-

ages the infrastructure) and the customer (who pays by

the hour), it is important to improve cluster utilization

and keep the duration of data processing jobs low.

Previous research has taken two directions to optimize

utilization and keep running time low: schedule compu-

tation or schedule communication. Several works pro-
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pose to improve job scheduling by preserving data local-

ity [17, 24], maintaining fair allocation among multiple

resource types [12] or culling time-consuming tasks [4].

Even with optimal computation scheduling, the cluster

network can still become a bottleneck. A previous study

on Facebook traces shows that on average, transferring

data between successive stages accounts for 33% of the

running time and that for many jobs the communication

phase takes up more than half of the running time [8].

Consequently, recent proposals seek to schedule com-

munication rather than, or in addition to computation.

They optimize network transfers by improving the flow

bandwidth allocation [8, 19] or by dynamically chang-

ing paths in response to demand [3, 21, 10]. These ap-

proaches need accurate and timely application demand

information, obtained either from the application itself

through instrumentation [8], which is quick and accu-

rate but intrusive, or from the network through monitor-

ing [3], which does not require application involvement,

but can be expensive, slow, and detects changes in de-

mand only after they have occurred.

We propose FlowComb, a network management mid-

dleware for Big Data processing frameworks that is both

transparent to the applications and quick and accurate

in detecting their demand. FlowComb detects network

transfers, sometimes before they start, and adapts the net-

work by changing the paths in response of these trans-

fers. We present a proof of concept for FlowComb using

the Hadoop Map/Reduce framework.

Three questions lie at the foundation of FlowComb’s

design: (1) how to anticipate the network demand of the

application?, (2) how to schedule detected transfers? and

(3) how to enforce the schedule in the network?

First, accurately inferring Hadoop network demand

without application involvement is difficult. Relying on

past demands is not an option because different jobs may

have different network footprints [7]. Monitoring the

network is expensive and detects demand changes only

after they have occurred [3]. Instead, we rely on ap-
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plication domain knowledge to detect network transfers.

To alleviate the load on the network and avoid the in-

cast problem [18], Hadoop randomly delays the network

transfers of data that becomes available [16]. To detect

when this happens, we install agents on each server in the

cluster and continually monitor the local tasks and logs.

Second, adapting the network in time after detecting

a network transfer is challenging, especially when the

transfer is short. A centralized decision engine collects

data from each agent and maintains network topology

and utilization information. If the pending or current

transfer creates congestion, the decision engine finds an

alternative path with sufficient available bandwidth. Fi-

nally, FlowComb uses OpenFlow to enforce the path and

install forwarding rules into switches.

FlowComb balances the load in the network by redi-

recting flows along paths with sufficient available band-

width, similarly to Hedera [3] or ECMP [13]. However,

FlowComb uses application domain knowledge to de-

tect network transfers that lead to congestion, rather than

rely on the network to detect and reschedule only large-

volume flows, such as Hedera, or choose paths by hash-

ing selected fields in the packet header, such as ECMP.

As argued by others as well, network scheduling with

application input may lead to better allocations [22, 5].

FlowComb is effective when at least one network link

is fully utilized, i.e., when the application may not be

able to improve transfer time by increasing the flow rate.

In such situations, shifting part of the traffic on alternate

paths is necessary. FlowComb is complementary to re-

cent systems, such as Orchestra [8] or Seawall [19], that

perform rate allocation, rather than route allocation, of

flows on their default saturated paths.

We deployed FlowComb on a 14 node lab Hadoop

cluster connected by a network consisting of two hard-

ware and six software OpenFlow switches. FlowComb is

able to reduce the average running time of sorting 10GB

of randomly generated data by 35%. While few (6%) of

all transfers are rescheduled on alternate paths, 60% of

path changes are enforced before the midpoint of a trans-

fer and 10% before the transfer even starts.

To summarize, we propose a Big Data network

management framework that detects application de-

mand without application involvement. FlowComb uses

software-defined networking to adapt the network paths

to the demands. Our work shows that it is possible to

make the network more responsive to application de-

mands by combining the power of software-defined net-

working with lightweight end-host monitoring.

2 Motivation

We use Hadoop’s MapReduce framework to motivate the

design of our system. MapReduce provides a divide-and-

conquer data processing model, where large workloads

are split into smaller tasks, each processed by a single

server in a cluster (the map phase). The results of each

task are sent over the cluster network (the shuffle phase)

and merged to obtain the final result (the reduce phase).

In this section, we describe the network footprint of a

MapReduce job, evaluate its impact on the overall data

processing, and outline our vision to alleviate it.

2.1 Network footprint

The network footprint of a MapReduce job consists pre-

dominantly of traffic sent during the shuffle phase. In

some cases, map tasks do not have the required data on

the local server and must request it from another node,

thus generating additional network traffic. As such sce-

narios are rare, we do not consider them in our study [1].

We describe the network footprint of MapReduce shuffle

from three perspectives: time, volume, burstiness.

Time: The shuffle phase consumes a significant time

of the job processing. Chowdhury et al. analyzed a

week-long trace from Facebook’s Hadoop cluster, con-

taining 188,000 MapReduce jobs, and discovered that,

on average, the shuffle phase accounted for 33% of the

running time [8]. In addition, in 26% of jobs the shuffle

takes up more than half of the running time. This shows

that attempting to optimize network communication can

yield big gains in processing time.

Volume: How much traffic is exchanged during a typ-

ical shuffle phase depends on the type of job and the clus-

ter setup. Jobs with small map input-to-output ratio gen-

erate less network traffic. Similarly, Hadoop configura-

tions with many tasks running on a server generate less

traffic since it is more likely for a mapper and reducer to

run on the same server. Chen et al. performed a study on

seven industrial MapReduce workloads and found that,

while the shuffle size varies widely, there are workloads

whose processing generates more than 1GB of network

traffic among the nodes of the cluster for each job [7].

Burstiness: Previous studies show that MapReduce

shuffle traffic is bursty [1]. We set up a Hadoop cluster

(see Section 4) and performed several operations, while

varying Hadoop configuration parameters, such as repli-

cation factor or block size. In all experiments, we ob-

served significant traffic spikes that can introduce net-

work congestion and delay job processing.

2.2 Network impact

Intuitively, having more network capacity reduces the

communication time and decreases job processing dura-

tion. We use our Hadoop cluster (Section 4 to repeatedly

sort the same 10GB workload while varying the capacity

of each link in the network from 10 to 100 Mbps. The av-

erage sort time (computed over 10 runs) increases from
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Link capacity (Mbps) Avg. processing time (min)

100 39

50 53 (x1.3)

25 67 (x1.7)

10 146 (x3.7)

Table 1: Average job processing time increases as the

network capacity decreases. The results represent aver-

ages over 10 runs of sorting a 10GB workload on a 14

node Hadoop cluster. The network topology is presented

in Figure 2. The numbers within parentheses represent

increases from the baseline 100Mbps network.

39 to 146 min (almost four times) when we reduce the

link capacity from 100Mbps to 10 Mbps. The results,

summarized in Table 1, match our intuition and indicate

that finding paths with unused capacity in the network

and redirecting congested flows along these paths could

improve performance.

2.3 Our goal

As the network plays an important role in the perfor-

mance of distributed data processing, it is crucial to tune

it to the demands of applications. Obtaining accurate

demand information is difficult [5]. Requiring users to

specify the demand is unrealistic because changes in de-

mands may be unknown to users. Instrumenting appli-

cations to give the instant demand is better but is intru-

sive and deters deployment because it requires modifi-

cations to applications [11]. Finally, inferring demand

from switch counters [3] does not place any burden on

the user or application but gives only current and past

statistics without revealing future demand. In addition,

polling switch counters must be carefully scheduled to

maintain scalability, which may lead to stale information.

Our goal is to build a network management platform

for distributed data processing applications that is both

transparent to the applications and quick and accurate in

detecting their demand. We propose to use application

domain knowledge to detect network transfers (possibly

before they start) and software-defined networking to up-

date the network paths to support these transfers without

creating congestion. Our vision bridges the gap between

the network and the application by introducing a middle

layer that collects demand information transparently and

scalably from both the application (data transfers) and

the network (current network utilization) and adapts the

network to the needs of the application.

3 Design

FlowComb improves job processing times and averts net-

work congestion in Hadoop MapReduce clusters by pre-

dicting network transfers and scheduling them dynami-

cally on paths with sufficient available bandwidth. Fig-

Predictor Scheduler

FlowComb

   Hadoop

   cluster

Agents

Controller

Figure 1: FlowComb consists of three modules: flow

prediction, flow scheduling, and flow control.

ure 1 highlights the three main components of Flow-

Comb, flow prediction, flow scheduling, and flow control.

3.1 Prediction

FlowComb detects data transfers between nodes in a

Hadoop cluster using domain knowledge about the in-

teraction between Hadoop components.

Hadoop operation. When a map task finishes, it

writes its output to disk and notifies the job tracker,

which in turn notifies the reduce tasks. Each reduce task

then retrieves from the mapper the data corresponding to

its own key space. However, not all transfers start im-

mediately. To avoid overloading the same mapper with

many simultaneous requests and burdening themselves

with concurrent transfers from many mappers, reducers

start a limited number of transfers (5 by default). When a

transfer ends, the reducer starts retrieving data from an-

other mapper chosen at random. Hadoop makes available

information about the transfer (e.g., source, destination,

volume) using its logs or through a web-based API.

Agents. To obtain information about data transfers

without modifying Hadoop, we install software agents

on each server in the cluster. An agent performs two sim-

ple tasks: 1) periodically scans Hadoop logs and queries

Hadoop nodes to find which map tasks have finished and

which transfers have begun (or already finished), and 2)

sends this information to FlowComb’s flow scheduling

module. To detect the size of a map output, an agent

learns the ID of the local mappers from the job tracker

and queries each mapper using the web API. Essentially,

our agent performs the same sequence of calls as a re-

ducer that tries to obtain information about where to re-

trieve data. In addition, the agent scans the local Hadoop

logs to learn whether a transfer has already started.
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3.2 Scheduling

The scheduler receives periodically a list of current or

pending data transfers (i.e., source and destination IPs

and volume), detects if any of them creates congestion

on their default path and if it does, schedules them on a

new path. The scheduler maintains a current map of the

network with the scheduled flows and available capacity

on each link. Three important decisions underline the

functioning of the flow scheduler: 1) choose a flow to

schedule, 2) decide whether the flow needs another path,

and 3) find a good alternate path for it.

Choosing flows. At any moment, the scheduler may

have several flows that are waiting to be scheduled. We

use FIFO scheduling, where the decision engine sched-

ules flows as it learns about them, because it introduces

the least delay in processing a flow. We plan to experi-

ment with other policies, such as prioritizing flows with

larger volume or larger bandwidth.

Detecting congestion. Once we have selected a flow

to schedule, we must detect whether leaving it on the de-

fault path leads to congestion. For this, we compute the

flow’s natural demand, i.e. its max-min fair bandwidth if

it was limited only by the sender and the receiver. The

natural demand estimates the rate that the flow will have,

given the current network allocation. We use the algo-

rithm developed by Al-Fares et al. [3] to compute the nat-

ural demand. If the natural demands for all active flows

together with that of the current flow create congestion

then we must choose a new path for our flow.

Choosing a new path. We schedule each flow whose

natural demand creates congestion on the first path with

enough available bandwidth [3] that we find between the

source and the destination of the flow.

3.3 Control

To exploit the full potential of FlowComb, the switches

in the network must be programmable from a centralized

controller. FlowComb maintains a map of the network

with all switches and the flows mapped to paths. It can

derive the utilization of each link in two ways: from the

server agents (if Hadoop is the only application running

in the network) or by polling switch counters (if the net-

work is shared). We leave the description for future work

but note that there exist scalable methods for utilization

monitoring [20, 23].

4 Preliminary Evaluation

We implemented FlowComb as an extension to the Nox

OpenFlow controller [14] and deployed it on a Hadoop

14-server cluster. Figure 2 shows the network topology

of the cluster. Our preliminary results focus on the per-

formance of FlowComb. We also discuss the overhead

involved in running it and the scalability implications.

of1 of2

ovs1 ovs2 ovs3 ovs4 ovs5 ovs6

Figure 2: Network topology used for experiments: of1

and of2 are NEC PF5240 OpenFlow switches; ovs1-6 are

software switches, running Open Vswitch. All links have

100Mbps capacity.

4.1 Performance

We seek to understand (1) how effective FlowComb is

in detecting network transfers and scheduling them on

alternative paths, and (2) how much it can reduce job

processing time. We initially set the default paths be-

tween all servers not connected to the same switch to

traverse of1 and sort 10GB of randomly generated data.

Each Hadoop task tracker has two slots for map or re-

duce tasks; the block size is 64MB and the replication

factor is 3. The agent polling period is 1s. We repeat the

experiment 10 times.

Prediction. FlowComb detects around 28% of all

shuffle phase flows before they start, and 56% before

they end. Each flow transfers, on the average 6.5MB of

data, and each host is the source of roughly 200 flows

during each run. Even though most transfers are short,

FlowComb is able to detect them in time for positive

gains in running time, as we show below.

Scheduling. FlowComb reroutes few flows (6%) to

avert congestion. We compute when FlowComb change

the route of a flow relative to the start of the flow. Fig-

ure 3 presents the distribution for the normalized time

of path change (the difference between the route change

time and the flow start time divided by the length of the

flow) for one run. FlowComb sets up the new path be-

fore the flow starts for about 10% of flows, and before

the flow ends for 80%. For 60% of the flows, the new

path is enacted before the midpoint of the flow.

Processing time. We computed the average job pro-

cessing time with FlowComb and without FlowComb.

FlowComb is able to reduce the time to sort 10GB of

data from 39 min to 25 min (by 36%) just by detecting

application demand and rerouting a small percentage of

flows. We also ran ECMP to randomly assign paths to

flows. With ECMP, the sorting took 35 min, better than

the baseline but 40% longer than with FlowComb.

4.2 Discussion

4.2.1 Scalability

While we did not have the resources to experiment with

FlowComb at scale, we try to identify and discuss the

elements that could impact the system’s scalability:
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Figure 3: Normalized time of path change for each

rescheduled flow, relative to the start and end of the flow.

The x value of each point represents the time when the

flow’s path is changed as a fraction of the flow dura-

tion. Points with negative x values correspond to flows

rescheduled before they start. Points with x values be-

tween 0 and 1 are for flows scheduled before they finish.

Agents. Agents scan log files and query the local task

tracker. We measured the increase in CPU utilization that

an agent introduces and found that on the average, run-

ning an agent adds less than 5% of CPU utilization.

Network. Agents send periodically demand informa-

tion to the centralized decision engine. Each message

containing demand information for one transfer has a

payload of 25B. The amount of network traffic increases

linearly with the number of transfers detected, which de-

pends linearly on the number of map and reduce tasks.

However, because not all agents see the same demand or

learn of new demands at the same time, it is unlikely that

the decision engine communicate with all agents at the

same time and be overloaded by their packets.

Scheduling. The time taken by the decision engine to

compute a new path and install it in the network depends

on the size of the network and on the number of flows.

Previous work analyzed this control loop and found it

takes on the average 100 ms, even in deployments with

thousands of hosts and tens of flows per host [3].

4.2.2 Limitations

The requirement that FlowComb be transparent to appli-

cations yet flexible to adapt the network to new applica-

tion demands introduces a few limitations.

Transfer start. Although we know that a transfer is

about to start, we do not know when, since the reducer

starts transfers at random. Thus, we may setup a path

that will not be used for some time. However, as shown

above, the number of flows for which we change the path

is relatively small compared to the total number of flows.

Polling. Polling task trackers or scanning logs intro-

duces computation overhead. Choosing the polling pe-

riod requires careful consideration. Large periods yield

lower overhead but may not detect transfers in time;

small periods may prove too demanding on the system.

Applicability. FlowComb is effective when the net-

work is congested. This is more likely to occur for

network-heavy MapReduce jobs, where the ratio of map

input to output is close to 1, and for large Hadoop clus-

ters, with little data locality.

4.2.3 Extensions

Multiple jobs. Hadoop frameworks frequently execute

multiple, unrelated jobs at the same time. While the op-

eration of FlowComb should largely be unchanged un-

der such scenarios, we underline two aspects that may

introduce additional overhead. First, monitoring appli-

cation demand and network utilization may introduce

more traffic. Second, the decision engine must be care-

ful in changing the congested path shared by multiple

jobs: simply switching all transfers on the same new path

would just transfer the congestion to that path.

Other applications. Extending FlowComb to other

Big Data processing applications (e.g., Cassandra,

HBase) requires domain knowledge of how the appli-

cation components interact with each other. Whether

FlowComb would exhibit the same performance on other

platforms depends on the dynamics between application

components (e.g., whether data becomes available long

before it is sent over the network). We are currently in-

vestigating the applicability of FlowComb to the Cassan-

dra key-value storage system.

5 Related Work

Prior work has tackled improving network communica-

tions in MapReduce jobs in several ways.

Communication scheduling. Systems such as Or-

chestra [8] and Seawall [19] propose to improve the per-

formance of the shuffle phase by scheduling flows using

a weighted fair sharing scheme rather than the default

fair sharing mechanism of TCP. This has the effect of

making transfers proportional with data sizes. However,

as Chowdhury et al. observe [8], when at least one link

on a transfer path is fully utilized, there is little to be

gained from using a weighted scheme. FlowComb per-

forms route allocation, rather than rate allocation, and is

complementary with Orchestra and Seawall

Data aggregation. Rather than modify the way data

transfers are scheduled, other systems propose to reduce

the amount of data being transferred. Camdoop performs

in-network aggregation of the shuffle data by building

aggregation trees with the sources of the intermediate
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MapReduce data as children and the server executing

the final reduction as root [9]. The service, however,

is designed specifically for CamCube [2], a cluster built

from commodity hardware where servers are connected

directly with each other, and does not work in a tradi-

tional Hadoop cluster.

Full bisection bandwidth. Many data center topolo-

gies are designed to achieve full bisection bandwidth be-

tween any two parts of the topology [13, 15]. To take

advantage of the multiple paths between any two hosts,

operators use ECMP forwarding, where the path selected

for a packet is selected by hashing selected fields in the

packet’s header. However, if flows collide on their hash

and follow the same path, it can lead to congestion and

reduced performance. FlowComb assigns flows to paths

using both application and network demand information,

rather than bits in the packet header.

Malleable topologies. c-Through [21], Helios [10],

and OSA [6], propose to dynamically allocate optical cir-

cuits in response to traffic demand. Recently, Wang et al.

proposed to make such architectures application-aware

using software-defined networking [22]. In their design,

the job tracker requests the SDN controller to setup the

network for the shuffles with the greatest estimated vol-

ume. However, the granularity of their approach is too

coarse in that it may impact other traffic traversing the

network and which has different requirements.

6 Conclusions

We presented a network management platform for Big

Data processing applications that is transparent to the

applications yet is able to quickly and accurately de-

tect changes in their demand. FlowComb relies on ap-

plication domain knowledge to detect network transfers

between the application components, sometimes before

they even start, and on software-defined networking to

change the network path to support these transfers. Ex-

periments on a lab testbed show that FlowComb can im-

prove MapReduce sort times by an average of 35%.
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