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Abstract

Future public transportation systems will provide broadband access to passengers
carrying legacy terminals with 802.11 connectivity. Passengers will be able to com-
municate with the Internet and with each other, while connected to 802.11 Access
Points deployed in vehicles and bus stops / metro stations, and without requiring
special mobility or routing protocols to run in their terminals. Existing solutions,
such as 802.11s and OLSR, are not efficient and do not scale to large networks,
thereby requiring the network to be segmented in many small areas, causing the
terminals to change IP address when moving between areas. In this thesis we pro-
pose WiMetroNet, a large mesh network of mobile routers (Rbridges) operating
at layer 2.5 over heterogeneous wireless technologies that is transparent to end
terminals, since they believe they are connected to a simple local area network.
This architecture contains an efficient data plane that optimizes the transport of
DHCP and ARP traffic, and provides a transparent terminal mobility solution us-
ing techniques that minimize the routing overhead for large networks. We offer two
techniques to reduce routing overhead associated with terminal mobility, one based
on proactively flooding a TTL-limited routing message, and another based on reac-
tively sending back a “binding update” message to the correspondent node when a
packet arrives at the old point of attachment. Simulation and analytical results are
presented, and the routing protocol is shown to scale to large networks with good
data plane results, namely packet delivery rate, delay, and handover interruption
time.

During WiMetroNet development, a problem was faced that is recurring in the
networking research and development field: the duplication of effort to write first
simulation and then implementation code. We posit an alternative development
process that takes advantage of the network emulation features of Network Sim-
ulator 3 (ns-3) and allows developers to share most code between simulation and
implementation of a protocol. Tests show that ns-3 can handle a data plane pro-
cessing large packets, but has difficulties with small packets. When using ns-3 for
implementing the control plane of a protocol, we found that ns-3 can even outper-
form a dedicated implementation. We further enhance ns-3 with scripting language
bindings, a new scalable and simple to use flow monitoring module, and visualiza-
tion capabilities. As a result, the ns-3 based development of a network protocol and
accompanying prototype becomes an attractive alternative to traditional protocol
development process, with increased development efficiency.
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Resumo

Os sistemas de transportes públicos futuros irão oferecer acesso de banda larga a
passageiros que transportam terminais com conectividade 802.11. Os passageiros
vão poder comunicar com a Internet e com outros passageiros, estando ligados a
pontos de acesso 802.11 instalados em véıculos e paragens de autocarro/metro, e sem
precisar de correr qualquer protocolo de encaminhamento ou mobilidade nos termi-
nais. As soluções existentes, como por exemplo 802.11s e OLSR, não são eficientes
e não escalam para redes grandes, e portanto requerem que a rede seja segmentada
em muitas pequenas áreas, fazendo com que os terminais tenham que mudar de
endereço IP sempre que mudam de área. Nesta tese propomos WiMetroNet, uma
grande rede mesh de routers móveis (Rbridges) que operam na camada 2,5 sobre
redes sem fios heterogéneas. Esta rede é transparente para os terminais, pois estes
acreditam que estão ligados a uma simples rede local. Esta arquitectura contém um
plano de dados eficiente que optimiza o transporte de tráfego DHCP e ARP, e que
suporta uma solução de mobilidade transparente de terminais usando técnicas que
minimizam o tráfego de controlo para redes grandes. São oferecidas duas técnicas de
redução do tráfego de controlo associado à mobilidade dos terminais, uma baseada
em proactivamente disseminar uma mensagem de controlo com TTL limitado, e
outra baseada no envio reactivo de uma mensagem “binding update” para o nó
correspondente sempre que chega um pacote para o antigo ponto de ligação do nó.
São apresentados resultados de simulação e anaĺıticos que mostram que o protocolo
de encaminhamento escala para redes grandes com bons resultados no plano de
dados, nomeadamente taxa de entrega de pacotes e tempo de interrupção durante
o handover.

Durante o desenvolvimento do WiMetroNet, encontrámos um problema que é
recorrente na investigação e desenvolvimento da área de redes: existe duplicação de
esforço quando programamos primeiro um simulador e depois uma implementação.
Propõe-se nesta tese um processo de desenvolvimento alternativo que tira partido
das funcionalidades de emulação que existem no Network Simulator 3 (ns-3) e
permite que investigadores partilhem a maior parte do código entre simulação e
implementação de um protocolo. Os testes demonstram que o ns-3 consegue su-
portar um plano de dados que processa pacotes grandes, mas tem dificuldades com
pacotes pequenos. Quando usamos o ns-3 para implementar um protocolo no plano
de controlo, descobrimos que o ns-3 consegue ter um desempenho melhor do que
uma implementação dedicada. Para tornar o desenvolvimento ainda mais rápido,



vi

melhorámos o ns-3 com suporte para uma linguagem de scripting de alto ńıvel, um
novo módulo simples e escalável para monitorização de fluxos, e funcionalidades de
visualização com foco na depuração. Como resultado, o desenvolvimento de um
protocolo de redes e respectivo protótipo baseado em ns-3 torna-se uma atractiva
alternativa ao processo tradicional de desenvolvimento de protocolos, com ganhos
no tempo de desenvolvimento.
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Chapter 1

Introduction

1.1 Wireless network for metropolitan transports

In this thesis, we address the moving networks research area. Our particular
network — the WiMetroNet [1] — is a private network possibly owned by a
consortium of companies which jointly operate public transportation vehicles
such as buses, trams, and taxis. The addressed scenario provides broadband
wireless access to a few thousands of vehicles and vehicle stops. We assume
each vehicle (e.g. bus, tram, subway train, or taxi) will use its broadband
access to operate services such as video-surveillance, video broadcast, and
video/voice calls. Besides, each vehicle is expected to provide wireless access
to its passengers, which carry portable and conventional equipments with
standard IEEE 802.11 (WLAN) interfaces and a bare IP communications
stack. Passengers may access the Internet not only from the vehicles but also
from the stops while waiting for the vehicles, and are allowed to communicate
between themselves; they can, for instance, exchange files, play games or
establish voice and video communications using their applications.

Vehicles get a broadband wireless access by using heterogeneous wireless
technologies, namely IEEE 802.16 (WMAN, WiMax), IEEE 802.11, and
3GPP Universal Mobile Telecommunications System (UMTS). Each vehicle
has a WMAN access which may not be accessible from every place, a WLAN
access which is used when the vehicle approaches some stops, and an UMTS
access which it uses when uncovered by the other technologies. Vehicles and
vehicle stops are equipped with a communication equipment — the Rbridge
— which manages the wireless broadband access and serves one or more
WLAN Access Point (AP) located inside the vehicle, to which the passenger
or other vehicle equipments can associate. Fig. 1.1 presents the WiMetroNet
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2 CHAPTER 1. INTRODUCTION

reference architecture. When, for instance, a passenger arrives to a tram
station, he gets a secure wireless access and IP connectivity. While moving
from the tram station to a tram, from the tram to the arrival station, and
from there to a bus, the passenger is expected to maintain its connection and
observe no considerable degradation on the quality of his communications.

The WiMetroNet is a mesh network of moving Rbridges. It is auto-
configurable, and it operates at layer 2.5 over heterogeneous wireless tech-
nologies. A new routing protocol is proposed, and secure mechanisms for
authorization, authentication and confidentiality are used. A passenger’s
equipment will see WiMetroNet as its LAN, thus being one IP hop away from
the other terminals attached to WiMetroNet and from its default router. We
say that the network is “transparent” from the point of view of end terminals:
just like a transparent window glass allows photons to cross its structure with
very little interference, so does WiMetroNet allow a terminal’s packets to
cross its mesh network structure with little interference. Because terminals
are always virtually on the same LAN, while roaming they maintain their
IP addresses. Moreover, depending on the mobile terminal implementation,
in some cases DHCP renew may not even be necessary while roaming, only
when the lease expires. We will refer to the class of networks similar to
WiMetroNet as Wireless Network for Metropolitan Transports (WNMT).

In order to take advantage of the ability to keep stable IP addresses in
mobile terminals, the WiMetroNet network should be reasonably large. We
envision many hundreds to a few thousands of mesh routers, some mobile,
some fixed, and thousands or tens of thousands of mobile terminals. A
traditional IEEE 802 based layer 2 forwarding architecture, which we try
to emulate, is not suitable due to the way broadcasts are handled [2]. For
instance, if each terminal sends one broadcast ARP packet per minute, for
a network with ten thousand terminals this translates into 10000−1

60 = 167
packets per second received by every other host, leading to a virtual collapse
of the network. Not only does a simple 802.1D bridged solution exhibit this
problem, but also the new 802.11s wireless mesh standard. In the control
plane, similar scalability problems exist. Adhoc routing protocols rely on the
ability to flood the network to discover routes. The flooding can be periodic,
in the case of proactive routing protocols like Optimized Link State Routing
(OLSR) [3], or reactive as in Adhoc On-demand Distance Vector (AODV)
[4], but both cases result in a considerable fraction of the network capacity
being consumed just for routing messages. Recent work on VANET routing
protocols has focused on reactive adhoc routing protocols augmented with
location information in order to provide better scalability. However, the po-
sition of a destination node can only be obtained by a sending node by asking
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Figure 1.1: The WiMetroNet reference network

a location server, with poor scalability as a result, or by position estimation
based on a previous position, with inherent computational complexity and
statistical error.

1.2 Protocol research and development

During the course of the WiMetroNet research, we have selected the Net-
work Simulator 3 (ns-3) tool for simulation purposes, mainly due to the
need to simulate large networks (with many hundreds to a few thousands
of nodes). Since ns-3 is very modular, fast1, and has a low memory foot-
print, it was found an ideal tool for research. However, from the experience
with using ns-3 for WiMetroNet research and development, we have been
able to identify some areas to be improved, as well as new ways to take
advantage of ns-3. In this thesis, we propose a new and improved protocol
development process which explores the possibility of using ns-3 as a soft-
ware framework for developing new protocols that can be first simulated and
then deployed in a real communications device with only minimal changes.
We use the ns-3 emulation benchmark results to guide potential adopters
of the proposed development process. The presented development process
also includes improvements in the areas of visualization, data output, and
scripting abilities. The results of this new process are being applied in
the WiMetroNet research, as well as in its spin-off research project called

1Fast in essence, although the WiFi model is relatively slow.
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“SITMe”.

1.3 Thesis objectives

1. To develop a network architecture for WNMTs. The network architec-
ture should allow terminals to believe they are connected to a single
virtual LAN, support L2 based mobility, and be designed for scalabil-
ity, while supporting heterogeneous link layer technologies;

2. To develop optimizations for the above WNMTs architecture to reduce
the overhead of terminal mobility. The base architecture should be
simple and support terminal mobility, but as the network scale in-
creases the overhead introduced by the mobility of terminals becomes
problematic. The objective is to develop protocol optimizations that
allow the terminals locations to be updated quickly without introduc-
ing significant routing protocol overhead;

3. To reduce the time that is spent by researchers in protocol development,
from specification to deployment. One of the main contributors for the
time spent in protocol development is the need to develop both a
simulation model and then an implementation of the same protocol.
This thesis studies the applicability limits of ns-3 emulation in the real
world;

4. To create new ns-3 modules and tools to speed up simulation model
development and debugging. Prior to the work developed in the con-
text of this thesis, ns-3 was lacking in some areas. On one hand, the
previously existing ns-3 data collection facilities are either too crude
(trace files) or too time consuming (callback tracing) to be practical
for researchers. Additionally, writing a simulation script in the C++
programming language is considerably slower, and the debugging more
difficult; a high-level scripting language, such as oTCL that exists in
ns-2, would be of great help for developers. Finally, in ns-3 the visual-
ization facilities were non-existent or limited, leading to more difficult
debugging.

1.4 Original contributions

The following contributions have been produced during the course of this
work:
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1. WiMetroNet: a novel network architecture designed for a public trans-
portation system that is scalable and appears to end user terminals
as just a large Wireless LAN segment. This includes a new scalable
data plane, an associated routing protocol — WMRP — that supports
mobility of both Rbridges and mobile terminals and distributes the
IP/MAC associations needed for the data plane ARP optimizations,
and WMRP extensions designed to optimize the mobility of mobile
terminals while maintaining a low routing overhead;

2. A new unified simulation/implementation protocol development method-
ology that takes advantage of the existing ns-3 network emulation func-
tionality. This contribution comprises an evaluation of the packet pro-
cessing performance, in terms of achievable throughput, packet loss,
and round-trip time, of ns-3 working in emulation mode, compared to
a pure kernelspace IPv4 forwarding, and also numerous ns-3 improve-
ments to make developing new protocols easier, such as additional ns-3
classes to improve emulation, new visualization capabilities for ns-3, a
new scripting framework for ns-3, based on Python, and a new data
collection framework for ns-3.

1.5 Thesis organization

The remainder of this thesis is organized as follows. Chapter 2 introduces
some of the most relevant state-of-the-art technologies, both in terms of
network architecture for vehicular systems, and network simulation. Next,
Chapter 3 describes and evaluates our proposal of a network architecture and
protocol, including terminal handover optimizations, for the public trans-
portation network scenario introduced here. In Chapter 4, we explain the
process of research and development of network protocols, and propose en-
hancements to help develop and debug simulations, as well as quickly testing
new protocols in prototype real equipment. Finally, Chapter 5 summarizes
the main conclusions and discusses possible future work.
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Chapter 2

WNMT technologies and
simulation tools

In this chapter, some relevant state-of-the-art technologies are introduced,
discussed, and compared. They allow the reader to better understand the
main choices of the thesis approach, always keeping in focus the main context
for contributions introduced in Chapter 1. To recall, we aim to develop a
network for metropolitan public transport systems where end user mobile
terminals are strictly legacy terminals, supporting only WiFi and IPv4 with
DHCP. The developed work will specifically focus on terminal handover
support while keeping the network scalable. Thus, the quest for a network
solution in this scenario requires knowledge of three main subjects. First we
want to find out what link layer technologies are available to be used, and
what are each technologies’ strengths and weaknesses. Second, we want to
glue everything together via packet networking; for this, the most relevant
networking solutions are explored. Finally, the most important IP based,
and above IP, terminal mobility protocols are succinctly explained.

It should be noted that not all related technologies are included in this
chapter. Works that we may classify as “related work”, rather than “state-
of-the-art”1 are included in each chapter or section in the rest of the docu-
ment. Related work can be found listed in Chapter 3 (Sec. 3.7) and Chap-
ter 4 (Sec. 4.4.4 and 4.2.5).

1The distinction is now always very easy to make, and is rather subjective.

7
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2.1 Link layer technologies

The “link layer” is the layer in the communications stack that allows two
nodes to communicate directly, without using additional nodes as relays.
For building a communications network, today there are many link layer
technologies that can be used. Each one has its own strengths and weak-
nesses. The list of technologies described in this section is not meant to
be exhaustive, merely listing the main technologies that are plausible to be
used in the context of public transport networks. These are Ethernet (IEEE
802.3), WiFi (IEEE 802.11), UMTS (3G cellular network), WiMax (IEEE
802.16), and DSRC / IEEE 802.11p. The link layer is almost always imple-
mented as a hardware component, and therefore cannot easily be modified,
only selected for use, possibly with some operational parameters slightly
adjusted.

2.1.1 Ethernet (IEEE 802.3)

Of all the link layer technologies, Ethernet [5] is one of the oldest and per-
haps the most important. The Ethernet standard initially allowed multiple
stations (network nodes, in the Ethernet terminology) to communicate with
each other in a distributed manner by sending and receiving electrical signals
over a single shared cable. The main focus at its inception was its decentral-
ized nature, which is achieved thanks to its Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Medium Access Control (MAC) pro-
tocol. The CSMA protocol states that a station that wishes to transmit
a packet must first listen to signals in the shared cable, and if a signal is
detected it has to deffer until the transmission ends; this way, collisions (two
stations transmitting at the same time) are mostly avoided.

Because Ethernet stations transmit to a shared medium, they need a
way to be able to distinguish which stations are transmitting each packet,
and what station is the intended receiver. For this purpose, each station is
assigned a unique identifier. This identifier is 48-bits wide, is hard-coded in
in the network card, and is guaranteed to be unique by the manufacturer
itself. The information transmitted by each station is “framed” by the source
and destination addresses, as well as an error detection code called Frame
Check Sequence. The packet information, framed by source and destination
MAC identifier plus FCS, is called an Ethernet frame.

The Ethernet technology was first developed in 1973, with a 3 Mbit/s
bitrate and 1 km range, but since then it has been continually evolving.
Nowadays, Ethernet is commonly used at 100 Mbit/s speed, but variants
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exist that reach 1 Gbit/s, 10 Gbit/s, or even 100 Gbit/s. The electrical
specifications of Ethernet cables also evolved considerably, and “Ethernet
switches” have replaced the “shared cable” concept, for greater efficiency
and reliability. The Ethernet technology was the main foundation of the
so called Local Area Network (LAN), which is precisely the concept of a
number of stations, geographically close, communicating with each other
digitally.

2.1.2 WiFi (IEEE 802.11)

Given the success of Ethernet for wired LANs, the WiFi (IEEE 802.11) was
developed using many of the same principles of Ethernet, but adapted to
work with radio waves instead of electrical signals on a cable. This allows
stations to communicate without cables, over short distances, a concept that
was named “Wireless LAN” (WLAN).

The IEEE 802.11 standard offers coverage of up to 100 m outdoor and
30 m indoor, in unlicensed bands. The 802.11b/g works on the 2.4 GHz
ISM band, while 802.11a uses the 5 GHz U-NII band. The maximum data
rates are 11 Mbit/s for 802.11b, and 54 Mbit/s for 802.11a/g. New radio
techniques are expected to enable higher data rates for these technologies:
802.11n will provide up to 300 Mbit/s, and the standards 802.11ac and
802.11ad, under development, are expected to provide bitrates over 1 Gbit/s
[6].

The IEEE 802.11 MAC has two main modes of operation. The simplest
mode is the so called adhoc mode, in which stations can communicate di-
rectly with each other, and there is no concept of connection, or association,
similarly to how Ethernet works. The other mode of operation is called
infrastructure mode, and it requires that wireless stations first associate to
a special node, the access point (AP), and then they can communicate by
transmitting frames to this access point, which retransmits each received
frame for the destination station to hear. The infrastructure mode allows
two stations to communicate over an extended range, and is better suited
to the common scenario of stations accessing the Internet, since the access
point is also able to bridge communication over to a wired network. Bridging
between 802.11 and 802.3 networks, specified in the standard IEEE 802.1D,
is facilitated by the use of common addressing and similar frame formats.

By default, the MAC protocol of 802.11 is completely distributed, wherein
even an access point has the same priority and medium access procedure to
follow as any regular station. This is is called the Distributed Coordina-
tion Function (DCF). An alternative access procedure, Point Coordination
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Function (PCF), allows an access point to be in control of the medium and
give stations permission to transmit via a polling mechanism. The PCF is
standardized, but in practice it is not widely implemented or deployed.

In 802.11 terminology, a set of stations sharing the same medium (i.e.,
same radio channel, all in range of each other), are said to form a Basic
Service Set (BSS). When in infrastructure mode, it is also possible to in-
terconnect multiple APs via what is called a Distribution System (DS), to
allow stations associated with different APs to communicate with each other,
thanks to the APs relaying the MAC frames, forming what is termed a Ex-
tended Service Set (ESS). The DS can be any technology that interconnects
the APs while following certain requirements; a classic example is a switched
Ethernet network to which the APs are connected.

2.1.3 UMTS (3G cellular network)

UMTS is a major 3G wireless technology offered by telecommunication op-
erators in licensed frequency bands ranging from 800 MHz to 2.6 GHz. It
achieves wide coverage through spatial (cellular) reuse of radio resources,
and roaming between operators. UMTS allows fast handovers between cells,
and vehicular communications up to 250 km/h. The UMTS physical layer
is based on Wideband Code Division Multiple Access (WCDMA), which can
multiplex data from/to multiple terminals by applying different spreading
codes to each terminal. UMTS Rel99 enables data communications with
peak data rates ranging from 384 kbit/s (urban outdoor). HSDPA (Rel5)
can provide data rates up to 14.4 Mbit/s, with a latency of about 70 ms.
New radio techniques are expected to enable higher data rates for these
technologies: UMTS LTE (Long Term Evolution) Release 8 offers nearly
300 Mbit/s for downlink and 75 Mbit/s uplink [7], while the next evolution,
LTE-Advanced targets over 1Gbit/s of bitrate. The UMTS technology is
strongly operator-oriented, meaning that only large telecommunication op-
erators can afford to deploy UMTS cell networks, since they require costly
licenses to exploit the required frequency spectrum, and the infrastructure
equipment is also relatively expensive.

In UMTS, the connection of a terminal to the network is represented
by an abstract entity called Primary PDP Context. A terminal can have
multiple secondary PDP Contexts for the same network, with different QoS
requirements, and the RRM (Radio Resource Manager) in the network tries
to enforce those QoS requirements. However, only one Primary PDP Con-
text is allowed for each network the terminal is connected to. The Primary
PDP Context contains the base connection information, such as address
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type (IP or PPP) and address. It should be noted that IP data traffic in
UMTS terminals is exchanged directly over the PDP context; there is no
802-style MAC identifier involved.

2.1.4 WiMax (IEEE 802.16)

The IEEE 802.16 technology addresses the WMAN (Wireless Metropolitan
Area Network). This technology tries to address the transmission range lim-
itations of 802.11. In line of sight transmission band (10-66 GHz), an 802.16
cell can have a radius of 50 km, with a maximum data rate of 75 Mbit/s. It
is used to offer access to Subscriber Stations or as a back-haul network. The
IEEE 802.16a amendment enables the use of non line of sight transmissions
in a frequency range from 2 GHz to 11 GHz, in both licensed and license-
exempt bands. In addition to the single-hop point-to-multipoint operation,
802.16a specifies the support for mesh networks. The 802.16e amendment [8]
adds mobility support, providing support for handoffs to stations moving up
to vehicular speeds. The real 802.16e performance is considerably less [9]
than the theoretical limits, with total bandwidth per base station averaging
a few Mbit/s or less, and performance decreasing considerably for distances
above 1 km. New radio techniques, included in IEEE 802.16m, are expected
to enable higher data rates: 100 Mbit/s and 1 Gbit/s for mobile and fixed
stations, respectively.

There are three types of 802.16 equipments: base station, subscriber
station, and mobile station. Subscriber and mobile stations represent fixed
and mobile end user terminals, respectively, while base stations are attached
to transmission towers and connect the WiMax network to an infrastructure.
The MAC protocol of 802.16 is completely controlled by the base station and,
unlike 802.11, the base station controls the time periods in which subscriber
stations are allowed to transmit. In 802.16 MAC protocol, time is divided
into periodic intervals, called frames. Each frame is further divided into
uplink and downlink subframes, and inside there are bursts. The base station
periodically transmits a map of the subsequent frames, indicating which
stations are allowed to transmit on each burst. Thus, the access control is
neither distributed nor polling based, making it very efficient. In addition,
QoS concepts are built into the 802.16 MAC layer: the service is connection
oriented, each subscriber station can have multiple connections to the base
station, and connections have an associated set of QoS attributes.

In 802.16, MAC addresses compatible with 802.3 and 802.11 are used,
and so bridging 802.16 to the other 802 technologies is possible and simple
by following IEEE 802.1D and the so called learning bridge operation.
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2.1.5 DSRC / IEEE 802.11p

Recently, a number of related standards are being developed to address
vehicular communications. In the United States they are called Dedicated
Short Range Communication (DSRC) [10, 11], and it includes spectrum
allocation, MAC/PHY layer (802.11p), among others. In this architecture,
two main types of equipments are defined. First, Roadside Units (RSUs)
are devices that are placed regularly along roads at fixed locations, possibly
connecting to an infrastructure. Second, On-board Units (OBUs) are devices
inside the vehicles. Communication between two OBUs is called vehicle-to-
vehicle (V2V) communication, while communication between an OBU and
an RSU is termed vehicle-to-infrastructure (V2I) communication.

The DSRC frequency band allocation and spectrum channel allocation is
specifically designed for vehicle-to-vehicle (V2V) or infrastructure-to-vehicle
(I2V) communications. The 5.9 GHz frequency has been selected due to its
propagation characteristics — up to 300 or 1000 meters range — which are
suitable for vehicular communications. The main focus of DSRC is safety
applications, and it allows several channels of communication, some of which
are dedicated exclusively for safety applications, this way preventing com-
mercial applications from accidentally interfering with higher priority safety
applications. The 75 MHz spectrum band is divided into seven 10 MHz chan-
nels: one control channel (CCH), exclusively used for safety applications,
and six service channels (SCH), that may be used for non-safety applica-
tions. Since the DSRC devices only have one radio, they are required to
continuously hop between channels, in a synchronized fashion.

The 802.11p draft standard, Wireless Access for Vehicular Environments
(WAVE), provides a MAC/PHY layer for use in vehicular environment. It
is based on modifications to 802.11a. The first difference is that 802.11p has
to use 10 MHz while 802.11a uses 20 MHz channels. Thus, the data rates
available to 802.11p are half of the ones in 802.11a, 3–27 Mbit/s instead
of 6–54 Mbit/s. Additionally, 802.11p has a longer guard period, which
provides better resistance against multipath error. Since 802.11p uses a
licensed (but free) band, it has less interference from electronic equipment
than 802.11a/b/g operating on the ISM band. The MAC protocol of 802.11p
is based on the regular 802.11 DCF, but has some modifications. When
tuned to a CCH, the RTS/CTS mechanism is not used, to reduce the over-
head. Another modification, driven by privacy and tracking concerns, is
that OBU devices periodically generate a new random MAC address. When
a collision is detected in a generated MAC address, a new address is ran-
domly generated, and the process is repeated until one is found that is not
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802.11 a/b/g Fixed 802.16 Mobile
802.16

UMTS 802.11p

Coverage
Local Metropolitan Metropolitan Wide Local+ (300–

1000) m
Max.
Data Rate
(Mbit/s)

11, 54 75 75 0.384, 2 (R99)
3.6, 7.2, 14.4
(HSDPA)

27

Band (GHz)
2.4 (ISM), 5
(U-NII)

2–11, 10–66 2–11 <3 5.9

Licensing
Unlicensed Both Both Licensed Licensed

Mobility Pedestrian Fixed Vehicular
(<120 km/h)

Vehicular
(<250 km/h)

Vehicular
(<200 km/h)

Handover Yes No Yes Yes Yes
Latency Low Low Low High (R99)

Low (HSDPA)
Low

Mesh Yes Yes Yes No No

Table 2.1: Main wireless technologies

used. There are also simplifications in the way that BSS is handled; 802.11p
allows OBUs to communicate without associating to an AP (as in infras-
tructure mode 802.11) or even forming an adhoc BSS. To support this, the
BSSID field of 802.11p MAC frames can be set to a “wildcard” value (all
ones), and the ToDS and FromDS fields can be both set to zero. Thus, there
is no time wasted on AP association.

2.1.6 Summary

In Table 2.1 the main wireless technologies used to build local, metropolitan,
and wide area networks are identified. In WNMTs, there is no single link
layer technology satisfying all their needs, and multiple technologies have
to be combined. To connect vehicles to the infrastructure, 802.11a/b/g
are generally not adequate due to its very short range and low maximum
supported speed. For this purpose, technologies such as mobile 802.16 and
UMTS are better suited. Between 802.16 and UMTS the choice is not
trivial, but deciding factors may include network deployment costs, traffic
costs, and the strategic requirement of some transport operators controlling
their entire network. For 802.11p to be effective alone, the density of RSUs
would need to be very high, resulting in a costly network. On the other
hand, if the RSU density is low, 802.11p can still be used as alternative,
in parallel to 802.16/UMTS: where 802.11p is available, vehicles can use
it to obtain better bandwidth with less cost, otherwise they fall back to
802.16/UMTS. Finally, WNMTs may benefit from having a core based on
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gigabit ethernet or fixed directional 802.16.

For providing Internet connectivity to the users’ terminals, one could ar-
gue that a simpler and more robust solution is to allow users to connect via
3G network directly. But there are several advantages for end users to con-
nect via WiFi instead of 3G. The most important one is energy consumption.
The paper [12] concludes that “WiFi consumes one-sixth of 3G’s energy”.
The main reason for this difference is simply transmission range: clearly, a
device that needs to transmit to an antenna that is far away requires a lot
more power. We could apply the same rationale for deriving similar conclu-
sions for the 802.16 case, although we could not find any study comparing
802.16 and 802.11 energy efficiency in the literature. Additionally, WiFi is
increasingly becoming a “universal wireless” de facto standard. While mo-
bile equipments currently support a variety of cellular wireless technologies,
most equipments support at least WiFi. Moreover, even if a user has a 3G
contract that he can use, while roaming in another country the 3G standard
he uses may not be supported in that country, or the cost of data while
roaming is prohibitive. To conclude, although several technologies can ap-
ply for interconnecting the mesh network nodes, for the end user terminals
802.11 is clearly the best choice, if not the only one.

2.2 Networking technologies

The term “networking” describes a process by which nodes that are not
directly connected via a link-layer technology (not in range) can communi-
cate with the help of additional intermediate nodes, which relay informa-
tion, thereby extending the communication range. Typically, the networking
function can be split into two separate parts: forwarding and routing.

Forwarding is the process by which a network node receives a packet in
one interface and re-transmits the same packet in another or same network
interface, while modifying some packet headers. The purpose of packet
switching is to allow two distant nodes to communicate even though they are
not directly connected, by using the packet forwarding services of additional
intermediate nodes. The term that applies to those intermediate nodes
varies according to the technology. For instance, in IEEE 802.1D networks,
they are called bridges, while in IP based forwarding they are called routers.
In this section we examine the most common, and relevant in the context of
this thesis, packet forwarding technologies: IEEE 802.1D, IP, and MPLS.

Routing, on the other hand, is the process by which nodes compute/ac-
quire routes, which are basically packet forwarding instructions, telling the
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node information needed to re-transmit a packet so that it reaches its in-
tended destination. Usually these routes are discovered via a routing pro-
tocol, by which nodes exchange information about network topology. Some
routing protocols can run periodically and decoupled from packet forward-
ing — these are called proactive routing protocols — or they can run only
when a packet needs to be forwarded for a destination and the route for that
destination is not known — these are called reactive routing protocols.

2.2.1 802.1D bridging

The most simple of the packet forwarding algorithms is provided by the
802.1D standard, which describes how IEEE MAC Bridges should forward
packets. The 802.1D standard describes what is informally known as the
“learning bridge”. The learning bridge has a set of ports, to which 802.3
stations, or other bridges, are connected. Because 802.3 is not connection-
oriented2, when the learning bridge is first started it does not know which
stations (MAC addresses) are connected to which port. When an Ethernet
frame is received in one of those ports, the bridge re-transmits a copy of the
frame through the port to which the destination station (identified by the
destination MAC address) station is attached. If the learning bridge does
not know the correct output port, it simply floods the packet through all
ports except the incoming port, thereby ensuring that at least one copy of
the packet reaches the intended recipient. In any case, every time a learning
bridge forwards a frame, it learns from the source address of each frame the
location of the corresponding station. Thus, over time it builds a forwarding
table, which associates MAC addresses with bridge ports. Entries in this
table are soft-state: if they are not refreshed periodically, they expire (after
300 seconds, by default) and are removed.

Although the basic Learning Bridge algorithm can be considered at the
same time forwarding and routing, since routes for MAC stations are being
discovered at the same time as packets are being forwarded, it only works
when 802.1D bridges are connected in a tree topology. Because bridges
sometimes have to flood an incoming frame through all output ports, the
existence of forwarding loops between bridges can cause a network collapse.
For instance, consider a MAC frame with destination address of a station
that is no longer connected to the bridge. In any bridge the packet passes
through, it does not know the location of the destination MAC station, and
so it floods the packet, eventually creating an endless forwarding loop. This

2The 802.2 Logical Link Control (LLC) layer above may be connection-oriented, but
it is rarely implemented [13].
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problem is aggravated by the fact that 802.3 frames do not have a TTL.
To prevent this problem, the 802.1D bridges run a Spanning Tree Protocol
(STP) which detects forwarding loops and disables the use of certain bridge
ports to avoid them, forcing the network topology to become a tree.

2.2.2 IP networking

Basic IP forwarding

IP routers are nodes that have a set of interfaces, each interface has at
least one IP address. The IP address, in its IP version 4 variant, is usually
represented in the form of four numbers between 0 and 255 separated by
dots, e.g. 1.2.3.4. In IP networking, two interfaces of two nodes can ex-
change packets directly only if they have a physical link between them and
appear to be in the same LAN because they share a common IP address
prefix. The common prefix is termed network address, and is usually repre-
sented by address/prefix-length, e.g. 192.168.1.0/24. The basic IP packet
forwarding process takes the following steps:

1. The packet is received in a network interface;

2. The layer-2 header is removed and IP header parsed;

3. The packet time-to-live (TTL) counter, in the IP header, is decre-
mented, packet is dropped if TTL reaches zero;

4. The destination address is looked up on the IP forwarding table, ob-
taining a pair of values: output interface, and next hop IP address;

5. The packet is re-transmitted via output interface toward the “next
hop”; this transmission is a L2 transmission, and usually involves
adding a new L2 header.

As seen the above steps, a fundamental input to the forwarding algorithm
is the forwarding table, also known as Forwarding Information Base (FIB).
In IP routers, the forwarding table contains as key a list of IP addresses,
and as values output interface and next hop IP address. As an optimization,
IP routers also support network addresses as keys in the forwarding table,
allowing the forwarding table to become extremely condensed. The process
that looks up individual IP addresses in the table considers a match any IP
address that has the same network prefix as a network address in the table.

The forwarding tables can be configured manually, but usually are au-
tomatically configured via a routing protocol, such as Open Shortest Path
First (OSPF) [14] or Border Gateway Protocol (BGP) [15].
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Shortest Path First (OSPF) routing

Open Shortest Path First (OSPF) [14] is a link state proactive routing pro-
tocol for IP networks. Routers that run OSPF are able to automatically
discover shortest paths, or routes, for all the IP addresses (usually networks)
that any router owns. For instance, if a router A has an interface that is
attached to a LAN segment with IP network address 10.0.1.0/24, router
B can discover a path to reach that network, with router A being the last
hop of the discovered path. To enable such discovery, all routers periodically
exchange messages with each other with the topology information, hence the
“proactive” term, to denote that the routing protocol proactively discovers
all the routes, even before they are actually needed to forward a packet.
The information exchanged consists basically in each router reporting to all
the other routers a list of its neighbors and metric (cost, distance) to reach
those neighbors. In other words, the routers report the state of its links to
its neighbors, hence the term “link state” being used. When a node receives
the link state information from every node in the network, it builds a graph
data structure and runs Dijkstra’s Shortest Path [16] algorithm to obtain
the shortest paths.

OSPF sends link state advertisements triggered by network changes.
These advertisements are limited to be broadcast at most every 5 seconds,
and at least refreshed once every 30 minutes. In any case, link state up-
dates sent by one node reach all other nodes, frequently flooding the entire
network with OSPF control packets. This approach does not scale well for
large networks (60–80 nodes) with frequent topology changes. For better
scalability, OSPF supports the concept of areas: the network administra-
tor can split the network into smaller network partitions, called areas, and
essentially different OSPF instances run in different areas. Although this
approach can significantly improve scalability, it comes at the cost of some
degree of engineering and configuration required to assign each router to a
specific area. Moreover, this approach works poorly with highly dynamic
networks, such as vehicular networks, where it is not efficient to assign a
moving node to a single static area while it moves across the entire network
diameter.

Optimized Link State Routing (OLSR)

Optimized Link State Routing (OLSR) [3] is routing protocol tailored to IP
adhoc networks. Like OSPF, it is a proactive link state routing protocol, but
instead of supporting network segmentation it employs an optimization for
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link state dissemination wherein only a subset of the nodes, called multipoint
relays (MPRs), are tasked with relaying the updates.

The following message types are defined in OLSR:

HELLO: this message is transmitted periodically (every 2 seconds by de-
fault) by OLSR nodes, but is not relayed by nodes that receive it. Its
main purpose is to let OLSR discover its neighbors. Besides the IP
address of the originating node, the HELLO message contains a list of
IP address that this node has discovered as direct neighbors. In this
way, a OLSR node, when receiving HELLO messages from its neigh-
bors, discovers not only the presence of those neighbors but also the
list of neighbors of each neighbor; these are called two-hop neighbors.
The two-hop neighbors set is used for MPR selection purposes;

TC: the TC (Topology Control) message is generated periodically (every 5
seconds by default) and contains the topology information (i.e. link
state) of each node. TC messages are to be forwarded by the MPR
nodes so that it floods the entire network;

MID: the MID (Multiple Interface Declaration) message enables OLSR to
work with nodes containing multiple interfaces. Since, in IP networks,
each interface necessarily needs a unique IP address, and since HELLO
messages necessarily contain as source address the IP address of the
interface in which it is transmitted, OLSR nodes in the network need
to find out if multiple HELLO messages come from the same node, for
path computation purposes;

HNA: the HNA (Host and Network Association) message allows nodes to
inject non-OLSR route information, to be disseminated in the OLSR
network. This could be used, for instance, to advertise non-OLSR
nodes or networks that are attached to an OLSR node.

The MPR concept is unique to OLSR3 and is the main reason for the
“Optimized” claim in the protocol name. It works as follows. First each
node acquires a set of neighbors and two-hop neighbors through HELLO
message exchanges, as previously explained. Then each node selects a sub-
set of its neighbors as MPRs so that all the two-hop neighbors can be reached
by at least one MPR. The MPR selection is completed when each node ad-
vertises this choice to each of the nodes it selected as MPR; this is also done

3It is innovative in adhoc routing protocols, although the concept was borrowed from
the wireless technology HIPERLAN.
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via a HELLO message. In the future, any message that a node transmits
and which is to be flooded is only re-transmitted by those nodes that were
selected as MPRs of that node. This way, the number of transmissions is
reduced without compromising the effectiveness of the flooding process.

The MPR flooding process is able to reduce the overhead of TC flooding
to 15–40% of the classical full link state flooding, depending on the node
density [17]. This overhead reduction is due to only MPR nodes relaying link
state information (TCs), while in a typical link-state routing protocol, such
as OSPF, all nodes do this task. However, there are several good reasons
for not copying OLSR’s MPR flooding technique.

First we have to realize that the effectiveness of MPR flooding overhead
reduction is highly dependent on the average node density, i.e. the average
number of neighbors of each node: higher node density leads to a higher
benefit of using MPRs. However, when designing a protocol for vehicular
networks, which can be considered sparse4, the benefit of MPRs would be
small. There are also computational complexity issues. Finding an opti-
mal MPR set is an NP-complete problem [18]. In OLSR, an heuristic to
computing a good (but not optimal) MPR set is used, but it still has a
computational complexity O (3∆M +∆), considering that ∆ represents the
maximum number of one-hop neighbors, and M represents the maximum
number of MPRs selected by a node [19]. We can apply the approximation
that M ≈ 5 3

√
∆ in a random unit graph topology[20], and find that comput-

ing MPR set using the heuristic will involve 560 steps per received HELLO,
for 4 neighbors, or 5000 steps for 10 neighbors. This means 2500 steps
per second for 10 neighbors, using the default HELLO interval (2 seconds).
Clearly, the computational complexity of MPR selection is not negligible,
and it must be considered as a factor against this method. The use of MPRs
can negatively impact the effectiveness of the routing protocol to adapt to
node mobility. In [21] it is stated that “We see that MPR needs on average 7
iterations before being able to provide OLSR with accurate topological data.
[...] If we consider mobility, every time the topology is changed, OLSR loses
between 3 to 4 seconds before being able to reorganize its routes”. This con-
trasts with the 0–2 seconds needed to receive a HELLO from a new neighbor
in the case when no MPRs are needed. The use of MPRs can also have an
impact on the robustness of the flooding process in the presence of link fail-
ure. A simple scenario is shown in [22] where some topology information is
lost with only a 45% link failure probability when MPRs are used, compared

4Due to mobile WiMax range and capacity limitations, the node density in the
WiMetroNet scenario is expected to be relatively low.



20CHAPTER 2. WNMT TECHNOLOGIES AND SIMULATION TOOLS

to 85% for the blind flooding case.

In conclusion, the use of MPRs improves the scalability of OLSR, when
compared to a pure link state routing protocol, but the scalability improve-
ments are low and the cost, for instance in terms of computation complexity,
is high. In any case, in OLSR the TC messages are generated frequently
and flooded through the entire network, therefore it does not scale well to
large networks.

Ad hoc On Demand Distance Vector (AODV)

The Ad hoc On Demand Distance Vector (AODV) routing protocol [4] is a
reactive, or on demand, routing protocol. It does not periodically exchange
messages for route discovery; instead, it only attempts to discover a route
when the router is requested to forward a packet and it does not know the
route to the destination address. To discover a route for a certain destina-
tion, AODV defines two message types, Route Request (RREQ) and Route
Reply (RREP). When a node wants to discover the route to a destination, it
broadcasts a RREQ packet containing the destination address5. The RREQ
is forwarded by every node that receives it, consecutively, until it reaches
the destination node, which stops the flooding. Each node that received a
RREQ creates a reverse path entry which records the path to the source
node. The destination node replies to a RREQ with a RREP packet, which
travels via the reverse path entries that were create by the previous RREQ
message. The RREP eventually reaches the source node, thus providing the
source node with a confirmed route to the destination.

When an AODV node is part of an active path, and new paths are not
being negotiated, normally no more control messages are required as long
as data packets are being forwarded to keep the path active (otherwise, the
path becomes inactive after 3 seconds). However, if the AODV node moves,
a neighbor could still be sending data packets to it without realizing it is no
longer in range. In other words, the link has been broken, but the upstream
neighbor does not realize it. Using L2 notifications, it would be possible to
detect the link failure. However, AODV, being a L3 protocol, has its own
L3 based mechanism to detect the link loss, based on “hello” packets. If no
other AODV control traffic exists between the nodes, AODV periodically
broadcasts special RREP packets with TTL=1, called hello packets. Then,
when a node’s neighbor stops receiving control packets for a period of time,
it assumes the link is broken. The sources affected by the link loss are

5In the RREQ message, the destination address of the packet is the broadcast address.
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informed that the path is broken via Route Error (RERR) messages, to give
them an opportunity to try to discover alternative paths.

AODV is a routing protocol that has the merit of not taxing the network
excessively when the amount of traffic in the network is low. Because only
user traffic triggers the flooding of control packets, if the network is very
large but only a few nodes are communicating over it, then the routing
overhead is very low. Moreover, the overhead remains low regardless of
amount of traffic, as long as the number of communicating pairs remains
the same. However, this overhead can become quite high when the number
of nodes communicating increases. From an engineering and management
perspective, a reactive routing protocol is difficult to predict and manage
because it is completely dependent on user traffic patterns, therefore out of
our control.

2.2.3 Multi-protocol Label Switching (MPLS)

The Multiprotocol Label Switching Architecture [23], is based on the core
concept that great performance gains can be achieved if, when switching a
large number of similar packets (eg. DiffServ aggregate flows), a path is first
established and recorded across a network, and then all subsequent packets
just follow the recorded path. In MPLS terminology, the set of packets that
follow the same path is called Forwarding Equivalence Class (FEC), and the
path itself named Label Switched Path (LSP). The name for the LSPs comes
from the fact that, once a path has been established, packets entering an
MPLS domain are classified into FECs and then they are assigned a label
based on the corresponding FEC. Inside the MPLS domain, packets are
transmitted with a small MPLS header, named shim header, that contains
the assigned label and little more information. The MPLS labels always
have local meaning for each node/port pair, thus packets’ labels have to be
swapped as they travel through the nodes of an LSP. The label switching
algorithm can be summarized like this:

1. A packet arrives on an input port;

2. if packet contains an MPLS shim header then:

(a) Look at the (labelinput, portinput) pair, use a lookup table to map
into a FEC;

(b) Use another table lookup to determine the (labeloutput, portoutput)
pair from the FEC;

(c) Swap labelinput for labeloutput in the packet shim header;
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Figure 2.1: TRILL Encapsulation

(d) Queue de packet for transmission in portoutput.

3. else:

(a) Use traditional IP-based routing.

Considering that the MPLS label is just a simple 20-bit integer value,
it’s easy to see that label switching is more efficient than L3 switching. But
more importantly, MPLS allows traffic engineering to be deployed on high
performance core networks with little or no performance penalty. This is
due to the fact that complex matching rules for determining the FEC for
packets may be placed on lightly loaded edge routers (the so called Label
Edge Routers), while at the MPLS core the paths are already established
and switching is based on MPLS labels as usual, meaning that the cost of
switching best-effort and traffic engineered packets/flows is practically the
same.

2.2.4 Transparent Interconnection of Lots of Links (TRILL)

The IETF Transparent Interconnection of Lots of Links (TRILL) [24] is
working towards a standard solution for shortest-path frame routing in a
multiple-hop 802.1-compliant network with arbitrary topology. For that
purpose, TRILL proposes the concept of Routing Bridge (Rbridge), a node
running the IS-IS [25] link-state routing protocol at L2. Other goals of the
solution are: minimal configuration, routing loop mitigation (through the
use of a TTL field) and legacy node support.

In TRILL, end terminal MAC frames are encapsulated by an Rbridge
node, a TRILL header being added in the process. The encapsulated MAC
frame, shown in Fig. 2.1, is then transported over a network of Rbridges,
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using the TRILL header for routing, until it reaches the Rbridge to which
the destination MAC address is connected. At that point, the encapsulation
headers are removed and the original MAC frame is transmitted to the target
LAN, finally reaching the destination MAC station.

The main fields of the 48-bits wide TRILL header are: 1) a 6-bit Hop
Count, 2) a 16-bit Egress RBridge Nickname, and 3) a 16-bit Ingress RBridge
Nickname. The RBridge “nicknames” are numeric identifiers the uniquely
identify each RBridge within the network. These nicknames can be man-
ually configured, or randomly generated, but the routing protocol allows
duplicated nicknames to be detected and avoided. In TRILL, the Egress
RBridge Nickname indicates the destination RBridge that an encapsulated
packet must reach. The Ingress RBridge Nickname indicates the RBridge
from which the packet entered the TRILL network.

In TRILL, the IS-IS routing protocol is used to discover routes between
Rbridges. The IS-IS protocol is similar in concept to OSPF, but is not
tied to IP networks, and so was adapted in TRILL to work at Layer 2.
Nonetheless, it has the many of the same limitations of OSPF, in particular
scalability and support for dynamic networks / mobility. Moreover, TRILL
targets maximum compatibility with 802 bridged networks and does not
limit the forwarding of broadcast frames in any way, which leaves it with
limited scalability.

2.2.5 802.11s mesh networking

The 802.11s [26] is a Draft standard under development that aims to dote
the 802.11 MAC layer with enhancements to support wireless LAN mesh
topologies. With 802.11s, 802.11 stations will be able to form a mesh, and
perform over-the-air multi-hop packet forwarding among themselves, with-
out the aid of a wired Distribution System (DS). The set of nodes that
directly participate in the 802.11 mesh network is said to form a mesh BSS.
In 802.11s, we can have the following types of nodes:

mesh station: Any node that has a 802.11 interface in mesh mode;

access point: A node that has a 802.11 interface in infrastructure mode,
and is also connected to the DS via an additional non-802.11 interface
(typically 802.3);

mesh gate: a node that bridges a mesh BSS with a DS;

portal: a node that bridges a DS with a non-DS network. Typically, a
portal is effectively an Internet Gateway.
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Figure 2.2: Example mesh and infrastructure BSSs.
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These roles are exemplified in Fig. 2.2. The same node may be able to
have multiple of the above roles co-located. Moreover, 802.11s allows a mesh
BSS to become a DS for an ESS. Thus, 802.11s offers great flexibility for
topologies and deployment options.

The 802.11s amendment defines an additional 802.11 header field named
Mesh Control (MC). Inside the MC field, up to two additional MAC ad-
dresses can be carried. A total of six addresses are used in order to support
the use case of a mesh network operating as DS; the mesh network has to
relay infrastructure mode MAC frames, and therefore needs the additional
two addresses for encapsulation purposes. Additional MC sub-fields include
a time-to-live (TTL), and Mesh Sequence Number, among others. These
are used to discard packets in forwarding loops and duplicated packets, re-
spectively.

For path selection (i.e., routing), 802.11s defines the Hybrid Wireless
Mesh Protocol (HWMP). HWMP is said to be a hybrid routing protocol
because it combines both reactive and proactive modes of operation. The
reactive, or on-demand, mode of operation is always available and is inspired
by the AODV routing protocol; for path discovery, it uses the messages Path
Request (PREQ), Path Reply (PREP), and Path Error (PERR). The proac-
tive mode can optionally be used in addition to the reactive mode, and it
consists in a tree that is created by a root node, which periodically broad-
casts Root Announcement (RANN) messages; other nodes listen to RANN
messages, record a path to that root node, and re-transmit the message for
other downstream nodes to hear, as well as send a PREQ message upstream
to the root node, so that the root node also knows the reverse path to each
intermediate node. The proactive tree that is built allows all nodes to always
know the path to a root node, and vice-versa. This allows any two nodes
to communicate by relaying traffic through the root node. Two nodes can
also use the PREQ/PREP messages to find out more direct paths of com-
munication that do not necessarily involve the tree root node, for greater
efficiency.

The scalability of 802.11s is quite limited for essentially two motives.
First, it inherits the weakness of AODV, namely that the routing overhead
increases with the amount of user data. Second, is has to honor the 802
service model and transport all traffic, even broadcasts; “broadcast storms”
are allowed and become a problem for even just medium sized networks.
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2.2.6 Summary

In order to forward a packet based on its destination address, each switch
has to look up a forwarding table. Each entry of this table associates a
destination address to an output port. Technologies such as 802.1D behave
in this way and, since they use unstructured 48 bit MAC addresses, their
forwarding tables contain one entry for each known address. Some other
network technologies, such as traditional IP, may use structured addresses
(the network address); in this case, an entry of the table contains forwarding
information for an entire sub-network. Structured addresses lead to shorter
forwarding tables and shorter lookup times than unstructured addresses;
they also enable the deployment of large networks, because entries in the
forwarding tables can be organized using techniques such as classless IP ad-
dresses. However, structured addresses preclude network auto-configuration
because they have to be engineered and configured manually. To solve the
auto-configuration problem, IP adhoc protocols, such as OLSR and AODV,
have been proposed. However, they are not transparent to the end user ter-
minal, and do not scale for medium/large networks (more than one hundred
nodes is impractical with unmodified OLSR or AODV).

A virtual circuit is commonly interpreted as a path along the network
which must be established before packet transmission. This path may be
characterized by a single identifier, with global significance, or by a se-
quence of identifiers (labels), each having local significance between adja-
cent switches. When a switch receives a packet, it looks up its forwarding
table. An entry of this table contains information about the output port
and about the label that will be used by the packet on the next segment of
the path. Thus, from switch to switch the packet sees its label substituted.
Technologies such as the Multi-protocol Label Switching (MPLS) use labels
as identifiers.

Some other networking technologies, such as tunnels, Transparent Inter-
connection of Lots of Links (TRILL), IP source routing, MPLS based VPNs,
or 802.11s, use layered approaches, where packet switching and virtual cir-
cuit switching may be combined. In these cases, paths are defined based
on MAC addresses, IP addresses, or MPLS labels. The 802.11s packet, for
instance, contains four MAC addresses: source station, destination station,
and the addresses of the mesh points attached to the current segment of
the path. When an 802.11s mesh point receives a packet it looks up its
forwarding table using the packet destination address; an entry of this table
contains the MAC address of the switch to which the packet must be for-
warded, which is used to re-arrange the MAC addresses of the packet before
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it is forwarded. Additional addresses may be used when dealing with legacy
stations or networks.

Networks should avoid loops, that is, a packet should not pass twice
through the same switch. Technologies such as 801.1D prevent loops by
computing a unique tree which interconnects every switch. Other technolo-
gies, such as IP, MPLS, 802.11s, or TRILL, enable each switch to compute
its, possibly shortest, path tree to the other switches, thus enabling a better
usage of the network resources. When the topology of a network changes the
trees have to be recalculated, and this is a distributed process. In large net-
works the time required to recalculate the trees after a network modification
may take seconds. During this time, temporary network loops may appear.
In order to avoid this and other configuration problems, technologies such
as IP, MPLS, 802.11s, and TRILL include in their packets a Time To Live
(TTL) field; this field is decremented every time a packet passes through
a switch and the packet is discarded when its value reaches zero, thereby
ensuring that packets caught in loops are eventually eliminated. Thus, the
existence of a Time To Live (TTL) field is intimately connected to the sup-
port of mesh topologies. Technologies such as MPLS, 802.11s, and IP have
a TTL and support mesh topologies, while 802.1D has no TTL and does
not support mesh topologies.

Candidate solutions for WNMTs should contain the following ingredi-
ents: scale to thousands of nodes, support mesh topologies, support mobility,
and be auto-configurable. None of the technologies in Table 2.2 fulfills all
of these requirements. While 802.1D is auto-configurable, it does not scale
to a WNMT size, mainly due to the way it handles broadcasts [2], and does
not support mesh topologies. TRILL adds a TTL and link state routing to
802.1D networks, allowing it to support mesh networking, but it improves
little on the scalability of 802.1D, and does not support mobility. 802.11s
supports mobility and mesh networking, but has very limited scalability. IP
and MPLS are both scalable to a WNMT size and support mesh topologies,
but their control planes require manual configuration. However, their data
planes are useful, particularly MPLS due to its slightly lower complexity
and higher flexibility.

2.3 IP based mobility

IP networks are ubiquitous, but IP(v4) was not designed with mobility in
mind. The problem is that the IP addresses used in these networks have a
double function. On one hand, they are identifiers of hosts and interfaces.
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802.1D 802.11s TRILL Trad. IP Adhoc IP MPLS

Structured addr. No No No Yes No Yes
Auto-config. addr. Yes Yes Yes No Yesa No
TTL No Yes Yes Yes Yes Yes
Scope of addresses LAN LAN LAN Global LAN Link
Network size Hundreds Tens Hundreds Millions Tens Thousands

a Several experimental address auto-configuration protocols proposed [27].

Table 2.2: Networking technologies, assuming common control planes

On the other hand, they are locators. For instance, to communicate with a
host with address 192.168.10.3, one could say that 192.168.10.3 is the
identity of that host, allowing us to uniquely identify it. But at the same
time, 192.168.10.3 “belongs” to the IP network 192.168.10.0/24. While
it is true that routers know implicitly the path to 192.168.10.3 because it
is the same as the path to network 192.168.10.0/24, this means that our
end host cannot move from one router to another router without changing
its IP address. But changing the IP address means that correspondent nodes
(the nodes that are currently communicating with our node of interest) will
no longer know how to reach the mobile node, and so communication will be
broken, at least until resumed by higher layer protocols. A similar problem
occurs with routers themselves. For each interface of every router, the IP
address of the interface belongs to an IP network prefix, and the network
prefix must be the same as the prefix used by the neighboring router, on
the other side of the link. Thus, if a router moves, changing the physical
topology of the network, it must adopt a different IP address in the network
interface(s). Such a change will break communications, at least until the
routing protocol discovers the new address and finds new paths.

Although IP was not designed with mobility in mind, to address the
above problems several IP modifications and protocols, some of which at
upper layers, have been proposed over the years. The main ones, according
to active IETF Working Groups, are briefly presented in this section.

2.3.1 Mobile IP

The Mobile IPv4 [28] solution has proposed to overcome the problem of IP
networks using IP addresses as both locator and identifier. Using Mobile
IPv4, mobile hosts may have two separate IP addresses — Home Address
(HoA) and Care-of Address (CoA) — one (HoA) serving mainly as node
identifier, while the other (CoA) serves as node locator. Mobile IPv4 defines
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Figure 2.3: Mobile IP: mobile node at the home network

two types of infrastructure — home agent and foreign agent nodes that are
designed to help with mobility aspects. The home agent is responsible for
maintaining a registry of HoA↔CoA associations and, whenever the MN is
known be visiting another network, tunneling packets destined for the MN’s
HoA to the new visited network. The foreign agent is a host located in each
visited network; it takes care of de-tunneling packets sent by the home agent
and transmitting those packets to the MN.

To understand how Mobile IP works, we may consider the scenario in
Fig. 2.3, with a mobile node (MN) connected to its home network. Specif-
ically, the access gateway of this mobile node also has home agent func-
tionality. Another node is sending packets to the MN, let’s call it cor-
respondent node (CN). The CN sends packets to the MN’s only address,
194.117.24.10, and the packet is routed normally, without considering mo-
bility. When the MN hands over to another network, as seen in Fig. 2.4, it
becomes connected to a new router that is also a foreign agent (FA). Us-
ing the MIP protocol, the MN sends a Registration Request to the foreign
agent, which forwards it to the MN’s home agent. This registration contains,
among other information, the HoA and CoA of the MN. A Registration Re-
ply is transmitted by the HA, forwarded to the MN by the FA. Afterwards,
when the CN sends a new packet to the MN, the packet is forwarded as
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Figure 2.4: Mobile IP: handover registration

Figure 2.5: Mobile IP: correspondent node sends a packet after MN handover
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Figure 2.6: Mobile IP: triangular routing problem

shown in Fig. 2.5. The packet will be directed to the MN’s home network,
naturally passing by the HA. Since the HA has already been informed of the
new CoA being used by the MN, instead of transmitting the packet directly,
it tunnels it to the CoA. Since the FA is the gateway to the network to
which the CoA belongs, the tunnelled packet passes by the FA, which de-
tunnels it, i.e. removes the outer IP addresses, and the original IP packet
is transmitted to the MN. The MIP protocol allows some variations of the
above procedure, for instance the tunnel may end in the MN itself instead
of the FA.

With Mobile IPv4, the packets from CN to MN go to HA and then to
FA, while packets that the MN sends to the CN, assuming it is not mobile,
are transmitted directly to it, following the most direct path6, as shown in
Fig. 2.6. This is called the triangular routing problem, and is a realization
of the sub-optimality of the path that packets take from CN to MN when
the MN is in a visited network, causing unnecessary traffic in the network
and increased delay.

IP version 6 includes mobility support as part of the base protocol [29],

6This is not necessarily always true, as Mobile IPv4 supports the option of MN tun-
neling traffic to its HA, for location privacy reasons.
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and it bears some similarities to the IPv4 version. The main difference is
that Binding Update / Acknowledgement messages are used instead of Reg-
istration Accept / Response, and the FA is no longer needed. Additionally,
Mobile IPv6 supports the so called route optimization, as follows. The MN
sends packets to the CN via the direct path, but includes in the header not
only it’s CoA as source address but also the HoA in an extension header.
The CN, when receiving the packet, will note the HoA↔CoA bindings, and
from there on will start delivering packets directly to the CoA, bypassing
the HA. Alternatively, the MN may also send an explicit Binding Update
message to the CN, but only after completing the so called return routability
procedure. The return routability procedure is a security measure that gives
confidence to the CN that any future Binding Update messages received
from the MN are authentic.

2.3.2 Mobile IPv4 Regional Registration

One of the problems in Mobile IPv4 is the need for the MN to register the
new CoA with the HoA even if the HoA is very distant from the current
node location, for instance in another country. In this scenario, the mo-
bility signaling delay is increased due to the network distance to the HoA,
with impact on the ongoing communication, such as severely delayed or even
dropped packets. Mobile IPv4 Regional Registration (MIP-RR) is an exper-
imental solution to solve this problem [30] by attempting to keep signaling
caused by local mobility contained in that region. A new Gateway Foreign
Agent (GFA) router function is introduced to manage the local mobility and
shield the HA and CN from the effects of handovers within the site man-
aged by that GFA. To accomplish this, the GFA intercepts and rewrites the
CoA of the Registration Request messages that the MN initially sends to its
HA, so that the tunnel that the HA believes to end in the FA instead ends
in the GFA. Then, another tunnel is setup between the GFA and the real
FA to which the MN is currently attached. When the MN hands over to a
different FA within the same region (managed by the same GFA), it sends
a Regional Registration Request message to the GFA, and the GFA↔FA
tunnel is updated accordingly, although the HA and CN remain unaware of
the modification. This is illustrated in Fig. 2.7.

2.3.3 Proxy Mobile IP

Proxy Mobile IP [31, 32] is a protocol and architecture for providing network
based mobility management. In this architecture, the MN change between
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Figure 2.7: Mobile IP: regional registrations

different access gateways with full IP mobility (i.e. correspondent nodes are
unaware of mobility), but without having to implement any kind of mobility
protocol; the mobility is managed fully and transparently by the network,
which is the main innovation of this proposal.

As shown in Fig. 2.8, in the Proxy MIP architecture at least one Local
Mobility Anchor (LMA) exists in the network, and several Mobile Access
Gateways (MAG). When a MN connects to a MAG, it acquires an IP (v4
or v6 or both) address by normal means, such as DHCP or Router Adver-
tisement. The MAG then sends a Proxy Binding Update message towards
the LMA, on behalf of the MN, and a bi-directional tunnel is setup between
the LMA and the MAG. From there on, any packet addressed to the MN
is transported over the tunnel, reaches the MAG, which then removes the
encapsulation and transmits the packet over the link layer to the MN. When
the MN hands over to another MAG in the same network, the new MAG
acquires the MN’s identifier (e.g. via MAC address), and issues a Proxy
Binding Update. The respective Proxy Binding Acknowledgment will in-
dicate the MN’s previous address (HoA), so that when the MN tries to
configure its mobile network interface address, the MAG will provide the
same address as before.

Because the MN retains the same address during any handover, any
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Figure 2.8: Proxy Mobile IP

nodes corresponding with our MN are not aware of the mobility. To the
extent possible, even the MN itself is not aware of mobility, it only notices
the connection to the infrastructure temporarily dropping.

2.3.4 Network Mobility (NEMO)

The IP based mobility solutions presented above attempt to solve the prob-
lems caused by the mobility of end user terminals. However, they do not
handle the case of the infrastructure routers themselves moving, for instance
in the case of a laptop giving access to a Personal Area Network (PAN),
or a vehicle giving access to passengers’ terminals. The Network Mobility
(NEMO) Extensions for Mobile IPv4 [33] are a simple solution proposed to
address this problem based on the concept of applying the MIP protocol
not only to mobile terminals but also to mobile routers themselves. The
NEMO protocol extends the normal MIPv4 Registration Request message
with a new Mobile Network Request extension, allowing the mobile router
to register a care-of address with its home agent. In this way, a bidirectional
tunnel is set up between the home agent and the mobile router. Packets that
are destined to the mobile router’s HoA are instead tunnelled to the CoA
location and this way delivered to the mobile router.
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The NEMO approach is simple initially, but not very efficient due to the
tunneling and indirect path. When there are multiple levels of routers which
are all moving, NEMO causes multiple nested tunnels, increasing the hop
count and delay of traffic, and reducing the path MTU. These problems are
explored in [34].

2.3.5 Mobile IP Fast Handovers

One of the main problems of Mobile IP is the long connectivity interruption
time it entails each time the MN changes point of attachment. When the MN
associates with a new access point/router, it acquires a new address (CoA),
and immediately the uplink packets can flow and reach the correspondent
nodes. However, downlink traffic cannot be received by the MN until the
full MIP signaling is completed, which includes Binding Update/Acknowl-
edgment and return routability test procedure. These can take a few seconds
to complete, in some cases, with adverse impact on time-sensitive commu-
nications, such as VoIP traffic. Mobile IP Fast Handovers [35, 36] attempts
to reduce the handover time by allowing the MN to prepare the handover
in advance for a New Access Router (NAR) while still connected to the
Previous Access Router (PAR).

The protocol supports both MN initiated and network initiated han-
dover; for the case of MN initiated handover, it works as shown in Fig. 2.9.
The MN may notice the radio signal to the current AR (PAR) fading, and
scanning could provide indication of a more powerful AP signal, candidate
for handover. Using the Fast Handover protocol, the MN sends a Router
Solicitation for Proxy Advertisement (RtSolPr) message to the PAR, solic-
iting L3 information about the AR that is associated to the discovered L2
AP. The requested information is delivered by a Proxy Router Advertise-
ment (PrRtAdv). The MN may then decide to hand over to the NAR, and
signals this intention by sending a Fast Binding Update (FBU) message to
PAR containing the NAR identifier. Then the PAR communicates directly
with the NAR, by sending a Handover Initiate (HI) to the NAR and re-
ceiving back a Handover Acknowledgment (HAck). The PAR then sends
Fast Binding Acknowledgment (FBAck) message to both MN and NAR. As
a result, the MN disconnects from PAR, and the PAR starts forwarding
packets destined to the MN to the NAR. When the MN attaches to NAR, it
sends a Fast Neighbor Advertisement (FNA) message to it, and NAR starts
delivering packets to the MN. Now that the PAR→NAR packet forwarding
is in place, it lasts for a few seconds in order to give the MN enough time
to notify HA and CNs without risk of losing packets, after which time it is
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Figure 2.9: Mobile IP Fast Handover

automatically shut down.

The Fast Handover protocol approach is followed also by another com-
peting, yet very similar, protocol Low-Latency Handoffs in Mobile IPv4 [37].
Both protocols optimize handoff by allowing the MN to prepare the han-
dover before disconnecting from the old AR, and redirecting traffic from the
previous AR to the new AR for a period of time, while the MN handover
registration signalling is completed, to minimize the number of packets lost
during the transition. However, the time it takes to complete a registration
remains unchanged by these approaches. With Fast Handover, a vehicle
moving at high speed over small wireless cells will need to handover fre-
quently, but Mobile IP signalling may still be taking place from a previous
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handover when a new handover is required. A trail of tunnels would be
created, and packets would follow an increasingly suboptimal path.

2.3.6 Host Identity Protocol (HIP)

The Host Identity Protocol (HIP) [38, 39] is an experimental architecture
proposed to address mobility, security, and multihoming issues, by introduc-
ing a new layer between IP and transport layers, or L3.5. The main concept
of HIP is that of introducing a new host identity, which is a global identifier
for a host, and binding application sessions to this host identity, instead of
directly binding them to IP addresses. In this way, HIP cleanly separates the
roles of end-point identification and end-point locator. It is vaguely analo-
gous to the the HoA / CoA roles in Mobile IP. Each host identifier (HI) is
actually a public key, and they can be registered in a DNS server or Public
Key Infrastructure (PKI). Since applications are already using HIs, enabling
IPSec based security associations (for encryption or authentication) becomes
straightforward. Moreover, an HI refers to a host stack as a whole, it can
address any of a node’s interfaces; handover between different interfaces of
a host is facilitated, as well as handover between IPv4 and IPv6. Testing of
experimental HIP and Mobile IPv6 implementations [40] appear to indicate
that HIP can provide lower and more consistent handover latencies. To sim-
plify and reduce the overhead of the protocol, a Host Identity Tag (HIT) is
defined as a 128-bit hash of the full host identity. This HIT value is used by
the protocol instead of HI wherever possible.

In order to communicate using HIP, the “initiator” host may use a con-
ventional mechanisms, such as DNS, to obtain both the HIT and one or
more registered IP addresses of a “responder” host. Then, initiator and re-
sponder have to perform an exchange consisting of four messages: I1, R1, I2,
and R2, as shown in Fig. 2.10. This exchange forms a security association
Diffie-Hellman style, after which the hosts acquire each other’s IP addresses
and can begin communication. In HIP, the PDU “UPDATE” allows a peer
to change some parameter of the HIP association. This can be useful for
mobility purposes, for instance. Fig. 2.11 shows as example a MN mov-
ing from one AR (pAR) to another (nAR), while receiving packets from a
CN. When the MN connects to the nAR, it acquires a new IP address via
normal mechanism (e.g. DHCP, Router Advertisement), and sends a HIP
UPDATE message to the CN. The CN then updates the IP address for that
HIP association, and the following data packets are addressed to the new
MN location.
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Figure 2.10: Host Identity Protocol: establishing an association

Figure 2.11: Host Identity Protocol: handover
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2.3.7 Session Initiation Protocol (SIP)

We have shown how the mobility problem can be solved between layers 2
and 3.5, but these approaches are not without its faults. First, and fore-
most, mobility at lower layers requires modifications at network nodes, and
deployment of such modifications takes too much time. This problem is com-
pounded by the many choices for mobility that can be implemented, leaving
network administrators unwilling to deploy any one until a clear “winner”
emerges. Mobility, as defined as the ability for an application session to
adapt to node mobility in timely manner, can also be implemented in the
application layer itself. Perhaps the most notable application layer mobility
approach is provided by the Session Initiation Protocol (SIP) [41].

In SIP, each user that can be contacted is identified by an email style
URI, for instance sip:user@domain.com. In this URI, we can identify a user
name and a domain name. The domain maps to an actual host name that
implements a SIP proxy. A SIP proxy is a network server that keeps track
of the location of each user in that domain. Users (or the users’ terminals /
applications) register themselves with the SIP proxy via a REGISTER SIP
message. To start a session between two peers, one of the peers invites the
other to a session by sending an INVITE message to the SIP proxy that
manages the target peer. In the message, the initiator peer’s IP address
is included. The SIP proxy forwards the INVITE message to the target
at its last known location. A “200 OK” positive acknowledgment flows
in the reverse direction, in case the peer accepts the invitation, including
its own IP address. When the MN hands over to a new PoA (AR), its
IP address changes. To notify the communication peer of this change, a
new INVITE is sent directly to the peer, allowing the session to resume
(or restart, depending on the protocol) to adapt to the new IP address.
Finally, the MN sends a REGISTER to its own SIP proxy, so that any
future CNs may be able to contact it at the new address. This is shown in
Fig. 2.12, which assumes both MN and CN are using the same SIP proxy, as
simplifications. In the most general case, both users could be using different
proxies.

2.3.8 Summary

Although IP was not designed with mobility in mind, to address the above
problems several IP modifications and protocols have been proposed over
the years. We can classify these proposals into two major classes of mo-
bility management. Terminal mobility enables terminals to change point of
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Mobile IP Proxy
MIP

HIP SIP

Layer 3 3 3.5 5
Scope Global Local Global Global
Terminal
support

Yes No Yes Yes

Network
support

Partial Local
domain

Partial No

Table 2.3: IP based terminal mobility protocols

attachment without user intervention, while network mobility addresses the
movement of intermediate nodes (routers).

Table 2.3 summarizes the properties of some IP-based terminal mobility
solutions. The first row in the table indicates the layer of the protocol stack
in which they operate. Mobile IP [42], for instance, is an IP (L3) mobility
solution, works regardless of the link layer technology, and makes mobility
transparent to TCP/UDP and applications. Host Identity Protocol (HIP),
on the other hand, operates at layer 3.5, and so it is able to provide mobility
support on top of either IPv4 or IPv6 transparently to TCP or UDP based
applications. The Session Initiation Protocol (SIP) supports mobility at the
“session layer” (L5) of the OSI stack. In general, a mobility solution requires
that the location of the mobile terminal is tracked by an agent, and routes
for packet delivery be rebuilt in real time.

Mobility solutions can also be classified by their geographical scope.
Global mobility solutions, such as MIP or HIP, support any kind of mobil-
ity. Local mobility solutions, on the other hand, only support transparent
mobility within a certain network domain, as is the case of Proxy MIP [43].
Access technologies, such as 802.16 or 802.11, support only local mobility.
Global scope mobility protocols ensure that mobile nodes are always reach-
able, but they have poor performance because the mobility agent is located
far from the moving terminals. Local scope mobility is more efficient but
only achieves mobility transparency within a limited network region.

We may additionally characterize mobility solutions by the set of nodes
requiring modifications. Solutions such as MIP or HIP require modifications
in the terminal. Solutions like Proxy MIP are implemented by the network
and require no modification in the terminals.

Network mobility solutions allow some intermediate nodes (routers) to
change PoA without disrupting the ongoing user data sessions. In normal
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IP networks, when an access router changes point of attachment it must
change the IP address of one network interface. However, intra-domain
routing protocols like Open Shortest Path First (OSPF) usually take a few
seconds to detect topology changes and to install new routing tables in the
remaining routers of the access network; during this time packets get lost.
The NEMO protocol optimizes this scenario by extending the MIP approach
to mobile routers. However, the NEMO protocol has problems dealing with
multiple hierarchies of routers moving at the same time, creating nested
tunnels.

As a conclusion we may state that there are multiple mobility solutions,
operating at different layers of the protocol stack, with different scopes, and
providing different transparency / performance trade-offs. In WNMTs, the
need for a solution with a great degree of auto-configuration implies the use
of ad-hoc networking. However, existing ad-hoc routing protocols were de-
signed for networks with a few dozen nodes, and will not scale to thousands
of nodes. In addition, their support for terminal or router mobility is inef-
ficient, allowing several seconds to pass before node movement is properly
detected by the network. Possible solutions for WNMTs, in addition to solv-
ing these problems, should incorporate mechanisms allowing the network to
manage mobility on behalf of the terminals, as exemplified by Proxy MIP.

2.4 Network Simulators

Simulation is a method of studying a hypothetical system by creating a
model of this system that behaves as much as possible as the real system
but is easier to control. Experiments can then be carried out over the
model; it can be replicated, stimulated, and measured, much easier than
doing equivalent experiments using real equipment. For studying network-
ing protocols, simulation enables the researcher to predict how a protocol
will behave under conditions that are hard to replicate, for instance with
hundreds or thousands of nodes, in a predictable way.

The most common technique for simulation of networking protocols is
called discrete event simulation [44]. Discrete event simulation models a
system by a series of discrete (but possibly infinite) states, and events that
represent the transition between states. In these systems, the simulator
has a notion of “simulation clock”, which is a virtual clock to represent the
hypothetical elapsed time in the simulated world. Events are scheduled to
“fire” when the simulation clock has a certain value; when the event is fired,
some programming instructions are executed that modify the model’s state
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in some way, and may schedule additional events. The main benefit of this
technique is that the simulated clock does not have to be synchronized with
the real world and can be advanced directly from one event time to the next
event time, thereby simulating the system as fast as possible.

Although it is possible to write a simulator for any given system from
scratch, following the general principles of discrete event simulation, it is
not practical. Generic simulation frameworks exist that already do much
of the work needed, and the programmer just needs to add the missing
parts. This has two main advantages: (1) the existing simulator probably
has the event scheduler much better optimized than one could write from
scratch with limited time, (2) generic simulators often come with models for
numerous systems that we need. The second point is particularly relevant
for networking, as creating simulation models of protocols is hard, and often
simulating a complete system requires models for many protocols besides
the protocol being researched.

In this section, the some of the most relevant network simulation tools
are introduced. Only a brief overview of these tools is given, with focus on
aspects more relevant for Chapter 4, such as programming language used,
number of available models, and license.

2.4.1 Network Simulator 2 (ns-2)

Network Simulator 2 (ns-2) has been traditionally one of the most widely
used simulation tools in the networking research community: survey results
for 111 published simulation papers in ACM’s MobiHoc conference, 2000–
2004, indicated ns-2 as the simulation tool used in 44.4% of papers [45], by
a large margin the most used simulator. ns-2 is a discrete event simulator
composed of a C++ part, containing simulation models, and a oTCL-based
scripting interface. Most of the classes in the C++ part register themselves
in the oTCL runtime, so that they become available to be used in oTCL
scripts. In ns-2, the following object types are defined:

Application: an object that represents a process that generates packets to
be transmitted;

Agent: the agent implements a specific transport layer, e.g. TCP;

Node: represents a typical network node;

Link: represents a link between nodes.
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In ns-2, there is no concept of interface of a node, only links between
nodes, which means the ns-2 structure makes it very difficult to simulate
with detail systems with multiple interfaces. Nodes have IP and MAC ad-
dresses that are represented by simple integer counters. Although this is
a simple scheme that allows some simple simulations to be written with-
out concern for the actual addresses used, for more complex scenarios those
actual addresses are of utmost importance and their simplification ends up
being confusing.

Ns-2 Scripting

In ns-2, the scripting language used is OTcl: an object-oriented extension to
TCL (Tool Command Language). TCL is a simple command-oriented pro-
gramming language, with many similarities to Bourne Shell scripting syntax.
TCL programs are essentially a concatenation of commands, and commands
can have parameters separated from the command name by spaces. Vari-
ables can be defined, and later the value substituted by “dollar sign” syntax.
All variable values are strings by default unless otherwise instructed to via
an appropriate TCL operator. OTcl adds the keywords Class and instproc

to allow one to declare classes and methods of those classes, respectively.
While TCL is a widely used programming language, the oTCL extension is
not widely used outside ns-2, making it more difficult to learn.

In ns-2, the “tclcl” (TCL with CLasses) library provides a layer of glue
to allow exposing C++ classes to OTcl. Using this library to expose a
C++ class to TCL involves making that class inherit from the tclcl class
TclObject. We will follow the implementation of the class RTPAgent in
ns-2 (apps/rtp.{h,cc}) as an example. The RTPAgent class is declared as
follows:

class RTPAgent : public Agent {
public :

RTPAgent ( ) ;
virtual void t imeout ( int ) ;
virtual void recv ( Packet∗ p , Handler ∗ ) ;
virtual int command( int argc , const char∗const∗ argv ) ;
void advanceby ( int de l t a ) ;
virtual void sendmsg ( int nbytes , const char ∗ f l a g s = 0 ) ;

protected :
virtual void sendpkt ( ) ;
virtual void makepkt ( Packet ∗ ) ;
void ra te change ( ) ;
virtual void s t a r t ( ) ;
virtual void stop ( ) ;
virtual void f i n i s h ( ) ;
RTPSession∗ s e s s i o n ;
double l a s t pk t t ime ;
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int seqno ;
int running ;
int random ;
int maxpkts ;
double i n t e r v a l ;
RTPTimer r t p t ime r ;

} ;

As seen in the declaration, RTPAgent inherits from Agent, but inspec-
tion of the inheritance tree would reveal that Agent already inherits from
TclObject, therefore RTPAgent also inherits TclObject functionality. An-
other step needed to expose the RTPAgent class to TCL is to declare a
“class object”, thus:

stat ic class RTPAgentClass : public TclClass {
public :

RTPAgentClass ( ) : Tc lClass ( ”Agent/RTP” ) {}
TclObject ∗ c r e a t e ( int , const char∗const ∗) {

return (new RTPAgent ( ) ) ;
}

} c l a s s r t p a g e n t ;

The above code causes the RTPAgent class to be registered as “Agent/RTP”
in TCL; an instance of RTPAgent can therefore be created in TCL via the
new operator (new Agent/RTP). Via TclObject, it is possible to “bind” C++
member variables to TCL, via bind() method calls in the constructor:

RTPAgent : : RTPAgent ( ) : Agent (PT RTP) , s e s s i o n ( 0 ) , l a s t pk t t ime (−1e6 ) ,
running ( 0 ) , r t p t ime r ( this )

{
bind ( ” seqno ” , &seqno ) ;
b ind t ime ( ” i n t e r v a l ” , &i n t e r v a l ) ;
bind ( ” packe tS i z e ” , &s i z e ) ;
bind ( ”maxpkts ” , &maxpkts ) ;
bind ( ”random ” , &random ) ;

}

For example, the following TCL code causes an RTPAgent object to be
constructed and sets the member variable “seqno ” to be initialized to the
value “123”.

set r tp [ new Agent/RTP]
$ r tp set seqno 123

So far so good. Slightly more complicated is the binding of C++methods
to TCL. For this, the “command” virtual method of the TclObject class has
to be overridden, and the new implementation must dispatch each possi-
ble supported “command” to the appropriate method call. The method
receives an array of C strings; the first element of the array represents
the command/method name, while the remaining elements are the com-
mand/method parameters, as shown in Listing 2.1.
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Listing 2.1 RTPAgent::command listing

int RTPAgent : : command( int argc , const char∗const∗ argv )
{

i f ( argc == 2) {
i f ( strcmp ( argv [ 1 ] , ” rate−change” ) == 0) {

ra te change ( ) ;
return (TCL OK) ;

} else i f ( strcmp ( argv [ 1 ] , ” s t a r t ” ) == 0) {
s t a r t ( ) ;
return (TCL OK) ;

} else i f ( strcmp ( argv [ 1 ] , ” stop ” ) == 0) {
stop ( ) ;
return (TCL OK) ;

}
} else i f ( argc == 3) {

i f ( strcmp ( argv [ 1 ] , ” s e s s i o n ” ) == 0) {
s e s s i o n = (RTPSession ∗) TclObject : : lookup ( argv [ 2 ] ) ;
return (TCL OK) ;

} else i f ( strcmp ( argv [ 1 ] , ”advance” ) == 0) {
int newseq = a t o i ( argv [ 2 ] ) ;
advanceby ( newseq − seqno ) ;
return (TCL OK) ;

} else i f ( strcmp ( argv [ 1 ] , ”advanceby” ) == 0) {
advanceby ( a t o i ( argv [ 2 ] ) ) ;
return (TCL OK) ;

}
}
return (Agent : : command( argc , argv ) ) ;

}
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We have covered enough of the basics of ns-2 scripting to let us see some
of the associated problems. The first problem is that the ns-2 TCL bindings
are embedded into all ns-2 C++ classes, and cannot be removed or disabled.
For the sake of reducing the memory footprint of the simulator, especially
with thousands of nodes, and a few C++ objects attached to each node,
it would be better if the scripting interface was an optional layer on top
of a pure C++ core. Only if the scripting interface is needed should it be
loaded into memory, and even then only objects exposed to the scripting
interface should have a scripting state initialized. Another problem with
the ns-2 scripting is that it is completely manual and, consequently, error
prone. As an example, closer inspection of Listing 2.1 reveals expressions
such as “int newseq = atoi(argv[2])” that convert a string to integer without
error checking. We may consider as an additional shortcoming the fact
that not all of the C++ API is exposed to TCL, only the methods that
are explicitly supported by the developer, leading to the scripting interface
often becoming like a “second-class citizen” which does not have access to
everything. Finally, at the time of this writing, TCL is experiencing a decline
in the mind-share of developers, as most new developers learn languages such
as Python, Perl, Java, and C#, while TCL is becoming rather archaic. This
was not a problem when ns-2 started—back then TCL was a very popular
language—but is certainly becoming a problem now.

2.4.2 Network Simulator 3 (ns-3)

Network Simulator version 3, ns-3, is a new simulator that is intended to
eventually replace the aging ns-2 simulator. ns-3 officially started around
mid 2006, and the first stable version was released in June 2008, containing
models for TCP/IP, WiFi, OLSR, CSMA (Ethernet), and point-to-point
links, “God routing”, among others. Additional stable versions have been
subsequently released, including Python bindings, learning bridge, and real-
time scheduler for version 3.2 (Sep. 2008), emulation, ICMP, and IPv6 ad-
dresses in ns-3.3 (Dec. 2008), WiFi improvements, object naming system,
and “tap bridge” in ns-3.4 (Apr. 2009). Although ns-2 still has a greater
number of models included in the distribution, ns-3 has a good development
momentum and is believed to have a better core architecture, better suited
to receive community contributions. Core architecture features such as a
COM-like interface aggregation[46] and query model, automatic memory
management, callback objects, and realistic packets, make for a healthier
environment in which to develop new complex simulation models. In ad-
dition, it is reportedly [47] one of the better performing simulation tools
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Figure 2.13: Overview or the main ns-3 modules

available today, is being more actively developed than ns-2, and has better
code quality[48].

Modules

ns-3 is organized as a set of modules, as shown in Fig. 2.13. The “core”
module provides additional C++ functionality to make programming eas-
ier, such as smart pointers [49], rich dynamic type system, COM-like [46]
interface query system, callback objects, tracing, runtime described object
attributes, among others. Other modules in ns-3 include “common”, con-
taining data types related to the manipulation of packets and headers, and
the “simulator” module, containing time manipulation primitives and the
event scheduler. The “node” module sits conceptually above the previous
modules and provides many fundamental features in a network simulator,
such as a Node class, an abstract base class for a layer-2 interface (NetDe-
vice), several address types, including IPv4/6 and MAC-48 (EUI-48 in IEEE
802 terminology) address classes, and abstract base classes for a TCP/IP
stack. The “mobility” module contains an abstract base class for mobility
models. A MobilityModel object may be aggregated with a Node object to
provide the node with the ability to know its own position. Certain Net-
Device implementations, such as WiFiNetDevice, need to know the physical
position of a node in order to calculate interference and attenuation values
for each transmitted packet, while others, like PointToPoint, do not need
this information at all. Some common mobility models are included in ns-3,
such as static, constant velocity, constant acceleration, random walk, random
waypoint, and random direction [50].

ns-3 also contains a couple of routing models, “olsr” and “global-routing”,
a module “internet-stack” implementing a UDP/TCP/IPv4 stack, and few
NetDevice implementations, includingWiFi (infrastructure and adhoc 802.11),
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CSMA (Ethernet-like), and PointToPoint (very simple PPP-like link). Fi-
nally, sitting above all these modules is a “helper” module. This module
provides a set of very simple C++ classes that do not use pointers (smart or
otherwise) and wrap the existing lower level classes with a more programmer-
friendly interface. In design pattern terminology [51], we might call this a
façade.

Callbacks

In ns-3, a special Callback templated class is included, mainly to solve
two problems. First, although in C++ it is possible to have callbacks to
functions, via taking the address of the function using & and later using
(*callback)(parameters...) to invoke the callback to function from its
pointer. However, this approach does not allow one to take an address of a
method of a specific C++ object instance. It is possible to take an address
of a method in C++, but that address is not bound to a specific instance; to
invoke a C++ method via method pointer an additional instance pointer is
required and a special syntax is to be used. Ns-3 Callback objects allow both
the method and instance to be stored in a single object, and allow the mod-
ules that receive and invoke the callback to use the regular calling syntax
without having to worry about whether the callback refers to a function or
an instance method. The other problem is related to a use case where some
API needs to handle callbacks in abstract, regardless of the callback param-
eter types, and later invoke said callback with specific parameters. In plain
C++, the API would have to take a “void *” as parameter, which is a generic
pointer. Then, at invocation time the generic pointer callback is called with
specific parameter types. Unfortunately, at the point in the program where
the generic pointer is invoked with specific parameters the C++ compiler
no longer has the information to verify that the receiving function/method
callback can actually receive those parameters; type checking is disabled in
this case. A programming error could easily lead to strange errors that are
difficult to debug. The ns-3 Callback class also takes care of this problem by
storing also the type of the callback function/method in the Callback object;
this type is checked at invocation time (runtime), and an error message is
given if the types do no match.

The following code listing illustrates how to create and use a callback
object to a function. In this example, the callback object is declared as
Callback<double, int, float>: the template parameters denote the re-
turn and parameter types of the callback. This callback object returns a
value of type double and takes two parameters, of types int and float.
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To bind a callback object to a specific function, the MakeCallback factory
is used, taking as sole parameter the function identifier. Finally, we can
observe that the callback object can be called as a normal function.

double MyFunc ( int x , f loat y ) {
return double ( x + y) / 2 ;

}

int main ( )
{

Callback<double , int , f loat> cb1 ;
cb1 = MakeCallback (MyFunc ) ;
double r e s u l t = cb1 (2 , 3 ) ; // r e s u l t r e c e i v e s 2.5

}

The following code listing illustrates how to create and use a callback ob-
ject to a method of an object. The main difference in this case is in the way
that MakeCallback is used, passing two parameters: the first parameter is
the class method pointer, given by the C++ expression “&MyClass::MyMethod”,
and the second parameter is a pointer to the object instance. However, it
should be noted that calling the callback object, cb1, is similar to the func-
tion callback case.

class MyClass
{

public : double MyMethod ( int x , f loat y ) {
return double ( x + y) / 2 ;

}
} ;

int main ( )
{

Callback<double , int , f loat> cb1 ;
MyClass myobj ;
cb1 = MakeCallback (&MyClass : : MyMethod , &myobj ) ;
double r e s u l t = cb1 (2 , 3 ) ; // r e s u l t r e c e i v e s 2.5

}

Tracing

One of the unusual characteristics about ns-3 when compared to other net-
work simulators is its tracing architecture. Generally, tracing is a facility
provided by a simulator by which the user can discover which significant
events are happening inside the simulation and under which conditions.
Tracing will allow the researcher to derive important metrics of a simu-
lation that can be used to quantify the value of a simulated model relative
to another module. In ns-2, as in most simulators, tracing consists in gen-
erating a text file describing a series of events, with associated time stamps
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and other properties, one event per line. Common events that are recorded
to such files include MAC layer transmission, reception, and queue packet
drop, among others. In ns-3, output of events to a text file is also provided,
for a small subset of the events known by ns-3. Another possible way for
storing events, in particular packet transmit/receive events, is via a PCAP
files7.

However, these are just alternative tracing systems; the main tracing
system provided by ns-3 is callback based tracing. In ns-3 callback based
tracing, trace sources are defined by ns-3 itself. Each possible trace source
in ns-3 is associated with a specific object class and is identified by a name.
The programmer may register a C++ function or method to be called when
a certain (or a set of) trace source produces a new event. It is then the
responsibility of the programmer to know what to do in the callback. Com-
mon uses for tracing include 1) writing raw event data to a file, 2) collect
statistics for the occurrence of the event so that only the mean or other
statistic moment is saved to a file, and 3) react to the event and change
some parameter in the simulation in real time, for instance to experiment
with cross-layer [52] optimizations.

Helpers

In order to ensure maximum modularity and extensibility, ns-3 models follow
the approach of distributing the code over many small classes. Additionally,
the classes are typically linked with (smart) pointers, instead of inheritance,
following best “design patterns” programming practices, which states that
one should favor composition, rather than inheritance, when creating as-
sociations between classes[51]. A unwanted side-effect of the composition
and high number of classes is that this sort of API becomes complex for
a researcher that wants to create a simple simulation program and is not
interested in extending the simulation models. To overcome this issue, ns-3
employs another design pattern, called façade, which advises the software
engineers to create an additional API that is simpler to use, and simply
translates the simple API calls to lower-level object method calls. In ns-3,
for each simulation model there is a set of low-level classes and also one or
more helper classes. The helper classes are used by simulation programs,
and direct access to low-level classes is discouraged. Although it is possible
to write simulations entirely without using the helper classes, it makes the
programming more complex and time consuming. Additionally, the API

7PCAP is a binary format for storing (usually live captured) packets, used by programs
such as wireshark and tcpdump.
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provided by the helper classes remains more stable across ns-3 versions.
However, access to low-level objects is still provided for simulations requir-
ing less common functionality8.

2.4.3 OPNET Modeler

OPNET (Optimized Network Engineering Tools) Modeler is a widely used
network simulator. It is a commercial product, although it has a free aca-
demic license. The main advantages of OPNET are its very complete graphi-
cal user interface, as well as reasonably complete set of models. On the other
hand, its closed source nature makes it impossible to tailor the simulator
to run in non-standard environments, such as embedded router platforms.
Moreover, it’s main programming language is C, thus programming new
models is made more difficult than in more modern simulators due the com-
plexity of memory management in C.

2.4.4 OMNET++

The OMNET++ [53] simulator was created to become an open-source alter-
native to OPNET. Although OMNET++ distinguishes itself from OPNET
in being completely open source, its open-source license allows free use only
in non-commercial settings. In OMNET++, scenarios are described in a
new language called NED, forcing the developers to learn yet another pro-
gramming language. Another drawback is that callbacks of scheduled events
receive a single “message” parameter; all information has to be put inside
this message, no more parameters may be added, which means more pro-
gramming work. Additionally, it does not use reference counting or smart
pointers, making memory management complex and error prone.

2.4.5 PARSEC, GloMoSim, QualNet

PARSEC [54] is a discrete event simulation framework that is based on C,
developed by the Parallel Computing Laboratory at UCLA. In fact, PAR-
SEC is a programming language that is an extension to the C programming
language. The PARSEC compiler translates PARSEC programs into C pro-
grams, which can then be compiled into machine code and executed directly
by the CPU. The basic building blocks of PARSEC simulator are:

8One might say that the motto “Simple things should be simple, complex things should
be possible.”, attributed to Alan Kay, applies in ns-3.
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Entity: an Entity in PARSEC is like a function that can have its own flow
of control. It works like a process or thread in a traditional operating
system;

Message: a Message is a piece of data that can be exchanged between
different entities. In fact, PARSEC’s syntax forMessage is very similar
to C’s struct;

Events: an event represents the passage of (simulated) time, and can be
scheduled by a hold(n) PARSEC statement.

With PARSEC’s new language constructs, which are enhancements to
the C programming language, it becomes relatively intuitive to simulate
physical systems based on discrete events. The PARSEC language model
is not substantially different from Specification and Description Language
(SDL) [55], a language that is widely used to model, simulate, and validate
network protocols and state machines.

While PARSEC is a basic discrete event simulator, with no knowledge
of nodes or protocols, GloMoSim is a network simulator built on top of
PARSEC. It can simulate just a few link layers, such CSMA and 802.11,
and just a few routing protocols, like AODV and DSR. The GloMoSim
open source license allows it to be used for free in academic environments,
and a commercial license can be purchased otherwise. It seems to be a
discontinued product, no longer offering new releases for many years. Its
successor, QualNet, has been rewritten in C++, no longer being based on
PARSEC, and is a purely commercial product.

2.4.6 JiST / SWANS

JiST (Java in Simulation Time) [56] is a discrete event simulator written
completely in Java, developed at Cornell University. It uses an unique ap-
proach of rewriting portions of the byte-code of normal Java applications
in order to achieve event based simulation without requiring the develop-
ers to write code specific for simulation. In JiST, developers write classes
normally, the only difference being that some classes have to be marked as
entities which, similarly to PARSEC, represent objects that have indepen-
dent / concurrent flow of control. The JiST compiler specifically rewrites
sleep() calls to advance the simulation time, and rewrites method calls
from one entity object to another to denote message passing and time syn-
chronization. The main difference from, e.g., the ns-3 simulator, is that ns-3
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is essentially a C++ library and the programmer needs to call ns-3 APIs,
while JiST reuses pre-existing Java APIs.

On top of the JiST simulation kernel, the Scalable Wireless Ad hoc
Network Simulator (SWANS) [57] was developed. It implements just a few
routing protocols — AODV, DSR, and ZRP — and just 802.11 for link layer.
On the plus side, any normal Java application can be run in the context
of a SWANS simulated node. Nonetheless, clearly the SWANS simulator
does not support many routing or link layer models, leaving it with a lot
of potential but as yet unfulfilled. Perhaps the free-academic / paid dual
licensing scheme inhibits greater model support from the community.

2.5 Conclusions

In this chapter we explained some technologies that are relevant for devel-
oping a network for metropolitan public transport systems where end user
mobile terminals are strictly legacy terminals supporting WiFi and IPv4
with DHCP.

Regarding the link layer technologies, it is difficult to choose one in
detriment of the others. WiFi is cheap, fast, and ubiquitous, but it has
too short range to provide constant access to vehicles. WiMax has longer
range, so it can be used to provide connectivity to buses; although costly to
deploy, it may represent an opportunity for public transportation companies
that wish to deploy its own networks. Otherwise, an UMTS network can be
used to provide access to public transport vehicles. WiFi can be used inside
buses and bus stops, to provide connectivity to end user terminals. WiFi,
or the 802.11p variant, can also be useful to allow a bus to connect to a bus
stop, or perhaps two buses communicating with each other. This will require
intelligent routing, though. One final conclusion that we may draw from the
link layer technologies is that in recent years the most important link layer
technologies, with the notable exception of UMTS (and its evolutions), have
been IEEE standardized and integrate well with IEEE 802 service model,
for instance by using EUI-48 MAC unique addresses and integrating with
the 802.1D Learning Bridge algorithm. Therefore, it makes sense to assume
48-bit MAC addresses and Ethernet-like frames as default, UMTS as the
exception, and not the other way around.

When it comes to networking, there is a wide range of approaches possi-
ble. The 802.1D bridges use a very simple forwarding algorithm as long as
the network is restricted to a tree topology, and STP can be run to ensure
this type of topology. It does not require manual configuration, since it uses
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only pre-configured (in hardware) addresses, but does not scale well because
of STP and broadcast storms. The Internet Protocol, IP, scales very well,
due to the use of structured addresses, but requires careful manual planning.
Modifications to IP exist to handle adhoc networking, but the existing adhoc
networking protocols, such as OLSR and AODV, do not scale to networks
of hundreds of nodes. The MPLS approach is very interesting as data plane,
as it is both fast and flexible, but it needs a good control plane that can
handle dynamic network topology changes. TRILL is an interesting recently
proposed network architecture, especially the proposed concept of a “virtual
LAN” for terminals, and encapsulation of Ethernet frames over a network
routed by a link state routing protocol adapter to work at L2.5, but it is
not designed to handle mobility of nodes and does not solve the broadcast
storm problem effectively.

Another topic considered is the existing approaches for supporting mo-
bility of end user terminals. The main problem faced in IP networks is
that a terminal has to obtain an address that structurally “belongs” to the
router to which it is attached, meaning that if a terminal changes PoA it
normally has to change IP address. The objective of a mobility protocol is
to allow the terminal’s communications to be minimally interrupted when-
ever it changes from one AR to another. This problem can be solved at any
of multiple layers. For instance, SIP solves mobility at application layer by
having the terminal send a new SIP INVITE message to the CN right after
handover, to inform it of the IP address change, allowing the CN to start
sending packets to the new address instead of the old one. The HIP ap-
proach is in a slightly lower layer, one could say layer 3.5; it defines a “host
identity” layer, and allows end hosts to obtain cryptographic host identifiers
that are logically above the IP addresses that the node may have on its inter-
faces. When a node’s IP address changes, for instance handover to another
AR (horizontal handover), or even handover to another technology (vertical
handover), it notifies its peer correspondent nodes of this change via a HIP
UPDATE message. The Mobile IP extension to IP works directly at layer 3
and requires no modification in applications, only in the IP layer. It allows
nodes to have two addresses, one “home” address, denoting the identity of
the node, and one “care-of” address, indicating the current location of the
node. The mapping between home and care-of addresses is kept in a Home
Agent node located in the terminal’s home network. Correspondent nodes
can send packets to the terminal’s home address and the Home Agent takes
care of tunneling the packet back to the terminals “care-of” address, this
way ensuring that packets are not lost, even in the face of mobility. Fast
Handover further optimizes this scenario by allowing the terminal to pre-
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pare handover earlier, and tunneling packets from the old AR to the new
AR for some time. The Proxy MIP approach is also interesting because
it implements all the mobility signaling and tunneling work entirely within
the network side, lifting the burden of implementing mobility from the ter-
minal, and this way better supporting legacy terminals. Mobility solutions
implemented at the link layer level, such as in UMTS networks, also allow
the terminal to switch Point of Attachment (PoA) transparently to the IP
layer, i.e. the IP address of terminal never changes.

Finally, some of the major network simulators were identified. The ns-2
simulator is still one of the most used simulators, but it has design problems
such as lack of multiple interfaces support, obsoleted scripting programming
language, lack of detail/realism, and difficult to extend data tracing subsys-
tem. OPNET Modeler is also widely used, but it has restrictive commercial
licensing, and the lack of source code makes it impossible to port to new
platforms. OMNET++ tries to be an open source alternative to OPNET,
but still the licensing is restrictive, allowing usage only in non-commercial
settings. Additionally, the copyright assignment requirement for integrating
code contributed by the academic community into the main code base is a
major inhibitor for said contributions. PARSEC is a simulator that parses
an SDL-like programming language, and translates it into C, for fast sim-
ulation. GloMoSim is built on PARSEC and adds some limited number of
networking specific models, but it has been discontinued in favor of a com-
mercial simulator rewrite, QualNet. JiST is a Java based simulation engine,
while SWANS adds a few networking models. They too have restrictive
licensing. Moreover, although fast, consumes substantially more memory
than simulators written in C++. Finally, ns-3 is a rewrite of ns-2 from
scratch, trying to solve many of the problems in ns-2. It has an open-source
friendly license (GPL), is very efficient, and has a special focus on real-
ism. Moreover, it has strong packet-level emulation abilities and real-time
scheduling option, which can be exploited to make real-world experiments
using the same protocol model developed for simulation; these abilities are
further explored in Chapter 4.



Chapter 3

WiMetroNet

In this chapter, we propose an architecture for WiMetroNet that we believe
is a good match for the WNMT introduced in Chapter 1. The proposed
architecture works with the limitations of existing link layer technologies,
be it range, cost, or capacity, and tries to combine them as much as possible.
In addition, WiMetroNet is designed to scale to WNMT size, envisioning
hundreds or thousands of moving routers inside the vehicles or in bus stops,
and many thousands of end user mobile terminals.

3.1 Architecture

The WiMetroNet network, exemplified in Fig. 3.1, is generally structured in
the following way. There are Rbridges in vehicles and bus stops or tram sta-
tions. They provide 802.11 connectivity to some vehicle equipments and to
the users’ terminals. Vehicles connect to the network core Rbridges through
802.16, while moving, or through 802.11 to the bus or tram stops Rbridges’,
while stationed near them; the Rbridges in bus stops or metro stations
are connected to the core via high speed wired links, where possible, or
fixed 802.16a wireless connections, for the most remote locations. At the
WiMetroNet core a number of Rbridges are deployed in a Gigabit Ethernet
mesh topology, and the WiMetroNet control plane ensures that optimum
paths are used for forwarding traffic between different edge Rbridges. Fi-
nally, there is at least one IP router functioning as Internet gateway.

The terminals connect to one of the edge Rbridges and acquire an IP ad-
dress through DHCP (the DHCP broadcast requests are tunneled to a well
known DHCP server). The user traffic is then encapsulated when entering
the WiMetroNet network, transported inside the network, and the original
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frames delivered to the destination station, or to the Internet gateway. Due
to scalability concerns, in WiMetroNet broadcasts are strictly controlled:
although single-hop1 broadcasts work as expected, multi-hop broadcasts are
forbidden by default, as recommended in [2]. Special algorithms and op-
timizations have to be employed for ARP, DHCP, and generic multi-hop
service discovery. Unlike L3 adhoc networks, which use routing protocols
such as OLSR and AODV, the WiMetroNet architecture does not require
terminals to run any kind of special protocol, routing or otherwise; only the
standard 802.11 family of protocols.

Because we want to support heterogeneous L2 technologies (typically,
802.11, 802.16, and 802.3), a new L2.5 header was introduced. Since the

1Up to the first Rbridge, covering e.g. a single bus.
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Multi-Procol Label System (MPLS, RFC 3031) header is well known and
fulfills our requirements, it was adopted for the WiMetroNet user plane. This
MPLS header is very simple: it contains a 20-bit integer, for the “label”,
3 bits marked “experimental” that are often used for QoS, one “bottom-of-
stack” bit (for stacked MPLS headers), and an 8-bit TTL counter, totaling
32 bits. Using a standard MPLS header has the advantage of potentially
allowing us to take advantage of MPLS switching hardware that already
exists. On top of the MPLS layer the original L2 frames, from end terminals,
are encapsulated, as shown in Fig. 3.2.

In the WiMetroNet architecture, heterogeneous technologies are sup-
ported, and the same Rbridge may have multiple interfaces, which are usu-
ally always active, though not all used. It is the routing protocol (WMRP)
and its metrics that decides which interface to use at any given time for
a given destination. In WiMetroNet, preference is given to 802.11 inter-
faces, then 802.16, and finally UMTS, although this ordering is configurable.
When, for instance, a bus loses 802.16 connectivity, it will usually already
have a UMTS link active, to be used as soon as the routing agent detects
the 802.16 link failure.

The WiMetroNet routing protocol, WMRP, runs on Rbridges to dis-
seminate topology information, allowing it to build MPLS paths. Also dis-
tributed by WMRP are the list of terminals (MAC identifiers) associated
to each Rbridge, as well as the list of IP-MAC associations (DHCP leases).
The MPLS based data plane works in coordination with the control plane
in the following way. First, each Rbridge knows its own RID (Rbridge Iden-
tifier), which is unique in the network. By default (best-effort), packets are
forwarded by applying an MPLS label that is the numerically equal to the
RID of the egress (destination) Rbridge. Thus, no label negotiation protocol
is required for the best-effort paths, only the routing protocol.

The greatest advantage of using MPLS as forwarding mechanism is that
we open up the architecture to future extensions with no (or only minor)
modifications to the data plane. For instance, we could add support for
traffic engineered paths. We could begin by letting labels with values below
100, 000 to be reserved for RIDs, and the other values would be available for
dynamic label assignments. Next, we would apply a traffic engineering pro-
tocol (e.g. RSVP-TE, adapted) to reserve a new path, by using only label
values greater than 100, 000. From the point of view of the MPLS switch-
ing engine, there is no difference between best-effort path discovered by
the routing protocol and engineered paths reserved by other means. Other
examples of what can be accomplished using MPLS include Virtual LANs
(VLANs), alternative backup paths for resilience to failure, and multicast
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trees. Such improvements are possible without modifying or extending the
encapsulation header used in the data plane.

In WiMetroNet, security in general is implemented using the traditional
security mechanisms that exist in each L2 technology employed. For se-
curing 802.11 links, the builtin security mechanisms can be used, such as a
RADIUS[58] based authentication coupled with 802.1X[59]. It is also possi-
ble to integrate RADIUS based authentication with other technologies, such
as 802.16. To protect the routing protocol messages, one simple solution is to
apply a symmetric key cypher method, such as Advanced Encryption Stan-
dard (AES)[60]; the key has to be unique to each WiMetroNet instance, and
shared among all Rbridges at deployment time.

3.2 Wireless Metropolitan Routing Protocol (WMRP)

The WiMetroNet control plane revolves around WMRP, a routing protocol
that is inspired by OLSR, but which diverges from it in a number of ways.
Like OLSR, WMRP is a link state, adhoc routing protocol designed for
mobile wireless network. Like OLSR, WMRP defines HELLO messages for
link sensing (discover neighbors), and TC (Topology Control) messages for
disseminating network topology among all the nodes.

Among the differences between WMRP and OLSR we may include dif-
ferent address formats used, and new message types defined in WMRP to
handle this type of network. While OLSR uses globally unique IPv4 ad-
dresses to identify each node participating in the adhoc cloud, in WMRP
each node is assigned a unique 20-bit, MPLS compatible label. Addition-
ally, WMRP defines two additional messages to cater for the needs specific
to this type of network — MC (MAC Control) and IC (IP Control) —
whose purpose is explained below. Finally, WMRP does not elect MPRs for
use in flooding, for reasons stated at the end of this section.

3.2.1 WMRP PDU format

Like in OLSR, WMRP defines a packet header and a message header, de-
picted in Fig. 3.3. Each WMRP packet may contain a number of messages.
The packet header contains packet size and a sequence number, while the
message header contains fields such as message type, validity time (for how
long is the information valid), message size, time-to-live (number of hops
the message can still be forwarded before being dropped), hop count (num-
ber of hops it has been forwarded already), originator id (number of the
node that generated the message originally). The logical clock field is used
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Figure 3.3: WMRP PDU format

for partial event ordering, and follows Leslie Lamport algorithm [61]. The
payload of the message is to be interpreted according to the message type.
Four message types are defined: HELLO, TC, MC, and IC.

The HELLO message is used for link sensing, i.e. to allow nodes to be
discovered by their neighbors. HELLO messages are broadcast periodically
(2 seconds, by default) by each node, but are never forwarded.

The Traffic Control (TC) message is used by each node to advertise to the
rest of the network the list of links to neighbors it has discovered, along with
“costs” associated with those links. The contents of a TC message is a vector
of 32-bit fields; 20 of those bits represent the node id of a neighbor that has
been found, while the remaining 12 bits store the link cost (or metric). The
neighbor node IDs are discovered by listening to HELLO messages, while
the link cost is a linear combination of factors such as bandwidth, delay,
link usage monetary cost, and stability. The TC messages are generated
periodically by each node and retransmitted by other nodes, after duplicates
are eliminated, until the message reaches every Rbridge in the network.

The MAC Control (MC) message is similar in purpose to TC, but instead
of advertising other WMRP-enabled nodes (Rbridges) it advertises a list of
attached end-user terminals, each terminal represented by its MAC identifier
(EUI-48). Like TC, MC messages are periodically generated and forwarded
by all the other nodes.

The IP Control (IC) message is used to disseminate IP↔MAC associ-
ations. Typically, IC messages are generated only by Rbridges directly at-
tached to a DHCP server, using the information contained in DHCP leases.
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Figure 3.4: Interaction between control plane and user plane in a Rbridge

3.2.2 WiMetroNet Rbridge system architecture

We can see in Fig. 3.4 a schematic of the system architecture of a typical
WiMetroNet Rbridge, including control plane, user plane, and the interac-
tions between them.

Near the top-left of the diagram, the process of periodic generation of
HELLO messages by the control plane is represented. The same control
plane (i.e. the WMRP routing agent) may receive HELLO messages from
immediate neighbors, and fill the Neighbor Set with a list of neighbors dis-
covered so far. The Neighbor Set is consulted whenever a new TC message is
periodically generated, while received TC messages feed information directly
into a data structure called Topology Set. The Topology Set contains, for
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each node participating in the adhoc network, a list of links, with cost, to its
neighbors, thus forming a directed graph. This graph is fed into a Dijkstra
Shortest Path algorithm, finally yielding information to be stored in a Label
Switching Table. Periodically, MC messages are generated containing a list
of attached terminals. The attached terminals are stored in a data structure
called Local Terminal Associations (LTA), which can be filled by a method
similar to 802.1D Learning Bridge, i.e. by inspecting the source address of
incoming frames from terminals, or by L2 information, such as the list of
associated 802.11 stations, in case of local 802.11 interfaces in AP mode.
On the other hand, MC messages received from remote nodes will supply
information to fill the data structure Remote Terminal Associations (RTA).
Thus, by combining the information from Local and Remote Terminal As-
sociations it is possible to find out, for each terminal MAC identifier, its
current location, be it a local interface or a remote Rbridge. Some Rbridges
may also periodically generate IC messages, using information supplied by
a local DHCP server. Other Rbridges will receive the flooded IC messages
and fill the IP-MAC Associations table.

The main user plane operations are also represented in Fig. 3.4, towards
the right of the diagram. When an MPLS-encapsulated frame is received
from a core-network interface, an MPLS forwarding operation takes place,
using the information in the Label Switching Table. Then, the frame may
either be retransmitted, remaining in the same MPLS tunnel (label switch-
ing), or it may be delivered to an attached terminal (egress). In the latter
case, the Local Terminal Associations is also consulted to ascertain which of
the local network interfaces the terminal is attached to. When a user data
unicast frame from an attached terminal is received, the destination MAC
is looked up in both Local and Remote Terminal Associations to determine
how to handle the frame. If it is for a local terminal, the frame is simply
retransmitted via the network interface that can reach the destination ter-
minal. If, on the other hand, the destination terminal is instead found in the
Remote Terminal Associations, the L2 frame enters the MPLS Ingress func-
tion, to be encapsulated and subsequently forwarded by the MPLS engine.
Incoming DHCP frames are tunneled to a well known DHCP server, if the
terminal is not yet know by the network, or the local Rbridge directly replies
to DHCP requests, in case the terminal already known (from previous IC
messages). Finally, ARP requests are intercepted by the Rbridge and an
appropriate ARP reply is generated based on the information contained in
the IP-MAC Associations table.
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3.2.3 DHCP and terminal mobility

In the WiMetroNet architecture, all Rbridges are built to handle DHCP
traffic by tunneling it to a well known DHCP server, and the reply tunneled
back. End user mobile terminals are expected to acquire an IP address using
this method, but what happens during handover (e.g. between a bus stop
and a bus) is not so well defined. Since the SSID is the same in all buses and
bus stops, the handover is a Layer 2 one from the point of view of the mobile
terminals. In a L2 handover, the IP address stays the same, and the terminal
does not need to renew the IP address using DHCP signaling. However, for
increased robustness against misconfigured networks, some devices choose
to use DHCP anyway, just to make sure they are still on the same network.
In WiMetroNet, this is supported — the DHCP server will simply return the
same IP address for a known terminal — although it makes the handover
slightly slower2. In practice, “Wireless IP Phone” kind of terminals tend
to favor L2 handover without DHCP signaling (for obvious reasons), while
laptops tend to favor L2 handover with DHCP.

3.2.4 WiMetroNet: OLSR vs WMRP

Because OLSR is used as a basis for this work, we will try to highlight the
differences between WMRP and OLSR by describing how OLSR would have
to be used in the WiMetroNet scenario, and explaining why OLSR’s MPR
system is not used in WMRP.

OLSR applied to the WiMetroNet scenario

The main goal of the WiMetroNet scenario is to support legacy IEEE
802.11 terminals and manage mobility completely from the network side.
To that end, an OLSR based solution for WiMetroNet would require OLSR
to run only in the mesh routers (buses, bus stops, trams, base stations, core
routers), and not in the end user mobile terminals. Because we do not want
to require terminals to run Mobile IP, the IP address that terminals acquire
through DHCP has to be stable, regardless of which Rbridge it is attached
to in each moment. To keep the IP addresses stable, the Rbridge has to relay
the DHCP requests from terminals to a well known DHCP server. OLSR’s
HNA (Host/Network Association) messages would be used to report to all
the other Rbridges the current location of each terminal.

2Since the terminal is already known in the target Rbridge, the DHCP request is not
tunneled, and the delay amounts to just one or two round-trips in the local 802.11 link.
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To provide more insight into this solution, let’s consider what would
happen when a terminal hands off to a different Rbridge, e.g. from a bus
stop to a bus:

1. The terminal loses WiFi connection to the bus stop and associates (L2
association) to the bus AP;

2. The terminal sends a DHCP request (broadcast);

3. The Rbridge connected to the bus AP intercepts the DHCP request
and tunnels it to the central DHCP server;

4. The DHCP server notices a new request with a already known MAC
address and sends a reply with the same IP;

5. The bus Rbridge receives the DHCP response from the DHCP relay
tunnel, modifies the gateway address to its own address, and sends the
reply to the terminal;

6. The terminal configures the IP address (a /32 address), which is the
same as before, and configures the default gateway to be the bus
Rbridge;

7. The bus Rbridge OLSR agent sends an HNA message once every 5
seconds, by default, to be flooded to the rest of the network. The next
such message will include the IP address of newly attached terminal,
causing other Rbridges to start forwarding packets for the terminal to
this Rbridge.

As we can see, the OLSR based solution works at a different layer, and
so the service offered to terminals is different. Depending on the operating
system, it is likely that some application sockets are closed during handover,
even though the IP address acquired in the new AP is the same as the previ-
ous one, because the handover is always a L3 one. In spite of the differences,
it is easy to see that in the WiMetroNet architecture WMRP’s MC messages
play a role similar to OLSR’s HNA messages. Thus, a WMRP protocol,
configured with MC refresh interval equal to OLSR’s HNA default refresh
interval (5 seconds), can be considered to have approximately the same level
of routing overhead and performance as OLSR. To be more precise, even un-
der these conditions WMRP could be considered better than OLSR, since it
may not drop application connections during handover, and does not need
a DHCP signaling for each terminal handover, only for bootstrap.
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Figure 3.5: Two stations communicating over a single Rbridge

WMRP does not make use of the MPR optimization available in OLSR.
Some of the reasons are given in Sec. 2.2.2. Additionally we should consider
how MPR selection would impact the generation of MC messages. While in
the case of TCs the MPRs take advantage of the fact that a link between two
nodes is symmetric and can just as easily be advertised by either one of the
nodes without loss of information, in the case of HNA messages, containing
the list of terminals associated to each Rbridge, only that Rbridge has that
information, since neighboring Rbridges may have outdated information.
Therefore it would not be practical for an MPR Rbridge to generate an MC
on behalf of another Rbridge, and therefore the MPR related savings do not
apply in the case of MC messages.

3.3 WiMetroNet networking examples

In order to better understand how all the pieces of the WiMetroNet archi-
tecture fit, in this section some examples are given.

3.3.1 Two stations in the same Rbridge

The first analyzed scenario is a simple one; it consists of one mobile station,
connected via 802.11 to an Rbridge that is linked to an Internet gateway
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Figure 3.6: Two stations communicating over three Rbridges

via Ethernet. As shown in Fig. 3.5, the station sends a regular 802.11
frame towards the GW’s MAC address, as if the Rbridge was a simple
802.11 AP. And, in fact, in this case the Rbridge behaves as an 802.11
AP: it simply forwards the frame to the ethernet port. Key to triggering
this simple behavior is the realization by the Rbridge that the destination
MAC address is listed in the Local Terminal Associations table, along with
indication of the interface by which the destination MAC can be reached.

3.3.2 Two stations separated by three Rbridges

In this more complex scenario we exemplify what happens to a user frame
that is encapsulated by WiMetroNet network. The frame undergoes three
main operations: (1) ingress, (2) label switching, and (3) egress. This is
shown in Fig. 3.6.

When Rbridge1 receives the 802.11 frame from the mobile terminal, it
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looks at the destination MAC address, and discovers it listed in the Remote
Terminal Associations. From there it discovers the destination MAC station
is associated with Rbridge3, which has a corresponding nodeid 3, which is
also the value of the MPLS label. The Label Switching Table indicates
that the path (LSP) corresponding to label 3 continues with the same label
value and the MPLS frame should be transmitted towards next hop with
MAC address xx:35 on interface eth0. Therefore, the original MAC frame
is encapsulated in another frame containing two additional headers: 1) an
MPLS header with label value “3”, 2) a new “outer” Ethernet header, used
just for the link between Rbridges 1 and 2.

When Rbridge2 receives the Ethernet frame, it discovers (from the “Ether-
type”) that it contains an MPLS packet. The MPLS header indicates a label
with value “3”. Since this label corresponds to a path to another Rbridge,
the Label Switching Table is consulted; there it discovers that incoming
packets with label 3 should be retransmitted with the same label value to-
wards the next hop with MAC address xx:37 via eth1. Thus, the packet
remains the same, except that the TTL in the MPLS header is decremented.

When Rbridge3 receives the Ethernet frame, it discovers (from the “Ether-
type”) that it contains an MPLS packet. The MPLS header indicates a label
with value “3”. Since this label corresponds to Rbridge3’s own identifier,
the MPLS tunneling ends here and the outer Ethernet and MPLS headers
are removed. The next step is to look at the inner Ethernet header, specifi-
cally the destination MAC address, xx:50. From Rbridge3’s Local Terminal
Associations table, it is discovered that the destination MAC station is con-
nected to a local Ethernet port, eth1. Thus, the original Ethernet frame is
transmitted by eth1, and reaches the gateway GW.

3.3.3 DHCP

Another illustrative example that is useful to present is the handling of
DHCP signalling by WiMetroNet. As shown in Fig. 3.7, when an Rbridge
receives a DHCP DISCOVER message, which comes with broadcast as des-
tination IP and MAC addresses, the message is tunneled to the Rbridge
which is directly connected to the DHCP server, in this case GW. Here
we assume that Rbridge 1 is configured by the network operator with the
MAC address of the DHCP server. Then, to discover the egress of Rbridge
for the DHCP message, the RTA table is consulted, yielding an entry for
that MAC address and Rbridge 2 as current location; this association was
discovered by the routing protocol, WMRP. The DHCP OFFER follows a
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Figure 3.7: A mobile terminal acquiring IP address using DHCP
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Figure 3.8: WiMetroNet ARP optimization example

reverse path towards the terminal. Similarly, DHCP REQUEST and DHCP
OFFER messages are exchanged, but they are not included in the figure to
keep it simple.

3.3.4 ARP

Fig. 3.8 illustrates how WMRP and the data plane interact to optimize
ARP signalling from terminals. Once Rbridge 2 finds out about the IP/MAC
association of one of the terminals3, it uses the WMRP protocol to advertise
this association to the other Rbridges in a WMRP “IC” message. Rbridge
1 receives this message, and adds the IP/MAC binding for GW into its
own IP/MAC Associations table. Some time later, the mobile terminal
may wish to send an IP packet to the GW, and so broadcasts an ARP
packet requesting to find out the MAC address for IP 10.0.1.254. When
this ARP request reaches Rbridge 1, it is not retransmitted; instead, it
simply looks at the IP/MAC Associations, finds the MAC address xx:50
corresponding to IP 10.0.1.254, and forges an ARP reply to send to the
mobile terminal. This optimization, besides avoiding flooding of the network
with broadcasts, results in a shorter ARP request/reply round-trip, making
the network appear more “responsive”.

3For instance, by DHCP snooping
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Figure 3.9: MC messages and terminal mobility: topology

3.3.5 WMRP: MC messages and terminal mobility

Next we consider a topology with three Rbridges and two terminals, shown
in Fig. 3.9. A possible exchange of packets is shown in Fig. 3.10. Let us
assume that, a time t = 5s, the mobile terminal (mt) sends a MAC frame to
rb1 (the destination address is not important). When rb1 notices the source
MAC address of the MAC frame, it assumes a terminal with that MAC
address is attached to the wlan port, wlan0. Thus, it adds the terminal
MAC address to its LTA. Assuming the refresh interval for MC messages is
5 seconds, at time t = 5 the Rbridge rb1 broadcasts a new MC message with
the contents of LTA. This way, rb2 is informed that the terminal with MAC
address xx:01 (mt) is currently located at an Rbridge with ID 1 (rb1), and
stores this information in its RTA. Later on, if a station gw, attached to rb2,
sends a MAC frame towards mt, rb2 looks at the destination MAC address,
consults its RTA, and discovers that the destination MAC address is for a
terminal located at remote Rbridge with ID 1 (rb1). Thus, it encapsulates
the frame and sends it towards rb1, where the encapsulation is removed and
the original frame transmitted to mt.

We may additionally examine in detail how the network handles han-
dover of a terminal. Suppose the mobile terminal mt detaches from rb1 and
then attaches to rb3, in other words a handover, as shown in Fig. 3.11. In
this case, rb3 will soon detect mt, either via an incoming data frame or via
802.11 infrastructure mode association events, and will add the mt MAC
address to its LTA. When the next MC is scheduled to be transmitted, it
will contain this new mt MAC address. The Rbridge rb2 will thus discover
that the mt is now at Rbridge 3 instead of 1. The next frame from gw
destined to mt will then be tunneled to rb3 instead of rb1.
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Figure 3.10: MC messages and terminal mobility: MSC

3.4 WiMetroNet software architecture

While trying to evaluate the WiMetroNet architecture, we had to make some
ns-3 contributions, some of which are detailed in Chapter 4, and develop a
simulation model for WiMetroNet itself. The same simulation model is being
used as basis for a prototype deployment, using ns-3 techniques described
in Chap. 4, hence the more generic title “software architecture” being used
in this section.

3.4.1 Overview

The WiMetroNet software module is organized as three main components,
as shown in Fig. 3.12. A separate instance of each of these components is
installed on each ns-3 Node, i.e. hundreds/thousands in the case of simula-
tion, or a single Node in case of a implementation deployment. The basic
functionality of each component can be summarized as follows:

MPLS contains an MPLS forwarding engine, forming the core of theWiMetroNet-
the data plane. It uses the ns-3 Node and NetDevice APIs to register
protocol handlers4 and transmit MPLS Ethernet frames;

4In ns-3, a “protocol handler” is a callback that is registered to handle frames with a
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Figure 3.12: High-level view of the wimetronet software architecture
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Figure 3.13: WiMetroNet software architecture: MPLS class diagram

WMRP contains the WMRP routing agent, with abstract input/output
interfaces;

Wimetronet contains the “glue” code to orchestrate the other two com-
ponents. It instantiates the routing agent and handles input/output
of WMRP PDUs. It detects local terminal associations5 and reports
them to the routing agent, and handles ARP requests from terminals.
Finally, it delivers to the Node’s IPv4 stack packets that are received
from MPLS and are clearly destined to that Node.

3.4.2 MPLS

Fig. 3.13 contains a UML class diagram for the MPLS module. The main
class to be found is MplsSwitch, which is basically an MPLS forwarding

certain protocol type.
5To detect associated terminals, WiFi AP-mode MAC layer association notifications

are used.
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engine. Its main methods are:

SetNodeId: this method configures the “NodeId” that represents the iden-
tity of the Rbridge where the MplsSwitch is installed. The MplsSwitch
uses this ID to compare against the labels of incoming MPLS frames,
and deliver to upper layers in the stack frames which are destined to
this Rbridge and so encapsulation must occur;

SetNode: stores a pointer to the Node object, so that the AddNetDevice()
method can register a protocol handler;

AddNetDevice: this method asks the MPLS switch to monitor the given
interface for incoming MPLS frames.

InstallRoutingTable: this method is called by the WMRP routing agent
whenever new routes are discovered. The sole parameter is a list of
routing entries, represented by the MplsRoutingEntry structure, in-
cluding the following fields:

destination: the NodeId of a destination Rbridge to be reached;

outgoingDevice: the interface of the Node from which the destina-
tion Rbridge can be reached;

nextHop: the MAC identifier of the “next hop” Rbridge;

Clearly, this is a routing table suited to MPLS; the WMRP agent only
conveys the routing information needed by MPLS, and not all of the
information it possesses. The MPLS switch converts each MplsRoutin-
gEntry into an equivalent MplsFec structure, which has basically the
same information, but is conceptually independent;

IngressPacket: this method can be used to request the MPLS switch to
“ingress” a packet, i.e. request that a packet enter the MPLS L2.5
network to be delivered at the remote Rbridge, given by the remoteR-
bridgeId parameter;

SetReceiveCallback: configures a “callback” to be invoked when a packet
is received in MPLS and which has “egressed”, i.e. a packet whose
MPLS label matches the NodeId of the current node;

Receive: internal method used as “protocol handler” for MPLS frames.
This method removes the MPLS label and either forwards the packet
to another node by inserting a new label (label switching), or delivers
to the upper layers by calling the receive callback.
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3.4.3 WMRP

The WMRP is a component that contains the class WmrpAgent (WMRP
routing agent) and associated data structures, such as LocalTerminalAssociations
and RemoteTerminalAssociations, as shown in Fig. 3.14.

The class LocalTerminalAssociations implements the functionality al-
ready described Sec. 3.2.2 (see Fig. 3.4 in page 62), i.e. it holds the set of user
terminals associated to the local Rbridge. The associations are represented
by a associative array (std::map), with the MAC identifier of the terminal
as key, and a PortAssociation structure as value. The PortAssociation

structure contains two fields: 1. the interface of the Rbridge to which the
terminal appears to be associated, and 2. the expiration time of association,
allowing terminal associations to be expired if not periodically refreshed.
The class Wimetronet is responsible for adding or refreshing terminal asso-
ciations, while WmrpAgent reads those associations and advertises them to
the network via MC WMRP messages.

The class RemoteTerminalAssociations holds the set of terminals as-
sociation associated to remote Rbridges. The associations are represented
by a associative array (std::map), with the MAC identifier of the termi-
nal as key, and a RemoteAssociation structure as value. The Remote-

Association structure contains two fields: 1. the ID Rbridge to which the
terminal appears to be associated, and 2. the expiration time of association,
allowing terminal associations to be expired if not periodically refreshed.
The class WmrpAgent is responsible for adding or refreshing terminal asso-
ciations, thanks to reception of MC WMRP messages, while Wimetronet

reads those associations to handle ingress of MAC frames into the MPLS
domain.

The class IpMacAssociations holds a set of (IP, MAC) pairs discovered
via WMRP, namely IC messages. Conceptually, it represents the set of IP
leases in registered in the Rbridge to which the DHCP server is attached.

The main class, WmrpAgent, implements the WMRP routing agent, and
has one-to-one associations with LocalTerminalAssociations, Remote-

TerminalAssociations, IpMacAssociations, and MplsSwitch. Its main
public methods are:

WmrpAgent: this is the main contructor, and it requires as parameters
the pointers to the above mentioned objects, plus the NodeId;

Start: this method is invoked, after everything is configured, to start the
agent;
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Figure 3.14: WiMetroNet software architecture: WmrpAgent class diagram
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ProcessIncoming: when the Wimetronet class intercepts a message of the
WMRP protocol type, it forwards the packet to the WMRP agent by
calling this method with the full packet, interface, and source MAC
identifier;

SetTransmitCallback: with this method we can register a callback to be
invoked by the WMRP agent whenever it has a new PDU to transmit.
The callback will receive as parameters the PDU payload, and number
of the interface on which the packet should be transmitted;

RegisterIpLease: method that registers an IP lease, i.e. IP-MAC asso-
ciation. It is called directly by the simulation script, since there is
no DHCP simulation model in ns-3, and simulating the full DHCP
protocol is not important for the results we wanted to obtain.

LookupIpLease: this method looks up, in the local IP leases database,
the IP address that is registered for a terminal. It is used by the
Wimetronet class, in conjunction with the IpMacAssociations object,
to generate a reply to an ARP request;

TransmitMessages: this allows code external to the WMRP agent to
inject WMRP messages to be transmitted as if they were coming
from WmrpAgent itself. This functionality is used by the Terminal-

MobilityStrategy class, to be described later;

SetMessageHandler: this method is also meant to be used by Terminal-

MobilityStrategy to extend WMRP functionality. It basically regis-
ters a callback that becomes responsible for handling a certain WMRP
message type.

3.4.4 The “Wimetronet” component

What we call “Wimetronet” component encompasses the Wimetronet class,
to realize the WMRP agent input/output interfaces, MPLS ingress/egress
operations, and ARP optimizations. Additionally, the class Terminal-

MobilityStrategy defines a framework for terminal mobility optimization
“plug-ins”, with two implementations defined for the optimizations described
in Sec. 3.5. To make this section easier to follow, detailed description of the
TerminalMobilityStrategy class is postponed to Sec. 3.4.6.

The main methods to be found in class Wimetronet are:

Wimetronet: the contructor takes several parameters, which are also stored
as member pointers of the class:
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Figure 3.15: Wimetronet and TerminalMobilityStrategy class diagram
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1. the WmrpAgent, to call its ProcessIncoming method when a new
WMRP PDU is received, and transmit outgoing PDUs on its
behalf,

2. the IpMacAssociations object, used to implement the ARP opti-
mization,

3. the LocalTerminalAssociations object, to be able to handle frames
for local terminals, either egressing from MPLS, or received from
other terminals in the same Rbridge,

4. the RemoteTerminalAssociations, to be able to handle MPLS
ingress of terminal frames destined to another terminal in a re-
mote Rbridge;

5. the MplsSwitch object, which is called to ingress frames for re-
mote terminals, and register a callback for frames leaving the
MPLS tunnel,

6. the NodeId of this Rbridge (used just for debugging log messages);

7. the TerminalMobilityStrategy object which, as mentioned previ-
ously, is used to optimize terminal mobility;

AddAccessInterface: this method is called by the simulation script to de-
clare that an interface of the Rbridge is an “access interface”, meaning
that only end user terminal data frames are expected on that interface
and no WMRP or MPLS frames are processed or even expected. In
addition to registering a regular “protocol handler”, in order to receive
the user terminal frames, this method specially handles WiFi AP in-
terfaces by registering “MAC station association” events, to allow for
faster detection of associated terminals;

AddCoreInterface: the counterpart of AddAccessInterface, but for “core
interfaces”, i.e. interfaces of an Rbridge that connect to other Rbridges.
This method calls MplsSwitch::AddInterface, to let the MPLS switch
receive MPLS frames, and registers a protocol handler for WMRP
PDUs;

ReceiveWmrp: this method is the actual handler for WMRP protocol
that is registered by AddCoreInterface. It simply calls the method
ProcessIncoming of WmrpAgent with the packet payload and sender
MAC address;

TransmitWmrp: this method is registered as “send callback” with Wmr-
pAgent. It takes care of actually transmitting WMRP PDUs on behalf
of the WMRP agent;
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:Node

:Node

:IpMacAssociations

:IpMacAssociations

:LocalTerminalAssociations

:LocalTerminalAssociations

:Wimetronet

:Wimetronet

:RemoteTerminalAssociations

:RemoteTerminalAssociations

:MplsSwitch

:MplsSwitch

ReceiveFromAccessInterface(pkt)

mac48 := GetAssociation(pkt.arp.dst_ip)

send ARP reply (mac48)

alt [ARP request]

RegisterLocalTerminal(pkt.mac.src)

GetLocalAssociation(pkt.mac.dst)

localInterface->Send(pkt)

alt [found local association]

GetRemoteAssociation(pkt.mac.dst)

IngressPacket(pkt)

alt [found remote association]

drop the packet

[no remote association found]

[no local association found]

[unicast frame]

drop the packet

[broadcast frame]

Figure 3.16: Wimetronet::ReceiveFromAccessInterface

ReceiveFromAccessInterface: in this method, Ethernet frames from end
user terminals are processed;

ReceiveFromMpls: this method is called by MplsSwitch whenever an
MPLS frame arrives destined to this Rbridge;

NotifyTerminalAssociated: this is the method that is called to handle
association events for WiFi interfaces of the Rbridge. It registers the
terminal association in the LocalTerminalAssociations object.

3.4.5 Sequence diagrams

Wimetronet::ReceiveFromAccessInterface

The sequence diagram in Fig. 3.16 illustrates what may result of calling
the ReceiveFromAccessInterface method the Wimetronet class, to process a
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user MAC frame. This method checks with local and remote terminal asso-
ciations to find out where is the terminal with destination MAC address is
located. If it is in a local Rbridge port, the frame is simply retransmitted
on that port. If it is on a remote Rbridge, the frame is encapsulated in
MPLS and delivered to the MPLS layer. One additional important task of
this method is to notify the LocalTerminalAssociations that the terminal
has been “seen” in that local bridge port. This way, even if the interface is
not WiFi, and so does not have an explicit association event that may be
monitored, the location of the terminal is still discovered implicitly from the
traffic it generates. Finally, this method also checks for ARP request broad-
cast frames, and generates corresponding ARP replies using information
obtained from the IpMacAssociations object. This sequence is illustrated
by

MplsSwitch::Receive

Fig. 3.17 shows the method Receive of MplsSwitch being called whenever
an MPLS frame arrives. The method first removes the MPLS header and
looks at the label. If the label does not match the ID of the Rbridge then
it means it must be forwarded by MPLS. The MPLS forwarding consists in
looking up the FEC for this label, in the Label Switching Table, adding a
new MPLS header with the new label, and transmitting the packet through
the network interface indicated in the FEC.

In case the label matches the ID of the Rbridge, the packet is given to
the method ReceiveFromMpls of the Wimetronet class, for further process-
ing. Here the destination MAC address of the packet is checked to see if
it matches one of the local interfaces, in which case the packet is assumed
to be meant for the local Rbridge stack itself; Ipv4L3Protocol::ForwardUp
is invoked, this way delivering the packet to the local IP stack. If the des-
tination MAC address is not of a local interface, the packet is assumed to
be destined to a user terminal. The MAC address is searched in local and
remote terminal associations. If local, the packet is simply transmitted to
the terminal. If remote, the packet ingresses again into MPLS for remote
delivery.

Sending a WMRP PDU

The sequence for sending a WMRP PDU, implemented by Wimetronet-
::TransmitWmrp, is shown in Fig. 3.18. This method takes as parameters the
WMRP payload to transmit, a destination Node ID, and an interface. When



3.4. WIMETRONET SOFTWARE ARCHITECTURE 83

:Node

:Node

:MplsSwitch

:MplsSwitch

:Wimetronet

:Wimetronet

:Ipv4L3Protocol

:Ipv4L3Protocol

:LocalTerminalAssociations

:LocalTerminalAssociations

:RemoteTerminalAssociations

:RemoteTerminalAssociations

Receive(pkt)

remove MPLS label from packet

newlabel, out_interface := FEC_lookup(label)

add new label to packet

transmit packet through out_interface

alt [label != this node]

ReceiveFromMpls

Receive(pkt)

alt [pkt.mac.dst matches local interface]

GetLocalAssociation(pkt.mac.dst)

localInterface->Send(pkt)

alt [found local association]

GetRemoteAssociation(pkt.mac.dst)

IngressPacket(pkt)

alt [found remote association]

drop the packet

[no remote association found]

[no local association found]

[label == this node]

Figure 3.17: MplsSwitch::Receive sequence diagram



84 CHAPTER 3. WIMETRONET

:WmrpAgent

:WmrpAgent

:Wimetronet

:Wimetronet

:MplsSwitch

:MplsSwitch

TransmitWmrp(packet, destination, interface)

send PDU through specified interface

alt [destination == 0]

add ethernet header to the PDU packet

IngressPacket(packet, destination)

[destination != 0]

Figure 3.18: Sequence diagram of sending a WMRP PDU

the “destination” parameter is zero, the WMRP PDU is simply transmitted
through the indicated interface. If the destination Node ID is nonzero, it
means the caller wishes to indicate a specific destination Rbridge to which
this PDU should be delivered; this is implemented by adding an Ethernet
header to the WMRP PDU and ingressing the packet to MPLS for remote
delivery.

Receiving a WMRP PDU

Receiving WMRP PDUs is shown in Fig. 3.19. There are two possibilities
for WMRP to be received: from MPLS or from an interface directly. When
a WMRP is received via an MPLS tunnel, the MplsSwitch object processes
the packet normally and delivers it as usual to the Wimetronet object via
the ReceiveFromMpls method. Here, the WMRP EtherType is recognized,
and so the payload is delivered to the ProcessIncoming method of WmrpA-
gent. If, on the other hand, the WMRP PDU is received directly from a
network interface, it is recognized by its EtherType and also delivered to
WmrpAgent::ProcessIncoming.

3.4.6 The TerminalMobilityStrategy class

With the WiMetroNet simulation framework, it has always been our objec-
tive to be able to experiment with multiple terminal mobility optimization
strategies, or even disable such optimizations completely for the sake of
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:Node

:Node

:WmrpAgent

:WmrpAgent

:MplsSwitch

:MplsSwitch

:Wimetronet

:Wimetronet

Receive(pkt)

remove MPLS label from packet

ReceiveFromMpls

ProcessIncoming

alt [receive  PDU from MPLS 
tunnel]

ReceiveWmrp

ProcessIncomding

[ receive PDU from interface]

Figure 3.19: Sequence diagram of receiving a WMRP PDU

baseline comparison. However, programming all the options directly into
the main simulation model would lead to many conditional branches and
make the system more difficult to write and maintain.

To avoid this problem, a system for extending the base WiMetroNet
functionality in a modular fashion was devised. This extension system was
inspired partly in two well known approaches. One of these approaches is
aspect-oriented programming (AOP) [62], which allows one to structure a
system as a core part plus additional “aspects”. Each “aspect” provides
additional functionality, which can be “weaved” into the core. In AOP im-
plementations, the core and aspects are separate entities, whose source code
is kept separate, and the weaving is done by a compiler. This way, both
core and aspects become smaller and easier to understand. However, since a
full AOP system, with respective compiler, seemed excessive overhead just
for this sake, we looked for an alternative that would employ only standard
C++ Object Oriented programming. The adopted solution was based on
the “Strategy” design pattern [51], and is realized by the TerminalMobili-
tyStrategy class, represented in Fig. 3.15.

The class defines an interface which subclasses can implement in order
to “advise” the Wimetronet class of updated terminal location. This is
done in the following way. First, the Wimetronet class keeps the Terminal-



86 CHAPTER 3. WIMETRONET

MobilityStrategy informed of relevant terminal mobility events by call-
ing the methods NotifyTerminalAssociated, NotifyGlobalUpdate, and
NotifyRouteUpdate. Then, the Wimetronet class will call the method
GetUpdatedTerminalLocation of the strategy class, which allows the strat-
egy to inform Wimetronet whenever it has found a more up-to-date ter-
minal location. This is done whenever a terminal location lookup is re-
quired, namely in ingress and egress operations, right before looking up the
terminal location in LocalTerminalAssociations and RemoteTerminal-

Associations. Besides the Notify* method calls, the TerminalMobility-
Strategy implementations are allowed to access the WmrpAgent to send
and receive additional WMRP PDUs, using the SetMessageHandler and
TransmitMessages methods of WmrpAgent.

3.5 Fast and scalable terminal mobility

What has been described so far is the base WMRP architecture, which is
a simple link state routing protocol. In this base architecture, if we copy
the OLSR default settings, WMRP periodically broadcasts HELLOs every
2 seconds, and periodically generates a new TC and a new MC every 5
seconds. As for the IC messages, they may be generated with a frequency as
low as once every 60 seconds, since they convey information (DHCP leases)
that changes very slowly.

In link state routing protocols, such as OLSR and WMRP, the interval
between periodic routing messages that are to be flooded through the entire
network, such as TC and MC, is a crucial design setting, a trade-off be-
tween routing control traffic overhead and convergence time with mobility.
Although the 5-second interval is not a bad choice for supporting mobility,
it can be easily shown that it does not scale very well to large networks.
The rate P of MC messages received by a node is given by P = N−1

τ
, with

N representing the number of Rbridges in the network τ the message gen-
eration interval. As the routing control traffic increases linearly (on a per
link basis) with the network size, there is a limit to the network size that is
reached when the amount of control traffic exceeds a reasonable fraction of
the network capacity.

To overcome these limitations, we begin by lowering the rate of control
traffic to one message per 60 seconds. This reduces the control traffic to
one twelfth of the normal value, but leaves the routing protocol unable to
adapt to node mobility in a timely manner. On top of the periodic global
routing messages, additional control messages are defined and used, in order



3.5. FAST AND SCALABLE TERMINAL MOBILITY 87

to support mobility, effectively but without flooding the entire network, thus
scaling better with the network size.

In the following sections two methods of supporting mobility of end user
terminals in an efficient and scalable way are described. Then, simulation re-
sults are presented and discussed. Only the routing overhead due to terminal
mobility is addressed. While there are mobile Rbridges in the simulations
(inside buses, which are actually moving), the routing overhead caused by
them is neither optimized nor considered in this thesis. To account for the
routing overhead of moving Rbridges, which generate TC messages, we re-
serve 5% of link bandwidth; together with the 5% limit we consider for the
MCs (terminal mobility), we limit the total routing overhead to 10% of the
link bandwidth, therefore leaving at least 90% of the network capacity for
transporting user traffic. These values are just examples of limits that seem
reasonable. If we determine that a network can scale to N nodes with 10%
of routing overhead, we can expect that the network can scale to M nodes,
M > N , if the routing overhead limit can increase to e.g. 15%.

3.5.1 The “explosive updates” approach

The solution that we call “explosive updates” is based on the technique of
generating an MC message with a limited TTL to notify a small region
of nodes around the former point of attachment of the terminal whenever
a handover occurs. We call this an “explosive update”. Due to this local
update mechanism, a distant correspondent Rbridge computes a path to
another Rbridge that ends just inside the edge of the explosive update region
around the destination Rbridge. The strategy consists in reaching the closest
node that was for sure updated if the terminal moved since the last global
link-state update. Packets will follow this path/tunnel, egress at the region
edge, find a new more up-to-date route, and ingress again, this time on the
right path. To obtain the RID of the Rbridge at the edge of the explosive
update region, we take advantage of the fact that the Dijkstra Shortest Path
algorithm outputs a full shortest path to the destination Rbridge, not just
the next hop, in other words a list of RIDs. Determining the egress point

for the packets is then a matter finding the nth RID in the list counting
from the end, n being the explosive update TTL that is configured.

Consider as an example the scenario in Fig. 3.20, wherein a mobile ter-
minal T changes point of attachment from node D to node F . The net-
work topology consists of a grid of wireless nodes, with each node having as
neighbors the nodes immediately above, below, left, right, and diagonals. A
corresponding node (another terminal) is attached to node A and is sending
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Figure 3.20: The “explosive updates” terminal mobility solution

packets to our terminal of interest T . Let us consider, for demonstration
purposes, that the explosive update is limited to TTL=1. This TTL value
is just an example and is configurable.

Initially, packets take the shortest path, which is split into two contiguous
MPLS tunnels, A,B,C followed by C,D. Thus, two ingress operations occur
in this case, one in node A and another in node C. Node A sends the packets
to egress on node C because it knows that C is the node in the shortest path
from A to D that is closest to A but still within the one-hop region around
D, thus guaranteed to remain informed of the latest location of the terminal.
As packets arrive at C, they egress the first MPLS tunnel and ingress into
the second one, C,D, finally arriving at the desired destination.

When the handover of the mobile terminal from D to F occurs, a BU
(Binding Update) message is sent from F to D, which simply notifies D
that the terminal, T , is in a new location, F . Consequently, D emits a
new MC message with TTL=1, this way advertising the new location of the
terminal to its one-hop neighborhood, which includes C and E. Meanwhile,
A is unaware of the topology change, and keeps sending packets to node C.
However, since C has been notified of the handover, it starts forwarding the
packets to the correct new location. Thus, the second MPLS tunnel is no
longer C,D, it has now become C,E, F .

With this solution, we have frequent updates due to mobility, but they
are localized and therefore scale well for large networks. Moreover, the solu-
tion is still purely proactive, and the overhead is always the same regardless
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Figure 3.21: The “binding updates” terminal mobility solution

of the pattern of traffic and number of correspondent nodes. There are
some drawbacks too. Even in static situations, two MPLS tunnels are used
most of the time (except for nodes that are close to each other), leading
to nearly twice the rate of ingress operations, which is a more expensive
operation than MPLS forwarding. Additionally, during handover the routes
become slightly less optimal. In the example, after the handover the opti-
mal route would be A,B,E, F , but the actual route traversed by packets
is A,B,C,E, F , which has one more hop and, consequently, larger delay.
Unless the terminal moves again, this effect will last for 30 seconds on aver-
age, until the next global MC update notifies also A that the terminal has
moved.

3.5.2 The “binding updates” approach

This mobility optimization consists of notifying the Rbridge attached to the
correspondent nodes, reactively, when they send packets to the old location
of a node that has already moved. As an example, consider the scenario in
Fig. 3.21. As soon as the terminal handover from node D to F occurs, a BU
message is transmitted from F to D to notify it of the handover. However,
node A is not notified, and keeps sending packets for the terminal towards
node D. The first packet after the handover that D receives, DATA1, is
forwarded by D to the correct new node that is currently serving as the
terminal’s point of attachment, F . Additionally, a BU message is sent by
node D to node A to notify it of the new terminal location. Thus, future
packets sent by A will, from then on, take the correct shortest path between
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A and F : A,B,E, F .

The “binding updates” solution is a hybrid proactive / reactive approach:
it is proactive due to the slow periodic global MC updates, but is also reac-
tive due to the BUs sent to correspondent nodes as data packets arrive at
the incorrect locations. The main advantage of this solution is that packets
always follow the shortest path, even after the handover, with the exception
of the first packet6 of the flow, which takes the wrong path and there-
fore experiences a slightly larger delay. The overhead of this approach is
minimal for common scenarios. It depends mainly on the number of cor-
respondent nodes, or, to be more precise, the number of different Rbridges
attached to correspondent nodes. This works very well for common scenar-
ios of server-client communication, especially if all the servers are behind
the same Rbridge (e.g. hosts on the Internet). However, for peer-to-peer
applications, with a large number of peers evenly distributed among many
Rbridges, the overhead generated by the binding updates is expected to
become significant.

3.6 Evaluation

In this section we evaluate the WMRP routing protocol, with focus on the
terminal mobility optimizations that were described. For evaluation pur-
poses, we consider that the base WMRP protocol with MC interval of 5
seconds to be approximately equivalent to the OLSR protocol. We consider
two scenarios: a “road” scenario, representing a single bus line, and a “grid”
scenario that mimics a city grid with city blocks and buses traveling between
them.

3.6.1 Road scenario

Scenario

To evaluate our routing protocol, we started by a simple scenario that con-
sists of providing coverage to a single straight bus line, with regular bus
stops. This “road scenario” is not only simple enough to allow us to derive
analytical expressions for the routing overhead, but also offers some realism.

It is depicted in Fig. 3.22, where we can see it mainly consists of a straight
road, with a number (β) of equally spaced bus stops, a number (β2 ) of equally
spaced base stations, and a pyramidal topology of additional infrastructure

6Or rather, the first few packets, depending on the sending rate and round-trip time
between ingress and egress nodes.
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Figure 3.22: The “road scenario” network topology

Rbridges, interconnected with Gigabit Ethernet or fiber optic links. In our
scenario, the spacing between bus stops is 1 km, as is the spacing between
the row of base stations and the row of bus stops. We assume that the
802.16 base stations have a range (cell radius) of approximately 1.5 km, so
that there is complete 802.16 coverage along the road. The capacity of a
mobile 802.16 link varies considerably with the topographic conditions and
distance to the base station, however some performance measurements put
the 802.16 outdoors capacity at around 1.5–3 Mbit/s for the uplink direction,
and 5–11 Mbit/s for downlink [63]. For the purpose of this study we will
assume a (conservative) 802.16 capacity of 2 Mbit/s.

Along the road, a number (also β) of buses travel between bus stops.
We recall that each bus contains one Rbridge, so they are the “moving
network” part of the mesh network. There is a number (k) of terminals
traveling inside each bus, and the same number of terminals waiting at each
bus stop. The mobility model of buses is as follows. Each bus is initially
stopped at a different bus stop, covering all bus stops. The buses travel
from one bus stop to the next, stopping there for a period of time between
10 and 20 seconds, random and uniformly distributed. While stopping, all
the terminals traveling inside the bus leave the bus and stay at the bus
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stop, while at the same time the terminals in the bus stop enter the bus.
The buses travel between bus stops in a realistic way, by beginning with
a constant acceleration period of 10 seconds, followed by some distance
traveled at a constant speed of 22.2 m/s, and finally a constant deceleration
period of 5 seconds, right before stopping at the next bus stop.

There is a simple server node, near the Internet gateway, that is used
for traffic generation purposes. In order to measure the routing protocol
convergence as effectively as possible, we should consider only packets trav-
eling downstream, from the server to each of the terminals. In the upstream
direction, even if a terminal moves to another Rbridge, the route from the
new Rbridge to the server is always the same because the server does not
move. In the downstream direction, however, the Rbridge near the server
has to know the new location of the terminal in order to ingress the packet
into an MPLS tunnel ending in that Rbridge, and here is the true problem;
here is where we need to focus our measurements.

To study the scalability of our routing protocol, we only need to increase
the β parameter. The number of buses, β, is increased accordingly (3.1).
By keeping k constant, the total number of terminals in buses and bus
stops, T , also increases proportionally (3.2). The number of Base Stations,
B, is also proportional to the number of Bus Stops (3.3). Likewise for
the number of “tier-2” Rbridges (between base stations) (3.4) and “tier-3”
Rbridges (3.5). Only the Internet Gateway and Server remain singleton as
the network scales.

b = β (3.1)

T = 2kβ (3.2)

B = β/2 (3.3)

R2 = β/2 (3.4)

R3 = β/4 (3.5)

In our evaluation, we will focus on the 802.16 links of buses, which are the
most resource constrained links (the remaining links being wired or WiFi)
in the entire network. If routing overhead is acceptable for those links,
then it will necessarily be acceptable for the entire network. As previously
mentioned, in this thesis we only address the part of the routing protocol
responsible for the mobility of terminals, namely MC messages.
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Analytical model

The analytical model for WMRP base protocol in this scenario has already
been mentioned. The rate of MC messages received on average by each node
in each of its available links is given by P = N−1

τ
, with N the total number

of Rbridges and τ the periodic MC refresh rate. The overhead bitrate (bit/s)
is independent of the number of links. In this case, each MC message carries
k MAC identifiers.

If µ represents the rate of MC message generation (1/MC interval), H
the fixed header size of an MC message (20 bytes), and M the size of each
entry inside the MC message (8 bytes), the global MC flooding overhead
bitrate, in bit/s, of the protocol can be given by (not including the mobility
triggered messages yet):

Overheadglobal = µβ (H + (k + 2)M) (3.6)

+ µb (H + (k + 3)M) (3.7)

+ µR2 (H + 5M) (3.8)

+ µB (H + 5M) (3.9)

+ µR3 (H + 3M) (3.10)

(bit/s)

The overhead components can be explained by considering each type of
Rbridge and the fact that even Rbridges themselves are seen as terminals
by neighboring Rbridges. The first term (3.6) gives the overhead of bus
stops, which sees k end user terminals, plus one Rbridge as terminal, plus
one bus connected to it (on average). The second term (3.7) represents the
overhead generated by buses, and it includes k terminals, plus one MC en-
try for another bus on average connected to the same base station, plus an
MC entry for the bus stop WiFi link to which the bus is (at least part of
the time) connected, and yet another entry for the base station to which
it is connected. The third term (3.8) denotes the overhead generated by
tier-2 transit Rbridges, which have 5 neighbors each. The fourth term (3.9)
includes the overhead generated by base stations, which have 3 links each
to neighboring fixed Rbridges, and on average are two more links to moving
Rbridges inside buses. Finally, the term (3.10) expresses the overhead gen-
erated by tier-3 Rbridges, with 3 links each to report. The expression can
be condensed as:
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Overheadglobal =
µβ

4
(11H + (8k + 33)M) (3.11)

For the explosive mobility optimization, the overhead model is similar to
the base protocol overhead with τ = 60; we only have to add the additional
overhead caused by the BU and the TTL-limited MC flooding. It can
be shown that, for explosive with TTL limit of 2, the additional WMRP
messages that pass through the bus 802.16 links are 6k MCs, 2k BUs, and
2k BAs7. In this case, the additional mobility-related MC messages carry a
single MAC identifier each.

We also need to take into account the time it takes for a bus to travel
between bus stops, which is given by (3.16), where ts denotes time a bus is
stopped on a bus stop (20 seconds), ta denotes the acceleration period (10
seconds), td the deceleration period (5 seconds), dt the total distance traveled
between bus stops (1000 meters), da the distance traveled while accelerating,
dd the distance traveled while decelerating, and s the top speed of the bus
(22.22 m/s, 80 km/h).

a = s/ta (3.12)

b = s/td (3.13)

da =
1

2
at2a (3.14)

dd = std −
1

2
bt2d (3.15)

ttravel = ts + ta +
dt − da − dd

s
+ td (3.16)

= ts +
ta + td

2
+

dt
s

(3.17)

The overhead due to handover for the explosive case can then be given
by:

Overheadexplosive = Overheadglobal

+
6kHMC + 2kHBU + 2kHBA

ts +
ta+td

2 + dt
s

(3.18)

7BA stands for Binding Acknowledgment and is used to confirm the correct reception
of a previous BU message.
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In (3.18), HMC represents the size of a MC message with one entry (28
bytes), HBU is the size of a BU (Bindging Update) message (40 bytes), and
HBA the size of a BA (Bindging Acknowledgment) message (24 bytes). For
instance, for k = 10, replacing the values we obtain:

Overheadexplosive = Overheadglobal + 326.6 bit/s (3.19)

Clearly, the 326.6 bit/s component is constant and Overheadglobal will
easily surpass it for medium-to-large networks by several orders of mag-
nitude, thus we may make the approximation that Overheadexplosive ≈
Overheadglobal. If we were to develop an analytical expression forOverheadbindupdate,
we would draw a similar conclusion.

Simulation Setup

For simulations, we used the ns 3.2 simulator, with additional models and
back-ported bug fixes. At the link layer, the simulations were configured
as follows. For 802.11, a constant data rate was set to 11 Mbit/s, rather
than the adaptive one, and a simplified 802.11 MAC layer was used. The
new statistical MAC layer simulates the 802.11 MAC service by means of a
random number generator that provides transmission delays according to a
log-normal probability distribution, which closely resembles the 802.11 MAC
delays, congruent with what had already been concluded analytically in [64].
This technique makes our simulations run about five times faster, at the cost
of a certain loss of precision. But since we are not trying to discover what
is the exact capacity of the simulated network, rather just observe how the
routing protocol scales, simulation precision is less important than being
able to simulate large networks. The simplified 802.11 MAC requires the
definition of a hard cutoff range for the signal, which has been defined as
30 meters for the AP inside buses, and 100 meters for the AP in the bus
stop. These are the approximate indoor and outdoor ranges, respectively, of
typical WiFi 802.11b/g equipment. We also used the statistical WiFi MAC
to simulate the 802.16 links, configured for a range of 1500 m and a bitrate
of 2 Mbit/s. This method has less precision than the builtin ns-3 802.16
module, but allowed us to simulate much larger networks.

A large set of simulations were run, varying the number of bus stops
between 16 and 256, and setting the k parameter to 2. Although k = 2 may
seem limiting, it allows us to simulate larger networks. The analytical model
considers other k values (see Fig. 3.27). Thus, the number of mobile termi-
nals varied between 64 and 1024. Each simulation simulates 600 seconds,
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and was repeated 3 times for confidence interval purposes8. Additionally, at
each network size the following configurations were simulated in turn:

static60 Consists in grounding all buses and mobile terminals, so that there
is no mobility. The MC refresh period is set to 60 s. This simulation
is used to establish the top-line of the results (the maximum network
performance is expected to be attained in a static network);

base5 The base WMRP protocol, configured with OLSR settings, i.e. MC
refresh period of 5 s. Mobility of both buses and terminals is present,
but no terminal mobility optimizations enabled. As noted in Sec. 3.2.4,
for all intents and purposes we may consider this the same as OLSR;

base60 Base WMRP with MC refresh period of 60 s;

bindupdate The “binding updates” optimization, with mobility enabled
and a 60 s MC refresh period;

explosive The “explosive updates” optimization, with mobility enabled,
60 s MC refresh period, and TTL=2 for the mobility MC updates.

We did two sets of experiments with different traffic patterns. In one set
we simulate the server transmitting a CBR UDP flow to each terminal. Each
flow consists of 4 packet/s, with packet size 1000 bytes, totaling 32 kbit/s. In
another set of experiments there is one TCP connection between the server
and each terminal, and we attempt to transmit as much data as possible
through each of these connections.

Simulation Results

The network performance results are shown in Fig. 3.23 (UDP) and Fig. 3.24
(TCP). All the curves in all plots have represented confidence intervals,
although they are too small to see in some cases. The top subplots show
the received bitrate, end-to-end delays, packet losses, and routing overhead.
All values are averaged over all flows, except the bitrate which is the sum
of all flows, and the routing overhead which is independent of the flows
and is the total bitrate that passes on the WiMax link of each bus. The
bottom subplots show what we call “flow interruptions”. We consider there
is a flow interruption whenever the inter-arrival time of received packets in

8From the obtained results, due to the large number of packets processed in each
simulation, we have found that repeating 3 times each simulation was enough to obtain a
very small 95% confidence interval for large networks, as can be seen in the results figures.
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(a) Throughputs, delays, losses, and routing overhead

(b) Flow interruptions

Figure 3.23: Road scenario: UDP results
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(a) Throughputs, delays, losses, and routing overhead

(b) Flow interrutpions

Figure 3.24: Road scenario: TCP results
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the terminal exceeds 0.5 seconds. Whenever such an interruption occurs,
the duration of the interruption is recorded in a histogram. In the bottom
subplots we show the mean, 95th percentile, and sum of all flow interruptions
over all flows. These flow interruptions effectively measure the time taken by
handovers from the point of view of the applications, and is directly related
to the time it takes for the routing protocol to discover new accurate routes
for moving terminals.

From the presented results we may draw a number of conclusions. First,
our mobility optimizations, bindupdate and explosive, achieve significantly
better results, in terms of bitrate and packet loss ratio, than base60 while
generating the same routing overhead. Another comparison we can make is
that the mobility optimizations achieve identical user plane results as base5
but using only a fraction of the control plane overhead. These conclusions
hold also for the “flow interruptions” metric, and for either UDP or TCP
traffic.

The explanation for these results is simple. The base60 solution has low
routing overhead because it causes Rbridges to send only one MC every
60 seconds. But this very slow refresh period also causes routes to be fre-
quently out of date, hence the greater packet losses and lower bitrate. On
the other hand, base5 has frequently updated routes and good user plane
performance, but all the routing updates are global and so the routing over-
head will be high. Our solutions have slow global updates, hence the low
routing overhead, but frequent localized routing updates, which do not have
global impact on the total routing overhead but provide updated routes very
quickly, hence the low routing overhead and good user plane performance.

If we would consider only the user plane results seen so far, it would
seem like a simple base WMRP configuration with 5-second refresh interval
(like the OLSR default TC or HNA refresh interval) is about as good
a solution as the terminal mobility optimizations described in Sec. 3.5.1
and Sec. 3.5.2. However, this is not a complete picture. Fig. 3.25 shows
the routing overhead obtained via simulation, together with the predicted
values from the analytical models. We can see in these results that base5
has at least an order of magnitude greater routing overhead. It can also be
observed that all the mobility solutions eventually tend to a linear growth,
for large networks. The non-linearity in explosive for small networks is due
to the fixed overhead introduced due to mobility, but that fixed overhead
eventually becomes insignificant with increasing network size. Finally, these
results also show that the analytical and simulation models are in agreement.
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Network scalability limit

With the results so far, the main quest for discovering the scalability limits
of WMRP is yet to be completed. Via simulation we have confirmed the
intuitive assumption that the routing overhead, on a per-link basis, scales
linearly with the network size. To find out whether a routing protocol scales
to a certain network size, ideally we would like to simulate a very large
network until the routing overhead exceeds a certain limit. Unfortunately,
simulating such a complex system takes a toll on computing resources and
we have found it difficult to simulate networks larger than 256 bus stops /
1024 mobile terminals. Instead, we will utilize analytical models to predict
results for any network size without simulations. In this study, we consider
5% of the 802.16 link capacity (100 kbit/s) as an acceptable limit for the
maximum bandwidth consumed by the MC messages. No packet rate limit
is considered because the WMRP agent already takes care of aggregating
multiple messages into a small number of large packets.

Fig. 3.26 presents the results of the scalability analysis for two values of
k: 2, and 10. From these curves, we can obtain the following limits. For
k = 2, the base protocol crosses the 5% capacity limit at β = 320 (1280 ter-
minals9), but with the optimizations in effect the limit is crossed at β = 5006
(20024 terminals). For k = 10, the base protocol crosses the 5% capacity
limit at β = 166 (3320 terminals), but with the optimizations in effect the
limit is crossed at β = 2590 (51800 terminals). In both cases, the optimiza-
tion increases the number of bus stops and mobile terminals by a factor of
approximately 16. In the case of the explosive mobility optimization, these
limits are independent of the user traffic pattern.

According to equation (3.11), the maximum β limit is a direct function
of k and µ, and µ is the inverse of the periodic MC generation interval.
By replacing the overhead with the 5% limit, 100 kbit/s, and solving the
equation for β as function of k and µ, we may obtain a scalar field. In
Fig. 3.27 the evolution of the maximum β is shown for a range of k and “MC
interval” values. As expected, a greater MC interval will cause less routing
overhead to be generated, and so allows β to attain larger values, i.e., larger
network size. However, a too large interval between global updates would
bring other problems, such as the increased transient state that Rbridges
have to keep due to terminal mobility. On the other hand, a larger k value
(terminals per bus or bus stop) will cause each MC message to carry more
MAC identifiers and so generate more routing overhead, leading to a reduced
network size. The k parameter cannot be controlled, but it is not expected

9We recall that the number of terminals, T , is given by T = 2kβ.
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Figure 3.27: Maximum β for a range of k and “MC interval” values

to be large; a large number of active terminals are expected, but they should
naturally spread among many different buses or bus stops (or else even the
WiFi network will be overloaded).

3.6.2 City grid scenario

Scenario

We consider the scenario of a city organized as a grid of city blocks, exem-
plified in Fig. 3.28, for the case of a very small network. Each block has the
typical “Manhattan” city block size of 80 by 274 m, which is a prototypi-
cal size followed in many cities around the world. Between city blocks we
consider that there exist roads for vehicles, and at each road intersection we
assume the presence of a traffic stop sign. There are a number of bus stops
spread throughout the city grid, at the ratio of one bus stop every 2 blocks
vertically (we consider the larger side of each city block the vertical side),
and one every 4 blocks horizontally.

At the beginning of the simulation, a number of buses exist at each of
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Figure 3.28: Example “city grid” topology, showing some buses at their
initial positions and the path of one of those buses.
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the four edges of the city grid. At each of the north and south edges we
have 1/4 as many buses as the horizontal number of city blocks, while at the
east and west edges we have half as many buses as the vertical number of
blocks. The buses cross the city center traveling along existing roads from
one edge to the other, stopping at each intersection, due to the traffic stop
signs, in conformance with a Stop Sign Mobility Model [65]. They will also
stop for 20 seconds at each bus stop along the path, allowing the passengers
to enter and leave the bus. A sample path taken by a bus is shown by the
solid line with arrows in Fig. 3.28; as seen there, the bus route is vaguely a
zig-zag line, but constrained to the city roads, ensuring that the whole city
area is covered.

The city area has full WiMax coverage, provided by grid of equally spaced
base stations. The WiMax bandwidth and range vary greatly with the
topographical conditions where it is deployed, as well as frequency band.
In this suburban scenario we consider a bandwidth of 2 Mbit/s and range
of 700 m. To provide full coverage, it can be shown that the base stations
have to be placed in a grid topology, spaced by 2×700√

2
= 990 m. All the base

stations are connected in a grid topology by Ethernet links, and each bus
stop is linked to the nearest base station.

There is an Internet server connected to the WiMax base station closest
to the center of the grid by 1 Gbit/s Ethernet, while we have 5 mobile
terminals attached to each bus and each bus stop. Every time a bus arrives
at a bus stop, the 5 terminals inside the bus leave it for the bus stop,
while the 5 terminals previously at the bus stop enter the bus. Although 5
terminals per bus and bus stop may seem too few, it allows us to simulate
slightly larger networks. However, the analytical model shown further down
expands the scope of the main results to a range of terminals per bus and
bus stop between 1 and 30 (see Fig. 3.32).

Analytical model

As in the case of the road scenario, the routing overhead has essentially two
components: 1) a variable component that grows with the network size, and
2) a fixed component that is independent of the network size (in case of
bindupdate and explosive solutions). In similar way to what was shown in
Sec. 3.6.1 for the “road scenario” , as the network grows the variable com-
ponent also grows proportionally, and the total routing overhead becomes
dominated by that parcel. To simplify the analysis, we disregard the fixed
component and consider only the variable component. This simplification
will be validated by comparing against simulation results. In these equa-
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tions, the ⌈x⌉ notation denotes a ceiling operation, i.e. round to the nearest
integer larger or equal to x.

As before, we want to find out the amount of MC overhead in the weakest
link, i.e. the received bitrate in buses’ WiMax links. This overhead is
essentially proportional to the total number of Rbridges, and the number of
registered terminals in each of those Rbridges. The number of each type of
Rbridge is a function of the city area, measured in blocks. To simplify, we
consider an area of h× h blocks.

The bus stops are laid out in a grid, h/4 by h/2, and so the number of
bus stops can be given by:

S =

⌈

h

4

⌉

×
⌈

h

2

⌉

(3.20)

Along the north and south edges of the grid, each edge with h+1 inter-
sections, there are at least (h+ 1)/4 buses. We add the east/west borders,
with at least (h+1)/2 buses each. Therefore, the total number of buses can
be given by:

β = 2

⌈

h+ 1

4

⌉

+ 2

⌈

h+ 1

2

⌉

(3.21)

To compute the number of WiMax base stations we have to consider
that they are displayed in a grid and they need to cover the entire city area.
The spacing of base stations has to be 990 meters, and the city grid has
total dimensions given by the Manhattan city block size multiplied by the
number of blocks: h × 80 and h × 274. We add one row and one column
of base stations to make sure the edges are covered. Hence, the number of
base stations is given by:

B =

⌈

1 + h
80

990

⌉

×
⌈

1 + h
274

990

⌉

(3.22)

The overall number of Rbridges is given by the sum of the expressions
(3.20), (3.21), and (3.22). It is easy to see that this sum can be represented
as the polynomial expression C1+C2h+C3h

2, with C1, C2, and C3 constants.
Denoting by A the city area, since A = h2 we may represent the expression
as C1+C2A

1

2 +C3A. Considering the asymptotic behavior, we can see that

O
(

C1 + C2A
1

2 + C3A
)

simplifies to O (A) under “big O” notation rules. In

other words, the total number of Rbridges tends to grow approximately
linearly, for large grid sizes.
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As an example, consider the case of h = 20. The grid size would be
20× 20 = 400 city blocks, with an euclidean area equal to (20× 80)× (20×
274) = 8.77 km2. We would then have 34 buses, 50 bus stops, and 21 base
stations. If we would consider to have 5 terminals per bus or bus stop, there
would be a total of 420 end-user mobile terminals.

To compute the average number of bus stops connected to each base
station, SB, we multiply the total number of buses by the ratio of base
station coverage over total city area, and we obtain eq. (3.23). Similar
reasoning applies to eq. (3.24), which computes the average number of buses
in range of each base station, βB.

SB =

⌈

S
9902

h× 80× h× 274

⌉

(3.23)

βB =

⌈

β
9902

h× 80× h× 274

⌉

(3.24)

Finally, we can compute the total overhead produced by Rbridges peri-
odically generating MC messages. Denoting by H the header size of the MC
message (20 bytes), and by M the size of each entry inside the MC message
(8 bytes), TS the number of terminals per bus stop (5, in the simulations),
and Tβ the number of terminals per bus (5, in the simulations):

Overhead = µS (H + (TS + 1)M) (3.25)

+ µβ (H + (Tβ + 1 + TB − 1)M) (3.26)

+ µB (H + (SB + βB)M) (3.27)

In the above expression, µ represents the rate of MC message generated,
i.e. 1/MC interval . The subexpression (3.25) represents the overhead re-
sulting from MC messages generated by bus stops, (3.26) the MC overhead
generated by buses, and (3.27) the MC overhead generated by base stations.

Simulation Setup

To evaluate the city grid scenario, described in Sec. 3.6.2, we ran a series
of simulations where the grid size is gradually increased. Two sets of sim-
ulations were performed. In one set, one 32 kbit/s UDP flow (packet size
1000 bytes) was generated by the Internet server, directed to each mobile
terminal. In another set of simulations, there is one TCP connection be-
tween the Internet server and each mobile terminal, and the server tries to
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transmit as much data as possible over the TCP connection to the clients.
The mobile terminals handover between bus and bus stop, and vice-versa, as
previously described, and general flow statistics are captured, using the ns-3
Flow Monitor module (see Sec. 4.2), as well as routing protocol overhead.

Simulation Results

Fig. 3.29 and Fig. 3.30 show some of the simulation results for the city grid
scenario with UDP and TCP traffic, respectively. Here we can see that the
base5/bindupdate/explosive solutions have nearly indistinguishable perfor-
mance metrics, whilst the base60 solution has marginally less throughput
and significantly higher packet loss ratio. While the gain of the WMRP
optimizations is small for the bitrate/loss/delay metrics, in the flow inter-
ruptions metrics the gain is very clear. The base60 solution has about
22 seconds of mean interruption time, for the UDP case, while the others
(bindupdate/explosive) have 5 to 6 seconds mean interruption. In the TCP
case, base60 has about 6 seconds mean interruption time, while the opti-
mized solutions have about 2.5 seconds mean interruption. The lower value
of mean interruption time in TCP, compared to UDP, may be explained by
the apparent flow interruptions that are in fact not cause by handover but
by TCP congestion control taking some time to adjust to mobility.

The evolution of the routing protocol overhead with increasing city grid
area is shown in Fig. 3.31. Both analytical and simulation results are rep-
resented in the same plot, allowing us to confirm that the analytical model
is accurate for large networks. These routing overhead results are obtained
for the simulations with UDP traffic, but with TCP traffic the results are
identical.

As expected, the base60 solution generates a small fraction of the over-
head of base5. Additionally, explosive and bindupdate have the same control
plane overhead as base60, but have as good (if not better) user plane behav-
ior as base5. Thus we conclude that the optimized solutions have the best
of both worlds: good user plane performance, but with a low control plane
cost.

Network scalability limit

From Fig. 3.31 we can find out, for each WMRP configuration, what is the
grid area size for which the 5% WiMax capacity limit is crossed. Thus we
can see that the non-optimized base5 solution (similar to OLSR) scales to
4983 city blocks (71× 71), which is equivalent to an area of 124 km2. With
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(a) Throughputs, delays, losses, routing overhead

(b) Flow interruptions

Figure 3.29: City grid scenario: UDP results
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(a) Throughputs, delays, losses, routing overhead

(b) Flow interrutpions

Figure 3.30: City grid scenario: TCP results
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Figure 3.31: Grid scenario: routing protocol scalability prediction

the network size at which the threshold is reached, the scenario predicts 630
bus stops, 108 buses, 147 WiMax base stations, and 3690 mobile terminals.

With either of the optimized explosive/bindupdates solutions, the 5%
capacity threshold is crossed at much larger network size of 68790 city blocks
(262 × 262), or 439 km2. At the maximum network size, we would have
8646 bus stops, 396 buses, 1702 base stations, and 45210 mobile terminals.
Compared to the non-optimized solution, the maximum city area increases
by a factor of 3.54, and the number of mobile terminals increases by a factor
of 12.25.

The obtained limit depends essentially on two parameters: µ and k,
considering the simplification that TS = Tβ = k. Considering that µ is the
inverse of the “MC interval”, it is easy to determine what is the maximum
city grid size that can be attained without surpassing our imposed overhead
limit of 100 kbit/s, for a range of MC interval and k values. The obtained
scalar field is represented in Fig. 3.32. As in the road scenario, we can see
that the maximum network size increases when the MC interval increases
and when k decreases.
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Figure 3.33: Benchmark of Dijkstra’s algorithm (top), and MAC-48 hash
table lookup (bottom)

3.6.3 Computational scalability

The WiMetroNet control plane is designed to scale to many thousands of
Rbridges and tens of thousands of end user terminals. However, it is not
clear how well will a hypothetical implementation handle all the necessary
operations in that scale. As possible implementation targets, we are consid-
ering two possibilities. The first target is simple DD-WRT wireless router
platform, based on RouterStation Pro Board containing an Atheros AR7161
MIPS 24K CPU running at 680MHz with 128MB of DDR memory. The
second target being considered is based around a more powerful Intel pro-
cessor, specifically the Intel Atom D510 running at 1.66GHz.

Regarding the Rbridge data plane, ingress of end user frames is clearly
the most difficult operation, specifically the look-up of a destination MAC
address in the Remote Terminal Associations table. To evaluate MAC ad-
dress look-up performance, we executed benchmarks on a simple program
that does hash table look-ups with random MAC-48 addresses as keys. The
results in Fig. 3.33 (bottom) show that hash table look-ups are below 1µs
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even for the MIPS CPU and tables with 100,000 entries.

With respect to the Rbridge control plane, the most expensive opera-
tion is expected to be the shortest-path computation. In the WMRP routing
agent, whenever a TC message arrives, and it represents a change in the
topology (rather than e.g. just refresh an existing topology tuple), a flag
is set indicating that new shortest paths need to be computed. Once every
250 ms the WMRP agent checks this flag, and if it is set, Dijkstra’s shortest
path algorithm is run. Thus, in order for the WMRP agent to keep up with
topology changes it needs to be able run Dijkstra faster than 250 ms for
topologies of 13766 and 10744 Rbridges (the number of Rbridges needed for
the maximum network size derived in the road and grid scenarios, respec-
tively). To test this hypothesis, we benchmarked Dijkstra’s algorithm on a
grid topology while increasing the number of nodes between 100 and 22500
nodes. As shown in Fig. 3.33 (top), the MIPS CPU reaches the 250 ms limit
at approximately 8000 nodes, while the Atom still is very far from reaching
it at 22500 nodes. Thus, in an implementation based on the MIPS CPU,
shortest path computation becomes a bottleneck that limits the scalability
of WiMetroNet, but a router based on the much faster Atom CPU solves
this problem. An alternative would be to make use of dynamic shortest path
algorithms. In [66] several dynamic shortest path algorithms are evaluated
and concluded to be 10 to 10,000 times faster than repeated application of
a static algorithm.

3.7 Related work

This section discusses some existing solutions that, on the surface, seem to
address a similar problem as WiMetroNet, and tries to highlight some key
differences found.

The IETF Transparent Interconnection of Lots of Links (TRILL) [24]
is working towards a standard solution for shortest-path frame routing in
a multiple-hop 802.1-compliant network with arbitrary topology. For that
purpose, TRILL proposes the concept of Routing Bridge (Rbridge), a node
running a link-state routing protocol at L2. Other goals of the solution
are: minimal configuration, routing loop mitigation (through the use of a
TTL field) and legacy node support. However, TRILL lacks efficient and
scalable mobility support, which is required in the WiMetroNet scenario.
Additionally, because TRILL targets perfect compatibility with the service
offered by legacy bridges, it does not limit broadcasts in general, and so does
not scale to large network sizes. TRILL does optimize ARP and DHCP,
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but there are other services that also use broadcast or multicast, such as
NetBIOS, UPnP, and DNS-SD. These are not needed in a metropolitan
area, but their use can take down a network, intentionally or not (“denial
of service” attacks).

The LANMAR [67] routing protocol targets large scale adhoc networks.
To accomplish its scalability goals, LANMAR nodes are organized into sub-
nets. Each node has two logical identifiers, a subnet identifier, and a node
identifier unique within its subnet. Within each subnet, one of the nodes is
elected as the “landmark” node. When a packet from one subnet targets a
node in another subnet, the packet follows the path to the landmark node
instead of the end node, until it enters the target subnet, at which point the
path follows the most direct route to the target end node. The drawback
of the LANMAR approach is that it requires prior assignment of nodes into
logical subnets considering how the nodes are naturally grouped and are
likely to move. The example given for LANMAR is one of a military struc-
ture, with tanks and other units orbiting the tanks. This approach does not
work well when no a priori structure of the moving nodes can be defined,
or when the network topology is highly dynamic. LANMAR handling of
“drifters and isolated nodes” is complex and works well only when the frac-
tion of drifters is small compared to the rest of the network. Our routing
protocol follows a different approach, in which the entire network uses a flat
addressing scheme and does not require any subdivision into different areas
or groups, nor does it require any mechanism for electing a “master” of each
group.

The Cluster-based OLSR extensions [68] are another method proposed
for a highly scalable adhoc routing protocol. It assumes some clustering
mechanism is being executed in adhoc networks, and proposes to have OLSR
operate at two hierarchical levels simultaneously, intra-cluster and inter-
cluster. The intra-cluster OLSR traffic does not get forwarded beyond the
limits of each cluster; only the inter-cluster traffic gets globally flooded,
thereby reducing control traffic overhead. The authors offer no hint on
exactly which clustering mechanism is to be used, how much time it takes
to converge, or what happens to the formed clusters when the topology of
the network changes radically. The simulation results for Cluster OLSR
shown in [68] are based on 100 nodes, and some of those nodes are static
and manually selected as cluster-heads. In contrast, our routing protocol
does not require election mechanisms nor any kind of hierarchy; it achieves
high scalability while remaining completely flat.

The IEEE 802.11s [26] is the standard for wireless mesh networks (WMN)
using WLAN interfaces. In a 802.11s WMN, nodes perform the role of
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Mesh Point (MP), which includes the exchange of routing messages and the
frame forwarding. A node may also be a Mesh Access Point (MAP), which
may require an additional standard 802.11 interface configured as an AP
to provide access to legacy terminals; or/and a Mesh Portal Points (MPP),
in which case it functions as a gateway to the Internet or to other non-
mesh networks. The proposed routing for 802.11s is the Hybrid Wireless
Mesh Protocol (HWMP), which is similar to AODV but operates at L2.
It also includes tree-based routing for the WMN MPPs. Nodes initiate
communication using the root-based tree node; this can create a bottleneck
in the root node. Simultaneously, nodes broadcast a request for an optimized
path between them, but this adds to the delay and can cause broadcast
storms. User plane broadcast traffic, such as ARP and DHCP requests,
exacerbates the broadcast storm problem. These facts contribute to the
limited scalability of the 802.11s WMNs, which is known to support well
only a few tens of nodes.

Most location-aided routing protocols (LAR [69], and derivatives such
as PMLAR [70], and others [71, 72]) are reactive by nature and rely on the
existence of location information (like GPS) in order to limit the flooding
scope of route request messages. These routing protocols require a source
node to be able to discover the location of a destination node. In some cases,
a location server is employed, but clearly the communication with this server
is an additional source of delay for route discovery (in addition to the route
request / route reply pair), and limits scalability considerably due to its
centralized architecture. In other cases, the position of a node is estimated
based on the last known position, velocity vector, and the application of
complex statistical models. The latter approach has two main problems.
First, initially there is no “last position” known for any given node, and
so the source node has to revert to classic flooding, which limits scalabil-
ity. Second, the statistics involved are computationally intensive, and can
potentially become a bottleneck, depending on router processing power and
size of network; a router to put inside a vehicle must be small and not very
powerful, and the network tends to be large. Finally, the assumption that
location information is always available all the time may not hold if we con-
sider routing in vehicles that spend considerable time underground, as is the
case of subway trains.

The MAMP [73] protocol adds support for localized mobility manage-
ment in mesh networks, achieving low handoff delay through the use of multi-
path routing. However, although this solution is mostly network based, it
requires some special signaling with the mobile terminals, and therefore does
not work with legacy terminals.
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MobiMESH [74] is a wireless mesh network organized in a core area, re-
sponsible for the mesh routing and mobility management, and in an access
area that supports legacy 802.11 terminals. The routing is performed using
the OLSR protocol, and therefore limited to its scalability. To signal termi-
nal mobility events, the authors propose the use of OLSR HNA messages,
which are flooded through the core, and will not scale in a scenario with
thousands of mesh nodes.

In [75] the authors propose a novel network-based local mobility man-
agement scheme called “Ant”, which requires only network-side changes and
manages mobility transparently for legacy terminals. It achieves very good
handover interruption times, and it is efficient for both intra-domain com-
munications and access to the Internet. As a downside, the Ant scheme
relies on a Location Server, which needs to be often contacted, including
once for every mobile host handover. This scheme therefore does not scale
to tens of thousands of mobile hosts.

The SMesh [76] network supports fast handover of legacy 802.11 termi-
nals connected to a mesh network, by allowing more than one access point
to serve a wireless client. They both monitor the link quality, and the best
link is selected. Unfortunately this requires the clients to be configured in
802.11 ad-hoc mode, which limits the available capacity of the network, due
to requirement of a single-channel setup when in ad-hoc mode.

The Enhanced Mobility Management (EMM) proposal [77] for WMNs
“manages mobility without the need, for end-users, to install any software or
modify their protocol stack”. It works with the Neighbor Discovery protocol
of IPv6, which makes it an IPv6-specific solution. Additionally, it uses
multicast request messages (MCREQ) to find out the location of terminals,
which does not scale for large networks.

FastM [78] is an improvement of EMM that optimizes the case of han-
dover of a terminal between two adjacent mesh routers. Due to the dynamic
nature of the vehicular scenario, this mechanism may fail if handover oc-
curs between two nodes that have not yet realized they are neighbors, for
instance, a passenger switching from bus stop to a newly arrived bus.

The “Broadband Wireless Internet Access in Public Transportation”
(BIT) project [79] addressed some of the problems described in this the-
sis, and confirms our approach of hetergeneous mesh networking, but did
not propose any specific solution in detail.
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3.8 Conclusions

In this chapter, new proposed architecture for the public transport vehicle
networking scenario introduced in Chap. 1 was presented. The new archi-
tecture was named “WiMetroNet”. This architecture entails two main con-
tributions. First, the user plane that filters broadcasts and optimizes DHCP
and ARP traffic via close integration of those protocols with the routing
protocol, in contrast with 802.11s and TRILL which do not solve the broad-
cast issues. Another key difference is that frames are encapsulated using
an MPLS header, allowing future protocol extensions without changing the
data plane format, and enabling the solution to work also on non-IEEE 802
access links. Second, a new L2.5 routing protocol, that supports both mobile
Rbridges and mobile end-user terminals, and feeds the data plane with IP/-
MAC association tables, much needed for the DHCP/ARP optimizations;
a feature that is also missing in 802.11s. The software architecture defined
for the simulation/implementation is also described, in some detail, in this
chapter.

We then presented routing optimizations to handle fast-handover of ter-
minals in an efficient and scalable way, for large networks. This is something
that is not available in either TRILL, 802.11s, AODV, or OLSR. In addition,
a simulation-based evaluation of both this base solution and the mobility op-
timizations was presented. The new proposals have been demonstrated via
simulation and analytical models, and the limits of scalability assessed for
two different scenarios: a “road scenario”, and a “city grid”. For the “road
scenario”, we have shown that WMRP can scale to at least 2590 bus stops
under conservative mobile 802.16 bandwidth estimates, using only 5% of
bandwidth for signaling. It is more than enough to cover an entire city’s
worth of bus lines, which was our initial goal. In the “city grid” scenario,
we show that the optimizations increase the covered area by a factor of 3.5
and the number of terminals increases by a factor of 12.25, when compared
to a näıve link-state routing protocol, such as OLSR.



Chapter 4

Protocol development using
ns-3

In general, researching and developing a new networking protocol involves
several steps. These steps are depicted in Fig. 4.1:

1. We begin with a notion of a problem the protocol would solve in a
given scenario. From the scenario/problem the researcher develops
both a simulation model for the protocol and a simulation program
that uses the protocol model;

2. Multiple simulations are run, with varying parameters;

3. The results are analyzed. As a result, the protocol model may be
debugged, tweaked, or improved. The scenario simulation description
may also need to be changed. As a result, we may need many iterations
of simulation/analysis/improve;

4. When the simulation results are acceptable, it is time to stabilize the
protocol model and write down the specification in a document;

5. From the specification, a protocol implementation is developed, possi-
bly by a different team;

6. A testbed may be used to run the implemented protocol; trial runs
may generate logs to be analyzed;

7. The logs are analyzed and if they report widely different results from
what was expected from simulations then: a) implementation is buggy,
b) the trial run exercises a slightly different scenario which has great
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Figure 4.1: Traditional protocol development process

impact on the protocol performance. In case a), the implementation
simply needs to be debugged, but in case b) the protocol model may
need to be changed, new simulations run, and then the respective im-
plementation changed accordingly, not forgetting the protocol written
specification.

The development process, particularly using ns-3, contains some steps
that could be optimized to make development easier and faster. In step 1, the
researcher has to write a simulator which has essentially two parts: a model
of a protocol and a simulation script. While the protocol model usually has
to be written in C++, for performance reasons, writing the scripting part
could be made much easier by switching to a high-level scripting language;
this issue is addressed in Sec. 4.1. Additionally, writing the code for data
collection is repetitive and tedious; Sec 4.2 proposes a generic data collection
framework that automatically measures flows passing in a simulation with
almost no effort required by the researcher to enable it. In step 3, the job of
debugging a simulation program is very complex and time consuming, but
the visualization tool proposed in Sec 4.3 can be of great value. Finally, the
development process also has problems that become apparent when focusing
on steps 5 and 7. First, there is a lot of duplicated effort when developing
both a simulation model and an implementation prototype. Second, when
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Figure 4.2: Ns-3 based protocol research framework, highlighting new con-
tributions

modifications to the protocol are needed, after trial runs, they have to be
done in three places at once: simulation model, protocol specification docu-
ment, and implementation. The risk of inconsistencies between them being
accidentally introduced is non-negligible. To address this issue, in Sec. 4.4
we propose modifications to development process.

Our attempt at solving these problems — a direct result of WiMetroNet
research and development experience — involved creating a few ns-3 com-
ponents, as well as measuring performance of other pre-existing compo-
nents. As a result, a new research and development framework based on
ns-3 emerges, illustrated by Fig. 4.2. In the figure, blocks named in italic
represent pre-existing ns-3 modules, blocks in bold text represent ns-3 ad-
ditions discussed here, and gray blocks represent code that needs to be
developed by a R&D team specific for each research protocol.

4.1 Ns-3 scripting

While developing a new simulation model, or to evaluate an existing one, re-
searchers have to make a program that builds the simulation scenario. This
program involves creating a set of nodes, and for each node configure the
network interfaces, applications that generate flows, and enable a mobility
model to make the node appear to move as intended by the scenario descrip-
tion. This program is called the simulation script, because it is like a theater
or movie script in the sense that it contains a list of actors (nodes and their
applications) and actions that these actors must execute at specified times.

The simulation script can be written in any programming language.
In ns-3, the only programming language initially available for simulation
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scripts was C++. However, many simulators, including ns-2, allow simu-
lation scripts to be written in a high-level dynamic language. The main
advantages of using a high-level dynamically typed language are the follow-
ing:

1. Programs tend to be shorter, more readable, and concise than stati-
cally typed languages such as C and C++. High-level data structures
are often available at the language level and easier to use, and vari-
ables and parameters do not need associated type declarations. As a
result, the programming job becomes easier and faster;

2. They allow for a much faster write/test/debug cycle of coding. Since
there is no need for recompilation, after editing the source file, the
script can be simply executed immediately. Because a program mod-
ification can be quickly tested, the run-time programming errors are
caught quickly, and development occurs at a faster pace than with a
C or C++ scripting program.

In this section, the ns-3 scripting interface is described. It is represented
in Fig. 4.2 as the “ns-3 Python Bindings” component. First, we explain
the ns-2 scripting interface and its main shortcomings, in Sec. 2.4.1. Then,
in Sec. 4.1.1 we list the requirements for the ns-3 scripting interface that
were considered. The PyBindGen tool that is the basis for the ns-3 python
bindings is shortly described in Sec. 4.1.3, and its application to the ns-3
python bindings themselves presented in Sec. 4.1.4. The performance of
PyBindGen is evaluated in 4.1.6, and finally some conclusions drawn in
Sec. 4.1.7.

4.1.1 Ns-3 scripting requirements

The ns-3 scripting interface has been designed from the ground up to avoid
the ns-2 scripting problems mentioned in Sec. 2.4.1. We have selected the
programming language Python as the main scripting layer for ns-3, instead of
TCL. This selection was based on multiple criteria: 1) language popularity
and familiarity among developers, 2) readability, 3) breadth of language
module library, 4) language performance. Regarding these criteria, we have
found that Python is1 the most popular of the dynamic languages if we
discount PHP (PHP is rarely used outside the Web programming domain).
Additionally, the Python language is designed with readability in mind; it

1According to “TIOBE Programming Community Index for January 2011”
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even forces developers to indent their code properly by making indentation
a part of the syntax. In terms of breadth of module library, Python is
well served. Although Perl enjoys a wider module base, Python is said to
come “with batteries included”, meaning that it is distributed with a large
library of modules useful to most applications. Performance-wise, the “The
Computer Language Benchmarks Game”2 places Python as one of the fastest
scripting languages available, and with good perspective to become faster
thanks to the Google-funded optimization project “Unladden Swallow”3.

Having selected a programming language for ns-3, some design decisions
had to be taken:

1. Python bindings for ns-3 have to be an optional layer on top of the
C++ ns-3 library. In this way we avoid the run-time penalty of loading
Python bindings in situations where they are not needed, for instance
when deploying a protocol as a real implementation, as described in
Sec. 4.4;

2. Python bindings should not create binding state for objects until they
are effectively accessed from Python. In Python, each C++ object is
usually represented in the Python run-time by another object that is
called a “wrapper”. Such a wrapper should be created for each object
on demand;

3. Python bindings should have access to nearly the complete ns-3 API;

4. Maintaining Python bindings is tedious and error prone, especially if
full API coverage is targeted. An automated solution to scanning the
API is required;

5. It should, eventually, be possible to write new network models in
Python, for quick prototyping purposes. This means that the Python
bindings should allow the user to subclass an existing ns-3 class and
override a virtual method, for instance;

4.1.2 Related work

Several tools exist to create Python bindings for C/C++ code. The main
ones are:

2http://shootout.alioth.debian.org/
3http://code.google.com/p/unladen-swallow/
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SWIG: SWIG (Simplified Wrapper and Interface Generator) is a tool that
generates Python bindings from an interface description file. The main
problems that SWIG has are the following: 1) it is written in C++,
therefore is not possible to extend, 2) in order to support C++ classes
it generates a pure Python module as a layer on top of a functional
Python extension module, which is not very efficient, 3) the generated
C code makes extensive use of preprocessor macros, making it difficult
to follow and debug;

Boost-python: The Boost-python library is part of the Boost C++ project
which aims to produce a set of C++ libraries to extend the functional-
ity of C++. Writing Python extension modules with Boost-python is
made difficult due to the very cryptic compilation error messages that
are generated. Additionally, extension modules tend to be very large
and a bit slow. Finally, extending Boost-python to handle strange
cases can only be accomplished by experts in C++ template meta-
programming and Boost-python, due to the high complexity of the
code base;

SIP: SIP is another generator for Python binding to C++ code that is
written in C++. It generates efficient bindings, but it is not easily
extensible;

Pyrex/Cython: The “pyrex” project was renamed to “Cython”. It is a
tool to generate Python bindings based on an interface description file.
When we started developing the ns-3 Python bindings, Cython did not
have support for C++ classes, so it was not considered a viable option.

None of the existing Python bindings tools was considered adequate. It
has been clear from the start that, considering how ns-3 heavily extends the
C++ type system with reference counted objects, custom smart pointers,
callbacks objects, and object attributes, thanks to a heavy use of C++ tem-
plates, that any Python binding tool would need to be heavily customized
and extended. However, most of the existing bindings tools are written in
C++ and therefore are not easily extensible or modified. The case of Cython
is different in that it is written in Python, but did not support C++, and
is a highly complex system, being a complete compiler, not just a bindings
generator, so it is equally difficult to extend to suit ns-3’s purposes.
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4.1.3 PyBindGen

Considering the limitations of the available Python bindings technologies,
we developed a new Python binding tool from scratch, called PyBindGen
(Python Bindings Generator). The main features of this new tool are the
following:

1. Generates clean C or C++ code, almost as clean as what a human
programmer would write. This is important to allow one to debug the
generated binding code;

2. Generation is controlled exclusively by a Python API. This way we
avoid the need to create a new interface definition language, and reduce
the learning barrier. In addition, being a Python API, it makes it
easier for PyBindGen to be integrated into a larger code generation
framework, and designing it to be extensible via Python plugins is
made simple;

3. PyBindGen has support for allowing errors to be logged and ignored,
to make Python binding generation process more robust. This is im-
portant because, since the ns-3 API is very large and complex, and
some methods that cannot be wrapped will inevitably appear, we al-
low them to be ignored instead of causing build errors;

4. PyBindGen generates self-contained python bindings, that do not re-
quire PyBindGen headers or library to be installed in the target system
in which the bindings will be compiled or loaded. In addition, PyBind-
Gen itself is a small pure-Python module, that can be included (and
is included) in ns-3;

5. PyBindGen has support for most C++ features that ns-3 needs, in-
cluding templated methods and classes, function/method overloading,
virtual method re-implementation in Python, STL containers, refer-
ence counting, and smart pointers;

6. PyBindGen is able to scan C++ header files to find the API definitions
nearly without developer intervention. For this, it uses GCC-XML,
and the respective Python bindings, pygccxml.

Using PyBindGen to generate bindings for a C++ API is relatively sim-
ple. For instance, suppose we want to bind the C++ API defined by the
following header:
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#include <s t d i n t . h>

class C
{
public :

C ( ) ;
C ( u in t 32 t c ) ;
virtual ˜C ( ) ;

stat ic void DoA (void ) ;
void DoB (void ) ;
void DoC ( u in t 32 t c ) ;
u i n t 32 t DoD (void ) ;
virtual void DoE (void ) ;

private :
u i n t 32 t m c ;

} ;

The following Python script may be used to generate the respective
Python bindings:

import sys
from pybindgen import r e tva l , param , Module , Fi leCodeSink

mod = Module ( ’ c ’ )
mod . add inc lude ( ’ ”c . h” ’ )

C = mod . add c l a s s ( ’C ’ )
C. add cons t ruc to r ( [ ] )
C. add cons t ruc to r ( [ param( ’ u i n t 32 t ’ , ’ c ’ ) ] )
C. add method ( ’DoA ’ , None , [ ] , i s s t a t i c=True )
C. add method ( ’DoB ’ , None , [ ] )
C. add method ( ’DoC ’ , None , [ param( ’ u i n t 32 t ’ , ’ c ’ ) ] )
C. add method ( ’DoD ’ , r e t v a l ( ’ u i n t 32 t ’ ) , [ ] )
C. add method ( ’DoE ’ , None , [ ] , i s v i r t u a l=True )

mod . generate ( Fi leCodeSink ( sys . s tdout ) )

4.1.4 Ns-3 Python bindings

In ns-3, PyBindGen is used in the following manner:

• PyBindGen is instructed to handle ns-3 smart pointers (class ns3::Ptr);

• A custom type handler for “int argc, char *argv[]” pairs of pa-
rameters is registered used to wrap ns3::CommandLine::Parse;

• ns-3 objects are wrapped with customized constructor wrapper to call
ns3::CompleteConstruct, as required for ns-3 objects;
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• Python bindings generation have two stages: first the API is scanned,
periodically, using GCC-XML, and the result stored inside the ns-3
source code tree. For the other developers, the Python bindings can
simply be generated using the API definitions already scanned and
distributed, and they do not need to have GCC-XML installed;

• Hand-written wrappers for the ns3::Simulator::Schedule methods
are included;

• As part of the API scanning process, a list of Callback<> template
instantiations are recorded in a file, and during bindings code gener-
ation PyBindGen type handlers are registered, one for each callback
type.

The resulting ns-3 Python extension module provides an API that is a
simple and logical translation of the C++ API to Python. As an example
consider the example in Listing 4.1, which simply creates a node with two
sockets: one socket sends a packet to the localhost address via loopback
interface, and the other socket has a “receive callback” attached that receives
the packet. Both C++ and Python versions of the same simulation, where
we can see that the Python one is a simple translation of programming
language, albeit slightly smaller and more readable. Because the API is
basically the same in either C++ or Python, there is no additional learning
curve for developers to switch their programming language.

4.1.5 PyBindGen implementation approach

Some of the core PyBindGen classes are represented in Fig. 4.3. One of the
basic building blocks is the CodeSink class, which is a container for lines of
generated C code. It has methods to write lines of code, and automatically
indents the code; the methods indent() and unindent() can be called to
increase or decrease the amount of indentation. The class is abstract and is
implemented by two subclasses: FileCodeSink writes the lines of code to
a file, while MemoryCodeSink just records them in memory for later re-
trieval. The class DeclarationsScope keeps track of variable declarations.
It is useful for when we want to declare a new C variable but want to make
sure that our chosen variable name does not conflict with another variable
with same name already used in the same scope.

The class CodeBlock represents a block of C code, in other words
a code region. Its main function is to receive code lines, like CodeSink,
but it additionally contains a DeclarationsScope, and can generate code to
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Listing 4.1 A simple simulation script in C++ and equivalent Python

C++:

#include <iostream>

#include ”ns3/ core−module . h”
#include ”ns3/ he lper−module . h”
#include ”ns3/node−module . h”
#include ”ns3/ s imulator−module . h”

using namespace ns3 ;

Ptr<Packet> r e c e i v ed pa ck e t = NULL;

// Ca l l back to read the packe t
void r x c a l l b a c k ( Ptr<Socket> socke t )
{

r e c e i v ed pa ck e t = socket−>Recv ( ) ;
}

int main ( int argc , char ∗argv [ ] )
{

// Create an in t e rne t−enab led node
Ptr<Node> node = CreateObject<Node> ( ) ;
In t e rne tStackHe lpe r i n t e r n e t ;
i n t e r n e t . I n s t a l l ( node ) ;

// Create a soc k e t to r e c e i v e the UDP packe t
Ptr<Socket> s ink = Socket : : CreateSocket ( node ,

TypeId : : LookupByName ( ”ns3 : : UdpSocketFactory”
) ) ;

s ink−>Bind ( InetSocketAddress (
Ipv4Address : : GetAny ( ) , 80) ) ;

s ink−>SetRecvCallback (
MakeCallback (& r x c a l l b a c k ) ) ;

// Create a soc k e t to send a UDP packe t
Ptr<Socket> source = Socket : : CreateSocket (

node , TypeId : : LookupByName ( ”ns3 : :
UdpSocketFactory” ) ) ;

// Send the packe t to l o c a l h o s t por t 80
source−>SendTo ( Create<Packet> (19) , 0 ,

InetSocketAddress ( Ipv4Address ( ” 1 2 7 . 0 . 0 . 1 ” ) ,
80) ) ;

// Process the s imu la to r even t s
Simulator : : Run ( ) ;

s td : : cout << ”Received a packet with ” <<

r e c e i v ed packe t−>GetSize ( )
<< ” bytes . ” << std : : endl ;

S imulator : : Destroy ( ) ;

return 0 ;
}

Python:

import ns3

r e c e i v ed pa ck e t = None

# Cal l back to read the packe t
def r x c a l l b a c k ( socke t ) :

global r e c e i v ed pa ck e t
r e c e i v ed pa ck e t = socket . Recv ( )

# Create an in t e rne t−enab led node
node = ns3 . Node ( )
i n t e r n e t = ns3 . In te rne tStackHe lpe r ( )
i n t e r n e t . I n s t a l l ( node )

# Create a soc k e t to r e c e i v e the packe t
s ink = ns3 . Socket . CreateSocket (

node , ns3 . TypeId . LookupByName( ”ns3 : :
UdpSocketFactory” ) )

s ink . Bind ( ns3 . InetSocketAddress ( ns3 .
Ipv4Address . GetAny ( ) , 80) )

s ink . SetRecvCallback ( r x c a l l b a c k )

# Create a soc k e t to send a UDP packe t
source = ns3 . Socket . CreateSocket (

node , ns3 . TypeId . LookupByName( ”ns3 : :
UdpSocketFactory” ) )

# Send the packe t to l o c a l h o s t por t 80
source . SendTo ( ns3 . Packet (19) , 0 ,

ns3 . InetSocketAddress ( ns3 .
Ipv4Address ( ” 1 2 7 . 0 . 0 . 1 ”
) , 80) )

# Process the s imu la to r even t s
ns3 . S imulator .Run( )

print ”Received a packet with %i bytes . ”
% ( r e c e i v ed pa ck e t . GetSize ( ) , )
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Figure 4.3: PyBindGen class diagram
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handle error conditions. Handling error conditions in C is far from trivial
because we have to keep track of all memory allocations that have been
done previously and free all memory before returning. CodeBlock keeps
track of “cleanup actions”, which is C code to free memory that needs to be
generated before returning from an error condition. In addition, the method
write_error_check writes a C if statement that checks if a failure occurred
and if so frees all memory and returns the error code.

Finally we have the main class for generating wrappers: ForwardWrap-
perBase. In Python bindings terminology, a “wrapper” is a C function that
is invoked by the Python runtime, as a result of the corresponding Python
function being called, and translates the python function call into the cor-
responding C function call. Python function wrappers invariably have the
following general structure:

1. PyObject* function_wrapper (PyObject *self, PyObject *args,

PyObject *kwargs) {

Basically we declare that the wrapper returns a python object, and it
receives three python objects:

self – the instance of the method (this parameter is not used for func-
tion wrappers, only for constructors and methods of classes;

args – this is a python tuple object containing the function parame-
ters that are not expressed as named parameters;

kwargs – this is a python dict object containing the function param-
eters that are expressed as named parameters;

2. “code before parsing parameters”, e.g. initializing variables;

3. Parsing of parameters, via PyArg_ParseTupleAndKeywords;

4. “code before calling the C function”, for instance additional parameter
validation;

5. Call the C function;

6. “code after calling the C function”, such as preparing the return value;

7. return the return value;

The ForwardWrapperBase class is designed to be extensible. To that
end, it only provides a basic framework for generating the wrapper, but
other parts of PyBindGen are responsible for actually supplying the code
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for it to generate. Each of the code regions listed above is extensible: “code
before parsing parameters”, “code before calling the C function”, and “code
after calling the C function” are exposed as CodeBlock attributes of the
wrapper, and the parameters used in the PyArg_ParseTupleAndKeywords

are controlled by a ParseParameters class instance, also exposed as at-
tribute. Most important for the code generation is the Parameter class,
representing a single parameter for the function. The main properties of
a function parameter are its C type and name. To generate code, For-
wardWrapperBase calls the method convert_python_to_c of each of its
parameters, passing itself as a “wrapper” parameter. Thus, the Parameter
class implementation can add code to each of the ForwardWrapperBase
extension points. In the end, ForwardWrapperBase only has to aggregate
all the generated code and write it to the file in the correct order.

4.1.6 PyBindGen performance evaluation

To evaluate the performance of PyBindGen, we ran a series of microbench-
marks over a simple C++ API to be tested, shown in Listing 4.1.6. The
benchmark tests are numbered 1 to 10, and consist of some Python code in-
voking operations over the C++ API using the Python bindings, repeating
the operation a number of times, and measuring the time taken to complete.
As a basis for comparison, we generated Python bindings using four tools:
Boost.Python, SWIG, SIP, and PyBindGen. The benchmark tests are as
follows:

1. The function “func1” is invoked with no arguments. The objective of
this test is to measure performance of a simple function call;

2. The function “func2” is invoked with three literal floating point ar-
guments. The objective of this test is to measure performance of a
simple function call when function parameter parsing is involved;

3. The class “Multiplier” is instantiated, with no constructor arguments.
The objective of this test is to measure the time taken to create a new
instance of a wrapped C++ class;

4. The class “Multiplier” is instantiated, with a single float constructor
argument. The objective of this test is to measure the time taken to
create a new instance of a wrapped C++ class, but also to test the
performance when constructor overloading (multiple constructors for
the same class with different parameter types);
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Listing 4.2 C++ API used in PyBindGen benchmark tests

void func1 (void ) ;
double func2 (double x , double y , double z ) ;

class Mul t i p l i e r
{

double m factor ;

public :
Mu l t i p l i e r ( ) ;
Mu l t i p l i e r (double f a c t o r ) ;
virtual ˜Mu l t i p l i e r ( ) ;

void SetFactor (double f ) ;
void SetFactor (void ) ;
double GetFactor ( ) const ;
virtual double Mult ip ly (double value ) const ;

} ;

double c a l l v i r t u a l f r om cpp ( Mu l t i p l i e r const ∗obj , double value ) ;

5. The method “GetFactor” of a preexisting “Multiplier” instance is
called with no arguments. This test is to measure simple method
call a C++ object;

6. The method “SetFactor” of a preexisting “Multiplier” instance is called
with no arguments. This test is to measure simple method call a C++
object, with overloading involved;

7. The method “SetFactor” of a preexisting “Multiplier” instance is called
with a single literal float argument. Again, tests the method call, but
now with a different method call signature due to different passed
parameters;

8. The method “Multiply” of a preexisting “Multiplier” instance is called
with a single literal float argument. This tests the performance of
calling a virtual method of a C++ class, which may be overridden in
Python, but in this case is not;

9. The class “Multiplier” is subclassed, and the method “Multiply” is
overridden in Python. The new implementation just chains to the base
class implementation. An instance of the new Python-defined class is
created, and then the test consists of calling the method “Multiply”
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of this object with a single literal float parameter. This tests the
performance of calling a virtual method of a C++ class, which in this
case is overridden in Python;

10. The same object used in the previous test is used again to test calling
a Python-overridden virtual method from C++. Instead of calling
“Multiply” directly, we call a C++ function that calls this virtual
method for us. This tests the performance of calling a virtual method
of a C++ class, which in this case is overridden in Python. The
difference from the previous case is that here the virtual method call
is routed through C++, which takes a different performance penalty.

For each test, the operation is repeated ten million times, except in the
last two tests that only repeat 2.5 million times. The results, in Fig. 4.4, are
the execution time for each test and each tool relative to that of PyBindGen.
For instance, we can see from the figure that test 5 (simple method call)
takes nearly 3 times longer to complete in Boost.Python and SWIG than in
PyBindGen. The SWIG tool is proved to be particularly bad at creating new
objects, taking 7 or 25 times more time to create an object than PyBindGen,
depending on the constructor invoked. PyBindGen is generally much faster
than SWIG or Boost.Python, and is slightly faster in most tests than SIP.

These tests evidence a weakness of PyBindGen when dealing with over-
loaded constructors methods. The way PyBindGen handles overloading is
by generating a different wrapper function for each different signature of the
function, constructor, or method. Afterwards, an additional “master wrap-
per” is generated that calls each of the wrappers in sequence until one of
them succeeds in parsing the parameters. Because multiple wrappers may
be called with the incorrect signature, and for each tried incorrect signature
a Python exception is generated, calling overloaded methods can take a lot
of time. This is one area of PyBindGen that needs improvement, and which
penalizes PyBindGen considerably when compared to SIP, for instance.

Another basis for comparison is the extension module file size, shown in
Fig. 4.5. These sizes refer to the python extension module used above for
the microbenchmarks, when compiled with optimization and no debugging
symbols with GCC x86 64 on Ubuntu 9.104. The Python module gener-
ated by PyBindGen is much smaller than the one generated by SWIG or
Boost.Python. It is also slightly smaller than the one generated by SIP, in
spite of SIP module not being standalone and requiring a SIP library to

4The software versions were: GCC 4.4.1, Python 2.6.4, SWIG 1.3.36, Boost.Python
1.38.1, and SIP 4.9.1-snapshot-20091015.
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Figure 4.4: PyBindGen performance test results

be available in the system, in contrast with the PyBindGen module that
requires no external library.

4.1.7 Summary

In this section we presented the motivation for providing a scripting inter-
face for ns-3. Basically, a scripting interface is not a requirement to write
simulations effectively, but is something that can speed up writing of sim-
ulation scenarios considerably. The ns-2 scripting interface, based on TCL,
was explored and the main shortcomings identified. Some requirements for
the ns-3 scripting interface were presented, and the “Python” programming
language was found to be the best candidate to fulfill those requirements.
Having selected a programming language, existing programming tools to
bind C++ code to Python were discussed, and found to be suboptimal in a
number of criteria.

As a result of our development efforts, a new tool called PyBindGen was
developed to enable developers to bind C++ libraries to Python, and this
tool was applied to ns-3 to produce in the current ns-3 Python bindings.
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Figure 4.5: PyBindGen shared library size comparison

The ns-3 Python bindings are easy to maintain due to the automatic C++
header scanning ability of PyBindGen, cover most of the ns-3 C++ API,
and do not deviate from the C++ API, making switching between the two
languages relatively straightforward. The PyBindGen tool is then evaluated
in terms of performance and is found to have much better performance
than Boost.Python or SWIG. PyBindGen has similar performance to SIP,
but is much more extensible via Python plugin code, and is more portable.
Table 4.1 summarises the main differences found in the different tools.

Since a copy of PyBindGen is included in ns-3, and ns-3 has been down-
loaded thousands of times, it seems correct to assume that PyBindGen has
been downloaded thousands of times by ns-3 researchers. It is also a suc-
cessful open source project in its own right; the PyBindGen official released
version 0.15 has been downloaded separately (not including the ns-3 down-
loads) 1148 times between the time of its release (August 15th 2010) and
October 14th 2011.

4.2 Ns-3 flow monitor

Network monitoring is accomplished by inspecting the traffic in a network;
this technique can be employed for purposes such as: fault detection — to
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PyBindGen Boost.Python SWIG SIP

Extensible Yes Difficult No No
Gen. code readability High N/A Low Medium
Gen. code size Low High High Low
Performance High Low Low High
Gen. code has external
dependencies

No Yes No Yes

Automatic scanning of
C++ headers

Yes Yes (Py++) No No

Table 4.1: Comparison of Python bindings generators

detect disruptions in the network connectivity, routing or services; perfor-
mance evaluation — to measure the network utilization or the performance
of network protocols; security monitoring — to detect possible security prob-
lems; and Service Level Agreements (SLA) monitoring — to verify if a given
network service is performing as specified in contract.

Network monitoring may pose the following problems: 1) monitoring
strategy—it can follow a passive approach, where the traffic present in the
network is measured, or an active approach, where test traffic is injected
in the network for testing purposes. In both cases the data collected can
then be sent to a central point where a complete picture of the network is
computed; 2) monitoring points — not every network element can be easily
monitored because nodes may lack a monitoring interface such as the Sim-
ple Network Monitoring Protocol (SNMP), or nodes may not support the
installation of additional software. Monitoring points also depend on the
test objective which can be monitoring network links, monitoring network
queue dynamics, or monitoring the traffic generated by specific server ap-
plications; 3) monitoring duration — it must be large enough to enable the
gathering of statistically sound results, what implies that a relevant number
of events must be captured; this duration may be difficult to define in the
passive approach, since the rate of relevant events is, a priori, unknown;
4) synchronization — we may be interested in monitoring a sequence of
events that might be difficult to synchronize in scenarios involving several
nodes; 5) transparency — because network monitoring often uses the same
resources to transmit regular traffic and monitoring control traffic, we may
say that monitoring may affect the results.

In network simulation environments, network monitoring is used mostly
for characterizing the performance of network protocols. Monitoring in a
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simulation environment differs from monitoring in real networks in a set of
aspects: a) active monitoring is implicitly employed since the traffic injected
in a simulated network is controlled and defined statistically; b) installing
probing functions to inspect the traffic and queue dynamics is feasible and
easy, and there is no need to use monitoring protocols such as SNMP, since
the results are easily gathered as data resides in the same process; c) moni-
toring is less intrusive because the monitoring data needs not to traverse and
use the network resources; d) events are easily synchronized because network
simulators use the same simulation timer and scheduler; e) scenarios of lots
of nodes can be easily addressed.

Network monitoring in simulated environments do present some prob-
lems: the simulation models may not be accurately designed and produce
results that may diverge from the actual protocols. Gathering of results
requires the researcher to develop a great deal of code and possibly to know
and use different scripting languages. This may be aggravated by the un-
willingness of the researcher to dedicate more effort to programming tasks,
rather than focusing on the research. This may also lead to lower quality
simulation models.

This section introduces the FlowMonitor, a network monitoring frame-
work for the Network Simulator 3 (ns-3) which can be easily used to collect
and store network performance data from a ns-3 simulation. The main goals
behind the FlowMonitor development are to automate most of the tasks of
dealing with results gathering in a simple way, to be easily extended, and
to be efficient in the consumption of memory and CPU resources.

4.2.1 The FlowMonitor ns-3 module

Requirements

When designing the flow monitoring framework, FlowMonitor, a set of goals
were taken into consideration, covering aspects such as usability, perfor-
mance goals, and flexibility.

First, and foremost, the monitoring framework should be as easy to use
as possible. Simulation is already very hard work, and researchers need
to focus more on their research rather than spend time programming the
simulator. The flow monitoring framework must be easy to activate with
just a few lines of code. Ideally, the user should not have to configure any
scenario-specific parameters, such as list of flows (e.g. via IP address and
port src/dest tuples) that will be simulated, since these are likely to change
for numerous reasons, including varying simulation script input parameters
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and random variable seed. The list of flows to measure should itself be
detected by the flow monitor in runtime, without programmer intervention,
much like the existing “ascii” and “pcap” trace output functions do already
in ns-3.

Another important concern is regarding the perfect amount of data to
capture. Clearly, too little data can be risky for a researcher. A complex
series of simulations, including varying input parameters, and multiple runs
for generating good confidence intervals, can take between a few minutes to
a few days to complete. It can be very frustrating to wait for simulation
results for days only to discover in the end that there was something that
we forgot to measure and which is important, causing the researcher to code
in the additional parameter measurement and wait a few more days for new
simulations to be run. Ideally, the simulation framework should attempt
to include a reasonably complete information set, even though most of the
information may not be needed most of the time, as long as it does not
consume too much memory. A large data set is also useful because, in this
way, the researcher is able to run the same simulations once, but analyze
the results multiple times using multiple views. The reverse is also true.
We do not want to save too much information regarding flows. Too much
information is difficult to store and transmit, or can significantly increase
the memory footprint of the simulation process. For instance, it is preferable
to use histograms whenever possible rather than per-packet data, since per-
packet data does not scale well with the simulation time. Histograms, on the
other hand, do not grow significantly with the number of packets, only with
the number of flows, while still being very useful for determining reasonably
good approximations of many statistical parameters.

It is also a goal of this framework that the produced data can be easily
processed in order to obtain the final results, such as plots and high-level
statistics. As mentioned earlier, researchers usually need to analyze the
same data multiple times for the same simulations, which means that this
data should end up on a persistent storage medium eventually. Prime can-
didates for storage are 1) binary files (e.g. HDF), 2) ASCII traces, 3) XML
files, and 4) SQL database. It is not completely clear which one of these
storage mediums is the best, since each one has its drawbacks. Binary files,
for instance, can store information efficiently and allow fast data reading,
but are difficult to programmatically read/write, and difficult to extend to
accommodate new information once the format has been defined, jeopardiz-
ing future extensibility. ASCII traces (line-by-line textual representation of
data) are verbose (high formatting overhead), difficult to extend, and poten-
tially slow to read. XML files have excellent extensibility traits, but are also



4.2. NS-3 FLOW MONITOR 139

verbose, slow to read for large data sets, and require everything to be read
into memory before any data filtering can be performed. SQL databases,
on the other hand, are very efficient reading and filtering data without re-
quiring much process memory, but can also be difficult to manage (except
file embedded ones, like SQLite), difficult to extend with new information,
and more difficult than textual files to find out how to read the data, since
the data format can only be discovered by reading the documentation of the
software that produced it or by using a database access GUI tool.

Initially, we have opted to support only XML for data storage output, as
well as provide access to in-memory data structures. Since the FlowMonitor
collects reasonably summarized information, it is not expected that XML
trees will be very large, and reading such XML trees into memory is not
a problem with today’s computing resources. XML presents an important
advantage over any other format, which is the large set of programming
libraries for reading XML, for almost every programming language, and
almost any platform. Especially in scripting languages, such as Python,
reading XML is relatively straightforward, and requires no additional pro-
gramming language, such as SQL. However, this issue is highly debatable,
and so all the FlowMonitor data structures are made available for those who
wish to serialize data into another storage format.

Support for Python based simulations is also one of the main design
goals. The ns-3 Python bindings lack support for connecting callbacks
to trace sources (Config::Connect, Object::TraceConnect and related
APIs). Although supporting trace source callbacks in Python is desired
and planned, the main reason for the lack of interest in implementing this
feature stems from the awareness that allowing Python to do per-packet
tracing operations would just slow down the simulations to the point of not
being practical. The reasons for this slowdown include the need to, on a
per-call basis, acquire the Python GIL (Global Interpreter Lock), convert
the C++ parameters into Python format, call the Python code, convert the
return values from Python into C++ format, and finally release the GIL.
In order to effectively collect data for Python based simulations we need a
“configure and forget” approach, wherein a C++ class is made responsible
for the actual tracing and reports back to Python just the final results, at
the end of the simulation.

The FlowMonitor architecture is also designed with extensibility in mind.
One use case of simulation is to research next-generation networks, which
may not even use IPv4, or IPv6. For instance, a researcher could be simulat-
ing an MPLS switching fabric, whose data plane encapsulates 802.3 frames,
so we need extensibility at the packet acquisition level to accommodate dif-
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Figure 4.6: High level view of the FlowMonitor architecture

ferent data planes. Alternatively, the concept of “flow” may differ from the
usual five-tuple (source-ip, dest-ip, protocol, source-port, dest-port). For in-
stance, someone may want to classify flows by a “flow label” or DSCP IPv4
field. Therefore we also need an extensible flow classification mechanism.

Finally, there is the obvious, but ever so important, requirement of low
monitoring overhead. While it is true that some memory and computation
overhead cannot be avoided when monitoring flows, this overhead should be
as low as can be reasonably expected.

Architecture Overview

The FlowMonitor module is organized into three groups of classes, as shown
in Fig. 4.6. The group of “core” classes comprises the FlowMonitor class,
FlowProbe, and FlowClassifier. The FlowMonitor class is responsible for co-
ordinating efforts regarding probes, and collects end-to-end flow statistics.
The FlowProbe class is responsible for listening for packet events in a specific
point of the simulated space, report those events to the global FlowMoni-
tor, and collect its own flow statistics regarding only the packets that pass
through that probe. Finally, the class FlowClassifier provides a method to
translate raw packet data into abstract “flow identifier” and “packet identi-
fier” parameters. These identifiers are unsigned 32-bit integers that uniquely
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identify a flow and a packet within that flow, respectively, for the whole
simulation, regardless of the point in which the packet was captured. These
abstract identifiers are used in the communication between FlowProbe and
FlowMonitor, and all collected statistics reference only those abstract iden-
tifiers in order to keep the core architecture generic and not tied down to
any particular flow capture method or classification system.

Another group of classes provides a “default” IPv4 flow monitoring
implementation. The classes Ipv4FlowProbe and Ipv4Classifier subclass
the abstract core base classes FlowProbe and FlowClassifier, respectively.
Ipv4FlowClassifier classifies packets by looking at their IP and TCP/UDP
headers. From these packet headers, a tuple (source-ip, destination-ip, pro-
tocol, source-port, destination-port) is created, and a unique flow identifier
is assigned for each different tuple combination. For each node in the sim-
ulation, one instance of the class Ipv4FlowProbe is created to monitor that
node. Ipv4FlowProbe accomplishes this by connecting callbacks to trace
sources in the Ipv4L3Protocol interface of the node. Some improvements
were made to these trace sources in order to support the flow monitoring
framework.

Finally, there is also a “helper” group consisting of the single class Flow-
MonitorHelper, which is modeled in the usual fashion of existing ns-3 helper
classes. This helper class is designed to make the most common case of
monitoring IPv4 flows for a set of nodes extremely simple. It takes care of
all the details of creating the single classifier, creating one Ipv4FlowProbe
per node, and creating the FlowMonitor instance.

To summarize this high level architecture view, a single simulation will
typically contain one FlowMonitorHelper instance, one FlowMonitor, one
Ipv4FlowClassifier, and several Ipv4FlowProbes, one per Node. Probes cap-
ture packets, then ask the classifier to assign identifiers to each packet, and
report to the global FlowMonitor abstract flow events, which are finally used
for statistical data gathering.

Flow Data Structures

The main result of the flow monitoring process is the collection of flow statis-
tics. They are kept in memory data structures, and can be retrieved via sim-
ple “getter” methods. As seen Fig. 4.7, there are two distinct flow statistics
data structures, FlowMonitor::FlowStats and FlowProbe::FlowStats. The
former contains complete end-to-end flow statistics, while the latter con-
tains only a small subset of statistics and from the point of view of each
probe.
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Figure 4.7: Data collected by the FlowMonitor
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In order to understand the main utility of FlowProbe statistics, consider
a simple three-node network, A ↔ B ↔ C. Consequently, we will have5

three probes, PA, PB, and PC . When a packet is transmitted from A to
C passing through B, the probe PA will notice the packet and create a
FlowProbe::FlowStats structure for the flow, storing a delayFromFirst-
ProbeSum value of zero. Next, the probe PB will detect the packet being
forwarded, and will increment the value of delayFromFirstProbeSum in
its own FlowStats structure by the transmission delay from A to B. Finally,
the packet arrives at C and will be detected by PC , which then adds to its
delayFromFirstProbeSum the delay between A and C. In the end, we
are able to extract not only end-to-end mean delay but also partial delays
that the packet experiences along the path. This type of probe-specific
information can be very helpful in ascertaining what part of the network is
responsible for the majority of the delay, for instance. Such level of detail is
missing from the FlowMonitor::FlowStats structure alone.

What follows is a more detailed description of the individual attributes
in the flow data structures. In FlowMonitor::FlowStats, the following at-
tributes can be found:

timeFirstTxPacket Contains the absolute time when the first packet in
the flow was transmitted, i.e. the time when the flow transmission
starts;

timeLastTxPacket Contains the absolute time when the last packet in
the flow was transmitted, i.e. the time when the flow transmission
ends;

timeFirstRxPacket Contains the absolute time when the first packet in
the flow was received by an end node, i.e. the time when the flow
reception starts;

timeLastRxPacket Contains the absolute time when the last packet in
the flow was received, i.e. the time when the flow reception ends;

delaySum Contains the sum of all end-to-end delays for all received packets
of the flow;

jitterSum Contains the sum of all end-to-end delay jitter (delay variation)
values for all received packets of the flow. Here we define jitter of

5Note: in the abstract base architecture it is not implied that there is one probe per
node; however, for the sake of this example we will assume the IPv4 flow monitoring case,
which does make such assumption.
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a packet as the delay variation relatively to the last packet of the
stream, i.e. Jitter {PN} = |Delay {PN} −Delay {PN−1}|. This def-
inition is in accordance with the Type-P-One-way-ipdv as defined in
IETF RFC 3393;

txBytes, txPackets Total number of transmitted bytes and packets, re-
spectively, for the flow;

rxBytes, rxPackets Total number of received bytes and packets, respec-
tively, for the flow;

lostPackets Total number of packets that are assumed to be lost, i.e. those
that were transmitted but have not been reportedly received or for-
warded for a long time. By default, packets missing for a period of
over 10 seconds are assumed to be lost, although this value can be
easily configured in runtime;

timesForwarded Contains the number of times a packet has been report-
edly forwarded, summed for all packets in the flow;

delayHistogram, jitterHistogram, packetSizeHistogram Histogram ver-
sions for the delay, jitter, and packet sizes, respectively;

packetsDropped, bytesDropped These attributes also track the num-
ber of lost packets and bytes, but discriminates the losses by a rea-
son code. This reason code is usually an enumeration defined by the
concrete FlowProbe class, and for each reason code there may be
a vector entry indexed by that code and whose value is the num-
ber of packets or bytes lost due to this reason. For instance, in
the Ipv4FlowProbe case the following reasons are currently defined:
DROP_NO_ROUTE (no IPv4 route found for a packet), DROP_TTL_EXPIRE
(a packet was dropped due to an IPv4 TTL field decremented and
reaching zero), and DROP_BAD_CHECKSUM (a packet had bad IPv4 header
checksum and had to be dropped).

Some interesting metrics can be derived from the above attributes. For
instance:

mean delay: delay = delaySum
rxPackets

mean jitter: jitter = jitterSum
rxPackets−1

mean transmitted packet size (byte): Stx = txBytes
txPackets
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mean received packet size (byte): Srx = rxBytes
rxPackets

mean transmitted bitrate (bit/s):

Btx =
8 · txBytes

timeLastTxPacket− timeFirstTxPacket

mean received bitrate (bit/s):

Brx =
8 · rxBytes

timeLastRxPacket− timeFirstRxPacket

mean hop count: hopcount = 1 + timesForwarded
rxPackets

packet loss ratio: q = lostPackets
rxPackets+lostPackets

Some of the metrics, such as delay, jitter, and packet size, are too impor-
tant to be summarized just by the sum, count and, indirectly, mean values.
However, storing all individual samples for those metrics does not scale well
and is too expensive in terms of memory/storage. Therefore, histograms
are used instead, as a compromise solution that consumes limited memory
but is rich enough to allow computation of reasonable approximations of im-
portant statistical properties. In FlowMonitor, the class Histogram is used
to implement histograms. It offers a single method to count new samples,
AddValue, a method to configure the bin width, SetBinWidth, and methods
to retrieve the histogram data: GetNBins, GetBinStart, GetBinEnd, Get-
BinWidth, GetBinCount. From this data, estimated values for N (number
of samples), µ (mean), and s (standard error) can be easily computed. From
the equations found in [80] (Chapter 2), we can derive:

N =
M−1
∑

i=0

Hi

µ =
1

N

M−1
∑

i=0

CiHi

s2 =
1

N − 1

M−1
∑

i=0

(Ci − µ)2Hi

In the above equations, M represents the number of bins, Hi represents
the count of bin i, and Ci the center value of bin i.

In FlowProbe::FlowStats some additional attributes can be found on a
per-probe/flow basis:
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delayFromFirstProbeSum Tracks the sum of all delays the packet ex-
perienced since being reportedly transmitted. The value is always
relative to the time the value was initially detected by the first probe;

bytes, packets number of bytes and packets, respectively, that this probe
has detected belonging to the flow. No distinction is made here be-
tween first transmission, forwarding, and reception events;

bytesDropped, packetsDropped tracks bytes and packets lost qualified
by reason code, similarly to the attributes with the same name in
FlowMonitor::FlowStats.

Example

To demonstrate the programming interfaces for using FlowMonitor, we cre-
ate a simple simulation scenario, illustrated in Fig. 4.8, with a grid topology
of 3× 3 WiFi adhoc nodes running the OLSR protocol. The nodes transmit
CBR UDP flows with transmitted bitrate of 100 kbit/s (application data,
excluding UDP/IP/MAC overheads), following a simple node numbering
strategy: for i in 0..8, node Ni transmits to node N8−i.

It is out of scope of this study to present the full example program source
code6. Suffice to say that enabling the flow monitor is just the matter of
replacing the line
ns3.Simulator.Run(), with something like this (using the Python lan-
guage):

f lowmon helper = ns3 . FlowMonitorHelper ( )
monitor = f lowmon helper . I n s t a l l A l l ( )
monitor . Se tAtt r ibute ( ”DelayBinWidth” ,

ns3 . DoubleValue ( 0 . 0 0 1 ) )
monitor . Se tAtt r ibute ( ” JitterBinWidth ” ,

ns3 . DoubleValue ( 0 . 0 0 1 ) )
monitor . Se tAtt r ibute ( ”PacketSizeBinWidth” ,

ns3 . DoubleValue (20 ) )

ns3 . S imulator .Run( )

monitor . Se r i a l i z eToXmlF i l e ( ” r e s u l t s . xml” , True , True )

What the above code does is:

1. Create a new FlowMonitorHelper object;

6The complete source code is available online, at
http://code.nsnam.org/gjc/ns-3-flowmon
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Figure 4.8: Flow Monitor example network topology

2. Call the method InstallAll on this object. As a result, the flow monitor
will be created and configured to monitor IPv4 in all the simulation
nodes;

3. Configure some histogram attributes;

4. Run the simulation, as before, calling ns3.Simulator.Run();

5. Finally, write the flow monitored results to a XML file named “re-
sults.xml”. The second parameter of SerializeToXmlFile indicates if
we wish to also save the histogram contents, and the third parameter
indicates if we wish to save per-probe flow statistics.

To present the results, one would have to write a program that reads
the data from XML and creates plots. For instance, the Python program
in List. 4.3 reads the XML file and plots the histograms of 1) received bi-
trates, 2) packet losses, and 3) delays, for all flows. The program uses the
Python XML parsing module ElementTree for reading the XML file, and
the matplotlib module for generating the plots. The results in Fig. 4.9 are
obtained from this, and show that most flows achieved an actual throughput
of around 105 kbit/s, except for one flow that only transferred less than 86
kbit/s. Packet losses were generally low except for two flows. Finally, mean
delays vary between ≈ 20 ms and ≈ 70 ms.

4.2.2 Validation and Results

For validation and obtaining results, we begin by describing a simple network
scenario, which is then used for validation purposes. Finally performance is
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Listing 4.3 Sample script to read and plot the results

et = ElementTree . parse ( sys . argv [ 1 ] )
b i t r a t e s = [ ]
l o s s e s = [ ]
de lays = [ ]
for f l ow in et . f i n d a l l ( ”FlowStats /Flow” ) :

# f i l t e r out OLSR
for t p l in et . f i n d a l l ( ” I pv4F l owC la s s i f i e r /Flow” ) :

i f t p l . get ( ’ f l owId ’ ) == f low . get ( ’ f l owId ’ ) :
break

i f t p l . get ( ” de s t i na t i onPor t ” ) == ’ 698 ’ :
continue

l o s s e s . append ( i n t ( f low . get ( ’ l o s tPacke t s ’ ) ) )

rxPackets = in t ( f low . get ( ’ rxPackets ’ ) )
i f rxPackets == 0 :

b i t r a t e s . append (0 )
else :

t0 = long ( f low . get ( ’ t imeFirstRxPacket ’ ) [ : −2 ] )
t1 = long ( f low . get ( ’ timeLastRxPacket ’ ) [ : −2 ] )
durat ion = ( t1 − t0 )∗1 e−9
b i t r a t e s . append (8∗ long ( f low . get ( ’ rxBytes ’ ) )

/ durat ion ∗ 1e−3)

de lays . append ( f l o a t ( f low . get ( ’ delaySum ’ ) [ : −2 ] )
∗ 1e−9 / rxPackets )

pylab . subp lot (311)
pylab . h i s t ( b i t r a t e s , b ins=40)
pylab . x l ab e l ( ”Flow b i t r a t e ( b i t / s ) ” )
pylab . y l ab e l ( ”Number o f f l ows ” )

pylab . subp lot (312)
pylab . h i s t ( l o s s e s , b ins=40)
pylab . x l ab e l ( ”Number o f l o s t packets ” )
pylab . y l ab e l ( ”Number o f f l ows ” )

pylab . subp lot (313)
pylab . h i s t ( de lays , b ins=10)
pylab . x l ab e l ( ”Delay ( s ) ” )
pylab . y l ab e l ( ”Number o f f l ows ” )

pylab . s ubp l o t s ad j u s t ( hspace =0.4)
pylab . s a v e f i g ( ” r e s u l t s . pdf ” )
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Figure 4.9: Flow Monitor example program results

evaluated using the same scenario and varying the network size.

4.2.3 Test scenario

Fig. 4.10 shows the network topology and flow configuration for the test
scenario. It consists of a number of rows of nodes, each row containing a
number of nodes, with each node connected to the next one via a point-to-
point link. From left to right, a link is configured with 100 kbit/s, then the
next link is configured with 50 kbit/s, the next with 100 kbit/s again, and
so on. The configured delay is zero, and the drop tail queue maximum size

Figure 4.10: Flow Monitor test scenario
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is 100 packets. The rows are not vertically connected. The ns-3 Global-
RoutingManager is used to compute the routing tables at the beginning of
the simulation. Flows are created at the beginning of the simulation. Every
other node sends one 100 kbit/s UDP flow7 to the node that is two hops to
the right, and sends another flow to the node that is two hops to the left.
Packet size is the default 512 byte UDP payload.

Validation

To validate the flow monitor, we begin by examining the test scenario and
deriving some theoretical flow metrics, which are then compared to values
obtained by the measurements done with the help of the FlowMonitor mod-
ule.

The test topology is relatively simple to analyze. In the first link, be-
tween the first and second nodes, we have one 100 kbit/s UDP flow in each
direction. For each flow, the first hop of the flow traverses a link whose
capacity matches exactly the flow link-layer bitrate. Thus, packet loss rate
will be zero, and queueing delay will also be null. However, when the flow
reaches the second hop it will have to be transmitted by a link that is half
the capacity of the flow bitrate. Consequently, after a few seconds the drop-
tail queue will fill to maximum capacity, causing a queueing delay, and half
the packets will have to be dropped due to the bottleneck link.

We can derive the estimated values for delays, losses, and bitrates of
each flow. We define S as the number of bits in each packet, S = (512 +
20 + 8 + 2) × 8 = 4336 bit, and C1 the bitrate of the link layer of the 100
kbit/s link, C1 = 100000 bit/s. Then, the delay in the first hop, where there
is no queueing, is simply the transmission delay, d1 = S

C1
= 0.04336 s. In

steady state, the second hop drop-tail queue will be filled, and so packets will
experience a delay corresponding to transmitting 99 packets ahead in the
queue, plus the packet itself, plus the packet that the PPP device is currently
transmitting. Since the second hop has lower bitrate, C2 = 50000 bit/s, and
so d2 = 101× S

C2
= 8.75872 s. Thus, the total end-to-end delay experienced

by the flow will be d1 + d2 = 8.80208 s. Regarding packet losses, each flow
traverses two hops. As previously explained, packet drop probabilities will
be 0 and 0.5 for the first and second hop, respectively. Thus, the end-to-
end packet probability will be 0.5 for each flow. Consequently, the received
bitrate should be half the transmitted bitrate.

7Actually, at application layer the flow bitrates are 94.465 kbit/s, so that with UDP,
IPv4, and MAC header overhead the bitrate is exactly 100 kbit/s at link layer.
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Metric Measured Value (95% C. I.) Expected Value Mean Error

Tx. bitrate 99646.06± 2.68× 10−5 99631.00 +0.015 %
Rx. bitrate 49832.11± 7.83× 10−5 49815.50 +0.033 %
Delays 8.8005± 8.8× 10−9 8.80208 -0.018 %
Losses 0.4978± 1.5× 10−6 0.5000 -0.44 %

Table 4.2: Validation results

The validation results in Tab. 4.2 show that, for a scenario with 2704
nodes (i.e. 1352 flows), the measured results (for 10 simulations) match the
theoretical values within a very small margin of error. The expected values
for transmitted bitrate is slightly less than 100 kbit/s due to the translation
from layer-2 to layer-3, taking into account the factor 512+20+8

512+20+8+2 due to the
PPP header not being present where packets are monitored by the Flow-
Monitor. Same reasoning applies to the received bitrate. The errors found
between estimated and measured values are negligible for transmitted/re-
ceived bitrates and delays, and are likely a result of sampling issues and/or
numeric errors. The error in the packet loss ratio is slightly larger, but this
error is not of great significance. This error can be explained by the method
of measuring losses used by the FlowMonitor, wherein a packet is considered
lost if it has not been reported by any probe to have been received or re-
transmitted for a certain period of time, i.e. only packets that are “missing
in action” are considered lost. Naturally, at the end of simulation a number
of packets are still in transit, some of which could have been lost, but the
potential packet losses are not accounted for, hence the error. In Chapter 5
we mention a possible way to overcome this error, as future work.

4.2.4 Performance Results

To evaluate the overhead introduced by flow monitoring, we ran a series of
simulations, increasing the network size between 16 and 2704 nodes, and
measuring the time taken to simulate each scenario, and memory consump-
tion (virtual memory size), 1) without collecting any results, 2) with flow
monitoring, and 3) with ascii tracing to a file. We repeat each experiment
10 times with different random variable seeds. The performance results in
Fig. 4.11 show the additional overhead, in terms of memory consumption
and simulation wall-clock time, that is incurred by enabling the flow mon-
itor or trace file. The top-left plot shows the total memory consumed by
a simulation while varying the number of nodes. Three curves are shown:
one represents the simulations without FlowMonitor or file tracing enabled,



152 CHAPTER 4. PROTOCOL DEVELOPMENT USING NS-3

0 200 400 600 800 1000 1200
Number of Nodes

40

45

50

55

60

65

70

75

80

M
e
m

o
ry

 (
M

iB
)

Base
Flow Monitor
Trace File

0 200 400 600 800 1000 1200
Number of Nodes

0

50

100

150

200

250

300

350

T
im

e
 (

s)

Base
Flow Monitor
Trace File

0 200 400 600 800 1000 1200
Number of Nodes

0

5

10

15

20

25

30

M
e
m

o
ry

 O
v
e
rh

e
a
d
 (

%
)

Flow Monitor
Trace File

0 200 400 600 800 1000 1200
Number of Nodes

0

100

200

300

400

500

600

700

800

T
im

e
 O

v
e
rh

e
a
d
 (

%
)

Flow Monitor
Trace file

Figure 4.11: Performance results of the flow monitor

another other one represents the same simulations but with FlowMonitor
enabled, and the remaining curve represents the simulations with ascii file
tracing. The top-right plot shows an alternative view of the same informa-
tion where instead the monitoring/tracing overhead is shown. The moni-
toring overhead, in percentage, is defined by the formula 100Mmonitor−Mbase

Mbase
,

where Mmonitor is the memory consumption with monitoring enabled, and
Mbase the memory without monitoring. Idem for file tracing. The memory
overhead of enabling the FlowMonitor was 23.12% for 2704 nodes, corre-
sponding to 45 MB of extra memory consumption, while the overhead with
ascii file tracing was 5.82%. The bottom two plots show the impact in
terms of simulation wall-clock time of the FlowMonitor and trace file, the
left plot showing the three curves separately, the right plot showing the rel-
ative overhead (using a formula similar to the memory overhead one). For
the simulation time, which in case of FlowMonitor includes the time needed
to serialize all data to an XML file, the overhead reaches a peak of about
55% for 500 nodes, but then gradually decreases with the network size until
reaching 38.82% (about 90 seconds) for 2704 nodes, while the overhead of
ascii trace file generation is almost always above 700%. In the course of all
simulations, over 150 GiB of ascii trace files were generated.

It should be noted that these values are worst case scenario. Since the
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simulation scenario is very simple (PointToPointNetDevice is just about the
simplest and fastest NetDevice implementation in ns-3), the additional over-
head appears relatively significant. More complex simulations, for example
WiFi and OLSR, should consume considerably more memory and CPU time,
so that enabling the FlowMonitor on such simulations will add an overhead
that will be smaller compared to the baseline simulation.

4.2.5 Related Work

There are a number of contributions that use trace files to gather informa-
tion to produce network simulation statistics. Tracegraph [81] is a ns-2
trace file analyzer based on Matlab that is able to process almost every
type of ns-2 trace file format; it produces a large amount of graphics that
provide various views on the network such as throughput, delay, jitter and
packet losses. In [82], a tracing framework is proposed, called XAV, which
was built upon an XML Database Management System (DBMS). It was
introduced to avoid storing redundant information, to speed up trace anal-
ysis and to simplify the access to trace files by post-processing tools. It
requires simulators to produce XAV XML trace format files. These files
are imported into the XML DBMS which provides an XQuery interface, an
SQL-like querying mechanism. The authors compared the performance of
XAV with an equivalent system using flat trace files and AWK for trace
parsing, and the results show that XAV is always faster in situations where
the user needs to extract non-multiple non-consecutive records.

The use of trace files can be optimized to a certain extent, but this
approach usually requires a huge amount of disk space and the simulation
performance is degraded by the extensive use of I/O operations. Even if
sampling techniques are used, in large simulations the amount of data to
store is still significant. Moreover, using samples introduces some precision
error. In order to avoid the overhead of using trace files, statistics can be
calculated during the simulation runs. In [83], an experiment was conducted
which concluded that using trace files can make simulations take up to 6 or
7 times longer when compared to an approach where statistics are gath-
ered during the simulation. The authors proposed a framework for ns-2
that integrates a data collection module with a separate graphical statistic
analysis tool that reads result files produced by the former. The data col-
lection module consists of a static C++ class named Stat. The Stat class
provides a put method that can be called anywhere in the NS-2 code. It
can collect abstract metrics, enabling the use of the framework to measure
any variable needed by the user. It is also possible to select specific flows
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Tracegraph XAV Stat ns-2 traces FlowMonitor

Complexity Low High High Medium Low
Performance Low Medium Varies Very low High
Flexibility Low High High High Moderate

Table 4.3: Comparison of simulation data collection frameworks

as targets for monitoring instead of considering all the flows. The collected
data is used to calculate either mean values or probability density functions.
The statistical analysis tool, named analyzer, uses a configuration file which
defines the minimum and maximum number of simulation runs required and
the specific metrics the user is interested in analyzing. The number of sim-
ulation runs can be defined by setting a desired confidence interval. The
analyzer can be configured through command line or using a GUI devel-
oped with C++/GTK+. The generic nature of this framework provides
enhanced flexibility, but at the cost of simplicity. It requires the program-
mer to explicitly include calls to Stat::put method in his code. Although
the framework includes code to automate calls for the most common types
of metrics, it still can require some integration effort in some cases. Its use
is limited to ns-2. Porting the framework to ns-3 is not trivial due to the
many differences between the two versions.

Table 4.3 summarises the presented data collection frameworks. Trace-
graph is simple to use, but is relatively slow to process results8, and is not
easy to generate new types of data or plots. XAV is built around XML
(including XPath) and XML based DBMS technologies, and creates DB-
based traces of packet transmissions and receptions. Thus, researchers need
to post-process these results, leading to complexity of the framework. More-
over, in spite of DBMS optimizations, the logging of per-packet information
limits the the performance considerably. On the upside, the per-packet
traces give the framework a lot of flexibility. The Stat framework is rel-
atively complex for researchers, since Stat::put calls need to be added to
simulations, but it is highly flexible. Its performance varies with the spe-
cific simulation: the more data is logged, the worse the performance will be.
Regarding plain ns-2 tracing, the approach of generating detailed trace
files offers great flexibility, but low performance and high complexity. Fi-
nally, the ns-3 Flow Monitor requires nearly no configuration, and it outputs
most commonly used metrics in either both a simple C++ data structure

8Especially since it requires ns-2 trace files to be generated first.
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or a XML file, whichever the researcher prefers. Since the data is highly
summarized, Flow Monitor has very good performance. It features some
flexibility, given its extensible architecture, allowing the researcher to create
new probes and classifiers, but extending to new types of metrics may not
be so simple: it measures flows, and nothing else. We may consider Flow
Monitor a framework for measuring data for most simulations, but its usage
can be complementary to more complex data gathering facilities.

4.2.6 Summary

In this section we have described a solution that solves a common problem for
all researchers that need to conduct simulations in ns-3: how to easily extract
flow metrics from arbitrary simulations? Existing solutions, some of which
have been identified, do not solve this problem effectively, both for simulators
in general but especially in ns-3. A set of general requirements have been
identified, and a new flow monitoring solution was designed and implemented
which meets those requirements. The simplicity of use of this new framework
has been demonstrated via a very simple example. The implementation
was validated by comparing measured flow metrics with theoretical results.
Performance results show that flow monitoring introduces a relatively small
overhead, even when used with a base simulation that is already very efficient
to begin with. The Flow Monitor module has been a part of ns-3 since
version 3.6 (October 2009).

4.3 Ns-3 visualizer

During the process of writing simulation models or simulation scripts, the
developer is often faced with unexpected simulation problems when execut-
ing the simulation. These problems may stem from programming errors (so
called “bugs”), or even from design errors. The programming errors, which
may be located in either the protocol model or in the simulation script, may
result in 1) memory access violations, such as segmentation fault, 2) asser-
tion failures, or 3) invalid behavior/results. Errors in design can be located
in the simulation script, resulting in a simulation that is not at all functional
(e.g. a missing IPv4 route, or incorrect SSID configured in a WiFi NetDe-
vice), or in the protocol model itself, resulting in an implementation of the
protocol that is a correct software translation of the initial design but does
not effectively solve the problem at hand.

Detecting, identifying, and correcting these problems can be a tedious
process. It is not uncommon for researchers to spend more time correcting
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simulation errors than writing the simulation model and script in the first
place. The method and difficulty of correcting problems varies greatly with
the type of problem.

Memory access violations (not to be confused with memory leaks) are
usually the easiest of errors to detect and solve. Indeed, the OS automati-
cally aborts the execution of the simulation process with an error message.
Afterwards, a simple debugger can pinpoint the exact line source line where
the memory violation occurs, and the call stack can help figure out the code
responsible for the error. For more complex memory errors, additional tools,
such as valgrind, may be be used.

Assertion failures may sometimes be simple to solve, or may be a symp-
tom of a more difficult problem. They are placed inside the code to explicitly
detect and report invalid states. An invalid state may be reached due to a
trivial coding error, or due to a more complex sequence of events, which
may denote a potential protocol design error. The former can be solved
by running the simulation under a debugger and subsequent code review.
The latter usually requires reproducing the problem with simulator logging
enabled and then analyzing the logs carefully to identify the sequence of
events that led the protocol state machine into the invalid state.

Finally, one needs to deal with errors that affect the simulation results,
but otherwise do not have a clear “alert” signal to guide the researcher.
Sometimes, the result is obviously wrong, but the underlying cause is not
clear. For instance, a node may not be receiving a TCP flow from another
node via a WiFi link, but there are several causes for this, such as: 1) the
nodes are not in range of the WiFi, 2) the routing protocol may not have
discovered a correct route when the application tries to establish a connec-
tion, 3) the receive socket is not bound to the correct address, or even 4)
the WiFi interface is configured with an incorrect IPv4 address or network
mask. Tracking down these errors usually involves enabling simulator log-
ging and carefully checking that the intended node configuration is being
effectively applied to all layers of the network stack. Occasionally, errors
are more subtle, as they may affect the results only slightly. To detect these
errors, carefully monitoring of the results during simulation is required. For
instance, the bitrate of a flow between two wireless nodes may be lower
than expected because an error in the mobility models keeps the nodes too
distant for much of the simulation time.

A lot of the more complex debugging work will consist in enabling logging
and analyzing log files. When developing a protocol implementation, pretty
much the same technique is usually employed as with a simulator. However,
while in the implementation case the developer only has to deal with log
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messages of one, or a few, nodes, in the case of a simulator logging produced
for many nodes in the simulation, making the job of simulation log analysis
significantly more difficult.

One way to mitigate these problems is to develop some tool that would
let developers visualize graphically the simulation state and its evolution
over time. Such tool would allow developers to catch many mistakes very
quickly by simple inspection of the visual representation of the simulation.
The ns-3 “PyViz” visualizer tool is our attempt to do just that.

4.3.1 The “PyViz” ns-3 visualizer

The ns-3 visualizer, codenamed “PyViz”, evolved gradually from two ear-
lier attempts. The first visualization code submitted to ns-3 was a simple
program that represented graphically an ns-3 mobility model, in October
20079. Later, in February 200810, we produced a new version of it that in-
stead of a single standalone program worked as a visualization library that
could be applied to an existing simulation. Eventually it became clear that
programming a visualization tool completely in C++ was rather tedious
and would lead to very slow development pace. Work on a visualization tool
mostly written in the Python programming language, started shortly after,
and a first version of it was published in September 200811. The project
evolved and became highly popular, being used by the main ns-3 develop-
ers to demonstrate ns-3 in important simulation workshops, such as in the
Aug. 2008 SIGCOMM workshop. However, due to potentially contending
related work, namely iNSpect, and Animator, only recently our tool PyViz
was merged into the main ns-3 tree, and released with ns version 3.10.

4.3.2 PyViz architecture

The PyViz visualizer was developed using a Python and Gtk+ based GUI
programming stack, with GooCanvas library as the main simulation can-
vas framework, as shown in Fig. 4.12. While Gtk+ provides the normal
application GUI elements, such as windows and buttons, GooCanvas pro-
vides a retained mode “scene graph” rendering library. While OpenGL is a
popular library for these sort of visualization tasks, it provides more “low
level” graphics drawing primitives. The GooCanvas library is more “high

9http://mailman.isi.edu/pipermail/ns-developers/2007-October/003399.html
10http://mailman.isi.edu/pipermail/ns-developers/2008-February/003759.html
11http://mailman.isi.edu/pipermail/ns-developers/2008-September/004729.html
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Figure 4.12: PyViz software stack

level” and allows for quicker development. The PyViz visualizer is written
in Python and calls Gtk+, GooCanvas, and ns-3 APIs.

The PyViz visualizer internal work-flow is represented by the activity
diagram in Fig. 4.13. When starting, the network topology is first scanned,
and for each simulated node a corresponding canvas item is created to rep-
resent it. Then, the visualizer splits into two separate threads of execution.
In one thread, the simulation is executed, in 100 ms steps, by command of
the GUI. In the other thread, the main thread, the GUI is updated every
100 ms. Thus, the simulation and visualization threads advance in lock-
step. Thanks to the dual-threaded architecture, it is possible for the ns-3
simulator to be simulating the next 100 ms while the visualization thread
is free to process GUI events, and the GUI becomes more responsive as a
result. Two native Python thread synchronization objects are used from the
standard “threading” Python module. A threading.Lock() object is used
to make sure that the visualization and simulation threads do not access
the ns-3 API at the same time, which would otherwise cause memory cor-
ruption due the fact that ns-3 API is not generally thread-safe, with only a
few exceptions. Additionally, a threading.Event() object is used to allow
the visualization thread to send a “go” command to the simulation thread
whenever it is time to simulate the next 100 ms chunk, but without having
the simulation thread busy-wait when waiting for the command.

PyViz has a plugin architecture: it automatically loads plugin modules,
as found in a certain directory, and executes the plugin code at startup.
Then, plugins typically connect to a set of ”signals” on a Visualizer object,
such as:

populate-node-menu: this signal may be used to add options to the right-
click popup menu of nodes;

simulation-periodic-update: this signal is emitted periodically as the
simulation progresses;
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Figure 4.13: PyViz activity diagram
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topology-scanned: this signal is emitted only once, right after the topol-
ogy is scanned;

update-view: this signal is emitted periodically after the view is updated
by pyviz, to allow plugins to add additional visualization elements.

4.3.3 PyViz features

Fig. 4.14 shows a screenshot of a typical visualization session with PyViz.
Some of the features supported by PyViz include:

• Both wireless and wired links are supported;

• There is an API to change the color of individual nodes, or even assign
an SVG icon;

• The simulation may be paused and resumed at any time;

• There is a control to speed up or slow down the simulation;

• It is possible to drag a node in the visualizer, while the simulation is
running, the the new position having effect on the simulation results.
This way, it is possible to quickly test the impact of certain mobility
patterns on the simulation model. For example, we can test the range
of a wifi link by dragging a node away from the access point until the
connection is lost, or we can test the impact of handover on a routing
protocol state;

• It is possible to open a console window that allows one to execute
Python commands. These commands can do anything that the ns-
3 API provides. They can not only query the simulation state, but
also change the simulation in many ways, for “quick-and-dirty” exper-
iments;

• The visualizer displays bitrate of traffic exchanged by nodes, in a way
that scales well to any amount of data exchanged between nodes, since
no individual packets are displayed, only the aggregate bitrate of all
packets exchanged between each pair of nodes;

• Placing the mouse pointer over a node displays a “tooltip” with some
useful information about the node, as shown in Fig. 4.14. Plugins may
even add additional information to this tooltip;
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• PyViz automatically proposes a layout for nodes that do not have any
position defined in the simulation12, using the graphviz [84] library for
this potentially complex layout task.

Some useful plugins are included in PyViz:

interface statistics.py: adds a popup menu item for nodes, with an option
to display an information window containing a list of interfaces and
transmitted/received bitrates for each interface;

ipv4 routing table.py: Adds a node option to display the contents of the
static IPv4 routing table in an information window; this information
is updated dynamically as the simulation progresses. This is seen in
Fig. 4.15;

olsr.py: idem, but for the OLSR routing table;

show last packets.py: Adds an option to display a window with a list of
packets transmitted, received, and dropped by the node;

wifi intrastructure link.py: detects nodes operating in WiFi infrastruc-
ture mode — access points and stations — and displays a dashed red
arrow between each station and the access point it is associated with.

4.3.4 Related Work

For visualization, the best known example is the official ns-2 visualization
tool, “Nam”. It is written in Tcl/Tk, and is a “post-mortem” visualizer.
It reads a tracefile that is generated by ns-2 describing, line by line, the
positions of nodes at each instant, as well as packet transmissions that may
occur. In this respect, Nam is essentially a player of animations, not an
animator of a running simulation. That is main difference to PyViz: while
PyViz animates a running simulation, Nam animates a simulation that is
already finished. With the Nam approach of reading trace files, visualization
is limited to the information provided in the trace file, while PyViz can take
any kind of information provided by the ns-3 API. Another limitation of the
post-mortem approach is that it is not possible for the animator to affect
the simulation in any way, like PyViz does when dragging nodes with the
mouse pointer.

12Typically, wired nodes do not have position set because they do not need it for simu-
lation purposes.
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Figure 4.14: Screenshot of PyViz in action, with tooltip over a node

Figure 4.15: PyViz showing routing tables of two nodes
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Nam Tkenv iNSpect NetAnim PyViz

Simulator ns-2 OMNET++ ns-2a ns-3 ns-3
Automatic layout of
wired nodes

Yes Yes Yes No Yes

Live interaction w/ sim-
ulation

No Yes No No Yes

Sim. script modifica-
tions needed

Minimal None Minimal Some None

Scalability Good Moderate Excellent Good Moderate
a Experimental support for ns-3 started, but does not appear to be actively developed anymore.

Table 4.4: Comparison of simulator visualization tools

Within OMNET++, the Tkenv execution environment runs the simula-
tion while it is visualized graphically within a Tcl/Tk interface. It is a very
mature graphical environment, compared to PyViz. It allows changing some
state of the simulation interactively, but there is no possibility of dragging
a node with the mouse to change its position.

Another popular example, initially for ns-2 but now also ported to ns-3,
is iNSpect [85]. It uses the OpenGL library to provide very fast graphical
rendering with hardware acceleration. However, it is also tracefile based,
in addition to be written in C++, which limits the ability to extend it
or provide plugins. Nonetheless, the idea of iNSpect of using arrows to
represent flow bitrates, instead of Nam’s approach of drawing individual
packets, was inspirational to PyViz.

Specifically for ns-3, the NetAnim animator was contributed by George
Riley (Georgia Tech), but it is written in C++, and is tracefile based.

Table 4.4 summarises some of the differences between the visualization
tools analyzed. Regarding simulator support, Nam and iNSpect support ns-
2, while NetAnim and PyViz are made for ns-3 instead. The iNSpect team
actually started some work for supporting ns-3, but this work appears to
be unfinished; the iNSpect home page13 does not even mention ns-3 at all.
All the visualization tools except NetAnim support some form of automatic
node layout algorithm; this enables them to automatically assign “reason-
able” positions for nodes which do not have a mobility model or coordinates
set in the simulation. PyViz is the only one that allows live interaction with
the simulation, allowing the researcher to pause the simulation and man-
ually change some state in the middle of it, for instance change a node’s

13http://toilers.mines.edu/Public/Code/Nsinspect.html
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position or stopping an application. The other tools are “post-mortem” vi-
sualization tools, which means that they can only run once the simulation
is finished, and therefore are not allowed to modify the simulation state in
any way. To enable visualization in a given simulation, Nam and iNSpect
require only minimal modifications to the simulation: typically just a cou-
ple of lines to enable tracing in the visualization format. NetAnim requires
some modifications in the case of wired nodes, namely to add a constant
position mobility model to such nodes. With respect to scalability, meaning
how well the visualizer supports networks with many nodes and many pack-
ets, the visualization tools that use trace files have some advantage, since
when visualizing a simulation the simulation has already been run, therefore
all computing resources can be devoted to the graphical interface. PyViz
and Tkenv do not scale so well to networks with many nodes, since the vi-
sualization happens at the same time that the simulation runs. However,
typically a well written network simulation scenario is parametrized in such
a way as to allow reducing the number of nodes via command-line option.
Thus, the researcher can reduce the number of nodes just for visualization
purposes, in order to debug the problem graphically, and then go back to a
large network scenario with graphics turned off.

4.3.5 Summary

Debugging simulations is a potentially daunting task, or at least extremely
time consuming for experienced researchers. We have presented in this sec-
tion a visualization tool for ns-3 that allows the researcher to quickly find
some simple mistakes, thereby saving significant development time, while
giving more confidence that the simulation is behaving as intended. The vi-
sualization tool is shown to have very unique features, not found in any other
visualization tool, derived from its “live” visualization approach. These
unique features include the ability to drag simulated nodes during simu-
lation, the ability to inspect any simulation data via a Python interactive
console, ability to modify the simulation state via the same Python console,
and the plugin architecture allowing the visualizer to be extended in Python.

4.4 Fast prototyping of protocols using ns-3

Research and development today has to keep up with a fast evolving field of
research, and communications protocols research is no exception. Consider-
able time is spent by researchers and developers from the idea of a protocol
that solves a specific problem and the deployment of an implementation of
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that protocol. One of the main contributors for the time spent is the need
to develop both a simulation model and then an implementation of the same
protocol. What if we could develop a single hybrid simulation/implemen-
tation model? In this section we explore the possibility of doing just that:
using the Network Simulator 3 (ns-3) as a framework for developing new
protocols that can be first simulated and then deployed in a real communi-
cations device with only minimal changes. Such an approach appears to be
interesting, at the surface, since it will save development time, among other
advantages. However, questions regarding real world performance remain,
and one of the objectives of this thesis is to discover performance limits of
the proposed framework.

This section describes three main contributions. First, the proposal of a
new unified simulation/implementation protocol development process that
takes advantage of the existing ns-3 network emulation functionality. We ad-
ditionally evaluate the packet processing performance, in terms of achievable
throughput, packet loss, and round-trip time, of ns-3 working in emulation
mode, compared to a pure kernelspace IPv4 forwarding. Finally, we propose
additional ns-3 classes that improve the performance of emulation of control
plane protocols, and simplify the deployment of such protocols.

4.4.1 Proposed improved protocol development process

One has to wonder what is so different between simulation model and im-
plementation to warrant duplicated code. A network protocol can generally
be described as a Timed Automata [86], i.e. a state machine in which state
transitions are triggered by input messages and constrained by the passage
of real time. Both simulation and implementation of the same protocol
include the very same automata, only the way messages are received and
transmitted, as well as the way time passage is measured, is different be-
tween the two. A protocol implementation (e.g. a routing agent) usually has
an event loop, which is an infinite loop that waits for data to arrive on one or
multiple sockets, decodes the data to extract the PDUs, and processes the
PDUs according to the protocol. As a result of the processing, new PDUs
may need to be transmitted, at which point they are encoded as data and
written to one or more sockets. Time based transitions are typically imple-
mented using a system call to suspend the process for the required time,
thus saving CPU cycles. For example, in UNIX systems it is frequent to see
protocol implementations to use a select or poll based main loop, allowing
them to wait for a certain elapsed time with the process suspended, but
at the same time be notified when new data has arrived at a socket. In
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a simulation environment, on the other hand, time is virtual, represented
by a virtual clock, which is a simple numeric counter. Passing time in a
simulator is represented by an event and does not require the process to be
suspended during that time, only to increment the virtual clock by a cer-
tain amount. Events are also used to represent the reception of data from a
network interface.

In the simulator, the event scheduler is essentially an infinite main loop
that processes pending events in order. It is very similar to the select-based
event loop in a protocol implementation. The differences are that 1) in the
simulator, elapsed time is virtual, in the implementation it is real, and 2)
in the simulator, a node simulates the reception of data from another node,
while in the implementation the data is actually received from a real network
interface. The protocol-specific aspects are common to the simulation and
implementation, only the “environment interface” aspects are different. The
question is whether we can adapt one to the other.

We propose Network Simulator 3 (ns-3) to be used as the basis for a new
unified protocol development process that reuses the code of simulation for
the implementation. Since version 3.2, ns-3 has received support for a “real-
time simulator”. The real-time simulator is an alternative event scheduler
that can be selected at run-time. It synchronizes the virtual clock of the
simulator with the actual real time of the host system where the simulation
program is running. Thus, if an event is scheduled to happen in t seconds,
then the callback function associated with the event will be called after ex-
actly t seconds of real time have elapsed. Shortly after, in version 3.3, ns-3
received support for an “emulated NetDevice”, or EmuNetDevice. In ns-3,
a NetDevice is a class of objects that simulate an particular link layer type,
such as Ethernet, WiFi, or point-to-point. The addition of EmuNetDevice
has bestowed ns-3 with the ability to receive packets from a real network
interface and convert them into simulated packets, as well as transmit simu-
lated packets, generated by the simulation, through a real network interface.
Emulation in ns-3 is not as difficult as, say, in ns-2. While in ns-2 packets
are simulated as objects that do not know how to serialize themselves into
a byte stream, in ns-3 packets are represented internally as bytes, like real
packets, even in pure simulation mode, and the simulator uses Header classes
in order to convert between PDU format and byte format. For this reason,
emulation in ns-3 works with any protocol, not just a select few protocols
prepared to support emulation, as in ns-2.

These are the main ingredients for enabling real protocol implementa-
tions to emerge from an ns-3 simulation model of that same protocol. We
only need to build a simulation program, with one node only, and multiple
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Figure 4.16: Proposed protocol development process

EmuNetDevice instances, one attached to each of the real network inter-
faces. The protocol simulation model runs on that single node, but remains
unaware that it is running in emulation mode. Thanks to the ns-3 architec-
ture and features, very little code is needed on top of the protocol simulation
model to deploy it as a real-world implementation.

If the simulation and implementation of a protocol follow this approach,
wherein most of the code is exactly the same for both, we may follow a
different and improved development model, presented in Fig. 4.16:

1. From the scenario / problem description a protocol model is developed,
along with a simulator that uses that model;

2. Multiple simulations are run, with varying parameters;

3. The simulation results are analyzed, the simulator is debugged, or the
protocol (model) is improved;

4. The protocol model is reused to form the protocol prototype;

5. The protocol prototype is deployed in a testbed and trial logs are
obtained. Packet traces (tcpdump / wireshark format) may also be
collected;

6. The logs are analyzed and compared to the simulation results. As a
result, the protocol may need to be improved or corrected;
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7. Finally, when the protocol is working satisfactorily in both simula-
tion and real world tests, the protocol specification document may be
written.

The advantages of the single protocol module for both simulations and
implementation are clear. First, development time is saved, since only a
small (and very generic) wrapper needs to be written to run the protocol
model as an implementation. Second, when the protocol is put to real-world
trials and needs to be adjusted, the modifications are made into a single
software module; this is simple and does not have the risk of introducing
deviations between simulation and implementation models.

4.4.2 Ns-3 emulation

In ns-3, a NetDevice is the class of objects responsible for simulating a
layer-2 network interface. In Linux systems, the EmuNetDevice subclass
is available, allowing a ns-3 simulation to receive real packets from a real
network interface, and to send simulated packets through the same network
interface.

At the core of EmuNetDevice is a “packet socket” (PF PACKET, SOCK RAW)
socket file descriptor. When the simulator asks the EmuNetDevice to send
a packet (ns3 class Packet), the method Packet::CopyData is called, which
extracts the packet contents into a byte buffer. Then, the sendto() sys-
tem call is performed, using the packet socket file descriptor and the packet
byte buffer as parameters. The code to receive packets, depicted with some
simplifications in Fig. 4.17, is slightly more complicated. In fact, because
we cannot block the main simulation event loop, nor is it efficient to make
a poll/select system call between each simulation event iteration, a sepa-
rate thread is created specifically to receive data from the packet socket.
This thread runs an infinite loop that 1) allocates a memory buffer, 2)
calls recvfrom() to receive the next packet, 3) schedules an EmuNetDevice
method to be called from the main simulator thread, passing a pointer to
the memory buffer as parameter. The method that is called in the main
thread, by request from the receive thread, simply converts the raw memory
buffer into an ns3 Packet (using an appropriate Packet constructor), releases
the memory buffer, and informs the simulated node that it has received a
new packet.

The conversion between ns3::Packet and raw memory byte array, and
back, is trivial in ns-3 because ns-3 Packets always store simulated packets
in a raw memory format. The only exception being that ns-3 Packets support
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Figure 4.17: Ns-3’s EmuNetDevice receiving packets from the network

a memory optimization wherein an application can choose to send “dummy”
bytes, i.e. a block of bytes whose value is not important for the simulation.
In this case, ns-3 avoids allocating memory for those bytes and just records
the size and offset of that block of dummy bytes. Nonetheless, the conversion
is much simpler and natural than in almost any other simulator.

With this emulation method, one can implement practically any kind of
network operation in ns-3, as long as it works above layer 2. A question
that remains, however, is how does this method fare performance-wise?

Performance evaluation

In order to better assess the computational and network performance foot-
print induced by using such emulation method in a real world scenario,
a set of tests were defined. These tests focus aspects such as the impact
on the host machine resources utilization and network performance/quality
affectation, depending on the offered data rate and packet size used.

The hardware used to run the tests is a mini-itx Intel Atom D510. It
has an x86 architecture for ease of use and better compatibility, avoiding the
hassle of cross compiling. The hardware was chosen having in mind, also,
a balance between cost, performance, power consumption and physical size,
so it could be easily deployed in a real world scenario as a network element,
performing operations such as routing and bridging. The operating system
used was Ubuntu 10.04 x86.

The three scenarios implemented to perform the tests are presented in
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Figure 4.18: Data plane forwarding test scenarios
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Fig. 4.18. While scenarios 1 and 2 were designed to compare IPv4 packet
forwarding performance between kernel and ns-3 emulated implementation,
scenario 3, on the other hand, is used to derive what performance would be
expected from a custom implemented routing protocol, with its own data
plane encapsulation operations.

Scenario 1 is composed of three nodes: 1) S runs an iperf client, gener-
ating an UDP flow to D. S also runs ping application, measuring the RTT
while the flow is generated; 2) D runs an iperf server, receiving the UDP
flow from S and calculating network statistics, such as received data rate
and packet loss rate; 3) R represents the router, default gateway for S and D
networks. It is the responsible to forward IPv4 packets between the two dif-
ferent networks. The IP forwarding operations are performed in kernelspace
by enabling the IP forwarding option of the Linux kernel. Scenario 2 is simi-
lar to Scenario 1. The difference resides on node R. Now, the IP forwarding
operations are performed by an ns-3 virtual node, in userspace, connected
through EmuNetDevice’s to the real network interfaces. Scenario 3 employs
WiMetroNet RBridges elements, instead of an IP stack, which use the stan-
dard IPv4/Ethernet stack on the access networks and MPLS encapsulation
in the core network. Two RBridge elements are used in order to introduce
the need to perform “ingress” and “egress” packet operations, like it would
be in a real world scenario.

For each scenario, we ran series of tests, gradually increasing the gen-
erated data rate between 1 and 90 Mbit/s14, and with two different UDP
payload sizes: 1400, and 160 bytes. Packets with 1400 bytes represent the
usual application traffic over TCP. While the Ethernet MTU is 1500 bytes,
given the UDP/IP payload, plus the encapsulation overhead in Scenario 3,
an UDP payload size larger than 1400 bytes would risk fragmentation. The
160 bytes packets, on the other hand, are representative of typical VoIP
traffic. Each test, lasting 30 seconds, was repeated 3–5 times for confidence
interval purposes.

For each test, the received data-rate, average round-trip time, packet
loss ratio, and CPU load were measured. The received data-rate and packet
loss ratio were extracted from the iperf output statistical data. The aver-
age round-trip time was measured with the “ping” utility. The CPU load
was measured at the shaded nodes in Fig. 4.18, using the “time” builtin
command, computed as the sum of “user” and “system” time, divided by
the real elapsed time. The CPU load can assume values in the range 0–2

14Approximately the maximum throughput attainable using IPv4 with UDP packets
with payload size 1400 on 100Mbit/s Ethernet links
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Figure 4.19: Dataplane forwarding results for 1400-byte packets

because the node has a dual-core processor and ns-3 has a multi-threaded
design for implementing Emulated Network Devices. For Scenario 1, the
CPU load was not measured because it revealed to be negligible, even when
performing full link speed forwarding with small packets.

The obtained results are represented in Fig. 4.19 and Fig. 4.20, for pack-
ets of 1400 and 160 bytes, respectively. For 1400-byte packets, both sce-
narios were able to attain a data-rate of 90Mbit/s without any packet loss.
While in kernelspace the CPU load was insignificant, in userspace the CPU
load increases linearly with the offered data rate, reaching approximately
1.1. The round-trip time (RTT) measured in the scenarios running ns-3
increased roughly 0.4 ms, due to the user space processing of each packet.
For a 1400-byte packets, despite the high CPU load, the obtained results
can be considered very good, since the additional delay introduced has re-
mained below 1 ms. For an MTU of 160, the plots in Fig. 4.20 show clearly
a very high performance difference between Kernel and ns-3 IP forwarding
solutions. In the Kernel scenario it was possible to reach a data-rate of,
approximately, 60Mbit/s, which is the maximum throughput of 100Mbit/s
Ethernet link for an MTU of 160. The RTT remained very low and stable
and the CPU load was also insignificant. Although the offered data-rate
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Figure 4.20: Dataplane forwarding results for 160-byte packets

was configured up to 90Mbit/s in iperf, this did not impact the packet loss
results in this scenario, because iperf client is aware of the link capacity and
does not attempt to transmit more than the link capacity.

In contrast, Scenario 2 reached only a data-rate of around 10Mbit/s,
which is approximately six times slower than the kernel implementation.
This happens due to the high packet number that has to be processed in
userspace. It becomes evident, now, that in these kinds of emulated scenarios
the bottleneck is defined by the number of packets to be processed, and not
so much by their size. The RTT value stabilized at around 120ms, while the
packet loss was always increasing because of a limit in ns-3 for the number
of packets waiting in memory to be processed. While, at first sight, these
results could seem unsatisfactory, if we consider that these 10Mbit/s are
representative of VoIP traffic, which consume very small bandwidth (less
than 64 kbit/s) per-flow, it actually represents a very large number of VoIP
flows.

Finally, the results of the third scenario shown that it performs better
than the second one, attaining lower CPU usage per packet processed which
resulted in better measured data-rates and RTTs. For the 1400-byte packet
plots in Fig. 4.19, the average RTT of Scenario 3 appears to be worse than
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the Scenario 2, but it is necessary to point out that each packet was then
subjected to two forwarding operations in each direction, instead of only
one. The better results obtained by this scenario could be mainly due to the
fact that RBridges forwarding operations take place at layer 2.5, not using
the ns-3 layer 3 implementation and its associated computational overhead.

The results confirm the hypothesis that the kernel to user-space context
switch and data transfer are the main bottleneck. In other words, most of
the performance issues associated with ns-3 are related to the number of
packets to handle, and not so much with the size of those packets. Thus,
the proposed implementation method can handle reasonably well application
flows dominated by large packets, such as any TCP based protocol (HTTP,
FTP), but does not handle so well high bitrates and small packets. For-
tunately, the combination of high bitrate and small packet size is not very
common. It is true that VoIP (voice over IP) flows are composed mainly of
small packets, but each of those flows consumes a small bitrate. Only a high
number of simultaneous VoIP flows will be able to saturate a network link
with a few tens of Mbit/s. For this type of scenario, implementing a data
plane using ns-3 is not recommended.

4.4.3 Ns-3 control-plane emulation

It is a well known fact that the implementation of a data plane in userspace
is not generally recommended, at least for a final implementation of a proto-
col, due to the performance degradation it entails, as shown in the previous
section. On the other hand, generally there is not significant performance
degradation with implementing control plane functions in a userspace dae-
mon; it is actually common practice, and recommended from a security
standpoint. With respect to performance, userspace implementations are
adequate due to the fact that the rate of packets to be processed in the
control plane is generally low, no more than 5–10% of the link bandwidth.
Additionally, most well designed protocols have a mechanism to aggregate
multiple messages in a single packet, thereby reducing the number of packets
to process. As an example, if we consider a grid of OLSR routers, with a
layer-2 MTU of 1500 bytes and a total network size of 500 nodes, each node
receives 5 packets per second for the case of 4 neighbors per node, and 9
packets per second if the number of neighbors is 10. Any userspace daemon
can handle this packet rate with ease.
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UDP control plane optimization

When implementing a control plane protocol in ns-3, EmuNetDevice actu-
ally captures all traffic that is received by a network interface: not only
our protocol packets, but also data plane and traffic of other control plane
protocols exchanged in the network. All the packets we are not interested in
are eventually dropped by ns-3. However, before being dropped they con-
sume considerable processing time: the context switch to let the userspace
program receive the packet, and some processing by ns-3 (some headers de-
coded). This overhead could be avoided if ns-3 could use real sockets that
would receive only the specific protocol number we are interested in. Since
most new research protocols are carried on UDP payload of a registered port
number, we have developed a real (system) udp socket module for ns-3.

In our implementation15, we have developed the classes RealUdpSocket
and the respective factory, RealUdpSocketFactory. RealUdpSocket allows
ns-3 applications to talk to real UDP sockets using the usual ns-3 Socket
API with no modifications whatsoever. As basis for the implementation, a
strategy similar to EmuNetDevice is used, i.e. the main simulation thread
is used to send data, while a separate thread waits for incoming data. In
addition, we created a RealStackHelper ; it works similarly to InternetStack-
Helper, but instead of UdpSocketFactory it adds a RealUdpSocketFactory
object to a Node, and additionally adds “dummy” interfaces to the Node,
mirroring the real host interfaces, MAC addresses and main IPv4 addresses
included. The dummy interfaces with real MAC and IPv4 addresses are
useful to allow ns-3 routing protocol models to run unmodified even when
those protocols need to discover the list of interfaces and IPv4 addresses
that exist in the Node where they are running. These classes are illustrated
in the class diagram in Fig. 4.21.

Thanks to the RealStackHelper class, adapting a routing protocol to
run in emulation mode using the more efficient RealUdpSocket becomes ex-
tremely simple, as shown in the program listing below. After replacing
InternetStackHelper with RealStackHelper (see lines 16–18), the simulation
script no longer needs to configure network interfaces in the node, as they are
automatically configured based on the real network interfaces in the system.
Without RealStackHelpr, the three lines 16–18 would have to be replaced
by approximately 36 lines of code that would read from the command line
arguments the IPv4 address, and mask of the host interfaces that we wish to
configure, and create an EmuNetDevice instance for each. Moreover, pass-
ing these parameters through the command-line is both tedious and error

15It is available online at the URL: http://code.nsnam.org/gjc/ns-3-real/
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Figure 4.21: Overview of additional ns-3 emulation classes developed

prone.

1 int main ( int argc , char ∗argv [ ] )
2 {
3 GlobalValue : : Bind ( ”SimulatorImplementationType” ,
4 Str ingValue ( ”ns3 : : Realt imeSimulatorImpl ” ) ) ;
5 GlobalValue : : Bind ( ”ChecksumEnabled” , BooleanValue ( true ) ) ;
6
7 Ptr<Node> realNode = CreateObject<Node> ( ) ;
8
9 OlsrHe lper o l s r ;

10 Ipv4Stat i cRout ingHe lper s t a t i cRout ing ;
11
12 Ipv4ListRout ingHelper l i s t ;
13 l i s t .Add ( s tat i cRout ing , 0 ) ;
14 l i s t .Add ( o l s r , 1 0 ) ;
15
16 RealStackHelper s tack ;
17 s tack . SetRoutingHelper ( l i s t ) ;
18 s tack . I n s t a l l ( realNode ) ;
19
20 Simulator : : Run ( ) ;
21
22 return 0 ;
23 }

Performance evaluation

In order to evaluate the performance of control plane implementation using
ns-3, we used the open source olsrd daemon (from olsr.org), and wrote an
ns-3 based OLSR agent.

The olsrd implementation16 is a mature open source implementation of
the OLSR protocol, under development since at least 2004. We modified
it in two ways: 1) added some minimal instrumentation code to count the

16Snapshot taken from the stable Git branch on 18th May 2010.
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number of HELLO messages processed, and print that number at the end,
2) removed the “CPU overload” limit of maximum 32 messages processed
between loop iterations (function olsr_input() in src/parser.c); the rea-
son for the limit is not documented. In any case, it was severely limiting
the performance of olsrd, so we had to remove it to obtain more accurate
readings.

The ns-3 based OLSR implementation (ns-3-olsrd) uses the unmodified
builtin ns-3 OLSR model (src/routing/olsr). This OLSR model requires
only: 1) ns-3 UDP sockets, 2) access to an Ipv4 object on the node, to
query the list of interfaces and respective addresses, and 3) an event sched-
uler, for timers. The ns-3-olsrd program actually has a command-line switch
that selects between two approaches of implementation: EmuNetDevice and
RealUdpSocket. The version that uses EmuNetDevice accepts a list of (in-
terface name, IPv4 address, IPv4 network mask) and, for each interface it
creates, an EmuNetDevice attached to that interface, while registering the
respective address/mask for that interface. The RealUdpSocket variant just
uses RealStackHelper, which automatically scans the network interfaces and
adds the real udp socket factory to the node. The entire ns-3-olsrd.cc source
code, containing the two implementation approaches, is actually only 122
lines long.

Speed Our test scenario was composed of one “test” node running OLSR,
and a variable number of neighbors in the same LAN, sending HELLOs at
the normal rate (one every 2 seconds). These neighbor nodes are simulated
by a single Linux host which runs a HELLO generator, with the IP address of
each HELLO varying to simulate the multiple neighbors. Since the neighbors
only generate HELLOs, but do not listen to HELLOs from the other (test)
node, the test OLSR node will see the neighbors as having an asymmetric
link to it. In this way, the test OLSR node does not have to recompute any
routing table with each HELLO received; it only needs to receive the packet,
decode it, and record the neighbor IP address and interface (a “link tuple”)
in an internal data structure (the “link set”). Thus, we are only measuring
the speed of the OLSR implementation at receiving a packet, decoding the
headers, and minimal processing. This is exactly what we want to measure.
The time taken to compute the routing table after a topology change is not
related to the protocol development framework and therefore irrelevant in
this context.

We ran a series of tests, gradually increasing the number of OLSR neigh-
bors, and measured the number of HELLOs that a particular OLSR imple-
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Figure 4.22: Control plane (OLSR) performance test results

mentation was able to process in a period of 10 seconds. For each of the the
OLSR implementations — olsrd, ns-3 with EmuNetDevice, and ns-3 with
RealUdpSocket — and for each topology (number of neighbors), the exper-
iment was repeated three times for confidence interval purposes. We also
measured the CPU load (fraction of CPU utilization) of the OLSR imple-
mentation. While the tests were running, we had background TCP traffic
(iperf) to saturate the network link.

From the results in Fig. 4.22 we can see that the OLSR implementations
process a number of messages proportional to the number of neighbors,
but they all eventually reach a point of overload, after which they can no
longer process more messages. We do not have enough data samples to
know the exact limits, but for olsrd the limit is between 2560 neighbors
and 5120 neighbors. The peak packet processing rate was 1280 packet/s
for 2560 neighbors, but then it diminished considerably, achieving only 437
packet/s with 10240 neighbors. The scalability issues are probably due to
less efficient data structures used by olsrd to store the link tuples. The
ns-3 EmuNetDevice implementation also started to lose HELLOs between
2560 and 5120 neighbors, but achieved a maximum processing rate of about



4.4. FAST PROTOTYPING OF PROTOCOLS USING NS-3 179

1600 packet/s with 5120 neighbors, decreasing to 1294 packet/s with 10240
neighbors. Finally, ns-3 with RealUdpSocket starts to lose packets only
between 5120 (2392 packet/s) and 10240 neighbors (1424 packet/s).

Interesting also are the CPU load results, where we can see that the max-
imum HELLO processing rate is directly linked to the point at which each
implementation starts consuming 100% of the CPU time. The ns-3 Emu-
NetDevice implementation is the one that consumes more CPU time, which
can be explained by the fact that it is processing not only HELLO packets
but also the background traffic. In fact, for high load it even surpasses 100%
CPU time because it uses two threads and the system has a dual-core CPU.
The ns-3 RealUdpSocket implementation tends to be slightly more efficient
than olsrd, and considerably more efficient than ns-3 with EmuNetDevice.

Size/memory Besides the processing speed, another performance dimen-
sion that is interesting is regarding memory requirements. Comparing the
program executable binary files we found that olsrd has a binary file size of
296 KB, while ns3-olsrd, when compiled statically, had a file size of 13 MB.
One of the reasons for the large file size of the ns3-olsrd version is that ns-3
contains many simulation models, the OLSR routing protocol being just one
among many. To reduce the file size, we tweaked the ns-3 build scripts to
disable most of the unneeded ns-3 modules, and this way the program file
was reduced to only 4.4 MB17.

In order to find out actual runtime memory requirements of the imple-
mentations, we repeated the HELLO processing tests while measuring the
maximum resident memory size18 of the processes. The results, in Fig. 4.23,
show that the ns-3 version consumes about 13-14 MB of memory right from
the start, but the memory consumption increases very slowly. In contrast,
olsrd starts by consuming only 4.2 MB, but the memory increases quickly
for increasing number of neighbors. Clearly, olsrd would eventually surpass
ns3-olsrd in memory consumption if the initial growth trend was maintained.
But, as we have seen, olsrd is not able to process all the HELLOs between
2560 neighbors and 5120 neighbors, and for this reason the memory con-
sumption stops growing. At maximum load, ns-3-olsrd still consumes around
14 MB of memory, while olsrd takes around 12 MB.

We do not know with certainty what contributes to ns-3 consuming more

17Removing the builtin ns-3 unit tests, the binary was further reduced to 3.5 MB, but
we did not develop this optimization until after all the tests were done.

18The maximum resident memory size (RSS) is the maximum amount of memory ac-
tually allocated by the kernel for the process as physical memory, and it was measured
using the Ubuntu program /usr/bin/time.
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Figure 4.23: Control (OLSR) memory test results

memory, but one possible explanation is that the ns-3 runtime, even when
stripped to the fundamental modules, contains a lot of useful code that is
made available to the protocol developers, even if not used. Second, the
C++ language itself tends to produce larger compiled programs than pure
C programs, especially when template programming is used extensively, as
is the case in ns-3, because the compiler has to instantiate the generic code
for each type used. This leads to more code generated, although it tends to
run faster, since it is specialized for each type. Third, the ns-3 EmuNetDe-
vice and RealUdpSocket implementations create a separate thread to handle
reads. Multiple threads share the same data segment, but each thread re-
quires a private stack segment. In recent Linux systems, the maximum stack
size is 8 MB by default, and programs typically take a few hundred kB of
stack, per thread. Finally, the memory we measured includes both private
and shared resident memory. The standard C++ library (libstdc++) ac-
counts for 920 kB of virtual memory, 432 kB of which are resident. Olsrd
does not use this library and so does not incur its overhead.
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Figure 4.24: Writing protocols for ns-3 alone is faster

Development effort reduction

We have evaluated the performance of the ns-3 method of developing pro-
tocols, when compared to a dedicated implementation and concluded that
ns-3 is adequate to write userspace protocols. But the main point of the
proposed approach is to reduce the development effort of new protocols. In
an attempt to measure this reduction, we measured the number of lines of
code of three protocols, in their ns-3 and real-world implementation variants.
We used the “cloc” open source tool to count only lines of code, excluding
blank lines and comments. The results in Fig. 4.24 include three bars for
each protocol. The first bar represents the size of our proposed ns-3 model,
which can be used for either simulation or, with just an additional main
wrapper with about 100 lines, deployment in a real network node. The sec-
ond bar represents the line count of a corresponding real implementation.
When developing a new protocol from scratch, an implementation is not
enough to develop a protocol; first we need to write a simulation model in
order to run simulations. Thus, a third bar is included that represents the
sum of a simulation model (in this case from ns-3) and real implementation
line counts. For measuring the ns-3 models we used ns version 3.9. The
OLSR protocol real implementation again comes from olsrd (same version
as before). The AODV implementation used was aodv-uu-0.9.6, and the
radvd used was the radvd-1.6 source from Ubuntu 10.10.

It is interesting to find out what most contributes to the line count
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difference between the two versions. In the case of OLSRd, to make the
comparison fair we only included the most generic OLSR protocol code,
excluding OS-specific functions and functionality that are not present in the
ns-3 OLSR model, such as IPv6 address support, plugin system, advanced
“link quality” metrics (such as ETX [87]), “Smart gateways”, ipv4 over
ipv6 traffic, and memory allocation statistics. But even without counting
those subsystems, OLSRd has about 2.13 times the lines of code of ns-3’s
OLSR model. One reason for this difference is that OLSRd is a standalone
program that does not use any external library, and so has to write from
scratch many functions that are already included in ns-3, such as sequence
numbers (that can “wrap around” and still be compared), IPv4 addresses,
packet buffers and writing to packets with iterators. This problem could be
solved by writing a “networking library” that OLSRd could use19. Similarly,
being written in C, the OLSRd program needs more lines of code to deal
with containers (linked lists, balanced trees, hash tables), which are taken
for granted in C++ with STL containers, in addition to simpler memory
management of the ns-3 Object system and smart pointers. Finally, we
are forced to acknowledge that the real OLSRd implementation is more
detailed, with features to improve scalability (e.g. using binary tree data
structure for duplicate detection) and security (e.g. checking for unusually
large increments in message sequence numbers). This of course consumes
more lines of code, but they are not easy to discard for comparison purposes.

Although line counts do not always translate linearly to development
effort, from these results we get a rough estimate that writing protocols
for ns-3 alone is substantially faster than writing first a simulation model
and then a dedicated implementation. Not only is writing in ns-3 usually
simpler than a dedicated implementation, since we get to reuse the ns-3
protocol development framework instead of writing one from scratch, but
also avoids the need to program the same protocol twice.

4.4.4 Related work

The idea of using a protocol simulation model as implementation is not new.
However, there are issues with the previous attempts.

The highly popular ns-2 simulator does have some support for emulation,
but only some protocols are prepared for this emulation mode. Moreover,
ns-2 does not use real IP or MAC addresses, making the emulation more
complicated. Finally, ns-2 does not have a software architecture as clean as

19Although we may consider ns-3 itself as such a “networking library”.
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other existing simulators, and does not provide a very healthy environment
to develop new protocols, for reasons previously stated.

The Click Modular Router [88] is a graph-oriented architecture for build-
ing a router by assembling a graph of elements. Each element has a well
defined set of input and output ports for exchanging data with other ele-
ments, and performs a well defined and small function, such as decrementing
the TTL of a packet. Extensions for running Click inside the ns-2 [89] and
ns-3 simulators exist, allowing for a hybrid implementation/simulation en-
vironment. However, in Click the protocol to be developed must be written
as a set of Click elements and a configuration file provided for creating a
graph that connects those elements. This forces the researcher to learn
two different programming environments and a new configuration file syn-
tax. Moreover, Click uses flow-based programming [90], which is a unusual
programming paradigm for researchers that only had prior experience with
discrete event simulators and has, consequently, a learning curve. We may
also observe that existing Click based protocol models employ a very high
number of classes, each class implementing one element, with very little
functionality, leading to a lot of “boilerplate” code. Another problem is
that Click uses pointers, instead of smart pointers, making memory leaks
very easy to be introduce by non-expert programmers.

RapiNet [91] is defined as a “development toolkit for rapid simulation,
implementation and experimentation of network protocols”. It uses a declar-
ative networking approach for defining new protocols, employing a language
called Network Datalog (NDlog), which extends Datalog, a query / rule
language. The RapidNet compiler is able to generate ns-3 code for either
simulation or emulation mode, thereby achieving the goal of using the same
model source for both simulation and implementation. The NDlog program-
ming language, however, is not Turing-complete, meaning that it may not be
able to compute everything that Turing-complete languages, such as C++,
can compute. Moreover, the language uses a unusual paradigm to describe
protocols that has a steep learning curve.

Another interesting tool for integrated simulation/implementation is the
Protean Protocol Prototyping Library (ProtoLib), developed at the Naval
Research Laboratory. It allows the same code to be built for a simulator
(ns-2 and OPNET) and run as a standalone implementation. On the other
hand, to do this the protocol needs to be written using the ProtoLib API.
Besides having to learn a new API (which does not even use smart point-
ers), researchers will then be unable to submit the new protocol model for
inclusion into existing simulators.

The OPNET Modeler is a simulator that also allows integration of pro-
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Proto. compat. Devel. difficulty Performance

ns-2 emulation Partial Intermediate Average
Click Full Intermediate Good
RapidNet Partial Intermediate Average
ProtoLib Partial Intermediate Average
OPNET Modeler Partial Intermediate Average
ENTRAPID Full High Good
ALPINE Full High Good
NSC Full High Good
IMUNES Full High Good
ns-3 emulation Full Low Average

Table 4.5: Comparison of unified simulation/implementation approaches

tocol models with real systems, thanks to its “System-in-the-loop” function-
ality [92]. However, its closed and commercial nature invalidates it being a
viable alternative in many contexts. For instance, not having the full source
code available precludes porting it to certain router architectures.

Some tools work with some form or subset of an operative system kernel
code. The ENTRAPID [93] project virtualizes just the networking portion
of a BSD kernel, thereby enabling hundreds of kernel instances to run on the
same system, connected by virtual links. A similar approach is followed by
ALPINE [94]. The Network Simulation Cradle (NSC) [95] also virtualizes
a kernel, but instead of allowing real applications to communicate over the
network of virtualized kernels, it embeds the virtualized kernel instances
into simulated nodes of an existing simulator (ns-2 and ns-3 supported), and
supports multiple kernel stacks, not just BSD. IMUNES [96] also virtualizes
the kernel networking code, but creates virtual nodes and virtual links inside
the kernel, instead of userspace, to avoid frequent context switching and
achieve greater efficiency.

All these kernel based approaches have the same basic problem: they
require new networking protocols to be developed inside the source code
and framework of one of those operative system kernels. That code base, al-
though highly detailed, realistic, and well optimized, is not a very programmer-
friendly environment. Moreover, protocols (at least control plane protocols)
are almost always developed to run as userspace daemons anyway, for secu-
rity reasons, so the effort to develop using a kernelspace API may not be
worth it.

Table 4.5 evaluates the each protocol development framework acording
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to three main properties:

1. Protocol compatibility: this property indicates if the complete range
of protocol models already written in the underlying framework is
supported. In this regard, ns-2, RapidNet, ProtoLib, and OPNET
Modeler require protocols to be written differently from the underlying
simulator if they are expected to be deployed in a testbed in emulation
mode, while in the other frameworks the protocol model is written in
the same style as any other protocol. Full protocol compatibility makes
it easier to include a new protocol into the main simulator release, for
other researchers to use, while not sacrificing the ability to deploy in
real nodes;

2. Development difficulty: this property reflects the obstacles that are
faced by a programmer to develop a working protocol in the frame-
work, such as memory management facilities, API readability, object-
orientation, and simply number of lines of code required to implement
a protocol. In this regard we find ns-2, Click, RapidNet, ProtoLib, and
OPNET Modeler present considerable development difficulty, either
due to low level and manual memory management required, unusual
programming language/paradigm, or high number of classes that the
programmer has to write. The kernel-based solutions, ENTRAPID,
ALPINE, NSC, and IMUNES, have increased difficulty due to the
requirement to write in a kernel framework20. Finally, in the case of
ns-3, development is made much easier than in other frameworks;

3. Performance: this property roughly evaluates the real-world (not sim-
ulated) performance of a protocol implemented in each framework.
We may find that all userspace frameworks, ns-2, RapidNet, Pro-
toLib, OPNet Modeler, and ns-3, offer roughly the same average per-
formance. There are probably some performance differences between
them, but quantifying these differences would require extensive bench-
marking. Frameworks that run in kernelspace are naturally expected
to have higher performance. This includes Click, which can run in
either userspace or kernelspace.

20For practical and performance reasons, an O.S. kernel is usually not cleanly designed
and well structured.
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4.4.5 Summary

We addressed the topic of network protocol development methodology. The
traditional protocol development process is reviewed, and the main prob-
lems associated with it are brought to light. One recurring problem is the
duplication of effort to write first simulation and then implementation code.
Another potential problem is the propensity for behavior differences being
accidentally introduced between the two versions, leading to simulations of-
fering results different from the implementation. We offer an alternative
development process that takes advantage of the builtin network emulation
features of ns-3. The ns-3 based development process allows developers to
write a single model for the protocol that can be both simulated and de-
ployed in a real node. The main difference between ns-3 and other similar
frameworks is that in ns-3 everything can be done in C++ and using good
C++ programming practices for ease of development.

In order to support the proposal to use ns-3 for implementation of new
protocols, the performance of ns-3 running in emulation mode has been
evaluated. The results show that the ns-3 IPv4 stack, in emulation mode,
is able to process packets at a rate high enough to exhaust an 100 Mbit/s
Ethernet link, when handling large packets, but can have problems forward-
ing traffic if it is composed mostly of very small packets. Nonetheless, we
reckon ns-3 is still useful for small packet networks provided that the data
plane is implemented in kernelspace and ns-3 handles only the control plane.
This scenario was tested by comparing the ns-3 OLSR model with the open
source OLSRd implementation, and we found that ns-3 can even outperform
OLSRd under high load, albeit with a little more memory consumed.

We additionally contribute a new UDP socket emulation class — Re-
alUdpSocket — that improves performance by allowing ns-3 to avoid pro-
cessing background traffic packets, processing only the control plane packets.
While theoretically RealUdpSocket could also be used for the full data and
control-plane stack, the performance in this scenario would tend to become
similar to what is obtained using EmuNetDevice, since it would then be
processing all the packets, not just the control plane packets. To make
deploying protocols simpler and more robust, the new RealUdpStack class
may be used, as it automatically scans the real host’s network interfaces,
and registers with ns-3 equivalent “dummy” interfaces, with matching MAC
and IPv4 addresses. This way, if an ns-3 protocol model is using the ns-3
UDP sockets API correctly, it can be easily deployed without further mod-
ifications.
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4.5 Conclusions

In this chapter, we have addressed the ways in which the ns-3 simulator can
be used to speed up research and development of new network protocols.
First we have shown that a new protocol development process that takes
advantage of the builtin network emulation features of ns-3 allows devel-
opers to write a single model for the protocol that can be both simulated
and deployed in a real node. The performance of ns-3 running in emulation
mode has been evaluated, and shown to be able to process packets at a rate
high enough to exhaust an 100 Mbit/s Ethernet link, when handling large
packets, although it can have problems forwarding traffic if it is composed
mostly of very small packets. We also concluded that for implementing
only the control plane part of a network stack, ns-3 is more than adequate,
performance-wise, especially with our new contributed UDP socket emula-
tion class, that improves performance by allowing ns-3 to avoid processing
background traffic packets, processing only the control plane packets.

We have also made a set of additional contributions to ns-3 in order to
make development of simulations easier and quicker. One such contribu-
tion is the “flow monitor” ns-3 module. This module allows developers to
measure common flow metrics with only a few lines of code and with great
runtime efficiency. Another contribution has been the Python bindings, al-
lowing developers to write simulation scripts much faster than what the
C++ programming language allows, while at the same time forging a new
“PyBindGen” tool, independent of ns-3, to allow creating Python bindings
for C or C++ code that are more efficient, portable, and easier to write
than with other similar tools. Finally, we developed a tool to visualize and
interact with a running simulation graphically, allowing the researcher to
quickly find some simple mistakes, thereby saving significant development
time, while giving more confidence that the simulation is behaving as in-
tended. The visualization tool is shown to have very unique features, not
found in any other visualization tool, derived from its “live” visualization
approach.
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Chapter 5

Conclusions

5.1 Work review

In the context of this thesis, we studied some technologies that are relevant
for developing a network for metropolitan public transport systems where
end user mobile terminals are strictly legacy terminals supporting WiFi and
IPv4 with DHCP. We explored relevant link layer technologies, including
WiFi (including the 802.11p variant), Ethernet, WiMax, and UMTS, to
conclude that each has different strengths and weaknesses and it is benefi-
cial to design a system that can take advantage of several link layer types.
At the networking layer, we have studied 802.1D (Learning Bridge), the
basic IP networking, the OSPF link state routing protocol, the OLSR and
AODV adhoc routing protocols, MPLS, TRILL, and 802.11s. The 802.1D
bridges use a very simple forwarding algorithm as long as the network is
restricted to a tree topology, but does not scale well because of STP and
broadcast storms. The Internet Protocol, IP, scales very well, but requires
careful manual planning. OLSR and AODV enhance IP to avoid the need
for network planning, but do not scale to networks of hundreds of nodes.
The MPLS approach is very interesting as data plane, as it is both fast and
flexible, but it needs a good control plane that can handle dynamic network
topology changes. The TRILL concept of “virtual LAN” and encapsulation
approach is interesting, but it is not designed to handle mobility of nodes
and does not solve the broadcast storm problem effectively. We also stud-
ied several existing solutions, at different layers, for supporting mobility of
end user terminals. SIP solves the mobility problem at application layer
by having the terminal send a new SIP INVITE message to the CN right
after handover. HIP works at “L3.5”; it defines a “host identity” layer, and
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allows end hosts to obtain cryptographic host identifiers, independent of the
current IP address of the node, allowing the IP address to change while the
host identity to remains the same. The Mobile IP extension to IP works di-
rectly at layer 3 and requires no modification in applications, only in the IP
layer. It allows nodes to have two addresses, one “home” address, denoting
the identity of the node, and one “care-of” address, indicating the current
location of the node. The mapping between home and care-of addresses is
kept in a Home Agent node located in the terminal’s home network. Fast
Handover further optimizes MIP by allowing the terminal to prepare han-
dover earlier, and tunneling packets from the old AR to the new AR for some
time. The Proxy MIP approach is also interesting because it implements all
the mobility signaling and tunneling work entirely within the network side,
lifting the burden of implementing mobility from the terminal, and there-
fore better supporting legacy terminals. Mobility solutions implemented at
the link layer level, such as in UMTS networks, also allow the terminal to
switch Point of Attachment (PoA) transparently to the IP layer, i.e. the
IP address of terminal never changes. Finally, we examined tools to enable
rapid protocol simulation/deployment cycles. To that end, the design and
limitations of common simulators has been described, including ns-2, ns-3,
OPNET Modeler, OMNET++, PARSEC, and JiST/SWANS. Ns-3 is a
rewrite of ns-2 from scratch, trying to solve many of the problems in ns-2.
It has an open-source friendly license (GPL), is very efficient, and has a spe-
cial focus on realism. Moreover, it has strong packet-level emulation abilities
and real-time scheduling option, which can be exploited to make real-world
experiments using the same protocol model developed for simulation.

A new proposed architecture for the public transport vehicle networking
scenario introduced in Chapter 1 was presented. The new architecture was
named “WiMetroNet”. This architecture comprises a data plane and routing
protocol designed to scale for large networks. It filters broadcasts and opti-
mizes DHCP and ARP traffic via close integration of those protocols with
the routing protocol, and encapsulates user frames using an MPLS header.
The new routing protocol borrows design from OLSR, supports both mobile
Rbridges and mobile end-user terminals, and feeds the data plane with IP/-
MAC association tables, much needed for the DHCP/ARP optimizations.
We then devised routing optimizations to handle fast-handover of terminals
in an efficient and scalable way, for large networks. The new proposals have
been demonstrated via simulation and analytical models, and the limits of
scalability assessed for two different scenarios: a “road scenario”, and a “city
grid”.

Taking advantage of the experience garnered during WiMetroNet re-



5.1. WORK REVIEW 191

search and development, we then addressed the topic of network protocol
development methodology. The traditional protocol development process
was reviewed, and the main problems associated with it, brought to light.
We explored an alternative development process that takes advantage of the
builtin network emulation features of ns-3. The ns-3 based development
process allows developers to write a single model for the protocol that can
be both simulated and deployed in a real node. To support this proposal,
the performance of ns-3 running in emulation mode has been evaluated. The
results show that the ns-3 IPv4 stack, in emulation mode, is able to process
packets at a rate high enough to exhaust an 100 Mbit/s Ethernet link, when
handling large packets, but can have problems forwarding traffic if it is com-
posed mostly of very small packets. We additionally contribute a new UDP
socket emulation class, RealUdpSocket, that improves performance by allow-
ing ns-3 to avoid processing background traffic packets, processing only the
control plane packets. To make deploying protocols simpler and more ro-
bust, the new RealUdpStack class may be used, as it automatically scans the
real host’s network interfaces, and registers with ns-3 equivalent “dummy”
interfaces, with matching MAC and IPv4 addresses. We made additional
contributions to ns-3, all sharing the goal of making protocol development
faster and easier. The ns-3 Flow Monitor framework allows developers to
measure the most important metrics of data flows in simulations with just
a few lines of code, saving a lot development time, but with small runtime
overhead. The ns-3 scripting framework, in the form of ns-3 Python bind-
ings, enables researchers to write simulation scripts faster. To support the
ns-3 Python bindings, a new tool called PyBindGen was developed to en-
able developers to bind C++ libraries to Python. The ns-3 Python bindings
are easy to maintain due to the automatic C++ header scanning ability of
PyBindGen, cover most of the ns-3 C++ API, and do not deviate from the
C++ API, making switching between the two languages relatively straight-
forward. The PyBindGen tool was evaluated in terms of performance and
was found to have much better performance than Boost.Python or SWIG.
PyBindGen has similar performance to SIP, but is much more easily exten-
sible, via Python plugin code, and is more portable. Finally, we developed
a new visualization tool for ns-3, to make debugging of protocol models and
simulation scenarios easier.
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5.2 Original contributions

The following contributions have been produced during the course of this
work:

1. WiMetroNet: a novel network architecture designed for a public trans-
portation system that is scalable and appears to end user terminals as
just a large Wireless LAN segment. This includes:

(a) A new scalable data plane that (i) solves broadcast problems by
forbidding broadcasts in general and providing only DHCP and
ARP support in a way that does not require flooding the entire
network for each DHCP/ARP request, (ii) uses an MPLS header
when encapsulating user frames, so that it works with hetero-
geneous technologies, including those that do not use IEEE 802
addresses, and (iii) offers a LAN-like service model to support all
802.11-based end user mobile terminals;

(b) An associated routing protocol — WMRP — that supports mo-
bility of both Rbridges and mobile terminals and distributes the
IP/MAC associations needed for the data plane ARP optimiza-
tions. This protocol is a simple link-state routing protocol with
two main differences: (1) the rate of periodic messages is much
lower than usual, (2) additional message types are defined for
disseminating IP and MAC address information;

(c) Two competing WMRP optimizations that allow fast dissemina-
tion of mobile terminals’ location changes (fast handover) using
only a residual routing overhead, but without needing location
information (GPS) or any kind of network segmentation or hier-
archy;

While maintaining relatively low architectural complexity, by not re-
quiring a GPS sensor, we have demonstrated via simulation that WiMetroNet
scales better than existing solutions;

2. A new unified simulation/implementation protocol development method-
ology that takes advantage of the existing ns-3 network emulation func-
tionality. This contribution comprises an evaluation of the packet pro-
cessing performance, in terms of achievable throughput, packet loss,
and round-trip time, of ns-3 working in emulation mode, compared to
a pure kernelspace IPv4 forwarding, and also numerous ns-3 improve-
ments to make developing new protocols easier, including:
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(a) Proposal of additional ns-3 classes that significantly improve the
emulation of control plane protocols, and simplify the deployment
of such protocols;

(b) New visualization capabilities for ns-3 that help solve some prob-
lems that occur during protocol development, codenamed PyViz.
The main innovative aspect of PyViz is that it visualizes a run-
ning simulation, instead of a postmortem trace file, and allows
researchers to experiment in modifying the simulation state. For
instance, it is possible to drag a wireless node with the mouse,
while the simulation runs, which is much faster to do than pro-
gramming a test mobility model in the simulation script;

(c) A new scripting framework for ns-3, based on Python. Unlike ns-
2’s oTCL bindings, the new Python bindings are strictly a layer
on top of the pure C++ simulator, and therefore completely op-
tional. Only objects explicitly exposed by the simulation script
consume the associated memory overhead, while ns-3 objects that
remain hidden from the simulation script do not incur any mem-
ory overhead due to the Python bindings;

(d) New data collection framework (Flow Monitor) for ns-3. The
Flow Monitor collects statistics of packet flows passing in simu-
lated nodes, avoiding the need to collect large ascii or pcap trace
files, thus speeding up the simulation considerably. It is also sim-
ple to use, since it requires nearly no configuration, and is based
on an open and modular architecture, allowing it to be extended
to classify flows differently and from different sources.

The main innovation in the proposed protocol development method-
ology is derived by the ease of development afforded by the ns-3 sim-
ulator, improved by the emulation performance enhancement that we
propose. Moreover, the combination of novel visualization, efficient
Python scripting layer, and easy to use data collection framework al-
lows for faster and more consistent protocol development than was
previously possible.

5.3 The SITMe project

At the time of this writing, a research project called SITMe (Serviços In-
tegrados para Transportes Metropolitanos) is active. The main goal of this
project is to develop and supply information services to passengers traveling
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Figure 5.1: A SITMe Rbridge

in buses, such as (1) display news and entertainment information, (2) sup-
ply inter-modality information (passenger travel assistance), (3) interactive
services, and (4) supply Internet access to passengers using the bus’ inter-
nal wireless network. For that purpose, a multi-technology communications
system is being developed, which is based on the WiMetroNet architecture
described in this thesis, with some modifications to accommodate project-
specific requirements. In this project, a prototype Rbridge was built, and is
being deployed in a small network of eleven buses in the Porto city, Portugal,
comprising a bus line near the Faculty of Engineering of the Porto Univer-
sity. The partners of the SITMe project are: INESC TEC, Xarevision,
FEUP, and FEP. Additionally, project trials are being done in STCP
buses, with access to a WiMax network being provided by ONI, and access
to a public IEEE 802.11 hot-spot network provided by Porto Digital.

As shown in Fig. 5.1, a SITMe Rbridge contains a total of six network
interfaces. Two of those interfaces are internal Ethernet interfaces: one
connects to a 802.11 Access Point that provides connectivity to passengers
in the bus, while the other connects to the Xarepoint, a set-top box that
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controls the information display, developed by Xarevision. The remaining
four network interfaces are used to connect the Rbridge to the outside world.
Here, never the term “heterogeneous networking” applied better. Currently,
one UMTS (HSDPA) card provides Internet connectivity via a traditional
cellular network operator. There is also a WiMax card; it will connect to a
WiMax base station installed specifically for the SITMe project. One WiFi
card, working in infrastructure mode, allows the Rbridge to access public
WiFi hotspots, in particular the “Porto Digital” network of public WiFi
hotspots. Finally, an additional WiFi card, this one in adhoc mode, allows
vehicles to exchange traffic directly.

Fig. 5.2 shows the actual hardware used. On the left-hand side is the
Xarepoint, on the right-hand side is the Rbridge. In Fig. 5.3 we see the hard-
ware mounted in an actual bus, in the upper cabinet area, with connected
monitor and keyboard for configuration and debugging access. The hard-
ware used in the Rbridge is the actual hardware that was used to evaluate
the ns-3 emulation performance back in Sec. 4.4.2, namely a mini-itx Intel
Atom D510. This hardware was selected due to a number of advantages. It
is much less expensive than a “regular” computer system, but offers consid-
erable greater performance than the typical CPU found in wireless access
points, as evidenced by the results in Fig. 3.33 on page 113. The small form
factor, passive cooling, and Solid State Drive (SSD) storage, are additional
features of the hardware that make it suitable for deployment in buses.

Running on the hardware described above, the Rbridge communications
software is actually the WiMetroNet simulation model developed in the con-
text of this thesis, and used to obtain the simulation results in Chap. 3. To
allow this, we put to practice the emulation techniques described in Sec. 4.4
(page 164).

5.4 Future Work

5.4.1 WiMetroNet

Future work of the WiMetroNet architecture will include measuring the
performance of our optimizations under different types of traffic. We are
particularly interested in evaluating how the bindupdate solution compares
to explosive as the number of peers increases, in a peer-to-peer application.
We will also be designing and evaluating further optimizations, this time to
reduce the routing overhead incurred due to mobility of Rbridges themselves
(e.g. handover of a bus from one base station to another one). Further
work involves optimizing the network “bootstrap” issues when very long
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Figure 5.2: SITMe real equipment photo
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Figure 5.3: SITMe equipment mounted in a bus
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MC/TC/IC refresh intervals are used. Handling temporary disconnection
of an Rbridge, which may lead to loss of a periodic global update, will also
be improved.

There may be multiple wireless networks available in to be used, but
some of them are expensive (3G), and some of them are unreliable or only
temporarily available, such as public WiFi networks. The WiMetroNet takes
advantage of all heterogeneous networking capabilities available in the re-
gion, but suffers from poor reliability of some WiFi APs. One option of
adding reliability is to have multipath communications, for example by us-
ing both WiFi and UMTS at the same time, duplicating all packets for both
networks. Moreover, intelligence is required to try to predict whether a
given WiFi AP will be reliable or not, and whether it is worth connecting
to it given the coverage area and vehicle trajectory. The use of Machine
Learning and Swarm Intelligence techniques applied to this problem will be
studied.

5.4.2 Protocol development

Future work on the topic of ns-3 will include better build system control
to disable ns-3 modules that are not needed, to save memory, but without
needing to modify the build scripts manually. Another area for improvement
is to create additional socket classes, similar to RealUdpSocket, for other
types of sockets, such as PacketSocket (for layer 2 protocols) and TcpSocket
(for TCP protocols). Additionally, a sequence diagram generator, using
simulation packet traces as input, would be extremely helpful to protocol
developers.

There is also room for improvement in the Flow Monitor ns-3 module.
For instance, more data output methods, such as database and binary file,
would be welcome. Another useful addition could be to create more options
to better control what level of detail is stored in memory. For instance,
we might not be interested in per-probe flow statistics, or in histograms.
FlowMonitor support for multicast/broadcast flows is another features that
could be useful for certain researchers. The FlowMonitor could benefit from
a closer integration with NetDevices, e.g. so that it could directly monitor
packet drop events from each NetDevice’s transmission queue, as well as
handle transmission errors from layer 2, instead of relying on the vaguer
“packet missing in action” measurement method. In some circumstances a
researcher might want to observe how flow metrics evolve over time, instead
of just obtaining a summary of the results over the entire simulation. This
would require saving a periodic snapshot of the flows metrics to a file. It
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can be done already by user code, but a convenience API for it would be
interesting to have in FlowMonitor. Finally, we would like to add convenient
methods to the Histogram class that would compute the values N , µ, and s
that were mentioned in Sec. 4.2.1.

Possible visualization improvements include the ability to visualize layers
or objects inside each node, as well visualize the data flows between those
objects. It would also be useful to be able to see messages exchanged be-
tween objects. Another area in which a graphical visualizer could help would
be to automatically generate message sequence diagrams between nodes or
objects within each node. Finally, adding an optional “offline” mode to
visualization, as done in the traditional visualizers, could be useful for simu-
lations that are too computationally intensive to be able to visualize in real
time.
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Abbreviations

ACM Association for Computing Machinery (43)

ALPINE Application Level Protocol Infrastructure for Network Experi-
mentation (184 185)

AODV Ad hoc On Demand Distance Vector (2 20 25 53 55 58 116 118 181 189)

AOP Aspect-oriented Programming (85)

AP Access Point (1 9 13 35 63 65 67 74 80 95 116 198)

API Application Programming Interface (47 49 51 123 125 127 131 135 158 160

161 175 183 185 186 191 199)

AR Access Router (35 37 39 55 190)

ARP Address Resolution Protocol (2 5 58 63 70 74 78 82 115 116 118 190 192)

BA Binding Update (94)

BGP Border Gateway Protocol (16)

BSD Berkeley Software Distribution (184)

BSS Basic Service Set (10 13 23)

BSSID BSS Identifier (13)

BU Binding Update (88 94)

CBR Constant Bit-rate (96 146)

CCH Control Channel (12)

CN Correspondent Node (29 32 37 39 55 189)
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COM Component Object Model (47)

CPU Central Processing Unit (52 113 137 153 165 171 173 177 178 195)

CSMA Carrier Sense Multiple Access (8 47 49 53)

CTS Clear To Send (12)

DB Data Base (154)

DBMS Data Base Management System (153 154)

DCF Distributed Coordination Function (9 12)

DDR Double Data Rate (113)

DHCP Dynamic Host Configuration Protocol (2 7 33 37 54 57 59 61 63 64 68

76 86 115 116 118 189 190 192)

DNS Domain Name System (37)

DNS-SD DNS based Service Discovery (115)

DS Distribution System (10 23)

DSCP Differentiated Services Code Point (140)

DSR Dynamic Source Routing (53)

DSRC Dedicated Short-Range Communications (8 12)

EMM Enhanced Mobility Management (117)

ESS Extended Service Set (10 25)

ETX Expected Transmission Count (182)

EUI Extended Unique Identifier (48 54 61)

FA Foreign Agent (29 32)

FBU Fast Binding Update (35)

FCS Frame Check Sequence (8)

FEC Forward Error Correction (21 82)

FEP Faculdade de Economia da Universidade do Porto (194)
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FEUP Faculdade de Engenharia da Universidade do Porto (194)

FIB Forwarding Information Base (16)

FNA Fast Neighbor Advertisement (35)

FTP File Transfer Protocol (174)

GCC GNU Compiler Collection (133)

GFA Gateway Foreign Agent (32)

GIL Global Interpreter Lock (139)

GPL GNU General Public License (56 190)

GPS Global Positioning System (116 192)

GTK Gimp Tool Kit (154)

GUI Graphical User Interface (139 154 157)

GW Gateway (67 68)

HA Home Agent (29 32 35)

HDF Hierarchical Data Format (138)

HI Handover Initiate (35 37)

HIP Host Identity Protocol (37 38 41 55 189)

HIT Host Identity Tag (37)

HNA Host and Network Association (18 64 99 117)

HSDPA High-Speed Downlink Packet Access (10 13 195)

HTTP Hyper Text Transfer Protocol (174)

HWMP Hybrid Wireless Mesh Protocol (25 116)

IC IP Control (60 61 63 70 76 86 198)

ICMP Internet Control Message Protocol (47)

IEEE Institute of Electrical and Electronics Engineers (1 8 9 11 14 48 54 64

115 118 192 194)
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IETF Internet Engineering Task Force (22 28 114 144)

IP Internet Protocol (1 5 7 11 14 16 17 22 23 26 27 28 28 31 33 35 36 39 39 42 44 47 55

56 57 60 61 64 65 69 76 82 118 137 141 146 171 172 177 182 189 190 192)

IS-IS Intermediate System To Intermediate System (22)

ISM Industrial, Scientific and Medical band (9 12)

LAN Local Area Network (2 4 9 16 23 28 55 177 189 192)

LANMAR Landmark Routing Protocol for Large Scale Networks (115)

LAR Location-Aided Routing (116)

LLC Logical Link Control (15)

LMA Local Mobility Anchor (33)

LSP Label Switched Path (21 68)

LTA Local Terminal Associations (63 71)

LTE Long Term Evolution (10)

MAC Media Access Control (5 8 9 11 12 15 22 25 26 33 44 48 51 54 59 60 61 63 65

67 68 70 71 74 76 80 82 82 93 94 95 101 113 118 146 150 175 182 186 190 192)

MAG Mobile Access Gateways (33)

MAMP Mobility-Aware Multi-Path (116)

MAP Mesh Access Point (116)

MC MAC Control (25 60 61 65 71 73 76 86 87 89 90 92 93 94 96 99 101 106 107 111

198)

MID Multiple Interface Declaration (18)

MIP Mobile IP (29 31 34 35 41 41 56 190)

MIP-RR Mobile Internet Protocol Regional Registration (32)

MIPS Microprocessor without Interlocked Pipeline Stages (113)

MN Mobile Node (29 31 32 34 35 37 39)

MP Mesh Point (116)
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MPLS Multi-protocol Label Switching (14 21 26 27 55 59 60 63 68 72 75 76 78 81

82 84 88 92 118 139 171 189 190 192)

MPP Mesh Portal Points (116)

MPR Multi-point Relay (18 19 64 66)

MSC Message Sequence Chart (72)

MTU Maximum Transmission Unit (35 171 172 174)

NAR New Access Router (35)

NEMO Network Mobility (34 42)

NSC Network Simulation Cradle (184 185)

OBU Onboard Units (12)

OLSR Optimized Link State Routing (2 17 19 26 47 55 58 60 64 65 86 90 96 99

108 115 117 118 146 153 161 174 176 177 179 181 186 189 190)

OS Operating System (156 182)

OSI Open Systems Interconnection (41)

OSPF Open Shortest Path First (16 19 23 42 189)

PAN Personal Area Network (34)

PAR Previous Access Router (35)

PCF Point Coordination Function (10)

PDP Packet Data Protocol (10)

PDU Protocol Data Unit (37 60 78 80 82 166)

PKI Public Key Infrastructure (37)

PMLAR Predictive Mobility and Location-Aware Routing (116)

PPP Point-to-point Protocol (11 49 150)

PREP Path Response (25)

PREQ Path Request (25)
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RANN Root Announcement (25)

RERR Route Error (21)

RFC Request For Comment (59 144)

RID Rbridge Identifier (59 87)

RREP Route Reply (20)

RREQ Route Request (20)

RRM Radio Resource Manager (10)

RSS Resident Memory Size (179)

RSU Roadside Unit (12 13)

RSVP-TE Resource Reservation Protocol – Traffic Engineering (59)

RTA Remote Terminal Associations (63 68)

RTP Real-time Protocol (45)

RTS Request To Send (12)

RTT Round-trip Time (171 172)

SCH Service Channel (12)

SDL Specification and Description Language (53 56)

SIGCOMM Special Interest Group on Data Communications (157)

SIP Session Initiation Protocol (39 39 41 55 124 131 133 135 189 191)

SLA Service Level Agreement (136)

SNMP Simple Network Management Protocol (136)

SQL Simple Query Language (138 153)

SSD Solid State Drive (195)

SSID Service Set Identifier (64 155)

STCP Sociedade de Transportes Colectivos do Porto (194)
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STL Standrd Template Library (125 182)

STP Spanning Tree Protocol (16 54 189)

SVG Scalable Vector Graphics (160)

SWANS Scalable Wireless Ad hoc Network Simulator (53 56 190)

SWIG Simplified Wrapper and Interface Generator (124 131 133 135 191)

TC Topology Control (18 20 60 61 86 99 114 198)

TCL Tool Command Language (44 45 47 122 134)

TCP Transmission Control Protocol (41 43 47 48 96 99 107 110 141 156 171 174

178 198)

TRILL Transparent Interconnection of Lots of Links (22 26 28 55 114 118

189)

TTL Time To Live (16 20 22 25 27 28 59 68 87 94 96 114 144 183)

U-NII Unlicensed National Information Infrastructure (9 13)

UCLA University of California, Los Angeles (52)

UDP User Datagram Protocol (41 48 96 99 107 109 141 146 150 171 175 177 186

191)

UML Unified Modelling Language (74)

UMTS Universal Mobile Telecommunications System (1 8 10 13 54 56 59 189

195 198)

URI Uniform Resource Identifier (39)

URL Uniform Resource Locator (175)

VANET Vehicular Ad-Hoc Network (2)

WAVE Wireless Access for Vehicular Environments (12)

WCDMA Wideband Code Division Multiple Access (10)

WLAN Wireless Local Area Network (1 9 116)

WMAN Wireless Metropolitan Area Network (1 11)
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WMN Wireless Mesh Network (115)

WMRP Wireless Metropolitan Routing Protocol (5 59 60 61 64 65 68 74 76

78 80 82 86 86 90 93 94 96 99 108 108 114 118 192)

WNMT Wireless Network for Metropolitan Transports (2 27 57)

XAV XML tracing framework of Yavista (153 154)

XML Extensible Markup Language (138 147 152 154)

ZRP Zone Routing Protocol (54)
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jukoski, and M. Rinne, “LTE-Advanced: The path towards gigabit/s
in wireless mobile communications,” in Wireless Communication, Ve-
hicular Technology, Information Theory and Aerospace & Electronic
Systems Technology, 2009. Wireless VITAE 2009. 1st International
Conference on. IEEE, 2009, pp. 147–151.

209

citeseer.ist.psu.edu/myers04rethinking.html
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3561.txt


210 BIBLIOGRAPHY

[8] “IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005:
IEEE standard for local and metropolitan area networks part
16: Air interface for fixed and mobile broadband wireless
access systems amendment 2: Physical and medium access
control layers for combined fixed and mobile operation in licensed
bands and corrigendum 1,” Tech. Rep., 2006. [Online]. Available:
http://dx.doi.org/10.1109/IEEESTD.2006.99107

[9] P. Grønsund, P. Engelstad, and M. A. T. Skeie, Real Life Field
Trial over a Pre-mobile WiMAX System with 4th Order Diversity,
ser. Lecture Notes in Computer Science. Springer, August 2007, vol.
4712/2007.

[10] D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “De-
sign of 5.9 GHz DSRC-based vehicular safety communication,” Wireless
Communications, IEEE, vol. 13, no. 5, pp. 36–43, 2006.

[11] J. Kenney, “Dedicated Short-Range Communications (DSRC) stan-
dards in the United States,” Proceedings of the IEEE, vol. 99, no. 7,
pp. 1162–1182, 2011.

[12] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: a measurement study and im-
plications for network applications,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference. ACM,
2009, pp. 280–293.

[13] M. Bhatia et al., Introduction to Computer Network. Madhulika, 2009.

[14] J. Moy et al., “OSPF version 2,” STD 54, RFC 2328, April, Tech. Rep.,
1998.

[15] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol (BGP-
4),” RFC 4271, January, Tech. Rep., 2006.

[16] E. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] J. P. Macker and J. W. Dean, A Study of Link State Flooding Opti-
mizations for Scalable Wireless Networks. Storming Media, 2003.

[18] L. Viennot, L. Viennot, and P. Hipercom, “Complexity results
on election of multipoint relays in wireless networks,” INTERNAL

http://dx.doi.org/10.1109/IEEESTD.2006.99107


BIBLIOGRAPHY 211

REPORT RR-3584, INRIA, 1998. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4536

[19] O. Liang, Y. A. Sekercioglu, and N. Mani, “A survey of multipoint relay
based broadcast schemes in wireless ad hoc networks,” IEEE Commu-
nications Surveys & Tutorials, vol. 8, no. 4, pp. 30–46, 2006.

[20] C. Adjih, E. Baccelli, T. Clausen, P. Jacquet, and G. Rodolakis, “Fish
eye olsr scaling properties,” IEEE Journal of Communication and Net-
works (JCN), Special Issue on Mobile Ad Hoc Wireless Networks, vol. 6,
no. 4, pp. 343–351, 2004.

[21] J. Härri, C. Bonnet, and F. Filali, “OLSR and MPR: mutual depen-
dences and performances,” in Challenges in Ad Hoc Networking, ser.
IFIP International Federation for Information Processing. Springer
Boston, 2006, pp. 67–71.

[22] A. Busson, N. Mitton, and E. Fleury, “Analysis of the multi-point relay
selection in olsr and implications,” in Challenges in Ad Hoc Networking:
Fourth Annual Mediterranean Ad Hoc Networking Workshop, June 21-
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[47] E. Weingärtner, H. vom Lehn, and K. Wehrle, “A performance compar-
ison of recent network simulators,” in Proceedings of the IEEE Inter-
national Conference on Communications 2009 (ICC 2009), Dresden,
Germany, IEEE., Jun. 2009.

[48] J. Font, P. Inigo, M. Dominguez, J. Sevillano, and C. Amaya, “Anal-
ysis of source code metrics from ns-2 and ns-3 network simulators,”
Simulation Modelling Practice and Theory, 2011.

[49] D. Edelson, Smart pointers: They’re smart, but they’re not pointers.
University of California, Santa Cruz, Computer Research Laboratory,
1992.

[50] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,” Wireless Communications and Mobile
Computing, vol. 2, no. 5, pp. 483–502, 2002.

[51] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1995.

[52] G. Carneiro, J. Ruela, and M. Ricardo, “Cross-layer design in 4G wire-
less terminals,” Wireless Communications, IEEE [see also IEEE Per-
sonal Communications], vol. 11, no. 2, pp. 7–13, 2004.

[53] A. Varga and R. Hornig, “An overview of the OMNeT++ simula-
tion environment,” in Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and
systems & workshops. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2008, pp. 1–10.

[54] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and
H. Song, “Parsec: A parallel simulation environment for complex sys-
tems,” Computer, vol. 31, no. 10, pp. 77–85, 1998.

[55] I. Specification, “Description Language (SDL). ITU-T Recommenda-
tion Z. 100,” International Telecommunication Union, Geneve, vol. 267,
1992.

[56] R. Barr, Z. Haas, and R. van Renesse, “Jist: An efficient approach to
simulation using virtual machines,” Software: Practice and Experience,
vol. 35, no. 6, pp. 539–576, 2005.

[57] R. Barr, “Swans-scalable wireless ad hoc network simulator user guide,”
2006.



BIBLIOGRAPHY 215

[58] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote Authen-
tication Dial In User Service (RADIUS),” RFC 2865, IETF, 2000.

[59] “IEEE standard for local and metropolitan area networks port-based
network access control,” IEEE Std 802.1X-2004 (Revision of IEEE Std
802.1X-2001), 2004.

[60] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Springer, 2002.

[61] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[62] T. Elrad, R. Filman, and A. Bader, “Aspect-oriented programming:
Introduction,” Communications of the ACM, vol. 44, no. 10, pp. 29–32,
2001.

[63] D. Kim, H. Cai, M. Na, and S. Choi, “Performance measurement over
mobile WiMAX/IEEE 802.16 e network,” in World of Wireless, Mobile
and Multimedia Networks, 2008. WoWMoM 2008. 2008 International
Symposium on a, 2008, pp. 1–8.

[64] Hongqiang Zhai, Younggoo Kwon, and Yuguang Fang, “Performance
analysis of IEEE 802.11 MAC protocols in wireless LANs,” Wireless
Communications and Mobile Computing, vol. 4, no. 8, pp. 917–931, 25
Nov. 2004.

[65] N. Potnis and A. Mahajan, “Mobility models for vehicular ad hoc net-
work simulations,” in Proceedings of the 44th annual Southeast regional
conference. ACM, 2006, p. 747.

[66] C. Demetrescu and G. Italiano, “Experimental analysis of dynamic
all pairs shortest path algorithms,” ACM Transactions on Algorithms
(TALG), vol. 2, no. 4, pp. 578–601, 2006.

[67] G. Pei, M. Gerla, and X. Hong, “LANMAR: landmark routing for large
scale wireless ad hoc networks with group mobility,” in Proceedings of
the 1st ACM international symposium on Mobile ad hoc networking &
computing, 2000, p. 18.

[68] F. J. Ros and P. M. Ruiz, “Cluster-based OLSR extensions to reduce
control overhead in mobile ad hoc networks,” in Proceedings of the



216 BIBLIOGRAPHY

2007 international conference on Wireless communications and mobile
computing, 2007, p. 207.

[69] Y. Ko and N. Vaidya, “Location-aided routing (LAR) in mobile ad hoc
networks,” Wireless Networks, vol. 6, no. 4, p. 321, 2000.

[70] K. FENG, C. HSU, and T. LU, “Velocity-assisted predictive mobil-
ity and location-aware routing protocols for mobile ad hoc networks,”
IEEE transactions on vehicular technology, vol. 57, no. 1, pp. 448–464,
2008.

[71] T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and
Y. Nemoto, “A stable routing protocol to support ITS services
in VANET networks,” IEEE Transactions on Vehicular Technology,
vol. 56, no. 6 Part 1, pp. 3337–3347, 2007.

[72] V. Namboodiri and L. Gao, “Prediction-based routing for vehicular ad
hoc networks,” IEEE Transactions on Vehicular Technology, vol. 56,
no. 4 Part 2, pp. 2332–2345, 2007.

[73] Y. Fan, J. Zhang, and X. Shen, “Mobility-aware multi-path forwarding
scheme for wireless mesh networks,” in Wireless Communications and
Networking Conference, 2008. WCNC 2008. IEEE. IEEE, 2008, pp.
2337–2342.

[74] A. Capone, S. Napoli, and A. Pollastro, “Mobimesh: an experimental
platform for wireless mesh networks with mobility support,” in Proc.
of ACM QShine 2006 Workshop on “Wireless mesh: moving towards
applications”, Waterloo (Canada), 2006.

[75] H. Wang, Q. Huang, Y. Xia, Y. Wu, and Y. Yuan, “A network-based lo-
cal mobility management scheme for wireless mesh networks,” in Wire-
less Communications and Networking Conference, 2007. WCNC 2007.
IEEE. IEEE, 2007, pp. 3792–3797.

[76] Y. Amir, C. Danilov, M. Hilsdale, R. Musaloiu-Elefteri, and N. Rivera,
“Fast handoff for seamless wireless mesh networks,” in Proceedings of
the 4th international conference on Mobile systems, applications and
services. ACM, 2006, pp. 83–95.

[77] M. Bezahaf, L. Iannone, and S. Fdida, “Enhanced mobility manage-
ment in wireless mesh networks,” Journées Doctorales em Informatique
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