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Abstract 

 
Developing parallel and distributed programs is 

usually considered a hard task. One has to have a 

good understanding of the problem domain, as well 

as the target hardware, and map the problem to the 

available hardware resources. The resulting program 

is often hard to port to another system. The 

development and maintenance process may thus be 

costly and time-consuming. In this paper we propose 

giving priority to hiding the details of distributed 

programming behind normal data sharing and 

synchronisation mechanisms. The programs are thus 

written as if they are meant to be run on a single, 

parallel computer. The developers still have to divide 

the task and make sure that the problem is solved in 

parallel, but the details of data transfer and 

synchronisation over a network are hidden. The 

resulting programs can thus be developed on non-

distributed, non-parallel environments, and then be 

run on a variety of distributed and/or parallel 

platforms. Though such programs may not be as 

optimised as programs written specifically for a 

distributed computer, the speedups in programming 

time and costs may offset the losses. In this paper we 

introduce Distributed Inter-Process Communication 

(DIPC), a heterogeneous distributed programming 

system that hides inside Linux’s kernel, traps access 

requests to System V IPC mechanisms (messages, 

semaphores and shared memories) and delegates 

them for execution on other computers as needed. 

The results are then handed back through the kernel 

to the calling process, which is unaware of any 

distributed activity. DIPC currently supports Intel, 

PowerPC, ALPHA, MIPS, SPARC and Motorola 68K 

processors. 

 

1. Introduction 
 

Programming a distributed system often needs a 

good understanding of the low-level features of the 

hardware system. Code then must be written 

specifically for the target distributed system. The 

good thing about this scheme is that it is possible to 

gain the maximum performance. The negative aspect 

is that programming is hard and needs experts that 

know the problem domain as well as the target 

hardware. The resulting programs may not be 

portable to another distributed system without going 

through a major phase of re-design and debugging.  

Transparent distributed computing hides the 

distributed aspects of the system from the 

applications. In this paper we introduce Distributed 

Inter-process Communication (DIPC) [3, 4]. DIPC is 

a software system to create a multi-computer from 

Linux [10] machines connected together over a TCP 

or UDP [7] network. It eases data exchange and 

synchronisation between programs, and uses the 

CPU's Memory Management Unit (MMU) [5] to 

provide Distributed Shared Memory (DSM) 

capabilities [9]. DIPC provides parallelism at the 

program level. The user is responsible for invoking 

remote programs in computers with appropriate 

machine architectures. There is basic support for 

heterogeneous environments. 

Currently DIPC has been implemented on Linux 

2.2.x kernels, and can run on Intel i386, Motorola 

680x0, ALPHA, PowerPC, SPARC and MIPS 

processors. Information on obtaining DIPC and ideas 

for further work on it appear at the end of this paper. 

DIPC works by making UNIX System V’s Inter-

Process Communication (IPC) [8] mechanisms 

distributed. It offers distributed semaphores, 

distributed messages and distributed shared memory 

segments. Distributed semaphores allow remote 

processes in DIPC to synchronise their access to 

shared resources such as a distributed shared 

memory. Distributed messages allow processes to 

exchange information in the form of byes of data. A 

DSM can be used to asynchronously transfer data 

between processes. 

DIPC traps System V IPC mechanisms in the 

local kernel. When a process makes a request to use a 

semaphore or a message queue, DIPC examines the 

call and if necessary, invokes an operation on another 

machine. The request is thus executed remotely and 



the results are sent back to the originating machine’s 

kernel. DIPC then hands the results back to the local 

process, which has been sleeping inside the kernel, 

unaware of any distributed activity. The shared 

memory mechanism does not require the local 

process to invoke a system call (it is an asynchronous 

mechanism), so DIPC uses the MMU to restrict 

access to individual pages, or a whole segment, of the 

shared memory. Any invalid access is then trapped 

inside the kernel, and DIPC determines whether the 

process requires remote access to the shared memory. 

If so, the contents of the shared memory are moved 

over the network to satisfy the local process’ request. 

When the contents of the shared memory are 

obtained, the local process is allowed to continue. 

This mechanism is much like that of swapping 

memory out to a secondary storage device, except 

that DIPC may move the memory contents to another 

machine.  

DIPC has already been integrated into other 

systems that provide distributed services. For 

example, DIPC has been added to a Beowulf [2] 

cluster that runs the PANTS Application Node 

Transparency System (PANTS) suite of programs. 

PANTS is designed for a Beowulf cluster of Linux 

computers to provide automatic and transparent load 

sharing of processes [1].  

The rest of this paper is organised as follows. 

Section 2 briefly describes how a DIPC application is 

written and run. Section 3 introduces more details 

about DIPC’s workings. In Section 4 we introduce 

the notion of a DIPC cluster, which is made of a 

number of computers that collaborate together. 

Section 5 introduces the user-space component of 

DIPC, called dipcd (the DIPC daemon). In Section 6 

we discuss DIPC’s transparent data transfer. DIPC’s 

implementation of distributed shared memory is 

presented in Section 7. Section 8 produces the results 

of a number of experiments meant to measure the 

data-transfer frequency in DIPC. Section 9 concludes 

the paper and proposes a number of areas for future 

work and collaboration. 

 

2. A DIPC Application 
 

A distributed program that uses DIPC has a 

model similar to a parallel application, except that no 

threads are to be used (unless support for distributed 

threads is provided by another package). Two or 

more processes are started in the same computer or 

remotely, and one of them creates the needed IPC 

resources using well-known integer values known as 

keys. The machine on which an IPC structure is 

created is called the owner. Other processes gain 

access to these resources using the same key values. 

Processes can now exchange data and synchronise by 

calling the IPC system calls or read and write the 

shared memory.  

A DIPC application signals that the created IPC 

structures will be used over a network using a flag, 

IPC_DIPC, when creating the IPC structures. This 

flag is used to retain backward compatibility with the 

existing Linux programs that use System V IPC. As a 

result, the default behaviour of a Linux kernel which 

is enhanced with DIPC functionality is to treat the 

IPC structures as local. 

When a process calls an IPC system call, the 

kernel parts of DIPC determine if the current 

machine is the owner of the IPC structure and if not, 

inform the user-space components of DIPC (in 

dipcd), which then gather the needed parameters and 

send a request to the owner machine. The request is 

received by the user-space parts of DIPC in the 

owner machine and executed remotely in the owner 

kernel. Any results are then sent back to the original 

computer, passed back to the kernel and then to the 

original process that had made the system call. More 

information on this sequence of operations comes 

later in the paper. 

After setting up a shared memory, there are no 

synchronous system calls for shared memory reads 

and writes. A shared memory is first considered to be 

read-only, and its contents are duplicated on any 

computer that needs read access. When a process 

wants to write to a shared memory, the access is 

trapped and the contents of the shared memory on 

other machines, if any, are set to be invalid. The 

writing process is then allowed to proceed with the 

operation. When another read or write request arrives 

in another machine, the contents are copied to that 

computer. More details on handling DSM come later. 

The user process is not made aware of any of 

these activities because it still requests a service and 

receives the results through the local kernel. For 

seeing example source code that uses the System V 

IPC for data exchange in a DIPC cluster, and details 

on how a DIPC application is written, refer to [4]. 

 

3. DIPC Work Process 
 

DIPC has two parts: the main part, dipcd, runs in 

user space as an ordinary process with root privileges 

and does the decision makings and remote data 

transfers. Such a design simplifies the kernel parts of 

DIPC, making a port to other kernel versions or 

processors easier. The other part of DIPC is inside 

the kernel, and provides the first part with necessary 

functionality and information to do its job. It is not 

possible to run dipcd on a Linux kernel with no DIPC 

support. 

 The kernel parts of the DIPC are short-circuited 

when the dipcd program is not running. In the 



absence of dipcd, DIPC system calls in a program 

behave as if they are normal (local) System V IPC 

calls. dipcd itself uses ordinary means to access 

System V IPC mechanisms. These mechanisms are 

changed in the kernel, so they treat dipcd differently 

than other user processes. For example, dipcd can 

gain access to a shared memory segment by a 

shmget(), even when it has been removed (shmctl() 

with the IPC_RMID command), but not deleted from 

the kernel. All manipulations by dipcd to IPC 

structures are done locally, without them being 

visible outside that machine. This difference is in 

contrast to normal user processes, where actions on 

distributed IPC structures may affect other computers 

in the network. 

 DIPC is only concerned with the transfer of data 

in a distributed environment. Starting suitable 

programs in different computers is left to the user. 

This means that the programs to be executed may 

need to be present in the computer on which they are 

to execute. Programs could be placed in different 

computers once, and used many times after that. This 

implies that there is no overhead for transferring code 

in the network whenever a program is started.  

There are two kinds of activity in (D)IPC: First, 

synchronous: here the programmer uses system calls 

to carry out an action. Examples include using a 

system call such as msgget() to gain access to a 

message queue IPC structure, or using the msgrcv() 

system call to receive a message. The program makes 

the call and waits for its completion before 

continuing. DIPC will always take some action here. 

The second kind is asynchronous activity: Reading 

and writing a shared memory may cause an 

asynchronous action to take place. The programmer 

can not predict if and when such an activity may take 

place. One example is reading from a shared 

memory, when the relevant pages are swapped out 

(IPC) or are not in the requesting machine (DIPC). 

The needed pages are fetched from wherever they are 

and the program resumes execution. These events 

may or may not occur for each reference to the 

shared memory. 

   

4. DIPC Clusters 
 

A DIPC distributed system consists of a number 

of computers connected over a TCP/IP or UDP/IP 

network. Some or all of these machines could be in 

one cluster.  There may be more than one cluster in a 

physical network, but each machine can belong to at 

most one of them. Clusters are logical entities: they 

can be created or removed, or their members changed 

without the need to change any of the network's 

physical properties. 

Computers on the same cluster can use DIPC to 

transfer data and synchronise themselves without 

interfering with the workings of machines on other 

clusters at all, even though they may also be using 

DIPC and even the same applications. In other words, 

as far as DIPC is concerned, computers never interact 

in any way with machines outside their own cluster.  

It is the ability to exchange data between 

programs running on different machines in a cluster 

that makes DIPC a distributed system, but it is also 

possible to run all processes of a DIPC-enabled 

application in a single machine. They behave as if 

they are using normal System V IPC. This is because 

there is no explicit reference to any particular 

computer in DIPC. The same program may use 

different computers during different invocations to 

complete its job, freeing the program of being 

dependent on certain machines with certain 

addresses. This also means that programmers can use 

single machines to develop their application, and 

later run it in a multi-computer cluster. In other 

words, the user can do the final mapping between the 

resources needed by a program, and the physical 

resources available. 

Processes in a cluster can use the same key to 

access an IPC structure. This structure should first be 

created. This is done by one of the xxxget system 

calls (shmget(), semget() or msgget()) [8]. After 

creation and initialisation, other processes, possibly 

in other machines, may be able to access this 

structure. So a key here can have the same meaning 

in all the computers of the cluster. Put another way, 

computers in the same cluster have a common DIPC 

key space.  

Many legacy software with no accessible source 

code may use System V IPC to do their work, and 

some may use the same keys. As these programs may 

be needed on several machines in the cluster, it was 

important to make them work with no interferences 

under DIPC. So it becomes necessary to allow two 

different kinds of IPC keys in a cluster: (1) local 

keys, which are used only in a single computer, and 

are usable only to processes on that computer, and (2) 

distributed keys, which are used to refer to the same 

IPC structure in the whole cluster. 

A distributed key has a unique meaning in all the 

machines in the cluster, and referring to it should 

denote the same IPC structure. This means that when 

an IPC structure with a distributed key is created, 

there should be no other structure (local or 

distributed) with the same key in any other computer. 

To provide backward compatibility, different IPC 

structures with the same local key can exist in 

different computers. Local keys are the default key 

type: creating a distributed key requires the 

programmer to explicitly add an IPC_DIPC to other 



usual flags while creating or gaining access to an IPC 

structure with a xxxget() system call. If it was not for 

the above requirement, DIPC would be used totally 

transparently. Even now the only thing the 

programmer has to do is using the IPC_DIPC flag.    

 

5. dipcd Work Process 
 

With DIPC, ordinary user programs interact only 

with the local kernel of the computer they run on. 

Requests of user programs for DIPC actions, whether 

synchronous ones like system calls that should be 

executed remotely, or asynchronous ones like trying 

to read from a shared memory with pages that are not 

available in the local computer, are routed inside the 

kernel. All such requests are put in a single linked 

list. The process id of the requesting user task is 

noted, and is used to find the original request when 

the results come back. This way the results can be 

delivered to the correct user program. 

The kernel will in turn refer to the user space 

part of DIPC, dipcd, to actually fulfill these requests. 

This means that the presence of dipcd is transparent 

to user programs, and as far as they are concerned, 

the local kernel satisfies their requests.  

dipcd is always waiting inside the kernel to 

collect these requests. Whenever it finds new ones, 

other parts of dipcd are activated to satisfy them. 

These parts get any necessary data (for example the 

parameters for a system call) to do the request from 

inside the kernel and return any results back to the 

kernel, where they will be delivered to the suitable 

user process. It is the dipcd that actually executes 

remote functions, transfers any data over the network, 

and decides which computer can read or write to a 

distributed shared memory. It also keeps necessary 

information about the IPC structures in the system 

and arbitrates between processes on different 

machines wanting to access the same structures at the 

same time. 

It is apparent that there should be some 

provisions for dipcd to access the needed information 

in the kernel structures. A new system call, 

multiplexed with other System V IPC calls, is added 

to the Linux kernel to do just that. dipcd and other 

DIPC tools included in the DIPC package (like 

dipcker) use it to transfer data to and from the kernel. 

This new system call, used in DIPC programs as 

dipc(), is strictly for use by the dipcd and other 

related programs. Ordinary user programs should not 

use it. 

Synchronising the creation of resources is 

important because it is possible that more than one 

process in the cluster want to create an IPC structure 

with the same key. These processes may be in the 

same computer or in different machines. So as to 

prevent unwanted interactions due to different 

processes trying to do the same thing, and possibly 

creating an inconsistent state in the whole system, the 

creation of an IPC structure should be done 

atomically, meaning that while one process is trying 

to create an IPC structure, no other process should try 

the same with an identical key.  

The kernel parts of DIPC prevent more than one 

process in the same machine to attempt to create an 

IPC structure at the same time. They are serialised 

inside the kernel. Accomplishing the same effect 

across the cluster is made possible by a process 

responsible for this job: it is part of dipcd and will 

play the referee among requests from different 

machines and registers the necessary information 

about all the IPC structures in the system. It also 

controls the attempts to remove, or otherwise 

manipulate IPC structures. This process is called the 

referee. 

There is a single referee in a cluster. All the 

machines in the same cluster should know on which 

computer the referee is currently running, and refer to 

it when needed. In fact, it is having the same referee 

that places two or more machines in the same cluster. 

In other words, a cluster is made of the machines that 

have the same referee. The referee address can be 

assigned by the system administrator, using the 

dipc.conf configuration file. Changing the address of 

a referee in a computer places that computer in 

another cluster. A machine that is running the referee 

process can also act as any other machine in the 

cluster. 

 

6. Data and Information Transfer 
 

In ordinary IPC, system calls are executed 

locally. Data provided by a process as parameters of 

a system call are copied inside the kernel and kept 

there. Each IPC call should return some result to the 

caller address space. The calling process will not be 

able to continue until it gets the results back. During 

this time it is waiting inside the kernel. The amount 

of time between making a call and getting an answer 

can vary greatly for different system calls and the 

IPC structure state. Some calls (e.g. xxxctl() with 

IPC_STAT command) return soon, Others (e.g  a 

semop() call) can take very long or for ever to return. 

A local IPC system call thus requires two copies 

between the user and kernel address spaces, once 

from the user space to the kernel space, and once the 

other way around for the result. 

RPC (Remote Procedure Call) is used to execute 

a system call on a remote computer. In order to 

ensure transparency, no process using DIPC should 

see any changes relative to the normal (local) IPC 

activities. Here too, data are copied from a process to 



kernel's memory. dipcd then brings this data to its 

address space and transfers it over the network to the 

computer that is responsible for handling the request. 

This could be the computer on which an IPC 

structure was first created (the owner). The remote 

dipcd will copy the newly arrived data to the owner 

machine's kernel space. There are 3 copies and a 

network access for a process to simulate a system call 

in the destination computer. After this, the system 

call can be executed by dipcd in the remote kernel 

and the results will be sent back much the same way 

as described before: the remote kernel will copy the 

data to user space, so that dipcd can transfer them 

over the network. The dipcd at the original site of 

process receives this data and sends it to the local 

kernel. Now the data are copied from there to the 

original address space of the process.  

The normal behaviour of programs willing to use 

System V IPC mechanisms for data exchange is like 

this: a process first creates an IPC structure by a 

suitable xxxget() system call using an agreed-upon 

key. Other processes can now use xxxget() to gain 

access to the same structure created before. In normal 

IPC, the first process causes the appropriate 

structures to be setup inside the kernel. Subsequent 

xxxget() calls merely return a numerical ID value, 

that can be used to refer to that structure. All these 

processes use and manipulate a single structure. 

DIPC tries to mimic this situation as much as 

possible. Processes on different machines need to use 

the same key to be able to refer to the same IPC 

structure. In DIPC, when a process wants to create or 

gain access to an IPC structure with a certain key, the 

local kernel is first searched to see if that key is 

already used. This is quite like normal IPC. If the 

structure is found, the request is handled locally, with 

no reference to the referee. But if an IPC structure 

with that key is not found, then the referee should be 

consulted to find out if that key is already used in the 

cluster.  

The referee searches its tables for the key, and 

tells the requester if the key was found or not, and if 

found, was it a distributed key or not. The referee can 

answer immediately if the key is present, or if the key 

is not present and no other machine has queried about 

it. After sending the information to the requesting 

computer, the referee expects a reply, informing  it 

whether that machine locally created an IPC structure 

with that key or not, so that it can update its 

information, if necessary. But if the key was not 

found and the referee had already sent a message 

telling so to another machine, all further requests for 

that same key are not answered, until that other 

machine tells the referee if it created an IPC structure 

or not. When this information arrives, the referee can 

proceed to answer other waiting requests. 

7. Distributed Shared Memory 
 

DIPC provides strict consistency in its shared 

memory access. It means that a read will return the 

most recently written value. This is very familiar to 

programmers. There can be multiple readers of a 

shared memory (page) at a time, but only one writer 

at a time. The shared memory manager, part of dipcd 

running on the owner of the distributed shared 

memory, will receive the requests to read or write the 

whole segment or its individual pages. It will decide 

who will get the right to do the read or write, and if 

necessary, provides the requesting machine with the 

relevant shared memory contents. 

MMU tables are changed to make the pages of a 

shared memory write-protected. The same is done to 

read-protect a page. Any process trying to read or 

write read-protected pages will encounter a page 

fault, and would sleep in the kernel. Before they can 

be readable or writable again, the new contents are 

brought over the network and replace the old ones. 

Now user processes can access them. DIPC can 

consider multiple virtual memory pages as one, 

managing and transferring all of them at the same 

time. This means that for any integer n, n ≥ 1:  

<DIPC's page size> = n × <CPU’s virtual memory 

page size>. A bigger DIPC page size will mean less 

overhead in transfers, and also makes it possible for 

computers with different native page sizes to be able 

to work with each other under DIPC. This value 

should be set to the maximum virtual memory page 

size in all computers of the cluster. 

Two signals are used to inform processes of 

when they become readers or writers, so they can do 

any data conversions necessary in a heterogeneous 

environment. The signal currently used for reads is 

SIGURG, and SIGPWR is used for writes. They can 

be referenced in user programs with the names 

DIPC_SIG_READER and DIPC_SIG_WRITER. 

All processes on the same machine have the 

same state regarding a shared memory. All of them 

can read or write it, or none of them can do any of the 

above. When a machine's access type to a shared 

memory changes, all processes on that machine are 

affected.  

As mentioned before, DIPC can be configured to 

manage and transfer shared memories a page at a 

time. This is called page transfer mode. It allows 

different computers in the cluster to read or write 

different pages of a shared memory at the same time. 

DIPC could also consider the whole segment as an 

indivisible unit, in this case it is said to operate in 

segment transfer mode. Different nodes in a DIPC 

cluster, configured to use different transfer modes 

can work with each other, though they may not 

always get what they have asked for. The following 



description shows how two computers with different 

transfer modes manage to work with each other. (1) 

The requesting computer and the shared memory 

manager both use pages; the requesting computer 

sends a request for a page, and will receive that page. 

(2) The requesting computer uses pages, while the 

shared memory manager uses segments; the 

requesting computer sends requests for one page 

from the manager, but the manager will send it the 

whole segment. The requester can access all the 

shared memory. (3) The requesting computer uses 

segments, while the shared memory manager uses 

pages; the requesting computer asks for the whole 

segment, but the manager only sends the page within 

which the access occurred. (4) The requesting 

computer and the shared memory manager both use 

segments; here the requesting computer asks for the 

whole segment, and gets it. 

In case DIPC is configured in a segment transfer 

mode, then any transfer of shared memory contents 

would involve the entire segment. That is how DIPC 

can provide a segment based DSM. The reasons for 

allowing DIPC to be able to transfer whole segments 

are twofold. (1) It simplifies the working in a 

heterogeneous environment with different page sizes. 

(2) In some networks, the transfer time over the 

network is much less than the transfer setup time, so 

when the transfer is ready to begin, the amount that is 

transferred has very little significance. 

The owner computer of a shared memory is its 

first writer, and it is always among the readers (if 

there are any readers). The way the owner computer 

is always present among the readers of a shared 

memory is like this. The owner always starts as the 

writer. When a request for read arrives, the owner is 

converted to a reader. If a process on another 

computer wants to write to the shared memory, then 

the owner will not have any access rights. As soon as 

a request for read arrives, the shared memory 

manager will place a request for read on behalf of the 

owner machine in front of the original read request. 

In this way, the owner will become a reader first, 

getting the shared memory contents from the current 

writer. It then provides the original reader (and 

possibly other requesters) with the contents. 

In DIPC there is always one machine responsible 

for providing other computers with the shared 

memory contents. If there is a writer, this is the writer 

machine. If there are one or more readers, this is the 

owner machine. When a request to read or write fails 

remotely, the requesting computer will eventually 

find out about the problem through a time-out and 

send SIGSEGV (segmentation fault) to all processes 

that have attached the shared memory to their address 

space.  

 

8. Experimental Results 
 

We ran a number of experiments to measure the 

speed of distributed operations with DIPC. The test 

system consisted of two Pentium PCs connected 

together with a 10 Mb/s network. Table 1 shows the 

time taken to execute the xxxget() system calls 

(usually invoked only once in a program). 

 

System Call Time (Seconds) 

semget() 0.04 

msgget() 0.04 

shmget() 0.04 

Table 1. Creating the IPC structures. 

 

Table 2 shows the resulting of remote execution 

of xxxctl() system calls [5], used for setting 

(IPC_SET) and retrieving (IPC_STAT) information 

about IPC structures. 

 

System Call Parameter Calls/Sec 

semctl() IPC_STAT 49.50 

semctl() IPC_SET 50.00 

msgctl() IPC_STAT 49.00 

msgctl() IPC_SET 50.00 

shmctl() IPC_STAT 49.50 

shmctl() IPC_SET 45.00 

Table 2. Controlling the IPC structures. 

 

Table 3 shows the performance of the system 

when sending and receiving messages of different 

lengths. We measure how many times we could 

execute the system calls per second. The measured 

difference between sending and receiving messages 

were observed in many tests, and may be due to 

kernel-level implementation details. 

 

System Call Size 

(Bytes) 

Calls/Sec 

msgsnd() 1 97.14 

msgrcv() 1 33.33 

Msgsnd() 10 85.71 

msgrcv() 10 29.41 

Msgsnd() 100 97.14 

Msgrcv() 100 33.33 

Msgsnd() 1000 50.00 

Msgrcv() 1000 50.00 

Msgsnd() 4000 49.00 

Msgrcv() 4000 49.00 

Table 3. Sending and receiving messages. 

 

Table 4 shows how many semaphore operations 

per second can be performed in our system. 



 

System Call Calls/Sec 

semop() 48.00 

Table 4. Semaphore operations. 

 

Table 5 shows the amount of time it takes for 

two processes to access a DSM. Process 0 writes to 

the DSM, while process 1 reads from it. Both 

processes were running on the remote machine. 

 

Process 

Number 

DSM Size 

(Bytes) 

Time 

(Sec) 

0 1000 0.07 

1 1000 0.06 

0 7500 0.08 

1 7500 0.07 

0 25000 0.11 

1 25000 0.10 

0 50000 0.24 

1 50000 0.24 

0 80000 0.35 

1 80000 0.36 

Table 5. Writing from and reading to a DSM. 

 

The set of programs written for the purposes of 

these experiments were considered worse-case 

distributed programs because they only exchange 

data, without any computation. In all tests, the 

increase in the amount of time needed to transfer data 

is proportional to the increase in the amount of data. 

Sending the data directly from user-space to user-

space would be faster, because it would avoid some 

of the copying operations done by DIPC. This 

slowdown is the side-effect of the transparency of the 

system. 

 

9. Concluding Remarks and Future Work 
 

With DIPC, the task of writing a distributed 

application becomes similar to that of writing a local, 

parallel application. The programmer can develop an 

application that consists of many programs, running 

in parallel, to achieve a goal. The application should 

use IPC to share data and synchronise, and can be 

developed and tested on a single computer with a 

single CPU. DIPC then allows the same application 

to be run in a parallel and/or distributed environment 

with no changes. The drawback to such a scheme is 

that the data-transfer performance may be lower than 

in an application written specifically for a particular 

distributed hardware configuration. 

DIPC is a heterogeneous distributed system 

that supports many CPU architectures. It retains 

backward compatibility with programs that use non-

distributed IPC mechanisms. It can be ported to other 

CPUs supported by Linux, and also to other UNIX 

variants whose source code is publicly available.  

Some possible areas for future work include 

porting DIPC to newer Linux kernels, porting DIPC 

to other UNIX variants, and enhancing its 

performance. Ensuring that DIPC and other 

distributed programming technologies, as included in 

the OSCAR or Rocks [6], for example, can work 

together is another worthwhile line of work. 

The DIPC package, including the source codes, 

example programs, documentation and development 

tools, are available for download at 

http://www.cs.uwindsor.ca/~kamran/downloads.html.   
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