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Abstract—Recent technology advancements allow for the
integration of large memory structures on-die or as a die-
stacked DRAM. Such structures provide higher bandwidth
and faster access time than off-chip memory. Prior work has
investigated using the large integrated memory as a cache,
or using it as part of a heterogeneous memory system under
management of the OS. Using this memory as a cache would
waste a large fraction of total memory space, especially for the
systems where stacked memory could be as large as off-chip
memory. An OS-managed heterogeneous memory system, on
the other hand, requires costly usage-monitoring hardware to
migrate frequently-used pages, and is often unable to capture
pages that are highly utilized for short periods of time.

This paper proposes a practical, low-cost architectural
solution to efficiently enable using large fast memory as Part-
of-Memory (PoM) seamlessly, without the involvement of the
OS. Our PoM architecture effectively manages two different
types of memory (slow and fast) combined to create a single
physical address space. To achieve this, PoM implements the
ability to dynamically remap regions of memory based on
their access patterns and expected performance benefits. Our
proposed PoM architecture improves performance by 18.4%
over static mapping and by 10.5% over an ideal OS-based
dynamic remapping policy.

Keywords-Stacked DRAM, Heterogeneous Memory, Hard-
ware Management, Die-Stacking

I. INTRODUCTION

With the continuing advancements in process technology,

there is a clear trend towards more integration in designing

future systems. In the memory subsystem, with smaller form

factors and the quest for lower power, a part of memory

has also started being integrated on-die or as a die-stacked

DRAM. Embedded DRAM (eDRAM) has already been used

in some commercial systems [1,2], and die-stacked memory

is also gaining momentum [3, 4]. This trend is expected to

scale by integrating larger memory capacities across market

segments from mobile to server.

Integrated memory structures have often been exploited in

prior work as hardware-managed last-level caches [5–10].

In such a cache design, allocating a cache line involves

making a local (i.e., redundant) copy of the data stored in

main memory. In this case, cache capacity is invisible to

system memory, but applications can experience reasonable

performance benefits without modifications to the operating

systems (OS) or running software. With conventional cache

size of a few megabytes per core (or tens of MBs per core

as in today’s eDRAMs), the opportunity costs of losing

overall memory capacity to cache copies are insignificant.

However, the integrated memory structures driven by die-

stacking technology could provide hundreds of megabytes

of memory capacity per core. Micron already offers 2GB

Hybrid Memory Cube (HMC) samples [11]. By integrating

multiple stacks on a 2.5D interposer, it is also plausible to

integrate even tens of gigabytes of memory on package.

For some market segments, depending on its deployment

scenarios, making the integrated memory invisible to overall

system memory (i.e., used as a cache) could lead to a non-

negligible loss of a performance opportunity.1

An alternative to using on-die memory as a cache is to use

it as part of an OS-managed heterogeneous memory system,

as in non-uniform memory architectures (NUMA) [13–15].

NUMA systems were quite popular in designing large-scale

high-performance computers even without on-die memory

integration. NUMA allows processors fast access to data

in memory that is closer in proximity to the processor.

With careful OS-managed page migration and/or replication

policies, processors could get most of the data they need

in near memory. However, performing migration under OS

control implies a high latency overhead since it could only

happen through OS code. Furthermore, OS-managed migra-

tion could only happen at coarse-grained intervals since the

OS routines cannot be called frequently. This could miss

many opportunities to improve performance by migrating

pages that are highly utilized for short periods of time.

In this paper, we propose architectural mechanisms to

efficiently use large, fast, on-die memory structures as part

of memory (PoM) seamlessly through the hardware. Such

a design employing effective management would achieve

the performance benefit of on-die memory caches without

sacrificing a large fraction of total memory capacity to serve

as a cache. As we discuss in Section III, the main challenge

for the hardware-based management is to keep the hardware

cost of meta-data and other structures in check. Our PoM

architecture provides unique designs and optimizations that

become very effective in our problem space, which we

cover in Section IV. In contrast to OS-managed policies,

our approach is transparent to software and achieves higher

performance due to its ability to adapt and remap data at a

fine granularity.

1Some industry architects consider providing the option to use gigabytes
of on-die memory as part of system-visible memory in addition to a large
cache configuration [12].



This paper makes the following contributions:

• We propose a Part-of-Memory (PoM) architecture that

efficiently manages a heterogeneous memory system by

remapping data to fast memory without OS intervention.

To our knowledge, this is the first work that provides a

practical design of hardware-based management.

• We propose two-level indirection with a remapping cache

to alleviate the additional latency for indirection and on-

die storage overheads required for hardware-based hetero-

geneous memory management.

• We propose a competing counter-based page activity

tracking and replacement mechanism that is suitable to

implement for the PoM architecture. Our mechanism

provides a responsive remapping decision while being

area-efficient, which is necessary for hardware-based PoM

management.

Our results show that when these techniques are used in

concert they achieve an 18.4% performance improvement

over static mapping, and a 10.5% improvement over an ideal

OS-based dynamic remapping policy.

II. BACKGROUND AND MOTIVATION

A. Heterogeneous Memory System

We define a heterogeneous memory system as a memory

subsystem in which some portions of memory provide dif-

ferent performance/power characteristics than other portions

of memory in the same node. We project that many of

future memory systems will exploit such heterogeneity to

meet a variety of requirements imposed on today’s memory

architectures. A good example is a memory subsystem

composed of stacked DRAM and off-chip memory [6, 16],

where DRAM stacked on the processor provides both higher

bandwidth and faster access time as compared to the off-chip

memory. Another example is the recently proposed tiered-

latency DRAM architecture, where a DRAM array is broken

up into near and far segments that have fast and slow access

times, respectively [17]. Such heterogeneous memory is

often equipped with a few gigabytes of fast memory, so a key

to achieving more system performance is how to make an

efficient use of such large fast memory. In Sections II and III,

we discuss the opportunities and challenges of architecting

such heterogeneous memory systems.

B. Architecting Fast Memory as Part-of-Memory (PoM)

Heterogeneous memory can be managed in a number of

ways. The most common approach is to manage it as a

cache [5,6]. Generally, in this approach, allocating a block in

the fast memory entails the duplication of the slow memory

block into the fast memory. Although such duplication

results in capacity loss, it makes block allocations simple

and fast. However, in cases where the capacity of the fast

memory is comparable to that of the slow memory, the

capacity lost in duplication may be unacceptable. In these

cases, both fast and slow memory may be combined into a
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Figure 1. A high-level view of OS-based PoM management.

single flat address space. We refer to this as a PoM (Part-

of-Memory) architecture. The simplest PoM architecture

resembles typical homogeneous memory architectures, with

a portion of the address space mapped statically to the fast

memory whereas the remainder mapped to the slow memory.

To maximize the performance benefits of fast memory, the

operating system (OS) could allocate heavily used pages to

the portion of the physical address space mapped to the fast

memory.

C. Dynamic PoM Management

The key advantage of the PoM architecture is the ability to

increase overall memory capacity by avoiding duplication.

However, its performance may suffer relative to a simple

cache. The PoM architecture is at a disadvantage for two

reasons. First, the performance benefits of the fast memory

will depend on the operating system’s ability to identify

frequently used portions of memory. Second, even if the

most frequently used portions of memory can be success-

fully identified, a replacement policy that relies on frequency

of use may underperform the typical cache recency based

replacement algorithm [18].

Figure 1 shows an overview of the OS-based PoM

management. At a high-level, such dynamic management

consists of two phases of profiling and execution. At every

interval, we first need to collect information that helps deter-

mine the pages to be mapped into fast memory during run-

time (Application Run). The operating system generally has

a limited ability to obtain such information; a reference bit in

page tables is mostly the only available information, which

provides a low resolution of a page activity. Thus, richer

hardware support for profiling may be desirable even for the

OS-based PoM management. A typical way of profiling such

as used in [19] has hardware counters associated with every

active page and increments the counter for the corresponding

page on a last-level cache (LLC) miss. The profiled data is

then used to perform page allocations for the next interval

during the execution phase. In OS-based management, the

execution is costly since it involves an OS interrupt/handler

invocation, counter sorting, page table modification, and

TLB flushing in addition to the actual page allocation cost.

As such, the OS-involved execution must be infrequent and

thus often fails to exploit the full benefits of fast memory.

D. Potential of Hardware-Managed PoM Architecture

By managing the PoM architecture without an involve-

ment of the operating system, we can eliminate the overhead

of an OS interrupt/handler invocation (∂) in the execution

phase. More importantly, we do not need to wait for an

OS quantum in order to execute page allocations, so the
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Figure 2. Percentage of LLC misses serviced from fast memory across
different intervals.

execution can happen at any rate. Therefore, the conventional

approach of (long) interval-based profiling and execution

is likely to be a less effective solution in the hardware-

managed PoM architecture. To see how much benefit we

can approximately expect by exploiting recency, we vary

the interval size in a frequency-based dynamic mechanism

similar to that described in Section II-C.

Figure 2 presents the percentage of LLC misses serviced

from fast memory while varying the interval size from 10M

cycles to 10K cycles (see Section V for our methodology).

As the interval size decreases, the service rate from fast

memory significantly increases for many workloads. This

implies that we could miss many opportunities for a perfor-

mance improvement if a tracking/replacement mechanism

in the PoM architecture fails to capture pages that are

highly utilized for short periods of time. The potential of

the hardware-managed PoM architecture could be exploited

only when we effectively deal with the cost of hardware

management, which we describe in the next section.

III. CHALLENGES OF HARDWARE-MANAGED POM

The high-level approach of profiling and execution re-

mains the same in the hardware-managed PoM architecture.

However, the hardware-managed PoM architecture intro-

duces the following new challenges.

A. Hardware-Managed Indirection

Dynamic PoM management performs relocating pages

into the memory space that is different from what OS

originally allocated to, thus the hardware-managed PoM

must take responsibility for maintaining the integrity of the

operating system’s view of memory. There are two ways

this could be achieved. First, PoM could migrate memory

regions at the OS page granularity, update the page tables,

and flush TLBs to reflect the new locations of the migrated

pages. Unfortunately, this method is likely infeasible in

many architectures since it would require the availability of

all the virtual addresses that map to the migrating physical

page in order to look up and modify the corresponding page

table entries. In addition, the OS page granularity could be

too coarse-grained for migration, and updating page tables

and flushing TLBs (∑) still need to be infrequent since

they are expensive to perform, thereby leading to lack of

adaptation to program phase changes. Therefore, using this

method in the hardware-managed PoM is unattractive.

The other approach is to maintain an indirection table that

stores such new mapping information and to remap memory

requests targeting the pages that have been relocated into the

non-original memory space. The remapping table, however,

could be too large to fit in on-die SRAM storage. For

example, 2GB of fast memory managed as 2KB segments2

will require a remapping table consisting of 1M entries at

least to support the cases where all the segments in the fast

memory have been brought in from slow memory. Note,

in this approach, that every memory request that missed

in the LLC must access the remapping table to determine

where to fetch the requested data (i.e., whether to fetch

from the original OS-allocated address or from the hardware-

remapped address). Thus, in addition to the concern of pro-

viding such large storage on-chip, the additional latency of

the indirection layer would be unmanageable with a single,

large remapping table, which is another critical problem.

To overcome the problem of a single, large remapping

table, we propose a PoM architecture with two-level indirec-

tion in which the large remapping table is embedded into fast

memory, while only a small number of remapping entries

are cached into an on-die SRAM structure. Although the

two-level indirection may make the PoM architecture more

feasible in practice, naively designing the remapping table

makes the caching idea less effective. Section IV describes

the remapping table design that is suitable for such caching

yet highly area-efficient.

B. Swapping Overhead

A key distinction between PoM and cache architectures is

the need to swap a segment to bring it to fast memory, rather

than just copy a memory block when allocating it to the

cache. PoM also differs from an exclusive cache hierarchy

since caches are backed up by memory (i.e., a clean block

in any level of an exclusive cache hierarchy is also available

in memory). Conversely, only one instance of each segment

exists in PoM, either in slow or in fast memory.

Swapping a segment differs from allocating a cache block

since the segment allocated to fast memory replaces another

segment that occupied its new location, and the swapped-

out segment needs to be written back to slow memory.

Therefore, every allocation to fast memory requires a write-

back of the evicted data to slow memory. This swapping

overhead could be significant depending on the segment size

and the width of the channel between fast and slow memory.

A small segment size reduces the swapping cost of moving

large blocks between large and slow memory, and provides

more flexibility in the replacement policy. However, a small

segment size such as 64B or 128B (typical in caches) reduces

spatial locality, incurs a much higher storage overhead for

the remapping table, and suffers from a higher access latency

due to the large remapping table size. In Sections IV-C

and IV-D, we explore different designs to balance between

minimizing swap overhead and remapping table size.

2We use the term segment to refer to the management granularity in our
PoM architecture.



C. Memory Activity Tracking and Replacement

Providing efficient memory utilization tracking and swap-

ping mechanisms specifically tailored to the hardware-

managed PoM architecture is another major challenge. If we

simply use the mechanism similar to that in Section II-C, we

need to maintain a counter per active page, so we could need

as many counters as the number of page table entries in the

worst case. In addition, due to the required large interval,

each counter needs to have a large number of bits to correctly

provide the access information at the end of each interval.

For example, with a 4GB total memory with 2KB segments,

we need to track as many as 2M entries; then, assuming

that the size of each entry is 16 bits (in order not to be

saturated during a long interval), the tracking structure itself

requires 4MB storage. Having shorter intervals could help

mitigate the storage overhead a bit by reducing the number

of bits for each counter, but comparing all the counters

for shorter intervals would greatly increase the latency and

power overhead. Furthermore, the storage overhead would

still be bounded to the number of page table entries, which

may be undesirable for scalability.

To make a responsive allocation/de-allocation decision

with a low-cost tracking structure, we propose competing

counter-based tracking and swapping for our PoM architec-

ture in which a single counter is associated with multiple

segments in fast and slow memory. Section IV-F discusses

how we reduce the number of counters as well as the size

of each counter while providing responsiveness.

D. Objective and Requirements

The primary objective of this work is to efficiently enable

the PoM architecture in heterogeneous memory systems. For

this purpose, we need to address the previous challenges.

The hardware-managed indirection needs to be fast and area-

efficient. The swapping cost needs to be optimized. The

memory utilization tracking structure also needs to be small

in area while being designed to provide responsive swap-

ping decisions. In the next section, we describe our PoM

architecture and how it addresses these main challenges.

IV. A PRACTICAL POM ARCHITECTURE

A. Design Overview

In a conventional system, a virtual address is translated to

a physical address, which is then used to access DRAM. In

contrast, our system must provide the ability to remap phys-

ical addresses in order to support the transparent swapping

of memory blocks between fast and slow memory. Starting

with the physical address retrieved from the page tables

(Page Table Physical Address, PTPA), we must look up a

remapping table to determine the actual address of the data

in memory (DRAM Physical Address, DPA). Unfortunately,

as discussed in Section III-A, such single-level indirection

with a large remapping table not only has a non-negligible

storage overhead but also incurs a long latency penalty on

every access.
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Figure 3. Overview of the PoM architecture.

Figure 3 presents the overview of our PoM architecture.

One of the key design points in our PoM architecture is

two-level indirection with a remapping cache. Each request

to either slow or fast memory begins by looking for its

remapping information in the segment remapping cache

(SRC). If the segment remapping cache does not contain an

appropriate remapping entry (SRC Miss), then the memory

controller retrieves the remapping entry from the segment

remapping table (SRT) located in fast memory and allocates

it in the SRC. Once the remapping entry has been fetched,

the location of the request (i.e., DPA) is known, and the data

can be fetched.

At a minimum, a remapping entry needs to indicate which

segment is currently located in fast memory. For example,

with 4GB fast/16GB slow memory and 2KB segments,

the maximum number of segments that fast memory can

accommodate is 2M (out of total 10M segments). In this

configuration, the minimum number of remapping entries

required for the SRT would be 2M. With the remapping

table design, when a segment originally allocated to slow

memory by the operating system is brought into one of

the locations in fast memory, the corresponding remapping

entry is modified to have new mapping information, such as

Entry 1’s “Segment N+27” in Figure 3; then, “Segment 1”

is stored in the original OS-allocated location of “Segment

N+27”. Note that, even with the simplest design, the size of

the remapping table is bounded to the number of segments

in the fast memory, so the storage and latency overheads

would still be high to use an on-chip SRAM structure for

the remapping table. We discuss the implementation of the

remapping table in more detail in Section IV-D.

B. Segment-Restricted Remapping

At first blush, it seems that we can simply cache some

of the SRT entries. However, our caching idea may not

be easily realized with the SRT described in the previous

section due to a huge penalty on an SRC miss. On an

SRC miss, we need to access fast memory to retrieve the

remapping information. In the above SRT design, however,

since the remapping information can be located anywhere

(or nowhere) for a miss-invoked memory request, we may

need to search all the SRT entries in the worst case, which

could require thousands of memory requests to fast memory

just for a single SRC miss.

Our solution to restricting the SRC miss penalty within a

single fast memory access is segment-restricted remapping,

as shown in Figure 4. Each entry in the remapping table
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Figure 4. Segment-restricted remapping.

owns some number of segments where the number can be

determined by the total number of segments over the number

of SRT entries in the simplest case. A segment is restricted

to be swapped only for the segments that are owned by

the same entry. This is a similar concept to direct-mapping

in cache designs (but is easily extensible to set-associative

segment-restricted designs). For example, segments A, C and

Y are only allowed to be swapped for the segments owned

by Entry 0, whereas segments B, D and Z are swapped only

for the segments owned by Entry 1. In this segment-restricted

remapping, even if the remapping information for segment

A is not found in the SRC, we can retrieve the remapping

information with a single access to fast memory since it is

only kept in Entry 0. To determine the SRT entry to which

a segment is mapped, we simply use a few bits from the

page table physical address (PTPA), which is good enough

for our evaluated workloads.

C. Segment Allocation/De-allocation: Cache vs. PoM

In this section, we compare a cache allocation and the

swap operation required by our PoM architecture. Through-

out the examples, segments X, Y and Z are all mapped to the

same location in fast memory (as in the segment-restricted

remapping), and non-solid segments in slow memory repre-

sent the segments displaced from their original OS-allocated

addresses.

First, Figure 5 shows a cache line allocation (segment

Z) under two different conditions. In the example on the

left (Clean), segment Z is brought into a local buffer on

the CPU (∂) and simply overwrites segment Y (∑). Before

Z is allocated, both fast memory and slow memory have

identical copies of segment Y. As a result, allocating Z

requires nothing more than overwriting Y with the contents

of the newly allocated segment Z. The right example (Dirty)

illustrates a case in which Y is modified and thus the copy of

Y held in fast memory is unique. Allocating Z, in this case,

requires reading Y from fast memory (∂) and Z from slow

memory (∑) simultaneously. After storing them in buffers

in the memory controller, Z is written back to fast memory

(∏), and Y is written back to slow memory (π).
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Figure 5. Cache allocation.

In contrast to the cache allocation, the PoM architecture

makes all of both fast and slow memory available to the

running software. To prevent duplicates and to ensure that

all data is preserved as data is moved back and forth between

fast and slow memory, PoM replaces the traditional cache

allocation with a swap operation. The PoM swap operation,

illustrated in Figure 6, differs depending on the contents

of the segment displaced from fast memory. The PoM

swap operation on the left (PoM Fast Swap1) occurs when

the displaced segment X was originally allocated by the

operating system to fast memory. In this case, a request to

segment Z in slow memory requires segments X and Z to

be read simultaneously (∂,∑) from fast and slow memory

into on-chip buffers. The swap completes after copying Z

from the on-chip buffer to fast memory (∏) and copying X

from the buffer to slow memory (π).
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Figure 6. Fast swap operation in the PoM architecture.

As different segments from slow memory are swapped

into fast memory, the straightforward swap operation previ-

ously described will result in segments migrating to different

locations in slow memory, as illustrated in Figure 6 (PoM

Fast Swap2). In the example, a request to segment Y causes a

second swap after Swap1. The second swap (Swap2) simply

swaps segment Y with segment Z, resulting in segment Z

assuming the position in slow memory that was originally

allocated to segment Y. With more swaps, all slow memory

segments could end up in locations different than their

original location. This segment motion between different

locations in slow memory implies that the remapping table

must not only identify the current contents of fast memory,

but must also track the current location of all segments in

slow memory. Note that recording only the segment number

brought into fast memory, as the remapping entry shown in

Figure 3, would not allow this fast swap in most cases. The

ability to support segment motion throughout slow memory

increases the size and complexity of the remapping table,

but greatly simplifies the swapping operation.
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Figure 7. Slow swap operation in the PoM architecture.

An alternative approach to remapping segments requires

segments to always return to their original position in slow

memory. In this approach, the positions of all segments in



slow memory can be inferred from their page table physical

address, with the exception of segments currently mapped

to fast memory. To ensure this, we can employ a second

swapping algorithm depicted in Figure 7 (PoM Slow Swap).

In the example, as in PoM Fast Swap2, a request to segment

Y causes a swap with segment Z, currently in fast memory.

In this case, however, rather than perform a simple swap

between Z and Y, we restore Z to its original position in slow

memory, currently occupied by X. We accomplish this in

four steps: (A) Fetching Z and Y simultaneously (∂,∑); (B)

Writing Y to fast memory (∏) and simultaneously fetching

X from slow memory (π); (C) Freeing X’s location then

writing Z back to its original location (∫); (D) Writing X to

Y’s previous location in slow memory (ª). The slow PoM

swap generally requires twice as much time as the fast PoM

swap with each of the four steps requiring the transfer of a

segment either to or from slow memory.

D. Segment Remapping Table (SRT)

The segment remapping table (SRT) size depends on the

swapping type we support. The PoM slow swap ensures

that all data in slow memory is stored at its original

location as indicated by its page table physical address. As

a result, the SRT can include remapping information only

for the segments in fast memory. Conversely, PoM fast swap

allows data to migrate throughout slow memory; thus, the

remapping table must indicate the location of each segment

in slow memory. For instance, consider a system consisting

of 1GB of fast memory and 4GB of slow memory divided up

into 2KB segments. This system would require a remapping

table with the ability to remap 512K (1GB/2KB) segments if

it implemented slow swaps, and 2M (4GB/2KB) segments if

it implemented fast swaps. Whether to use fast or slow swaps

is decided based on the system configuration and hardware

budgets. The discussion in the remainder of this section will

focus on a remapping table designed to support fast swaps.
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In the case of fast swaps with the previous system

configuration, a total of five possible segments compete for

a single location in fast memory, and the other segments

will reside in one of the four locations available in slow

memory. The SRT needs to record which of the five possible

segments currently resides in each of five possible locations.

Figure 8 illustrates the organization of the remapping table

with the five segments, V, W, X, Y and Z competing for a

single location in fast memory. Each remapping entry in the

SRT contains tags for four of the five segments; the contents

of the fifth segment can be inferred from that of other

segments. In addition to the four 3-bit tags, the remapping

table contains a shared 8-bit counter used to determine when

swapping should occur (Section IV-F). Co-locating the tags

for conflicting segments has two advantages. First, since

all swaps are performed between existing segments, this

organization facilitates updates associated with the swap

operation. Second, it facilitates the usage of the shared

counter that measures the relative usage characteristics of the

different segments competing for allocation in fast memory.

E. Segment Remapping Cache (SRC)

The remapping cache must be designed with two con-

flicting objectives in mind. On the one hand, a desire to

minimize misses provides an incentive to increase capacity

and associativity. On the other hand, increasing capacity

can increase access latency, which negatively impacts the

performance of both hits and misses. To strike this balance,

we choose a 32KB remapping cache with limited (4-way)

associativity. On an SRC miss, we capture limited spatial

locality by fetching both of the requested remapping entry

and the second remapping entry that cover an aligned 4KB

region. It is worth noting that with a protocol similar to

DDR3, our fast memory will deliver 64B blocks. Although

a single 64B block would contain tens of remapping entries,

we found that SRC pollution introduced by allocating a large

number of remapping entries outweighed the spatial locality

we could harvest. Since we modeled 4KB OS pages, any

spatial locality that existed beyond a 4KB region in the

virtual address space could potentially have been destroyed

after translation to the physical address space. It is also

noted that an SRC hit for a given memory request does not

guarantee that the requested data is found in fast memory.

F. Segment Activity Tracking

We previously discussed in Section III-C that a con-

ventional segment tracking/replacement mechanism is not

suitable for a hardware-managed PoM architecture, and a

tracking mechanism for PoM needs to respond quickly with

a low storage overhead (e.g., a small number of counters,

fewer bits per counter). In this section, we discuss the

tracking/replacement mechanism for our PoM architecture.

1) Competing Counter: To make a segment swapping

decision, we need to compare the counter values of all

involved segments at a decision point (e.g., sorting). Here,

the information of interest is in fact the one relative to

each other rather than the absolute access counts to each

segment. For example, assume that one slot exists in fast

memory with both segments A and Y competing for the

slot, which is currently taken by segment Y. To decide which

segment should reside in fast memory, we allocate a counter

associated with a segment in fast memory (segment Y) and

another segment in slow memory (segment A). During an

application run, we decrement the associated counter on

an access to segment Y, and increment it on an access to

segment A. By having this competing counter (CC), we can

assess which of the two segments has been accessed more

during a certain period, which is useful for swap decisions.
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Figure 9. Competing counters.

Figure 9 illustrates a general case in which multiple slots

exist in fast memory, while also a number of segments

are competing for the slots. At first blush, the CC-based

approach seems to incur high overhead since the com-

peting counters need to be allocated to all combinations

of the segments in fast and slow memory, as shown in

Figure 9(a) (counters shown only for segment Y due to

space constraints), if segments are allowed to be mapped

into any location in fast memory. However, thanks to the

segment-restricted remapping described in Section IV-B, the

number of competing counters required is in fact bounded

to the number of segments in slow memory, as shown

in Figure 9(b). Although this already reduces the storage

overhead compared to the tracking structure in Section III-C

while providing more responsiveness, we can further reduce

the storage overhead by sharing a single counter between

competing segments, as shown in Figure 9(c). This reduces

the number of counters to a single counter for each segment

in fast memory. In this shared counter case, the segment that

has just triggered swapping is chosen for allocation in fast

memory.

Sharing the competing counters between competing seg-

ments provides us with two benefits. First, it reduces the

overall memory capacity required by the segment remapping

table (Section IV-D). Second, and more importantly, it

reduces the size of each SRC entry by a little more than 50%,

allowing us to effectively double its capacity. Furthermore,

sharing counters between competing segments seems to have

little to no effect on the performance of our replacement

algorithm. Theoretically, references to segment A could have

incremented the shared counter just below a threshold, and

segment C could cause the counter to reach the allocation

threshold and is chosen for allocation. In practice, however,

we found this to be rare since the usage of different segments

among competing segments tends to be highly asymmetric.

Even though this rare case could happen, it is likely to have

a temporary effect, and the highly-referenced segment would

end up residing in fast memory soon afterwards.

2) Swapping Operation: Swapping occurs when the

counter value is greater than a threshold, which implies that

the segment currently residing in fast memory may not be

the best one. For example in Figure 9(c), when an LLC miss

request to segment A increments its associated counter, if the

resulting counter value is greater than a threshold, segments

A and Y will be swapped and their associated counter will

reset.

An optimal threshold value would be different depending

on the application due to the different nature of memory

access patterns. To determine a suitable swapping rate for

different applications, the PoM architecture samples memory

regions. The locations in fast memory are grouped into 32

distinct regions in an interleaving fashion, and four regions

are dedicated to sampling, while other 28 regions follow

the threshold decision from sampling. The segments in the

sampling regions modify the remapping table/cache when

their counter values are greater than the assigned thresholds,

but the actual swapping is not performed for the segments

restricted to the sampling region. For the memory requests

that target sampling regions, we simply get the data with

static mapping without looking up in the remapping table

(i.e., DRAM PA = Page Table PA). In order to drive the

suitable swapping rate, we collect the following information

for each sampling region:

• Nstatic: # of memory requests serviced from fast memory

with static mapping

• Ndynamic: # of memory requests expected to be serviced

from fast memory when swapping with a given threshold

• Nswap: # of expected swaps for a given threshold.

For each of four sampling regions, we then compute the

expected benefit (Bexpected) using Equation (1) and choose

the threshold used in the sampling region that provides

the highest non-negative Bexpected value at every 10K LLC

misses. In the case where such Bexpected does not exist

(i.e., all negative), the following regions do not perform any

swapping operations.

Bexpected = (Ndynamic −Nstatic)−K ×Nswap. (1)

Ndynamic is counted just by checking the remapping

table for the requests to the segments in fast/slow mem-

ory dedicated to the sampling regions. Nstatic is counted

when the requests target the segments originally assigned

to the fast memory. K is the number of extra hits required

for a swapped-in segment (over a swapped-out segment)

to compensate for the cost of a single swap. K differs

depending on the relative latency of fast and slow memory.

In our configuration (see Table I), the cost of a single fast

swap is about 1200 cycles, and the difference in access

latency between fast and slow memory is 72 cycles.3 Thus,

in general, the swapped-in segment needs to get at least

17 more (future) hits than the swapped-out segment for

swapping to be valuable. K is computed in hardware at boot

time. Note that the memory controller knows all the timing

parameters in both fast and slow memory. In our evaluations,

we use 1, 6, 18, and 48 for the thresholds in four sampling

regions, and we use K = 20.

3(11 ACT + 11 CAS + 32×4 bursts) × 4 (clock ratio of CPU to DRAM)
= 600 cycles. Fast swapping requires two of these (Section IV-C).



V. EXPERIMENTAL METHODOLOGY

Simulation Infrastructure: We use a Pin-based cycle-level

x86 simulator [20] for our evaluations. We model die-

stacked DRAM as on-chip fast memory, and we use the

terms of fast memory and stacked memory interchangeably

in our evaluations. The simulator is extended to provide

detailed timing models for both slow and fast memory as

well as to support virtual-to-physical mapping. We use a

128MB stacked DRAM and determine its timing parameters

to provide the ratio of fast to slow memory latency similar

to that in other stacked DRAM studies [5–10, 16]. Table I

shows the configurations used in this study.

Table I
BASELINE CONFIGURATION USED IN THIS STUDY

CPU

Core 4 cores, 3.2GHz out-of-order, 4 issue width, 256 ROB
L1 cache 4-way, 32KB I-Cache + 32KB D-Cache (2-cycle)
L2 cache 8-way, private 256KB (8-cycle)
L3 cache 16-way, shared 4MB (4 tiles, 24-cycle)
SRC 4-way, 32KB (2-cycle), LRU replacement

Die-stacked DRAM

Bus frequency 1.6GHz (DDR 3.2GHz), 128 bits per channel
Channels/Ranks/Banks 4/1/8, 2KB row buffer
tCAS-tRCD-tRP 8-8-8

Off-chip DRAM

Bus frequency 800MHz (DDR 1.6GHz), 64 bits per channel
Channels/Ranks/Banks 2/1/8, 16KB row buffer
tCAS-tRCD-tRP 11-11-11

Workloads: We use the SPEC CPU2006 benchmarks and

sample one-half billion instructions using SimPoint [21].

We selected memory-intensive applications with high L3

misses per kilo instructions (MPKI) since other applications

with low memory demands have very little sensitivity to

different heterogeneous memory management policies. To

ensure that our mechanism is not harmful for less memory-

intensive applications, we also include two applications that

show intermediate memory intensity. We select benchmarks

to form rate-mode, where all cores run separate instances

of the same applications, and multi-programmed workloads.

Table II shows the 14 workloads evaluated for this study

along with L3 MPKI of a single instance in each workload

as well as the speedup of the all-stacked DRAM config-

uration where all the L3 miss requests are serviced from

stacked DRAM instead of from off-chip DRAM. For each

workload, we simulate 500 million cycles of execution and

use weighted speedup [22, 23] as a performance metric.

Table II
EVALUATED MULTI-PROGRAMMED WORKLOADS

Mix Workloads L3 MPKI (single) All-stacked

WL-1 4 × mcf 71.48 1.88x

WL-2 4 × gcc 12.13 1.27x

WL-3 4 × libquantum 35.56 2.12x

WL-4 4 × omnetpp 7.30 1.47x

WL-5 4 × leslie3d 16.83 1.68x

WL-6 4 × soplex 31.56 1.81x

WL-7 4 × GemsFDTD 12.15 1.33x

WL-8 4 × lbm 32.83 3.37x

WL-9 4 × milc 18.01 1.75x

WL-10 4 × wrf 6.28 1.49x

WL-11 4 × sphinx3 11.89 1.52x

WL-12 4 × bwaves 19.07 2.00x

WL-13 mcf-lbm-libquantum-leslie3d N/A 1.87x

WL-14 wrf-soplex-lbm-leslie3d N/A 1.77x

VI. EXPERIMENTAL EVALUATIONS

A. Performance Results

Figure 10 shows the performance of our proposed scheme

and a few other static mapping/OS-based dynamic remap-

ping policies for comparisons. We use a baseline where no

stacked DRAM is employed, and all performance results are

normalized to the baseline.
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Figure 10. Speedup with our proposed mechanism compared to other
schemes (normalized to no stacked DRAM).

First, static(1:8) and static(1:4) show the

speedups when we assume that the OS would allocate

memory pages such that one ninth or one fifth of the total

pages are placed in fast memory for each workload. Static

mapping results show the performance improvement due to

having a part of memory that is accessed quickly without

making any changes to hardware or OS page allocation

policies. On average, we achieve a 7.5% (11.2%) speedup

over the baseline with this 1:8 (1:4) static mapping.

Our proposed scheme achieves a 31.7% performance

improvement over the baseline on average, and also shows

substantial performance improvements over static mappings.

Compared to static(1:4), our scheme improves perfor-

mance by 18.4% on average, and many of the evaluated

workloads show huge speedups due to serving more requests

from fast memory (see Section VI-B). On the other hand,

a few other workloads show performance similar to that

of static(1:4). This happens because of one of two

reasons. First, our dynamic scheme could determine that

the cost of page swapping would outweigh its benefit for

some workloads (e.g., WL-4 and WL-9), so the original page

allocation by the OS remains the same in both fast and slow

memories, and none (or only a small number) of the pages

are swapped in-between. Second, some workloads are not

as sensitive to memory access latency as others, so their

performance improvement due to our mechanism is limited

by nature (e.g., WL-2 and WL-7).

Next, OS-Managed and OS-Managed(Ideal) are OS-

based migrations with and without remapping overhead,

respectively. We use a mechanism similar to that used in

prior work [19]. In the mechanism, the OS first collects the

number of accesses (LLC misses) to each 4KB OS page

during an interval. Then, at the end of the interval, the most

frequently accessed pages are mapped into the fast memory

for the next interval. To mitigate remapping overheads, the

mechanism uses a 100M cycle interval (31.25 ms on a

3.2GHz processor) and also does not select the pages with
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Figure 11. Physical address translation breakdown.

fewer than 64 LLC misses.4 Also, if selected pages for the

next interval were already present in fast memory, the pages

are not moved. On average, the OS-based migration achieve

a 9.3% (19.1% without overhead) speedup over the baseline.

Compared to OS-Managed, our PoM achieves 20.5%

performance improvement. In our proposed scheme, we

start out with the same page allocation as in OS-Managed.

However, we continuously adapt and remap data into fast

memory at a fine granularity during the workload runtime,

whereas OS-Managed adapts to the working set changes at

a coarse granularity; so, the service rate from fast memory

of OS-Managed would be quite lower than our mechanism.

As a result, even assuming zero-cost overheads, such as

OS-Managed(Ideal), the OS-based mechanism performs

worse than ours.

B. Effectiveness of Remapping Cache

The effectiveness of the remapping cache is very crucial

to our two-level indirection scheme. Figure 11 shows the

percentage of memory requests serviced from fast mem-

ory along with the source of the translation (i.e., whether

translations are obtained from the remapping cache or the

remapping table).

The HIT FAST bar represents the percentage of requests

whose translations hit in the remapping cache and the

corresponding data are serviced from fast memory. The

HIT SLOW bar represents the percentage of requests whose

translations hit in the remapping cache but are serviced from

slow memory. MISS FAST and MISS SLOW represent

remapping cache misses that are serviced from fast and slow

memory, respectively. Note that the hit rate of the remapping

cache is independent of swapping schemes since it is a

function of an LLC-filtered memory access stream.

Our remapping cache is shown to be quite effective with

more than 95% hit rate for most workloads. The high

hit rate is due to the spatial locality in the lower levels

of the memory hierarchy. WL-1 and WL-4 are the only

benchmarks that show slightly lower hit rates due to the

low spatial locality.

C. Sensitivity to Remapping Cache Size

One of the main performance drawbacks of remapping is

that address translation latency is now added to the overall

4We have also performed experiments with shorter intervals and different
thresholds, but most of the workloads showed significantly lower perfor-
mance since the remapping overheads were too large to amortize.
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Figure 12. SRC hit rate across different cache size.

memory latency. For an effective design, most of translations

need to hit in the remapping cache to minimize the cost of

access serialization. This section analyzes the effectiveness

of different sizes of the remapping cache. Figure 12 shows

the hit rate of the remapping cache when we change its size

from 8KB to 64KB. Our workloads show high hit rates on

average even with the 8KB remapping cache. Only a few

workloads (e.g., WL-1) experience a bit higher number of

remapping cache misses with small size caches since their

accesses are spread out across large memory regions. Note

that we used simple LRU replacement for the remapping

cache. If needed, other replacement policies or techniques

(e.g., prefetching) could be used to improve the hit rate.

D. Swapping Overhead

Figure 13 shows the swapping overhead of our proposed

mechanism compared to the unrealistic ideal case in which

swapping has no overhead; i.e., swapping does not gener-

ate any memory requests, and updates the swapping table

automatically without using up any latency or bandwidth.
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Figure 13. Comparison with ideal swapping.

Most of our evaluated workloads show reasonable swap-

ping overhead since our mechanism enables swapping for

small data segments (i.e., 2KB segments) and also attempts

to avoid unnecessary swaps that are not predicted to improve

performance. Some workloads such as WL-4 and WL-9

show no swapping overhead. This is because our dynamic

scheme determines that the swapping would not be beneficial

compared to static mapping as discussed in Section VI-A.

Intuitively, the performance cost of page swapping dimin-

ishes as the number of hits per swap increases. This can be

achieved by swapping in more guaranteed-to-be-hit pages

into fast memory. However, such a conservative decision is

likely to reduce the amount of the memory requests serviced

from fast memory. Thus, we first need to make a careful

decision on when to swap in order to optimize the swapping

cost without sacrificing the fast memory service rate.



The swapping overhead may also be partially hidden

by performing swap operations in a more sophisticated

fashion. In our design, we already defer the write-backs of

swapped-out pages since they are likely to be non-critical.

More aggressively, we may delay the entire execution of

swapping operations until the memory bus is expected to

be idle (for a long enough time for swapping). We may

also employ a mechanism similar to the critical block first

technique; only the requested 64B block out of a 2KB

segment is first swapped into fast memory, and other blocks

are gradually swapped in when the bus is idle. These are

all good candidates to further alleviate the swapping cost

although they need more sophisticated hardware structures.

E. Sensitivity to Swap Granularity

In our mechanism, we manage remapping at a granularity

of 2KB segments. This is the same as the row size in the

stacked memory. This section discusses the sensitivity of

PoM as the granularity varies from 128B to 4KB.
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Figure 14. Speedup across different segment granularity.

Figure 14 shows the speedup across different segment

granularity. Using a smaller segment size has the advantage

of reducing the overhead of any individual swap. This allows

for more frequent swaps and increases the rate of serving

requests from fast memory. On the other hand, using a

smaller segment size loses the benefits of prefetching that a

larger granularity can provide. For the applications that have

spatial locality, employing a larger swapping granularity may

allow fast memory to service more requests, and the overall

swapping overhead can also be smaller due to high row

buffer hit rates. In addition, as the segment size decreases,

the overhead of the remapping table increases since it needs

to have more entries. This, in turn, reduces the effective

coverage of the remapping cache. When deciding on the

segment size, all these factors need to be considered. We

chose a 2KB segment size since it achieved a decent

speedup, while its overhead is still manageable.

F. Energy Comparison

Figure 15 shows the energy consumption of OS-managed

and our proposed heterogeneous memory systems compared

to no stacked DRAM. We compute the off-chip memory

power based on the Micron Power Calculator [24] and the

Micron DDR3 data sheet (-125 speed grade) [25]. Since no

stacked DRAM data sheet is publicly available, we compute

the stacked memory power based on the access energy and

standby power numbers reported in [26].5 The results show

that PoM reduces energy per memory access by an average

of 9.1% over the evaluated OS-managed policy. In general,

PoM migrates more data blocks between fast and slow mem-

ory than OS-based migration, which increases the amount

of energy used for data migration. However, the increased

energy could be amortized by the increased number of

hits in fast memory. More importantly, PoM’s performance

improvement reduces static energy in the memory system,

which leads to significant energy savings.
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Figure 15. Energy comparison between OS-based migration and our PoM.

G. Comparison to Hardware-Managed Cache

Figure 16 compares two different DRAM cache im-

plementations with two different implementations of PoM

including a naive version of PoM (Unmanaged) and our

proposal. LH-Style uses 64B lines similar to [6] but in-

cludes improvements found in subsequent work such as a

direct-mapped organization [7] and a hit-miss predictor [8].

The PoM-Style cache uses 2KB cache lines and an im-

proved replacement policy similar to our PoM proposal (Sec-

tion IV-F). The performance benefits we observe for the

PoM-Style cache over LH-Style result from the additional

prefetching due to the large 2KB lines and our effective

replacement policy.6
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Figure 16. Comparison to hardware-managed caches.

The last two bars depict alternative implementations of

PoM, both delivering the same capacity benefits. Unmanaged

depicts a naive implementation of PoM without the benefits

provided by the remapping cache and modified allocation

algorithm (competing counters). The performance of our

proposal is depicted on the far right. Since our experiments

do not account for the performance impact of page faults, the

best we can expect from our proposal is to match the perfor-

mance benefits of PoM-Style. In fact, our proposal delivers

5Although our stacked memory is not identical to the one used in [26],
we have verified that the conclusion remains the same across reasonably
different power/energy numbers expected for die-stacked DRAM.

6The LH-style cache can be managed similarly to PoM-Style using
prefetching and bypass techniques, thereby providing better performance.



a speedup close to what is achieved with PoM-Style, and

it does this while avoiding data duplication and allowing

running software to use all available fast and slow memory;

thus, for the running software that does not fit in slow

memory, PoM would provide much higher speedups than

caches when page fault costs are considered.

H. Sensitivity to Fast to Slow Memory Capacity Ratio

Figure 17 shows the average speedup of static mapping

and our proposed scheme over no fast memory across

different ratios of fast to slow memory capacities. As the

ratio becomes larger, the percentage of memory requests

serviced from fast memory is likely to increase, and we

observe a large performance improvement even with static

mapping. Although, the potential of our dynamic scheme

would decrease as the ratio of fast to slow memory ca-

pacity increases, our results show that the proposed scheme

still leads to non-negligible performance improvements over

static mapping (a 13.8% improvement for a 1:1 ratio). For

smaller ratios, we achieve much higher speedups compared

to static mapping (e.g., we achieve a speedup 20% over static

mapping when the ratio is 1:8).
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Figure 17. Speedups of static mapping and our scheme across different
ratios of fast to slow memory.

I. Transparency to Virtual Memory Subsystem

PoM is transparent to current virtual memory/TLB sub-

systems and also ensures that a functionally correct memory

image is maintained in the context of OS-invoked page

migrations, copy-on-write, TLB shoot-downs, I/O requests,

etc. This is because in today’s systems all memory requests

(even from other devices such as disk and network) must

go through the system-on-chip memory controller to access

memory. In PoM, these requests must all look up the

SRC/SRT as they pass through the memory controller and

before they access DRAM physical memory. For example,

OS-invoked physical page migrations may result in page

table updates and TLB shoot-downs, but since these involve

the OS-maintained virtual-to-physical mappings and not the

PoM-maintained physical page to segment mappings, these

would be handled in a PoM system just like they would

in a system without PoM. These events might make the

physical segments allocated in stacked memory no longer

hot (even dead); then, PoM would have no knowledge of the

migration. However, since PoM uses a dynamic replacement

algorithm and the competing counters are constantly com-

paring eviction and allocation candidates, the cold segments

would quickly be replaced by hotter segments.

VII. RELATED WORK

A large body of research has investigated non-uniform

memory access (NUMA) architectures. Cache-coherent

NUMA (CC-NUMA) architectures reduce traffic to remote

nodes by holding remote data in the cache of each processing

node [13]. Cache-only memory architectures (COMA) [27]

use memory as a hardware-managed cache, like the ALL-

CACHE design in the KSR1 system [28]. An S-COMA

system allocates part of the local node’s main memory to

act as a large cache for remote pages [29]. Falsafi and

Wood proposed Reactive NUMA (R-NUMA) that reacts to

program behavior and enables each node to use the best

of CC-NUMA or S-COMA for a particular page [15]. The

Sun WildFire prototype showed that an R-NUMA-based

design can significantly outperform a NUMA system [30].

Although the heterogeneous memory system analyzed in

our paper has properties similar to a NUMA system (with

variable memory latencies), our work differs from traditional

NUMA research since we treat both the fast and slow

memory as local to a node.

Many recent papers on heterogeneous memory systems

have investigated the use of fast memory as a cache for the

slow memory [5–10, 31]. The key difference between PoM

and all previous work on DRAM caches is that PoM pro-

vides higher total memory capacity as compared to DRAM

caches. Enabling PoM to maximize memory capacity re-

quires quite different design approaches from previously

described DRAM cache architectures, including support for

complex swapping operations (Section IV-C) and memory

permutation (Section IV-D for fast-swap) that results when

different memory locations are swapped. The benefits of the

additional memory capacity provided by PoM extend beyond

the performance benefits harvested through reduced disk

swapping, directly impacting one of the attributes consumers

use when making a purchase decision.

Some prior work has explored managing heterogeneous

memory systems using software. Loh et al. [19] studied the

benefits and challenges of managing a die-stacked, heteroge-

neous memory system under software control. The authors

discussed that even OS-managed heterogeneous memory

systems require non-negligible hardware/software overheads

for effective page activity monitoring and migration. RAM-

page [32] proposed managing an SRAM-based last-level

cache by software as the main memory of a machine,

while using DRAM as a first-level paging device (with disk

being a second-level paging device). Machanick et al. [33]

showed that a RAMpage system can outperform a traditional

cache system when the speed gap between the processor

and DRAM increases. However, the RAMpage approach

presents a significant practical challenge for operating sys-

tems that have minimum memory requirements, whereas our

PoM approach maximizes the amount of memory that could

be allocated by the OS. Lee et al. [17] proposed Tiered-

Latency DRAM, which provides heterogeneous access la-

tency, and introduced its use cases (caches or OS-visible

memory). However, the use case as OS-visible memory was



briefly mentioned without details. As shown in other work,

it is not trivial to effectively enable software-/hardware-

managed heterogeneous memory systems, which we address

in this work. Ekman and Stenstrom [34] also discussed

a two-level main memory under software management. In

contrast to our approach, these software-managed memory

systems are less responsive to program phase changes.

Some papers have investigated hardware implementations

for supporting page migrations in heterogeneous memo-

ries [16, 35]. The work that is most closely related to our

proposal is the one from Dong et al. [16]. Their hardware-

only implementation maintains a translation table in the

memory controller, which keeps track of all the page remap-

pings. To keep the table size small, their implementation uses

large 4MB pages, which incurs both high migration latencies

and increased bandwidth pressure on the slow memory.

In comparison, our approach supports small page sizes by

keeping the remapping table in the fast memory and caching

the recent remapping table accesses in a small remapping

cache. Ramos et al. [35] propose hardware support for OS-

managed heterogeneous memories. In their work, the page

table keeps a master copy of all the address translations, and

a small remapping table in the memory controller is used

to buffer only the recent remappings. Once the remapping

table becomes full, the buffered remappings need to be

propagated to the page table, requiring the OS to update

the page table and flush all the TLBs. Thus, their approach

requires costly OS interventions, which our technique avoids

by maintaining page remappings in a dedicated hardware-

managed remapping table in the fast memory.

VIII. CONCLUSION

Heterogeneous memory systems are expected to become

mainstream, with large memory structures on-die that are

much faster to access than conventional off-die memory. For

some market segments, using gigabytes of fast memory as

a cache may be undesirable. This paper presents a Part-of-

Memory (PoM) architecture that effectively combines slow

and fast memory to create a single physical address space

in an OS-transparent fashion. PoM employs unique designs

and provides substantial speedups over static mapping and

alternative OS-based dynamic remapping.

There likely remain many other research opportunities in

heterogeneous memory systems. For instance, depending on

the capacity and bandwidth requirements of the running soft-

ware, we may want to dynamically configure fast memory

as either a cache, PoM, or even software-managed memory

(as in [36] but for off-chip bandwidth). Studies on how to

support such flexibility in heterogeneous memory systems

could be one of the good directions for future research.
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