
 Open access Proceedings Article DOI:10.1109/HPCS.2006.50

Transparent Distributed Programming under Linux — Source link

Kamran Karimi, Mohsen Sharifi

Institutions: University of Windsor, Iran University of Science and Technology

Published on: 14 May 2006 - IEEE International Conference on High Performance Computing, Data, and Analytics

Topics: Distributed algorithm, Concurrent computing, PowerPC, Semaphore and Debugging

Related papers:

 Programming a distributed system using shared objects

 Midway : shared memory parallel programming with entry consistency for distributed memory multiprocessors

 Global Arrays Parallel Programming Toolkit

 Data-Parallel Programming in a Multithreaded Environment

 The Public Shared Objects Run-Time System

Share this paper:

View more about this paper here: https://typeset.io/papers/transparent-distributed-programming-under-linux-
3xmhflzmha

https://typeset.io/
https://www.doi.org/10.1109/HPCS.2006.50
https://typeset.io/papers/transparent-distributed-programming-under-linux-3xmhflzmha
https://typeset.io/authors/kamran-karimi-5709z1h383
https://typeset.io/authors/mohsen-sharifi-nkrcif4opo
https://typeset.io/institutions/university-of-windsor-bkok18u5
https://typeset.io/institutions/iran-university-of-science-and-technology-2x4zrsdg
https://typeset.io/conferences/ieee-international-conference-on-high-performance-computing-34lv9cl8
https://typeset.io/topics/distributed-algorithm-1xu89jqp
https://typeset.io/topics/concurrent-computing-1ltisuq0
https://typeset.io/topics/powerpc-1l2flsse
https://typeset.io/topics/semaphore-3atq8zq4
https://typeset.io/topics/debugging-1kzcq4w6
https://typeset.io/papers/programming-a-distributed-system-using-shared-objects-54q0zfsutb
https://typeset.io/papers/midway-shared-memory-parallel-programming-with-entry-uxrgajoyml
https://typeset.io/papers/global-arrays-parallel-programming-toolkit-4wzkqnd3ey
https://typeset.io/papers/data-parallel-programming-in-a-multithreaded-environment-360x6j7uzb
https://typeset.io/papers/the-public-shared-objects-run-time-system-cjix83ajxw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/transparent-distributed-programming-under-linux-3xmhflzmha
https://twitter.com/intent/tweet?text=Transparent%20Distributed%20Programming%20under%20Linux&url=https://typeset.io/papers/transparent-distributed-programming-under-linux-3xmhflzmha
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/transparent-distributed-programming-under-linux-3xmhflzmha
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/transparent-distributed-programming-under-linux-3xmhflzmha
https://typeset.io/papers/transparent-distributed-programming-under-linux-3xmhflzmha

Transparent Distributed Programming under Linux

Kamran Karimi

School of Computer Science

University of Windsor

Windsor, Ontario

Canada N9B 3P4

kamran@uwindsor.ca

Mohsen Sharifi

Department of Computer Engineering

Iran University of Science and Technology

Narmak, Tehran

Iran 16846-13114

msharifi@iust.ac.ir

Abstract

Developing parallel and distributed programs is

usually considered a hard task. One has to have a

good understanding of the problem domain, as well

as the target hardware, and map the problem to the

available hardware resources. The resulting program

is often hard to port to another system. The

development and maintenance process may thus be

costly and time-consuming. In this paper we propose

giving priority to hiding the details of distributed

programming behind normal data sharing and

synchronisation mechanisms. The programs are thus

written as if they are meant to be run on a single,

parallel computer. The developers still have to divide

the task and make sure that the problem is solved in

parallel, but the details of data transfer and

synchronisation over a network are hidden. The

resulting programs can thus be developed on non-

distributed, non-parallel environments, and then be

run on a variety of distributed and/or parallel

platforms. Though such programs may not be as

optimised as programs written specifically for a

distributed computer, the speedups in programming

time and costs may offset the losses. In this paper we

introduce Distributed Inter-Process Communication

(DIPC), a heterogeneous distributed programming

system that hides inside Linux’s kernel, traps access

requests to System V IPC mechanisms (messages,

semaphores and shared memories) and delegates

them for execution on other computers as needed.

The results are then handed back through the kernel

to the calling process, which is unaware of any

distributed activity. DIPC currently supports Intel,

PowerPC, ALPHA, MIPS, SPARC and Motorola 68K

processors.

1. Introduction

Programming a distributed system often needs a

good understanding of the low-level features of the

hardware system. Code then must be written

specifically for the target distributed system. The

good thing about this scheme is that it is possible to

gain the maximum performance. The negative aspect

is that programming is hard and needs experts that

know the problem domain as well as the target

hardware. The resulting programs may not be

portable to another distributed system without going

through a major phase of re-design and debugging.

Transparent distributed computing hides the

distributed aspects of the system from the

applications. In this paper we introduce Distributed

Inter-process Communication (DIPC) [3, 4]. DIPC is

a software system to create a multi-computer from

Linux [10] machines connected together over a TCP

or UDP [7] network. It eases data exchange and

synchronisation between programs, and uses the

CPU's Memory Management Unit (MMU) [5] to

provide Distributed Shared Memory (DSM)

capabilities [9]. DIPC provides parallelism at the

program level. The user is responsible for invoking

remote programs in computers with appropriate

machine architectures. There is basic support for

heterogeneous environments.

Currently DIPC has been implemented on Linux

2.2.x kernels, and can run on Intel i386, Motorola

680x0, ALPHA, PowerPC, SPARC and MIPS

processors. Information on obtaining DIPC and ideas

for further work on it appear at the end of this paper.

DIPC works by making UNIX System V’s Inter-

Process Communication (IPC) [8] mechanisms

distributed. It offers distributed semaphores,

distributed messages and distributed shared memory

segments. Distributed semaphores allow remote

processes in DIPC to synchronise their access to

shared resources such as a distributed shared

memory. Distributed messages allow processes to

exchange information in the form of byes of data. A

DSM can be used to asynchronously transfer data

between processes.

DIPC traps System V IPC mechanisms in the

local kernel. When a process makes a request to use a

semaphore or a message queue, DIPC examines the

call and if necessary, invokes an operation on another

machine. The request is thus executed remotely and

the results are sent back to the originating machine’s

kernel. DIPC then hands the results back to the local

process, which has been sleeping inside the kernel,

unaware of any distributed activity. The shared

memory mechanism does not require the local

process to invoke a system call (it is an asynchronous

mechanism), so DIPC uses the MMU to restrict

access to individual pages, or a whole segment, of the

shared memory. Any invalid access is then trapped

inside the kernel, and DIPC determines whether the

process requires remote access to the shared memory.

If so, the contents of the shared memory are moved

over the network to satisfy the local process’ request.

When the contents of the shared memory are

obtained, the local process is allowed to continue.

This mechanism is much like that of swapping

memory out to a secondary storage device, except

that DIPC may move the memory contents to another

machine.

DIPC has already been integrated into other

systems that provide distributed services. For

example, DIPC has been added to a Beowulf [2]

cluster that runs the PANTS Application Node

Transparency System (PANTS) suite of programs.

PANTS is designed for a Beowulf cluster of Linux

computers to provide automatic and transparent load

sharing of processes [1].

The rest of this paper is organised as follows.

Section 2 briefly describes how a DIPC application is

written and run. Section 3 introduces more details

about DIPC’s workings. In Section 4 we introduce

the notion of a DIPC cluster, which is made of a

number of computers that collaborate together.

Section 5 introduces the user-space component of

DIPC, called dipcd (the DIPC daemon). In Section 6

we discuss DIPC’s transparent data transfer. DIPC’s

implementation of distributed shared memory is

presented in Section 7. Section 8 produces the results

of a number of experiments meant to measure the

data-transfer frequency in DIPC. Section 9 concludes

the paper and proposes a number of areas for future

work and collaboration.

2. A DIPC Application

A distributed program that uses DIPC has a

model similar to a parallel application, except that no

threads are to be used (unless support for distributed

threads is provided by another package). Two or

more processes are started in the same computer or

remotely, and one of them creates the needed IPC

resources using well-known integer values known as

keys. The machine on which an IPC structure is

created is called the owner. Other processes gain

access to these resources using the same key values.

Processes can now exchange data and synchronise by

calling the IPC system calls or read and write the

shared memory.

A DIPC application signals that the created IPC

structures will be used over a network using a flag,

IPC_DIPC, when creating the IPC structures. This

flag is used to retain backward compatibility with the

existing Linux programs that use System V IPC. As a

result, the default behaviour of a Linux kernel which

is enhanced with DIPC functionality is to treat the

IPC structures as local.

When a process calls an IPC system call, the

kernel parts of DIPC determine if the current

machine is the owner of the IPC structure and if not,

inform the user-space components of DIPC (in

dipcd), which then gather the needed parameters and

send a request to the owner machine. The request is

received by the user-space parts of DIPC in the

owner machine and executed remotely in the owner

kernel. Any results are then sent back to the original

computer, passed back to the kernel and then to the

original process that had made the system call. More

information on this sequence of operations comes

later in the paper.

After setting up a shared memory, there are no

synchronous system calls for shared memory reads

and writes. A shared memory is first considered to be

read-only, and its contents are duplicated on any

computer that needs read access. When a process

wants to write to a shared memory, the access is

trapped and the contents of the shared memory on

other machines, if any, are set to be invalid. The

writing process is then allowed to proceed with the

operation. When another read or write request arrives

in another machine, the contents are copied to that

computer. More details on handling DSM come later.

The user process is not made aware of any of

these activities because it still requests a service and

receives the results through the local kernel. For

seeing example source code that uses the System V

IPC for data exchange in a DIPC cluster, and details

on how a DIPC application is written, refer to [4].

3. DIPC Work Process

DIPC has two parts: the main part, dipcd, runs in

user space as an ordinary process with root privileges

and does the decision makings and remote data

transfers. Such a design simplifies the kernel parts of

DIPC, making a port to other kernel versions or

processors easier. The other part of DIPC is inside

the kernel, and provides the first part with necessary

functionality and information to do its job. It is not

possible to run dipcd on a Linux kernel with no DIPC

support.

 The kernel parts of the DIPC are short-circuited

when the dipcd program is not running. In the

absence of dipcd, DIPC system calls in a program

behave as if they are normal (local) System V IPC

calls. dipcd itself uses ordinary means to access

System V IPC mechanisms. These mechanisms are

changed in the kernel, so they treat dipcd differently

than other user processes. For example, dipcd can

gain access to a shared memory segment by a

shmget(), even when it has been removed (shmctl()

with the IPC_RMID command), but not deleted from

the kernel. All manipulations by dipcd to IPC

structures are done locally, without them being

visible outside that machine. This difference is in

contrast to normal user processes, where actions on

distributed IPC structures may affect other computers

in the network.

 DIPC is only concerned with the transfer of data

in a distributed environment. Starting suitable

programs in different computers is left to the user.

This means that the programs to be executed may

need to be present in the computer on which they are

to execute. Programs could be placed in different

computers once, and used many times after that. This

implies that there is no overhead for transferring code

in the network whenever a program is started.

There are two kinds of activity in (D)IPC: First,

synchronous: here the programmer uses system calls

to carry out an action. Examples include using a

system call such as msgget() to gain access to a

message queue IPC structure, or using the msgrcv()

system call to receive a message. The program makes

the call and waits for its completion before

continuing. DIPC will always take some action here.

The second kind is asynchronous activity: Reading

and writing a shared memory may cause an

asynchronous action to take place. The programmer

can not predict if and when such an activity may take

place. One example is reading from a shared

memory, when the relevant pages are swapped out

(IPC) or are not in the requesting machine (DIPC).

The needed pages are fetched from wherever they are

and the program resumes execution. These events

may or may not occur for each reference to the

shared memory.

4. DIPC Clusters

A DIPC distributed system consists of a number

of computers connected over a TCP/IP or UDP/IP

network. Some or all of these machines could be in

one cluster. There may be more than one cluster in a

physical network, but each machine can belong to at

most one of them. Clusters are logical entities: they

can be created or removed, or their members changed

without the need to change any of the network's

physical properties.

Computers on the same cluster can use DIPC to

transfer data and synchronise themselves without

interfering with the workings of machines on other

clusters at all, even though they may also be using

DIPC and even the same applications. In other words,

as far as DIPC is concerned, computers never interact

in any way with machines outside their own cluster.

It is the ability to exchange data between

programs running on different machines in a cluster

that makes DIPC a distributed system, but it is also

possible to run all processes of a DIPC-enabled

application in a single machine. They behave as if

they are using normal System V IPC. This is because

there is no explicit reference to any particular

computer in DIPC. The same program may use

different computers during different invocations to

complete its job, freeing the program of being

dependent on certain machines with certain

addresses. This also means that programmers can use

single machines to develop their application, and

later run it in a multi-computer cluster. In other

words, the user can do the final mapping between the

resources needed by a program, and the physical

resources available.

Processes in a cluster can use the same key to

access an IPC structure. This structure should first be

created. This is done by one of the xxxget system

calls (shmget(), semget() or msgget()) [8]. After

creation and initialisation, other processes, possibly

in other machines, may be able to access this

structure. So a key here can have the same meaning

in all the computers of the cluster. Put another way,

computers in the same cluster have a common DIPC

key space.

Many legacy software with no accessible source

code may use System V IPC to do their work, and

some may use the same keys. As these programs may

be needed on several machines in the cluster, it was

important to make them work with no interferences

under DIPC. So it becomes necessary to allow two

different kinds of IPC keys in a cluster: (1) local

keys, which are used only in a single computer, and

are usable only to processes on that computer, and (2)

distributed keys, which are used to refer to the same

IPC structure in the whole cluster.

A distributed key has a unique meaning in all the

machines in the cluster, and referring to it should

denote the same IPC structure. This means that when

an IPC structure with a distributed key is created,

there should be no other structure (local or

distributed) with the same key in any other computer.

To provide backward compatibility, different IPC

structures with the same local key can exist in

different computers. Local keys are the default key

type: creating a distributed key requires the

programmer to explicitly add an IPC_DIPC to other

usual flags while creating or gaining access to an IPC

structure with a xxxget() system call. If it was not for

the above requirement, DIPC would be used totally

transparently. Even now the only thing the

programmer has to do is using the IPC_DIPC flag.

5. dipcd Work Process

With DIPC, ordinary user programs interact only

with the local kernel of the computer they run on.

Requests of user programs for DIPC actions, whether

synchronous ones like system calls that should be

executed remotely, or asynchronous ones like trying

to read from a shared memory with pages that are not

available in the local computer, are routed inside the

kernel. All such requests are put in a single linked

list. The process id of the requesting user task is

noted, and is used to find the original request when

the results come back. This way the results can be

delivered to the correct user program.

The kernel will in turn refer to the user space

part of DIPC, dipcd, to actually fulfill these requests.

This means that the presence of dipcd is transparent

to user programs, and as far as they are concerned,

the local kernel satisfies their requests.

dipcd is always waiting inside the kernel to

collect these requests. Whenever it finds new ones,

other parts of dipcd are activated to satisfy them.

These parts get any necessary data (for example the

parameters for a system call) to do the request from

inside the kernel and return any results back to the

kernel, where they will be delivered to the suitable

user process. It is the dipcd that actually executes

remote functions, transfers any data over the network,

and decides which computer can read or write to a

distributed shared memory. It also keeps necessary

information about the IPC structures in the system

and arbitrates between processes on different

machines wanting to access the same structures at the

same time.

It is apparent that there should be some

provisions for dipcd to access the needed information

in the kernel structures. A new system call,

multiplexed with other System V IPC calls, is added

to the Linux kernel to do just that. dipcd and other

DIPC tools included in the DIPC package (like

dipcker) use it to transfer data to and from the kernel.

This new system call, used in DIPC programs as

dipc(), is strictly for use by the dipcd and other

related programs. Ordinary user programs should not

use it.

Synchronising the creation of resources is

important because it is possible that more than one

process in the cluster want to create an IPC structure

with the same key. These processes may be in the

same computer or in different machines. So as to

prevent unwanted interactions due to different

processes trying to do the same thing, and possibly

creating an inconsistent state in the whole system, the

creation of an IPC structure should be done

atomically, meaning that while one process is trying

to create an IPC structure, no other process should try

the same with an identical key.

The kernel parts of DIPC prevent more than one

process in the same machine to attempt to create an

IPC structure at the same time. They are serialised

inside the kernel. Accomplishing the same effect

across the cluster is made possible by a process

responsible for this job: it is part of dipcd and will

play the referee among requests from different

machines and registers the necessary information

about all the IPC structures in the system. It also

controls the attempts to remove, or otherwise

manipulate IPC structures. This process is called the

referee.

There is a single referee in a cluster. All the

machines in the same cluster should know on which

computer the referee is currently running, and refer to

it when needed. In fact, it is having the same referee

that places two or more machines in the same cluster.

In other words, a cluster is made of the machines that

have the same referee. The referee address can be

assigned by the system administrator, using the

dipc.conf configuration file. Changing the address of

a referee in a computer places that computer in

another cluster. A machine that is running the referee

process can also act as any other machine in the

cluster.

6. Data and Information Transfer

In ordinary IPC, system calls are executed

locally. Data provided by a process as parameters of

a system call are copied inside the kernel and kept

there. Each IPC call should return some result to the

caller address space. The calling process will not be

able to continue until it gets the results back. During

this time it is waiting inside the kernel. The amount

of time between making a call and getting an answer

can vary greatly for different system calls and the

IPC structure state. Some calls (e.g. xxxctl() with

IPC_STAT command) return soon, Others (e.g a

semop() call) can take very long or for ever to return.

A local IPC system call thus requires two copies

between the user and kernel address spaces, once

from the user space to the kernel space, and once the

other way around for the result.

RPC (Remote Procedure Call) is used to execute

a system call on a remote computer. In order to

ensure transparency, no process using DIPC should

see any changes relative to the normal (local) IPC

activities. Here too, data are copied from a process to

kernel's memory. dipcd then brings this data to its

address space and transfers it over the network to the

computer that is responsible for handling the request.

This could be the computer on which an IPC

structure was first created (the owner). The remote

dipcd will copy the newly arrived data to the owner

machine's kernel space. There are 3 copies and a

network access for a process to simulate a system call

in the destination computer. After this, the system

call can be executed by dipcd in the remote kernel

and the results will be sent back much the same way

as described before: the remote kernel will copy the

data to user space, so that dipcd can transfer them

over the network. The dipcd at the original site of

process receives this data and sends it to the local

kernel. Now the data are copied from there to the

original address space of the process.

The normal behaviour of programs willing to use

System V IPC mechanisms for data exchange is like

this: a process first creates an IPC structure by a

suitable xxxget() system call using an agreed-upon

key. Other processes can now use xxxget() to gain

access to the same structure created before. In normal

IPC, the first process causes the appropriate

structures to be setup inside the kernel. Subsequent

xxxget() calls merely return a numerical ID value,

that can be used to refer to that structure. All these

processes use and manipulate a single structure.

DIPC tries to mimic this situation as much as

possible. Processes on different machines need to use

the same key to be able to refer to the same IPC

structure. In DIPC, when a process wants to create or

gain access to an IPC structure with a certain key, the

local kernel is first searched to see if that key is

already used. This is quite like normal IPC. If the

structure is found, the request is handled locally, with

no reference to the referee. But if an IPC structure

with that key is not found, then the referee should be

consulted to find out if that key is already used in the

cluster.

The referee searches its tables for the key, and

tells the requester if the key was found or not, and if

found, was it a distributed key or not. The referee can

answer immediately if the key is present, or if the key

is not present and no other machine has queried about

it. After sending the information to the requesting

computer, the referee expects a reply, informing it

whether that machine locally created an IPC structure

with that key or not, so that it can update its

information, if necessary. But if the key was not

found and the referee had already sent a message

telling so to another machine, all further requests for

that same key are not answered, until that other

machine tells the referee if it created an IPC structure

or not. When this information arrives, the referee can

proceed to answer other waiting requests.

7. Distributed Shared Memory

DIPC provides strict consistency in its shared

memory access. It means that a read will return the

most recently written value. This is very familiar to

programmers. There can be multiple readers of a

shared memory (page) at a time, but only one writer

at a time. The shared memory manager, part of dipcd

running on the owner of the distributed shared

memory, will receive the requests to read or write the

whole segment or its individual pages. It will decide

who will get the right to do the read or write, and if

necessary, provides the requesting machine with the

relevant shared memory contents.

MMU tables are changed to make the pages of a

shared memory write-protected. The same is done to

read-protect a page. Any process trying to read or

write read-protected pages will encounter a page

fault, and would sleep in the kernel. Before they can

be readable or writable again, the new contents are

brought over the network and replace the old ones.

Now user processes can access them. DIPC can

consider multiple virtual memory pages as one,

managing and transferring all of them at the same

time. This means that for any integer n, n ≥ 1:

<DIPC's page size> = n × <CPU’s virtual memory

page size>. A bigger DIPC page size will mean less

overhead in transfers, and also makes it possible for

computers with different native page sizes to be able

to work with each other under DIPC. This value

should be set to the maximum virtual memory page

size in all computers of the cluster.

Two signals are used to inform processes of

when they become readers or writers, so they can do

any data conversions necessary in a heterogeneous

environment. The signal currently used for reads is

SIGURG, and SIGPWR is used for writes. They can

be referenced in user programs with the names

DIPC_SIG_READER and DIPC_SIG_WRITER.

All processes on the same machine have the

same state regarding a shared memory. All of them

can read or write it, or none of them can do any of the

above. When a machine's access type to a shared

memory changes, all processes on that machine are

affected.

As mentioned before, DIPC can be configured to

manage and transfer shared memories a page at a

time. This is called page transfer mode. It allows

different computers in the cluster to read or write

different pages of a shared memory at the same time.

DIPC could also consider the whole segment as an

indivisible unit, in this case it is said to operate in

segment transfer mode. Different nodes in a DIPC

cluster, configured to use different transfer modes

can work with each other, though they may not

always get what they have asked for. The following

description shows how two computers with different

transfer modes manage to work with each other. (1)

The requesting computer and the shared memory

manager both use pages; the requesting computer

sends a request for a page, and will receive that page.

(2) The requesting computer uses pages, while the

shared memory manager uses segments; the

requesting computer sends requests for one page

from the manager, but the manager will send it the

whole segment. The requester can access all the

shared memory. (3) The requesting computer uses

segments, while the shared memory manager uses

pages; the requesting computer asks for the whole

segment, but the manager only sends the page within

which the access occurred. (4) The requesting

computer and the shared memory manager both use

segments; here the requesting computer asks for the

whole segment, and gets it.

In case DIPC is configured in a segment transfer

mode, then any transfer of shared memory contents

would involve the entire segment. That is how DIPC

can provide a segment based DSM. The reasons for

allowing DIPC to be able to transfer whole segments

are twofold. (1) It simplifies the working in a

heterogeneous environment with different page sizes.

(2) In some networks, the transfer time over the

network is much less than the transfer setup time, so

when the transfer is ready to begin, the amount that is

transferred has very little significance.

The owner computer of a shared memory is its

first writer, and it is always among the readers (if

there are any readers). The way the owner computer

is always present among the readers of a shared

memory is like this. The owner always starts as the

writer. When a request for read arrives, the owner is

converted to a reader. If a process on another

computer wants to write to the shared memory, then

the owner will not have any access rights. As soon as

a request for read arrives, the shared memory

manager will place a request for read on behalf of the

owner machine in front of the original read request.

In this way, the owner will become a reader first,

getting the shared memory contents from the current

writer. It then provides the original reader (and

possibly other requesters) with the contents.

In DIPC there is always one machine responsible

for providing other computers with the shared

memory contents. If there is a writer, this is the writer

machine. If there are one or more readers, this is the

owner machine. When a request to read or write fails

remotely, the requesting computer will eventually

find out about the problem through a time-out and

send SIGSEGV (segmentation fault) to all processes

that have attached the shared memory to their address

space.

8. Experimental Results

We ran a number of experiments to measure the

speed of distributed operations with DIPC. The test

system consisted of two Pentium PCs connected

together with a 10 Mb/s network. Table 1 shows the

time taken to execute the xxxget() system calls

(usually invoked only once in a program).

System Call Time (Seconds)

semget() 0.04

msgget() 0.04

shmget() 0.04

Table 1. Creating the IPC structures.

Table 2 shows the resulting of remote execution

of xxxctl() system calls [5], used for setting

(IPC_SET) and retrieving (IPC_STAT) information

about IPC structures.

System Call Parameter Calls/Sec

semctl() IPC_STAT 49.50

semctl() IPC_SET 50.00

msgctl() IPC_STAT 49.00

msgctl() IPC_SET 50.00

shmctl() IPC_STAT 49.50

shmctl() IPC_SET 45.00

Table 2. Controlling the IPC structures.

Table 3 shows the performance of the system

when sending and receiving messages of different

lengths. We measure how many times we could

execute the system calls per second. The measured

difference between sending and receiving messages

were observed in many tests, and may be due to

kernel-level implementation details.

System Call Size

(Bytes)

Calls/Sec

msgsnd() 1 97.14

msgrcv() 1 33.33

Msgsnd() 10 85.71

msgrcv() 10 29.41

Msgsnd() 100 97.14

Msgrcv() 100 33.33

Msgsnd() 1000 50.00

Msgrcv() 1000 50.00

Msgsnd() 4000 49.00

Msgrcv() 4000 49.00

Table 3. Sending and receiving messages.

Table 4 shows how many semaphore operations

per second can be performed in our system.

System Call Calls/Sec

semop() 48.00

Table 4. Semaphore operations.

Table 5 shows the amount of time it takes for

two processes to access a DSM. Process 0 writes to

the DSM, while process 1 reads from it. Both

processes were running on the remote machine.

Process

Number

DSM Size

(Bytes)

Time

(Sec)

0 1000 0.07

1 1000 0.06

0 7500 0.08

1 7500 0.07

0 25000 0.11

1 25000 0.10

0 50000 0.24

1 50000 0.24

0 80000 0.35

1 80000 0.36

Table 5. Writing from and reading to a DSM.

The set of programs written for the purposes of

these experiments were considered worse-case

distributed programs because they only exchange

data, without any computation. In all tests, the

increase in the amount of time needed to transfer data

is proportional to the increase in the amount of data.

Sending the data directly from user-space to user-

space would be faster, because it would avoid some

of the copying operations done by DIPC. This

slowdown is the side-effect of the transparency of the

system.

9. Concluding Remarks and Future Work

With DIPC, the task of writing a distributed

application becomes similar to that of writing a local,

parallel application. The programmer can develop an

application that consists of many programs, running

in parallel, to achieve a goal. The application should

use IPC to share data and synchronise, and can be

developed and tested on a single computer with a

single CPU. DIPC then allows the same application

to be run in a parallel and/or distributed environment

with no changes. The drawback to such a scheme is

that the data-transfer performance may be lower than

in an application written specifically for a particular

distributed hardware configuration.

DIPC is a heterogeneous distributed system

that supports many CPU architectures. It retains

backward compatibility with programs that use non-

distributed IPC mechanisms. It can be ported to other

CPUs supported by Linux, and also to other UNIX

variants whose source code is publicly available.

Some possible areas for future work include

porting DIPC to newer Linux kernels, porting DIPC

to other UNIX variants, and enhancing its

performance. Ensuring that DIPC and other

distributed programming technologies, as included in

the OSCAR or Rocks [6], for example, can work

together is another worthwhile line of work.

The DIPC package, including the source codes,

example programs, documentation and development

tools, are available for download at

http://www.cs.uwindsor.ca/~kamran/downloads.html.

References

[1] Claypool, M. Finkel, D., Transparent Process

Migration for Distributed Applications in a Beowulf

Cluster, Proceedings of the International Network

Conference (INC), Plymouth, United Kingdom, July

2002.

[2] Gropp, W., Lusk, E., Sterling, T., Beowulf Cluster

Computing with Linux, Second Edition, MIT Press,

2003.

[3] Karimi, K., Schmitz, M., and Sharifi, M., DIPC:

A Heterogeneous Distributed Programming System,

The Third International Annual Computer Society of

Iran Computer Conference (CSICC'97), Tehran, Iran,

December 1997. pp. 126-130.

[4] Sharifi, M. and Karimi, K., DIPC: The Linux

Way of Distributed Programming, Linux Journal,

Issue 57, January 1999. pp. 10-17.

[5] Silberschatz, A., Galvin, P.B., Gagne, G.,

Operating System Concepts Seventh Edition, John

Wiley & Sons, 2004.

[6] Sloan, J.D., High Performance Linux Clusters,

O’Reilley, 2005.

[7] Stevens, W.R., UNIX Network Programming:

Networking APIs, Sockets and XTI, Second Edition,

Prentice Hall, 1998

[8] Stevens, W.R. and Rago, S.A., Advanced

Programming in the UNIX Environment, 2nd

Edition, Addison Wesley Professional, 2005.

[9] Tanenbaum, A., Distributed Operating Systems,

Prentice Hall, 1995.

[10] Linux Homepage: http://www.linux.org/

