
 Open access Proceedings Article DOI:10.1109/ICDCS.1989.37929

Transparent concurrent execution of mutually exclusive alternatives
— Source link

Jonathan M. Smith, Gerald Q. Maguire Jr.

Institutions: Columbia University

Published on: 05 Jun 1989 - International Conference on Distributed Computing Systems

Topics: Task (computing)

Related papers:

 System and method of execution map generation for schedule optimization of machine learning flows

 Transparent Parallelism in Query Execution

 System and method of schedule validation and optimization of machine learning flows for cloud computing

 Efficient Distributed Execution of Multi-component Scenario-Based Models

Systematic Methodology for Real-Time Cost-Effective Mapping of Dynamic Concurrent Task-Based Systems on
Heterogenous Platforms

Share this paper:

View more about this paper here: https://typeset.io/papers/transparent-concurrent-execution-of-mutually-exclusive-
1veh5qxoam

https://typeset.io/
https://www.doi.org/10.1109/ICDCS.1989.37929
https://typeset.io/papers/transparent-concurrent-execution-of-mutually-exclusive-1veh5qxoam
https://typeset.io/authors/jonathan-m-smith-4umfzb7222
https://typeset.io/authors/gerald-q-maguire-jr-3mkpunnxzm
https://typeset.io/institutions/columbia-university-2nw8vbgb
https://typeset.io/conferences/international-conference-on-distributed-computing-systems-14z9qzt1
https://typeset.io/topics/task-computing-jlmq508j
https://typeset.io/papers/system-and-method-of-execution-map-generation-for-schedule-56pi51r33i
https://typeset.io/papers/transparent-parallelism-in-query-execution-1zq9plwtrg
https://typeset.io/papers/system-and-method-of-schedule-validation-and-optimization-of-2gtiqhb5wj
https://typeset.io/papers/efficient-distributed-execution-of-multi-component-scenario-saqwvxz1w2
https://typeset.io/papers/systematic-methodology-for-real-time-cost-effective-mapping-1de6j1e3oe
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/transparent-concurrent-execution-of-mutually-exclusive-1veh5qxoam
https://twitter.com/intent/tweet?text=Transparent%20concurrent%20execution%20of%20mutually%20exclusive%20alternatives&url=https://typeset.io/papers/transparent-concurrent-execution-of-mutually-exclusive-1veh5qxoam
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/transparent-concurrent-execution-of-mutually-exclusive-1veh5qxoam
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/transparent-concurrent-execution-of-mutually-exclusive-1veh5qxoam
https://typeset.io/papers/transparent-concurrent-execution-of-mutually-exclusive-1veh5qxoam

Transparent Concurrent Execution of l\futually Exclusive
Alternatives

Jonathan M. Smith

Gerald Q. Maguire. Jr.

Computer Science Department. Columbia University, New York, NY 10027

Technical Report Number CUCS-387 -88t

ABSTRACT

We examine the task of concurrently computing alternative solutions to a problem. We restrict

our interest to the case where only one of the solutions is needed; in this case we need some rule for

selecting between the solutions. We use "fastest first". where the first successful alternative is

selected. For problems where the required execution time is unpredictable, such as database queries.

this method can show substantial execution time performance increases. These increases are dependent

on the mean execution time of the alternatives. the fastest execution time. and the overhead involved in

concurrent computation.

Among the problems with exploring multiple alternatives in parallel are side~ffects and combinatorial

explosion in the amount of state which must be preserved. These are solved by process management

and an application of "copy-on-write" virtual memory management The side effects resulting from

interprocess communication are handled by a specialized message layer which interacts with process

management.

In order to test the utility of the design. we show how it can be applied to two application areas. distri

buted execution of recovery blocks and OR-parallelism in Prolog.

Topic Designators: Distributed and Parallel Algorithms. Experimental Distributed Systems. Modeling

and Performance Evaluation. Languages

Additional Keywords: Transparency. Speculative Computation, Memory Management

t A version of this paper will appear in the Proceedings of the 9th International Conference on Distri

buted Computing Systems.

Transparent Concurrent Execution of Mutually Exclusive
Alternatives

Jonathan M. Smith 'i

Gerald Q. Maguire, Jr.

Computer Science Department, Columbia University, New York, NY 10027

Technical Report Number CUCS-387-88t

1. Introduction

A question which has intrigued many researchers is how

an increasing supply of computational resources, in the

form of multiple computers, can be utilized to solve

bigger problems, to solve problems faster, and to solve

problems more reliably. We examine a specific computa

tional problem here. that of pursuing alternatives. Our

designs show what can be done in order to execute

instances of this problem type. speculatively, in parallel.

We are interested in what performance gains can be

achieved. We measure performance using the metric of

execution time, which is the amount of wall clock time

necessary to carry out a computation. Thus, we may

increase perfonnance by this measure, while decreasing

perfonnance by measures such as throughput. which is a

measure of the amount of useful work accomplished per
unit time. Given this bias, we may risk wasted work in

speculative computation [Burton 1985a], which

throughput-oriented perfonnance measures would

discourage.

We begin by describing the computations to be

analyzed. These are essentially a set of alternative

methods for causing a state change to take place, with the

additional constraint that at most one of the alternative

state changes occurs.

Once the model is defined. and the semantics thus

fued. we can apply semantics-preserving transformations

in order to increase performance or achieve other goals.

A successful transformation, then. has two requirements.

First, it must correctly preserve the semantics. Second. it

must achieve the goal set for it, e.g., a performance

increase.

We present (1) a model for selection of alternatives

in a sequential setting. (2) a transformation which allows

This work was supported io part by equipment gnots from the

Hewlen-Pacbrd Corpontioo and AT&T. and NSF gnat CDR-

84-21402.

alternatives to execute concurrently. (3) a description of

the semantics-preservation mechanism, and (4) parame

terization of where the performance improvements can be

expected- Additionally. we show example application

areas for our method.

2. Sequential Model

Consider the situation where several alternative

methods of computing a result are available. Some of the

alternativ~ may compute an acceptable result, while oth

ers may not The essential problem is the choice between

successful alternatives. or an indication of failure if there

are no such alternatives. An ALGOL-like language con

struct embodying this situation:

ALTBEGIN

END

ENSURE guardl WITH methodl OR

ENSURE guard2 WITH method2 OR

ENSURE guardn WITH methodn OR

FAIL /* no method succeeded */

Figure 1: Alternative Block

What we want is for at most one of the methods to be

applied to our problem, or for whatever conditions consti

tute failud to be indicated. Each method, Ln, has associ

ated with it a guard condition, which it must satisfy in

order to be considered successful. A method is called an

alternative. When the alternatives are composed into a

block, as illustrated in figure 1. the meaning is that one of

the alternatives (including failure) are selected non

deterministically. The non-determinism in selection is

necessary for higher-performance computing. The selec

tion is non-deterministic and unfair. in that the selection

of alternates is not equiprobable. and should not be; it's

clear that the alternative of failure should be given as low

a probability of success as is possible, noting that when all

the alternatives fail its conditional probability must be 1.

The semantics of the construct behave similarly to

Dijkstra's [Dijkstra1976a] guarded commands, in the spe

cial case where the same guard is used for all the state

ments. In an implementation setting, the construct resem

bles the Ada select with guarded alternatives: the

selection of open (i.e., have satisfied the guard) alterna

tives is arbitrary.

3. Parallel Execution

3.1. System Model

A process is an independently schedulable stream

of instructions. In implementations, it is often associated

with some unit of state, e.g., an address space, and a set of

operations provided by a kernel to manage that state.

Interprocess communication is accomplished solely

through passing messages. Thus, a message is the only

means by which:

• P", can make Pj aware of a change in P lIt'S state.

• P", can cause a change in P j' S state.

Interprocess communication (IPC) is assumed to behave

reliably (no lost or duplicated messages) and FIFO (no out

of order messages).

System state is divided into two types, source and

sink. The division is made on the basis of idempotence;

operations on sink devices can be retried without the

effects being visible, while operations on sources cannot

be retried. For defmiteness, consider a page of backing

store and a teletype device. respectively. Side effects

which affect sink state can be hidden; this is a common

technique in the implementation of such abstract opera

tions as transactions; the idea is that the transaction has

the property of atomicity. meaning that either none or all

of the transactions component actions occur, and that

intermediate states are not observable external to the tran

saction. Complex transactions may involve reads, which

can occur unhindered. or writes, which must be done to a

temporary copy until the transaction commits. or in other

words, makes its changes permanent Reads intended for

the recently written copy are satisfied by that copy so that

the transaction is internally consistent, i.e.. it can read

what was written.

Sink state is manipulated as fixed-size pages. All

sink state can be represented in this fashion; this is clear

from implementations of a single-level store, as in MUL

TICS [Organick1972a]. Thus we bury the entire memory

hierarchy under the page abstraction; files are named sets

of pages. and thus mechanisms which are used to tran

sparently access files over networks [Sandberg1985a] can

- 2 -

, ,
"

be utilized to hide the network through the page manage-

ment abstraction.

3.2. Process Management

Two primitives encapsulate the entire semantics of

the process management component The process

management component is concerned with the mutually

oblivious alternatives. To spawn the alternatives. the

parent uses alt spawn (n). which returns numbers

from 1 to n in the alternates and 0 to the parent Thus a

language preprocessor applied to a program with mutually

exclusive alternatives would generate (in pseudo-C):

switCh I aU_spawn In))

(

case 0:

alt waite TlMEOU~):

{alIO: ,- if returned -,

case 1:

,- first alternate -,

caae n:

,- n-eh .lternate -,
alt_wait I 0);

The purpose of a It _ w a it () is manifold; the essence is

establishing a single path through the tree of possible

computations which is reflected in the execution history

of the running process. Al t _ wa it () takes a

TIMEOUT value as an argument; the point is that this

value should be chosen such that if TIMEOUT time units

have elapsed. it is highly probable that none of the alter

natives have succeeded. While choosing such a value is

very hard, most computations have an execution time

which is clearly unacceptable to the application; this value

can then be used. The point of passing such a timeout

value will be seen shortly.

When a spawned alternate calls alt_wait () at

the termination of its computation, a rendezvous between

the alt_wait () ing parent and the child is effected.

The behavior is much like that of the UNIX exec () sys

tem call, where the new data and executable code are read

in from a named file. In the case of a It _ wa it () , the

parent process absorbs the state changes made by its child

by atomically replacing its page pointer with that of the

child. Thus, the flow of control through the child appears

to have been seamless. up to and including maintenance

of the process id

Use of these primitives is shown by concurrent exe

cution execution of the program segment in figure 1

shown in figure 2:

Figure 2: Concurrent Execution of Alternates

Assuming that all the GUARD conditions have been satis

fied, a process which completes its program segment

attempts to synchronize. If any of the conditions required

by the GUARD were not satisfied, the process aborts

without synchronizing. Note that the GUARD can be exe

cuted before spawning the alternative, in the child pro

cess, at the synchronization point, or at any combination

of these places, for redundancy. We currently expect the

child process to execute it, thus speeding up spawning and

synchronization.

3.2.1. Synchronization

It is at the synchronization point that the data for

sibling elimination are available; all processes which

assumed that the successful child had failed must be

deleted, as they have made an assumption we Irnow to be

false. In order to minimize the effect on throughput, when

an alternative is selected. its .. siblings" are eliminated.

This is done by informing the scheduler that the process is

to be terminated. The deletion can be accomplished syn

chronously (where the other alternates are deleted before

execution resumes in the parent) or asynchronously

(where the deletion occurs at some time after the

alt_wait () resumes in the parent, but exactly when is

not specified); we suspect that asynchronous elimination

will give better execution-time performance, once again at

the expense of resource utilization measures such as

throughput.

Now, communications problems or system failures

may prevent this information from reaching the schedul

ing component of a remote system. yet we must still

preserve the "at most one" semantics of our design. The

backup in this case is that. the synchronization action is

designed so that it can be accomplished at most once; that

is, if the remote system attempts synchronization for the

alternative it is executing, it is informed that it is "too

late" for the synchronization, and it should terminate

itself. In applications where this might create a single

- 3 -

point of failure, the synchronization is set up as a majority

consensus [Thomas 1979a] decision across several nodes.

The engineering tradeoff here is between performance

and reliability; the additional communication and protocol

of multiple-node synchronization is the price paid for

increased robustness of the synchronization.

3.3. Predicates

Ideally, we would like an alternative to carry on

with its computation as much as it can before either block

ing or synchronizing. In order to effect this. we add

. 'predicat6" to the messages. The predicates are lists of

process identifiers. some of which the sending process

depends on completing successfully and others on which

the sending process depends on to not complete success

fully. Thus, these are even simpler and easier to manage

then the predicates described by Eswaran, et

al.[EswaranI976a] The advantage of this representation

over predication of data objects is that we can update the

value of these elements as processes change status (e.g.,

running. blocked), with the idea that processes change

status much less frequently than they make memory refer

ences to objects. These lists are constructed in two ways.

First, the predicates of a "child" process consist of those

of the "parent"; this allows for nesting and potentially

complex dependencies. Second, when the "parent"

spawns each of its alternative "children", each of the

children additionally assumes that it will complete suc

cessfully, and that its siblings will not l
. The state

management strategy is "copy-on-write" [BobrowI972a]

with page map inheritance from the parent, thus it is easily

implemented within the context of a system which pro

vides such features, e.g., Mach [youngI987a]. and ben~

fits from existing hardware support, e.g., for the WE

32101 MMU [AT&T1986a]. The software-implemented

predicates are used in the process control and message

transmission activities to maximize sharing. Updated and

newly-written pages are predicated by virtue of their

residence in a per-process descriptor table.

3.4. Interprocess Communication

3.4.1. Messages

A message from P", to Pj has the following three part

structure:

1) A sending predicate, encapsulating the assumptions

under which the sender. say P", sends the message.
I

2) The data comprising the message contents.

I Thus. BO-<:alled "sibling rivalry" is taken t.o iu e:ureme in this

deaign! The failure alternative IS1U1Y"1e3 that DOne of the siblings

will complete.

3) Some control information, e.g., sender id, destina-

tion id, etc.

Each process in a multiprocessing (e.g., timesharing, mul

tiprocessor, or distributed) system has a unique identifier,

used to identify the process both within the system (e.g.,

for scheduling and resource allocation), and further, for

interaction with other processes.

3.4.2. Multiple Worlds

An idea from science fiction, inspired by Dewitt's

[DeWitt1973a] multiple worlds notion, is appropriate

here. The problem with interprocess communication

stems from the fact that a given alternative mayor may

not be successful In the case where it is successful, its

execution results are available to the calling process.

Where it is not successful, its results and any side-effects

it may have generated must not be observable. These

include side-effects due to interprocess communication.

The message system, the virtual addressing

mechanism, and the process management mechanism are

linked in the following way. When a receiving process

accepts a message, its predicates (R) are checked against

those attached to the message (S). If the assumptions

that the receiver makes about the "state of the world", as

encapsulated in the predicates, agree with those of the

sender (e.g., S~), the message is immediately accepted.

If the receiver's predicates conflict (pe S and"e R), the

message is ignored, and if the receiver must make further

assumptions to accept the message (pe S and pe R), two

copies of the receiver are created. One of these copies is

created with the predicates set to the previous values in

conjunction with complete (5) 2; the other is set up

with its predicates as before, except that complete (5

) is negated.3 This is easy given the representation as two

lists (i.e., "must complete" and "can't complete") of

process identifiers. When the sending process succeeds or

fails, one of the two receivers must be eliminated in order

to maintain a consistent' . state of the world"; at this point

the additional assumptions which receipt of the message

caused will become TRUE, and they can be eliminated

from the lists. While a process has predicates which are

unsatisfied, it is restricted from causing observable side

effect~, and thus cannot interface with SOUTCU.

This behavior is similar to that required of transac

tions. Transactions [Grayl978a) are a structuring concept

for operations; transactions are required to be atomic with

respect to any observer.

l Thus implying all the sender's predicate&.

1 Thus implying rejection of the sender's predicatea without creat

ing a logical impossibility. Assuming the negation of all 0(S's

predicates might imply that two mutually exclusive processes must

complete.

- 4 -

4. Performance Analysis

The possibility of a performance increase stems

from the fact that we can select the fastest alternative by

means of the synchronization protocol. The cost we must

pay for obtaining execution time proportional to the time

for the fastest alternate is use of available hardware.

Note that the action of continuing execution of the

successful alternative and the process of sibling elimina

tion can take place asynchronously. The effects of various

overheads and system parameters are analyzed in the next

section.

4.1. Overhead

In order to understand the overhead implied by the

method, we should compare a sequential execution of the

construct. in the best case, where the fastest alternative is

selected. There are penalties we are paying for parallel

execution of all alternatives versus sequential execution of

the alternative which will be selected in any case. These

are

1. Memory Copying. In the distributed case we must

actually copy state for a remote child so that it can

read or write locally. In the shared memory multipro

cessor case, the copying overhead (in execution time)

is reduced as the interprocessor bandwidth is much

higher. There is more copying to be perfonned during

synchronization, as the changed state is updated in the

parent's storage. The parent is constrained to remain

blocked while the children are executing.

2. Sibling elimination. This is asynchronous, and natur

ally parallel, but the instructions to tenninate the alter

nates must still be issued, and they increase with the

number of alternates.

3. Effect on throughput. or wasted work. As our bias has

been towards execution time as a performance goal,

we were willing to trade away throughput- Users may

want to know what the tradeoffs are here, so the effect

on system throughput should be analyzed.

4.2. Analytic Description

Assume that we have N alternative methods of per

fonning a computaJion. A compUlation is a transforma

tion from an input set (or Domain) to an output set (or

Range); these sets consist of state vectors, intended to

describe the relevant state of the world, i.e., the machine

state. For Domain D and Range R, xe D is transformed

via the computation into some ye R, thus we could write

y= C(t). There may be several such C which we classify

as interesting (transformations of C which add or remove

useless operations are infmitely numerous, but not

interesting. Algorithmic differences or significant

differences in implementation technique are interesting.).

Assume that the N alternatives postulated earlier are N

such interesting Cs, and that they will be applied to some

:tE D. Each C consists of some series of steps, where :tis

transformed into -t, . .. unti1'1 is achieved. Each step

requires some amount of clock time, 't, to complete; for

Ce?>, 't(C,'?) is the sum of these times. 't, the execution

lime, gives us a way of comparing the performance of two

computational methods on the same input, say ~

There are many practical situations in which we

want to minimize the computation time required for the

transformation of:t to 1. We will denote the N al tema

tives as C 1 •••• ,CN • Since our goal is minimizing execu

tion time, let us consider some possible relations between

the C j on elements of D.

l. 't(Cj ,,?) :::;; 't(Cj .'?) for every:tE D which interests us.

It's clear that we should use C j and discard Cj for

every i and j for which this holds.

2. 't(C j ,'?) :::;; 't(Cj ,,?) for some ?which interest us, and

we can accurately predict for which:t this relation

holds. In this case, we can construct a synthetic

computation, CN+!, which selects C j when this

holds. To anchor the relation with an example, con

sider the case of two list-sorting algorithms, Q and

1. Q is faster than I when the number of ele

ments to be sorted is greater than 10. Thus, using

this knowledge, we can construct a synthetic sorting

routine as follows:

3.

sort(list, size .=

if (size > 10

Q (list, size

else

I (list, size).

The synthetic routine partitions the input domain by

performance, and thus achieves performance supe

rior to either Q or 1. The tough point here is the

partitioning; it's rarely as simple to delimit perfor

mance boundaries as •• size < 10". If the input

set can be partitioned, but only at significant com

putational cost, the desired property of the synthetic

routine, that 't(CN+! ,?):::;; 't(Ci ,?),;, for all :t of

interest, may be achievable with the following tech

nique.

If all interesting :t are known in advance, we can

associate one of the C j with each :t in a precom

puted table. Then, 't(CN+i,'?) can be calculated by

adding the cost of a table lookup to the cost of exe

cuting the table element on ~

't(Ci ,,?) :::;; 't(Cj ,?) for some :twhich interest us, but

while interesting, the:t cannot easily be related to

- 5 -

't(Ci .'?). Essentially, this means that the table

lookup technique cannot be used, because we can

not reasonably precompute the values of 't(Ci,X).

This might be due to the nature of the input set, e.g.,

infmite size. For example, a naive quicksort is not

stable, and where the list is ordered the sort is slow.

In these cases, a stable sort with good performance,

e.g., heapsort, may be preferable. However, it's

clear that storing a lookup table of of all "interest

ing" lists is infeasible, and pretesting for the

"ordered" property is potentially quite expensive.

Another problem is that 't(Ci,'?) may vary due to the

execution environment (which may or may not be

described by?, it probably should be, for complete

ness), e.g., processor type, mUltiprocessing work

load. or interactions with other computations. In

these cases. where performance on the :tE D is

unpredictable. we might try other schemes:

A. Statistical data can be applied, e.g., quicksort

is "almost always" O(nlogn). Thus. we'll

rarely go wrong to use it

B. An algorithm can be selected at random from

amongst the Cj when given?

C. The C j can be applied to:t concurrently; the

first Cj which produces '1 is selected. The

other C j are irrelevant and can be terminated.

There is, however, overhead in setup and syn

chronization (selection) which cannot be

ignored.

Scheme A. relies on information which may not be

available. Scheme B., when run repeatedly on

some input X. will perform at the arithmetic means
N

L't(Cj,X)

of the computations' performance, i.e., _i=~!-N-- 4

Scheme C. offers some opportunity for achieving

the best performance on each input ~ We will try

to characterize this opportunity. Note that there are

two possibilities for concurrent execution, real and

virtual. Real concurrency means that the evaluation

of Cje?> is taking place simultaneously with that of

Cje?>; virtual means that there is some sharing of

hardware, for example through multiprocessing.

4.3. Parallel Speedup

Our analysis must begin with semantics. as other

wise we are subject to criticism of the "apples and

oranges" type. Such criticism stems from the observation

that changing the problem in order to apply a program

, It is interesting to nOle, as well, that failures or infinite loops will

frustrate this method.

transformation makes perfonnance results incomparable;

we are comparing unlike programs.

To an observer, the concurrent execution of the Cj

must look like Scheme B. (as discussed above); that is,

that we have followed a single thread of computation,

chosen arbitrarily from amongst C I, ..• ,CN • Since the

C I, .•• ,CN may update shared state described by X. we

solve the problem by copying state when needed and by

selecting some C j by virtue of its state changes. Thus,

since the observer sees non-deterministic selection of one

of the alternatives, we must compare concurrent execution

to sequentially perfonning one of the C j , chosen arbi

trarily (we'll assume randomness). Since, as stated previ

ously, execution time is our figure of merit, we'll analyze

with that intent, ignoring measures such as throughput

Arbitrary selection can be done by a call to a random

number generator, which costs nothing for purposes of

our analysis. The execution of the selected alternative

costs 't(C· ? for the ?under study. Thus. we can expect
"A.) N

L't{Cj .7>

the mean cost to be j=1 N ,the average of the CiS

times when applied to X.

By executing the Cj concurrently, we will expect

the cost of execution to be

't{ Cbut ,X)+'t{ overhead)

where

't{Cbul'?)~ ... ~'t{CW017l,7>

and overhead is quite complex. Overhead consists of

operations perfonned to support concurrent execution

which would not be necessary in the nondeterministic

sequential case. It consists of the following components:

setup:

runtime:

selection:

Instead of simply calling Ci , we must now

spend cycles creating execution environ

ments for C I, .••• CN; for example, setting

up process table entries and page map

tables.

This consists of copying memory areas

which are shared between the C I, ... , CN

when upclaces are attempted This perfor

mance is strongly influenced by locality of

reference. Additionally, if Cbur is sharing

resources, e.g., CPU time, with some C j ,

i#Jest, then for all such C j , C/s runtime

must be added to the runtime overhead of

Cbul ' as cycles spent processing Cj are not

spent processing Cbur •

This is the cost involved in selecting Cbuh

e.g., deleting C j such thal i#>est, cleaning

up system state, such as actually perfonning

the updates made by Cbur , e.g., writing

- 6 -

checks or bottling beer.

Thus, for a given C I, •.• , CN andx.

't(overhead) =

't(setup{C I ... CN,?» +

't{runtime(Cbul,?» +

't{selection(Cbul> C I' ... , CN'?»'

and the pcu;allel execution wins iff
N

L't(Cj ,?)
j=1

't(Cbu,,?) + 't(overhead) < N

For notational convenience, define C1fUQII such that

N

L't(Cj ,?)
j=1

-c(C1fU"",,?) = N

Thus, we can calculate the performance improvement (PI)

as:

't(C_"",?)
PI=------~------

't(Cbu,,?) + 't(overhead)

essentially a ratio of execution times. For illustration,

consider a case where N=3, on input X. Thus, we have

three methods C I , C2 , and C). Let't{overhead) be 5.

Some possible relations are tabulated:

't(C I,?' 't(C2 ,?) 't(C),?, PI

(1) 10 20 30 1.33
(2) 1 19 106 7.0
(3) 20 20 20 0.8
(4) 1 2 3 0.33
(5) 115 120 125 1.0
(6) 100 200 300 1.9

What can we infer from the examples? (3) indicates,

along with (5), that the size of the differences matters. (4)

shows that the relative magnitudes of the execution times

and the overhead matters. (6) shows that the effects of the

overhead (under our assumptions) diminish with increas

ing relative execution time. (2) illustrates a good situa

tion, where the difference

t(C...,m'?) - t(Cbu/,?)

is very large. This magnitude of difference. is w~ll

encapsulated by such a statistical measure of dispersion

(letting values of 't serve as the random variable) as the

variance.

~.4. Measured Overhead

It is informative to examine measured values of

possible contributors to t(overhead). In another report

[Smith 1988a] we provide a detailed set of measurements

and performance analysis of "copy-on-write" fork opera

tions under UNIx. Our measurements were made on two

workstations, the AT&T 3B2I310 and the Hewlett

Packard HP90001350. For the 3B2, a fork() (with no

memory updates to a 320K address space) takes about 31

milliseconds; under the same conditions the HP requires

about 12 milliseconds. The measured service rate of page

copying was 326 2K pages/second for the 3B2, and 1034

4K pages/second for the HP. The fraction of the pages in

the address space which are written is the important

independent variable for a program with a known address

space size, using" copy-on-write". These costs should be

representative of a shared memory configuration of

equivalent processor technology.

There is somewhat more overhead associated with

the distributed case. In Smith and Ioannidis [SmithI989a]

we discuss an implementation of a remote forkO pro

cedure and the process migration scheme we implemented

using it. An rfork() of a 70K process requires slightly less

than a second, and network delays gave us an observed

average execution time of about 1.3 seconds: we used a

special-purpose remote-execution protocol which uses a

network me system to reduce copying. The major cost

(since we implemented rfork() without operating system

modification) was creating a checkpoint of the process~ in

its entirety. More sophisticated migration schemes, using

"on-demand" state management techniques have been

constructed [TheimerI985a]. In any case, most programs

exhibit locality of reference; in particular symbolic com

putations which utilize large amounts of system resources

[Smith 1988a].

5. Applications

What properties must we have, other than minimal

implementation overhead, for the concurrent execution

method we describe to be useful? We've identified the

following as desirable properties:

1. A large portion of the shared state is read-only.

2. There is some state shared between the alternatives

which each may update.

3. There are expected to be performance differences

J We do this by dumping the SULe of the proceu imo a file in such

a way that the file is execu~ble; I booI.stnPpin8 routine reItO~

the registers and data seg:menu and returllJ control to the caller of

the checkpoint routine when this file is executed. A return value is

used to distinguish between return of cootrOl in the checkpoint and

in the calling process.

- 7 -

between the alternatives, due to unknown data

characteristics or use of heuristic methods.

Two application areas for our design are described in the

following sections.

5.1. Distributed Execution of Recovery Blocks

The Recovery Block [Horning1974a] is a method

for writing software which is tolerant of mistakes in its

own logic. from which failures can arise. The idea is

quite simple. It is assumed that the software in question

has been written to some specification. Several alterna

tive versions of the software are written, according to the

specification. A boolean "acceptance test", which

checks the results of the software is developed along with

the software, using the specification. The acceptance test.

which either succeeds or fails, will be refmed once some

experience with the software is developed.

The alternatives and the acceptance test are gath

ered into an ALGOL-like block construct. where the alter

natives are typically ordered on the basis of observed or

estimated characteristics such as reliability and execution

speed.

When the acceptance test succeeds, the results

(including all state changes) of the alternative which

passed the test are made available. When the acceptance

test fails. the state of the program is "rolled back" to the

state the program had before the block was entered. and

the next alternative is triecl If the last alternative in the

sequence results in a failed acceptance test. the block as a

whole fails.

5.1.1. Sequential Model

The recovery block is somewhat different in

behavior than the ,. Alternative Block" we proposed as a

sequential model in Section 2. First. rather than having

one guard per body, the Recovery Block possesses one

guard to which all the alternatives are passed. Second, the

guard is applied after the body is executed, rather than

before. However, neither of these are problems for our

design. as (l) the computation can be viewed as part of

the guard, with the body consisting solely of updates to

external variables, or (2) the blocks can be viewed as

self-checking entities where the guard is always enabled

for scheduling of the computation, which may fail due to

self-checks.

The changes to the program's state space are

equivalent to some execution which selected exactly one

of the alternatives (or failure) at each Recovery Block.

Thus, this is exactly the nondeterministic selection which

we chose for our model. and it should be all that a post

facto examiner of the program state can deduce.

5.1.2. Concurrent Execution

Since Recovery Block alternates may attempt to

update shared state, e.g., daaabase fIles or external vari

ables, our mechanism for preventing observation of a

sibling's actions is necessary, and the "copy-on-write"

memory management reduces the amount of state which

must be maintained. One special problem which arises

:-ith the parallel execution of Recovery Block altemates6

IS. the fact that the method is designed to cope with

f31lures, so that we must do more work in order not to add

new failure modes. Two issues in particular are impor
tant First. we may copy all of the state rather than copy

ing as necessary, in order that the state not become inac

cessible and so cause a failure. Second, the synchroniza

tion must not introduce a single point of failure. This is

remedied by the use of majority consensus, as <liscussed

above, to achieve a fault-tolerant 0-1 semaphore for use in
synchronization.

S.2. OR'parallelism in Prolog

The Prolog [Clocks in 1984a] programming

language is based on predicate logic, using "Hom

clauses" [Rich 1983a] to describe data and interrelation

ships. Many normal operations are subsumed by the unif

ication algorithm by which Prolog attempts to satisfy

predicates; variables are bound during the unifIcation pro

cess to values which caused the predicates to become true.

Thus equal (X, elrod) will cause the variable X to

take on the value elrod, as this binding is the only one
which allows the predicate equa 1 () to be satisfIed.

Progress is achieved with a goal-oriented

predicate-satisf~tion algcritfun; a database of predicate

values and rules is used to construct a set of dependency

relations; top-level goals are decomposed into sub-goals

using the relations between the rules, objects. and predi

cates. For eump Ie, testing eq ua.lity of lists implies tMt
their elements are equal: testina element-wise equality

may then give a list of sub-aoals. This gives rise to a pos

sibility for parallel execution. however the granularity of

such parallelism seems inappropriace. More ."PlOpe We is

rule-level parallelism, which is centered on two typeS,

AND-parallelism and OIl-plRllelism. The idea with

AA'D-parallelism is th. if we have a situation where

goals A and B must be satiafied, we em pursue the satis

faction of A and B in parallel. The situation is similar for

OR-parallelism; this is more interesting to us. since it

maps closely to our problem of attempting alternatives in

6 See !he work ~ Kim [Kjm1984aJ and Welch [Wek:h19831) for a

discussioo of !he dlslributed executioa 0(~ery blocb. They

de&eribe the performance increuea pocaible using coocurreDl ex~

cution; \hey used lWI>a1lemale recovery blocks OQ a bus-coI1Dec:ted

shued merrory muJtip~ for their experiment&.

- 8 -

paralleL The alternatives here are specialized to predi.

cates .. Crarnmond [Cranunond1985a] provides a good

overvle,:" of the ~blems, and provides some analysis of

mecharusms deSIgned for efficient reference of shared

data. in particular the update of shared data.

Some of the solutions which have been proposed

are: (1) blOCking the process which updates shared state·

(2). not allowing guards to update shared state; (3) sharin~
pom~, and hence updates, to a shared environment; (4)

c?pymg and merging. What our method does is copy, and

smce we choose only one alternative, no merging is

necessary. Since there are no extra (beyond whatever is

required f~ sequential execution) pointer chains to

traverse on variable references, memory access is fast.

Use of the method requires changing the Prolog inter

p~ter to ~tect and exploit OR-parallelism. How aggres_
Sively aV31lable parallelism is exploited is a function of

the overhead associated with maintaining a process.

However, once this is known, the proper granularity can
be used as a f~tor in the decomposi tion process.

6. Related Work

Exploring alternatives in parallel is far from a new

idea; hardware engineers looked to it as a way of main

taining pipeline utilization in some high-speed computers,

most notably the IBM 360 Model 91 [Anderson 1967a].

Their approach was to pre fetch components of both possi

ble branch paths until either the results of the conditional

executioo are available (in which case the correct stream

can be chosen and the other discarded) or an irreversible

side effect (such as instruction execution) would occur.
Our management of side effects lets us go further.

Version control systems such as SCCS

[Rochkindl975a] use the idea of deltas to store multiple

versions of data. More related to our pw:licaus is the

i~ used in the PEDIT [Kruska11984a] parametric line

editor. Associated with ea::h line of text is a set of param
eun These parameters are state variables, e.g.

SYSTEM-UNIX, VERS ION-SysV, et cetera. The line is

selected for display if the mask set in the view of the fIle

matches the settings of the state variables; thus. the viewer

of a source program in a particular environment might see

the source without the obscuring effect of various condi·
tional compilation directives. Each setting of the state

variables gives a distinct version. but in practice most of

the text is shared between the versions.

Our method uses predicates to detect conflicts. but

delays their resolution as long as is possible. Thus, it is

optimistic in the sense that each timeline assumes that it

will succeed. At e~h point where this success may come

into questioo. it generates a predicate. These predicated

processes are similar to the possibilities and de~n.dencies

discussed by Reed [Reed1978al in his thesis; however, his

NA.\10S system was somewhat further from realization

than me methods described here.

The notion of multiple alternatives is orthogonal to

the transaction concept; if we view an alternative

"block" as effecting a transaction on the system state, the

specification is a description of how to accomplish the

transaction reliably. It could also be viewed as a set of

"competing" transactions, at most one of which will take

effect.

One significant feature of our use of predicates

there is little waiting as possible in the system; each pro

cess which could execute under any set of assumptions

makes that set of assumptions, until some conflict with the

correctness policies results. In other settings, such

methods are called optimistic [Kung1981a, Stroml987a]

because mey assume mat delay-causing or failure-causing

conditions happen infrequently. Thus, normal operation is

made cheap, at the expense of somewhat more expensive

handling when the assumption is wrong. In our setting,

the operant optimistic assumption is that the executing

alternative is the one which will complete successfully.

Thus, me predicates indicate that a process assumes that it

will complete successfully; rather than waiting. it contin

ues under that assumption. In fact, Strom and Yernini's

[Strom1985a] dependency vectors behave much like our

predicates.

Distribution of computation across several nodes

offers attractive possibilities for both reliability and per

formance. Cooper [CooperI985a] discusses me use of

replicated distributed programs in order to take advantage

of mis potential. Cooper's CIRCUS [CooperI984a] sys

tem transparently replicates computations across several

nodes in order to increase reliability. Goldberg

[Goldberg 1987a] has also discussed process replication.

with a focus more on performance than fault tolerance.

Replication is somewhat different than the problem we

have examined. mainly because we cannot count on all of

the concurrent alternatives exhibiting the same behavior,

e.g., reading and writing. For example, when managing

£10 for replicated computations, only one read operation

can be performed. and its results buffered for subsequent

readers of the same data. Thus, idempotency of some

source state can be forced through buffering.

Transparent replication can easily be combined wim

me use of parallel execution of several alternatives for

increases in performance, reliability, or both.

7. Conclusions

The best sort of situation for our approach is one

where:

• Alternatives require a significant amount of compu

tation time, as encapsulated in t(C"..,,,,,,:t).

. 9-

• Each alternative changes a small amount of the state

of the calling process, thus reducing the penalty of

t(overhead).

• There is enough difference between the execution

times of the alternatives that choosing the fastest

and killing the others is worth the overhead of

spawning the copies and deleting the slower

siblings. This may also be true in real-time sys

tems, where the sibling elimination can be carried

out asynchronously with respect to result delivery.

It appears that parallel implementation of logic program

ming languages provides such an environment, because

the computation is data-driven. and thus the execution

time and control flow can vary greatly with the input. The

way in which unification operates (as a "sophisticated

pattern matcher") leads to an overwhelming preponder

ance of read references made to page-managed memory;

while a high percentage of references are writes, these are

mainly to the stack, and thus locality should be quite high.

Distributed execution of recovery block alternates

uses the "fastest-first" behavior in an attempt to find a

rapid failure-free path through the computation.

8. Notes and Acknowledgments

Robert Strom has been extremely helpful in our

gaining an understanding of the problems, approaches.

and trade-offs; he has inspired many of the idea~ we've

presented here. Discussions with Calton Pu, Yechiam

Yemini, Steve Feiner and David Farber have contributed

to what we present in this report. Sal Stolfo pointed out

Prolog OR-parallelism as an application. and Andy

Lowry pointed out a flaw in an earlier presentation of the

predicate scheme for IPC.

UNIX and WE 32101 are registered trademarks, and 3B2

is a trademark of AT&T; HP-UX, HP9000, and HP are

trademarks of the Hewlett-Packard Corporation.

9. References

[Anderson1967a) D. W. Anderson, F. J. Sparacio, and R.

M. Tomasulo, ' 'The IBM Systeml360 Model 91:

Machine Philosophy and Instruction-Handling." IBM

Journal of Research and Development, pp. 8-24 (January

1967).

[AT&Tl986a] AT&T. WE 32101 Memory Management

Unit Information Manual, Call 1-800-432-6600; Select

Code 307-731. November 1986.

[Bobrow1972a) D. G. Bobrow, 1. D. Burchfiel, D .. L.
Murphy, and R. S. Tomlinson, "TENEX, a Paged Time

Sharing System for the PDP-10," Communiccuions of

the ACM 15(3), pp. 135-143 (March 1972).

[Burton 1985a) F. W. Burton, "Speculative Computation .

Parallelism, and Functional Programming," IEEE

Transactions on Computers C·34(12), pp. 1190·1193
(December 1985).

[Cloclcsinl984a) W. F. Clocbin and C. S. Mellish, Pro·

gramnUng in Prolog (2nd Edition). Springer-Verlag
(1984).

[Cooper 1984a] Eric Charles Cooper, "Circus: A repli

cated procedure call facility," in Proceedings of the 4th
Symposium on Reliability in Distributed Software and

Database Systems (October 1984), pp. 11-24.

[Cooperl985a] Eric Charles Cooper, "Replicated Distri

buted Programs," Ph.D. Thesis, University of Califor

nia. Berkeley (1985).

[CranunondI985a] J. Cramrnonci. "A Comparative Study
of Unification Algorithms for OR-Parallel Execution of

Logic Languages," IEEE Transactions on Computers

C ·34(10), pp. 911-917 (October 1985).

[DeWitt 1973a] Bryce DeWitt and R. Neill Graham. The

Many Worlds Interpretation of Quan.lum Mechanics,

Princeton University Press, 1973.

[DijkstraI976a] E. W. Dijkstra. A Discipline of Program

ming. Prentice-Hall. Englewood Cliffs, NJ. (1976).

[Eswaranl976a] K. P. Eswaran, J. N. Gray, R. A. Lorie,

and I. L. Traiger, . 'The notions of consistency and predi.

cate locks in a database system," Communications of th4

ACM 19, pp. 624-633 (November 1976).

[Goldberg 1987a] Arthur P. Goldberg and David R.

Jefferson, "Transparent Process Cloning: A Tool fex'

Load Management of Distributed Programs." in
Procudings. IntenuuionaJ Conference on Paralul Pro

cessing (1987), pp. 728·734.

[Grayl978a] J. N. Gray, "Notes on Data Base Operating
Systems," in Operating Systems: An Advanced Course,

ed. G. Seegmueller (1978), pp. 393~81. Springer

[Horning 1974a] 1.1. Horning. H.C. Lauer, P.M. Melliar

Smith, and B. Randell, "A program structure for error
detection and recovery.," in Proceedings. Conference 011

Operating Systems: Th40retical and Practical Aspects

(April 1974), pp. 177-193.

[Kiml984aj KR. Kim, "Distributed Execution of

Recovery Blocks: An Approach to Unifonn Treatment

of Hardware and Software Faules," in IEEE Fourth

I nternalionai Conference 011 Distribl4led Compl4lin8 Sys

tems (1984), pp_ 526-S32-

[KruskalI984a] V. Kruabl. "Managing MuJti-vmion

Programs with an Editor," IBM JolU1llll of Reuarch and

Deveiopmenl 28(1), pp. 74-81 (January, 1984).

[KungI98la] H. T. Kung and John T. Robinson, "On
Optimistic Methods for Coo=urrency Control," ACM

Transaclions 011 Dalabase Systems 6(2), pp.213-226

(1 une, 1981).

[OrganickI972aj Elliott I. Organick. Th4 Multics Sys~,",

Massachusetts Institute of Technology Press (1972).

[ReedI978a] David P. Reed, "Naming and Synchroniza

tion in a Decentralized Computer System." Technical

Report 205 (PhD. Thesis) (September, 1978). MIT LCS

- 10-

[Rich 1983a] Elaine Rich, Arlificial Intelligence,

McGraw-Hill (1983).

[RochkindI975a] M. J. Rochkinci, "The Source Code

Control System," IEEE Transactions on Software

Engineering SEe!, pp_ 364·370 (1975).

[Sandberg 1985a] R. Sandberg, D. Goldberg, S. Kleiman,
D. Walsh, and R. Lyon, "The Design and Implementa

tion of the Sun Networlc File System.·· in USENIX

Proceedings (June 1985), pp. 119-130.

[Smith1988a] Jonathan M_ Smith and Gerald Q.

Maguire,Jr., "Effects of copy-on-write memory manage
ment on the response time of UNIX fork operations,"
Computing Systems 1(3), pp. 255-278 (1988).

[SmithI989a] Jonathan M. Smith and John Ioannidis,

"Implementing remote forkf.) with checkpoinUrestart."

IEEE Technical Committee on Operating Syslems

Newle/~r. Also available as Columbia University Com
puter Science Department Technical Report CUCS-365-

88 (supersedes CUCS-275-87) (February, 1989).

[Strom1985a] R. E. Strom and S. Yemini, "Optimistic
Recovery in Distributed Systems," ACM Transactions

on Computer Sys~ms 3(3), pp. 204-226 (August 1985).

[Strom1987a] R. E. Strom and S. Yemini, "SynthesWng

Distributed and Parallel Programs through Optimistic
Transformations," in Currelll Advances in DistriblUed

CompuJing and Communications (1987). Computer Sci

ence Press

[TheimerI98Sa) Marvin M. Theimer, Keith A. Lantz. and

David R. Cheriton, "Preemptable Remote Execution
Facilities for the V·System," in Proceedings, 10th ACM
Symposium on Operating Syslems Principus (1985),

pp.2·12.

[Thomas 1979a) R. H. Thomas, "A Majority Consensus

Approach to Concurrency Control for Multiple Copy

Databases," ACM Transactions on Database Syslems

4(2), pp. 180-209 (June 1979).

[Welch 1983a] H.O. Welch, "Distributed Recovery Block
Perfamance in a Real-Time Control Loop," in Proceed

ings. IEEE Real-Time Sys~ms Symposium (1983),

pp. 268·276.

[Young1987a] M. Young, A. Tevanian, R. Rashid. D.

Golub, J. Eppinger. 1. Chew, w. Bolosky, D. Black, and

R. Baron. "The Duality of Memay and Communication

in the Implementation of a Multiprocessor Operating
System," Proceedings of th4 EUWlllh ACM Symposium

011 OperaJing Sys~ms Principles, Austin. TIC, pp. 63-76,

In ACM OperaJing Syslems Review 21:S (8-11

November 1987),

