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Abstract— In this paper we propose a novel approach to
detect and reconstruct transparent objects. This approach
makes use of the fact that many transparent objects, especially
the ones consisting of usual glass, absorb light in certain
wavelengths [1]. Given a controlled illumination, this absorbtion
is measurable in the intensity response by comparison to the
background. We show the usage of a standard infrared emitter
and the intensity sensor of a time of flight (ToF) camera to
reconstruct the structure, which can not be measured by the
usual 3D measurements of the ToF camera, given we have a
second view point.

We take advantage of this fact by deriving this internal
sensory contradiction from two ToF images and reconstruct
an approximated surface of the original transparent object.
Therefor we are using a perspectively invariant matching in
the intensity channels from the first to the second view of
initially acquired candidates. For each matched pixel in the
first view a 3D movement can be predicted given their original
3D measurement and the known distance to the second camera
position. If their line of sight did not pass a transparent object
or suffered any other major defect, this prediction will highly
correspond to the actual measured 3D points of the second
view. Otherwise, if a detectable error occurs, we approximate a
more exact point to point matching technique and reconstruct
the original shape by triangulating the points in the stereo
setup. We tested our approach using a mobile platform with
one Swissranger SR4k. As this platform is mobile, we were
able to create a stereo setup by moving it. Our results show a
detection of transparent objects on tables while simultaneously
identifying opaque objects that also existed in the test setup.
The viability of our results is demonstrated by a successful
automated manipulation of the respective transparent object.

I. INTRODUCTION

For the scenario of a robot in a domestic environment

solutions for as well object detection as reconstruction in-

clude often the usage of ToF sensors and stereo cameras. In

the state of the art literature, we find approaches which allow

the avoidance on the one hand and manipulation on the other

hand of nearly all kind of objects. Most of those methods

are meant to be applied to a special task, and a globally

applicable solution can be most probably only achieved by

a combination of a set of those methods.

We want discuss in this paper the task of detection and

reconstruction of transparent objects, for which the state of

the art lacks a robust solution [2]. Especially, current sensors

and the respective methods have problems either to detect the

objects or to detect their transparency.

But in domestic environments the recognition of such

objects for robots that perform manipulation tasks is par-

ticularly interesting. Glass objects are quite common in

Fig. 1. The robot grasps a transparent object, which was reconstructed
using a SR4k camera.

such environments in the form of drinking glasses, vases or

bottles, which is reasoned in their transparency allowing to

see the content directly. Without the robust detection of any

kind of object, a robot would fail on any everyday task in a

household including the manipulation or recognition of such

objects. Apart from the problem that a transparent object

could not be grasped, the missing recognition leads to more

difficulties. A collision for example would be inevitable if

the robot tried to manipulate a known object but would be

incapable of recognizing the transparent object located aside.

The challenges that transparency implies to common

sensors and algorithms seem simple [3]. Nevertheless, no

general solution could be found, yet [4]. Laser beams, e.g.

emitted by LIDAR-Sensors, are usually partly reflected and

refracted several times before they hit any surface, which

leads to false or no 3D information at all [1], [5]. For nor-

mal camera systems transparent objects are almost invisible

except for specularities that can be used to deduce shape

information if well defined preconditions are met [6], [7].

A 3D reconstruction using common stereovision approaches

is difficult due to the lack of stable features on transparent

objects [8], [9]. Tests with structured light [10] that were

carried out at the beginning of our work showed only poor

results on objects like drinking glasses or plastic bottles.

On the other hand, some of the reconstructions were good

enough to fit a 3D shape model into the point cloud. But the

success of these approaches were still heavily depending on

various factors such as lightening environment and object



shape. Decent results could only be obtained under very

constrained conditions. Therefore, recent studies concentrate

on the development of algorithms which consider the spe-

cial properties of translucent objects [2], [8]. Additionally,

research into various sensors is being done, to maybe obtain

more useful measurements [11], [12].

Our approach provides a foundation to expand available

object recognition systems by transparency, leading to more

robustness in the robots environment perception. Apart from

that, we took the household-robot as the use case for the

actual system. Accordingly, our method is supposed to

enable a robot not only to detect but also to manipulate

transparent objects, which requires a reconstruction. Our key

contributions are:

1) A robust segmentation for various background types

(bright uniform/wood, dark uniform)

2) A specialized matching with a series of validity tests

to distinguish between opaque and transparent objects

3) A probabilistic reconstruction of possibly occupied

area by a transparent object

4) A robust grasping mechanism based on [13]

The structure of this paper is as follows: The following

section explains the architecture of our system and its

integration into the robotic system. Section II presents the

Problem and the effects which are observed in the sensor

reading of a SR4k for transparent objects. The following

sections describe the method for Segmentation in section III

and the Matching procedure in section IV followed by the

description of the special behavior of transparent objects in

SR4000 point clouds in Section V which also depicts the

related check. Subsequently we discuss the reconstruction of

the 3D points in Section VI. The results of our test on our

hardware setup follow in Section VII. Lastly we draw our

conclusions in Section VIII.

A. System architecture

As for development purposes we mainly used the MVTec

HALCON image processing library and embedded our code

into ROS [14]. The architecture of our software is shown in

Figure 2.

The inputs we use for our method is the SR4000 point

cloud data which is also converted into a distance and an

intensity map of the size 176x144. The system itself is

divided into two steps with the robot’s movement in between.

In the first part the data from the SwissRanger is read, the

obtained intensity images are optimized in their contrasts

[15] and are segmented by extracting darker areas with an

enhanced thresholding [16]. This procedure yields possible

candidate areas for transparent objects. These candidates

support not only 2D intensities but also 3D information

corresponding to every image point. The defined candidate

areas are then returned to the operating system together with

the corresponding distance and intensity image as well as the

3D point cloud data.

Secondly the robot performs a movement within a certain

range which provides pose parameters that can be used for

a 3D point transformation between the first and the second
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Fig. 2. System Architecture

view on the scene. These parameters are acquired from the

operating system ROS by comparing the two robot positions

for each view which originate from an AMCL driven self-

localisation supported by two laser sensors. To ensure that

the candidates remain in the field of view of the ToF camera,

every candidate has an approximated world coordinate pose

attached to it such that the platform can focus this pose and

run the last step.

Now a second view is generated as well as a second

segmentation with the same procedure as the first one. The

inputs are then complemented by the 3D transformation data

and the ToF data from the first view. The method then

processes every candidate and checks whether it has the char-

acteristic of a transparent objects when comparing the two

views. In order to perform this check, we first establish 2D

image correspondences by applying a perspectively invariant

matching in the intensity channels [17] for the respective

candidate. In the next step the algorithm ascertains whether

a candidate is a transparent object or not by checking for

inconsistencies in its 2D and 3D points when comparing the

two views. If the check is positive, a 3D reconstruction is

carried out and the new 3D points are transformed into a

suitable form for later grasping or path planning algorithms.

More detailed information about each of the mentioned steps

will be provided in the following sections.

II. PROBLEM STATEMENT

To begin with, the available data will be described briefly.

As shown in Figure 3(a) a transparent object can be seen in

a usual camera image if the light environment fulfills certain



conditions. Here we have no direct light from above and a

distinct amount of ambient light coming from our ToF sensor.

Figure 3(b) shows the same camera image where bright light

is illuminating the scene from above. The translucent object

is barely recognizable with human eyes. As a result, common

stereovision approaches fail to even perceive the object.

(a) Barely illuminated by ambi-
ent light from the side and Sr4k
light.

(b) Highly illuminated with
bright light coming from above.

Fig. 3. Camera Images of the same scene with different illuminations.

Accordingly a sensor to perceive those objects should be

mostly invariant to the light environment. Here we propose

the use of a SR4k ToF camera, which is mostly invariant

to ambient light and therefore fulfills our demands. When

a transparent object is positioned in the view of a ToF-

camera an absorbtion of the IR-light is measurable in the

intensity channel. Yet it provides improper 3D data for

non-opaque objects. Figure 4(a) and 4(b) show two point

clouds with the intensity values associated to each point

that was generated by the SR4000 while observing the same

scenes with changing light environment described above. The

scene shows a table with several opaque objects and two

transparent objects in the middle and on the left.

(a) A scarcely illuminated scene. (b) A highly illuminated scene.

Fig. 4. ToF point cloud colored with intensities showing different, yet not
distinguishable, illuminations

These views seem to show a measurement of the trans-

parent objects, which are marked with red crosses. As one

can see, the glass’s shape is perceivable as a darker area

on the table. The reason for this is that the infrared light

emitted by the SR4000 camera is partly absorbed by the glass

[1]. The surrounding table surface on the other hand yields

much higher intensities because the infrared light is reflected

strongly. A very striking fact can be seen when observing

the point clouds from a different angle. The 3D points of the

glass are as flat as the table’s surface on which the object was

placed. This effect is illustrated in the Figures 5(a) and 5(b).

Moving the camera leads to a shadow-like behaviour of the

transparent objects, what means that the wrongly estimated

(a) from front left (b) from front right

Fig. 5. The red crosses mark transparent object that are as flat as the
surface because the ToF camera can not measure the shape correctly

3D positions fall away from the light source that illuminates

the scene onto the next surface which is the table in our setup.

According to the results in [4] we suspect that one part of the

infrared light is reflected because the intensity images contain

specularities as well. After the light has propagated through

the object it supposedly hits the first opaque surface, which is

the table, and is reflected back to the camera. Since the light

was mainly reflected by the table, the distance estimation of

the ToF-camera is in accordance to the surface behind the

glass, explaining the flattened 3D estimation. The following

set of images in Figures 6(a) and 6(b) depict the shadow-like

behaviour. The robot moves to the right and the point clouds

of the transparent objects move into the opposed direction.

(a) ToF Camera in first position (b) ToF Camera in second position

Fig. 6. Observed from a fixed point of view the transparent objects (marked
with red cross) are moving like a shadow over the surface when the ToF
camera is moved. The blue axes indicate the shadow-like movement.

All the objects in the Figures 6(a) and 6(b) are marked with

red crosses to illustrate their alignment. The point of view is

stable as well as the table on which the objects are placed.

The only movement is performed by our platform such that

the ToF-camera position changes. The blue axes indicate that

the opaque objects on the bottom and on the right keep their

alignment whereas the two transparent objects in the middle

and middle left of the picture perform a twist to the left.

The aforementioned effects are taken into consideration by

our method to distinguish between opaque and non-opaque

objects. If a transparent object is found, the real 3D shape

has to be recovered to enable our platform to manipulate it.

III. SEGMENTATION

In order to avoid calculating a complete image to image

correspondence we apply a segmentation as a preprocessing

step. A complete image to image correspondence would lead

to too many ambiguities in the matching since the features

observed in the SR4k are usually weak. Fortunately, transpar-

ent objects absorb enough light of the ToF camera’s emitted



flash, that they appear darker than their background except

from some specularities which are significantly brighter.

Objects with a proper 3D response in the camera could

be segmented using geometric cues [18] but this method

is not functional for translucent obstacles. Accordingly our

method performs a segmentation in 2D in order to find areas

with possible inaccuracies that have to be restored by a

reconstruction procedure to support the reliability of platform

functions such as grasp-position planning.

A. Intensity-based initial Segmentation

In order to generate candidate regions that our method

can focus on, the lowered intensities have to be found.

First, we enhance the contrasts [15] between environment

and transparent object which leads to emphasized boundaries

between objects and background. The high contrasts allow

the usage of an optimized threshold [16] which, applied to

the intensity image of the ToF camera, extracts pixel-areas

that represent lower intensities.

This extraction is carried out on a higher pyramid level as

well and after that, the results of both levels are combined

what removes most of the false candidates. This leads to a

better separation of the regions because thin structures in the

environment do not appear anymore. The extracted regions

are then refined with morphing operators to remove noise,

separate areas and obtain solid regions.

B. Automatic Dark Background Adaption

In the course of the development we also considered a

dark gray table as a surface. The segmentation procedure

partly failed here because the table did not reflect as much

of the IR-light anymore. The specularities actually seem to

overcome the reflections of the table back through the objects

which may originate from the heavily lowered reflectivity.

However if the infrared light only passes one transparent

layer the intensities keep their attribute of being darker than

the table’s surface. For two layers we have to deal with higher

intensities now as the specularities are brighter than the

background. Nevertheless our segmentation adapts to darker

backgrounds by assuming that the average image intensity

complies with the background intensity. The average inten-

sity is then interpreted as a dark or bright background.

C. Splitting and Merging

Occasionally, we found the regions of non-opaque objects

still connected with opaque ones due to distinct ways of

scene setups and view angles. As this leads to problems in

the later matching phase, we added a second segmentation

step that splits these regions. By generating a histogram

that assigns column or row values to occurrences. After a

smoothing procedure the function representing this histogram

is derived for the dimensions of row and column to extract

local maxima. Those maxima each represent a new cen-

troid for splitting candidates. All split candidates are tested

against nearby candidates for a possible merge to avoid over-

segmentation.

D. Candidate Omission

The resulting candidates are then evaluated based on their

region convexity. If this factor is above a certain threshold,

we calculate the deviations in x, y and z direction for the

associated 3D points. We use the deviations as an approx-

imation of the volume that is occupied by the candidate.

From the number of the points and this volume we may

now calculate the point density. Applying this procedure we

are able to omit candidates that do not yield a solid region

or high density. Especially noise that occurs at the edges of

the view has very low density.

The results of the initial segmentation are exemplarily

displayed in Figure 7(a). The refinement of this segmentation

using the splitting, merging and omitting steps is shown in

Figure7(b). Both images show regions overlayed over the

intensity image in different colors for the single segments.

(a) Initial segmentation. (b) After splitting and omission.

Fig. 7. Result of the whole segmentation phase with a solid transparent
object in the middle.

IV. MATCHING

The matching procedure is crucial to find out where the

candidate region moved to in the second view in order to

be able to triangulate between the two views. We solve

this correspondence question by introducing a planarity

assumption for the images we observe. We assume the

objects to be shadows, or more precisely projections of an

object onto a flat surface. This assumption allows us to

match the objects with a perspective invariant matching while

introducing errors that are discussed later.

A. Initial Planar Matching

Thus, we use a perspective invariant matching, which is

robust against noise and local deformations, presented by

Hofhauser et. al. in [17]. This matching builds a candidate

based on a grayvalue template and returns a planar homog-

raphy for the best match from the first to the second view.

The distance measure used for the matching score is based on

corresponding image derivatives in magnitude and direction.

A prerequisite for the method is planarity of the template

region. However, the matching is robust enough even if

the background behind the transparent object is not planar.

We use the candidate regions gathered by the segmentation

in the first view as template images. The search is then

applied to all parts of the second view that were found by

the same segmentation step that are close enough to the

predicted position. The prediction contains estimates of the



maximal expected rotations and perspective distortions. On

success, the matching results in a 2D homography which

is applied to the candidate’s image points. By transforming

a region we get another region in the second view that

covers the candidate’s match, which leads directly to an

initial point to point correspondence in 2D as well as 3D.

In order to visualize this correspondence we introduce the

following symbols: the segments in the first view will be

represented by S1 = [s0, s1, . . . , sn], the segments of the

second view are S2 = [s′0, s
′
1, . . . , s

′
m], each consisting of a

set of measured points with a 2D coordinate p, a 3D coor-

dinate q and an intensity value v: si = [Qi,0, Qi,1, . . . Qi,r],

Qi,j =
[

pi,j = [x, y]
T
, qi,j = [X,Y, Z]

T
, vij

]

. We estimate

a planar homography H between the two views for each

segment si and its resulting correspondence in the second

view s′k.

The best discrete pixel correspondence C defined by the

indices j and l between the first and the second segment is

then just the closest pixel to the transformed point using the

homography:

C =

[

(0, l0), . . . , (r, lr)| argmin
lj

‖pi,j −Hp′k,lj‖

]

(1)

pi,j ∈ Qi,j ∈ si, p
′
k,lj

∈ Q′
k,lj

∈ s′k

Figures 8(a) and 8(b) visualize this relation.

(a) Candidate region in first view (b) Matched and transformed region
in second view

Fig. 8. The planar matching provides a perspective 2D homography that
defines the pixel to pixel matching.

B. Introduced Errors by Planarity Assumption

[17] also discusses prerequisites for this type of matching.

Clearly, our method has to deal with a certain error as

the transparent objects are not planar. Our results show

that the triangulation of the center of the region is a valid

approximation of the center of mass of the transparent object.

Figure 9 shows the effect of the planar assumptions: using

the correspondences given by Eq. IV-A a plane in space can

be reconstructed (right part of the picture in blue). This

plane approximates a mean plane of the two silhouettes

observed in the two views as shadows on the table. Therefore,

every correspondence bears an error emove depending on the

distance to the center of the reconstruction. Additionally,

we underestimate the depth of the object with the planar

assumption by eobject.

Object
perspective 
and top view

Shadow visible 
in view 1

Shadow visible 
in view 2

Silhuette inducing 
shadow in view 1

Silhuette inducing 
shadow in view 2

Resulting 
reconstruction under 
planar assumption

e

emove

object

Fig. 9. Visualization of the errors introduced by the planar assumption, left
is a perspective view of the scene and on the right a top view of the object
with two kinds of errors: eobject introduced by the planar assumption, and
emove introduced by the changing silhouette due to the cameras movement.

V. INCONSISTENCY CHECK

The characteristics which we expect to distinguish trans-

parent from opaque objects or dark patches on a flat surface

are inconsistencies in their ToF 3D data to the 2D image

data. To begin with, we depict the 2D related checks. Using

the known 3D transformation P and the projection K, which

consists of the known internal camera parameters, we predict

the position of the set S1 in the second view making it

comparable to the set S2. Given a correct 3D measurement,

the transformed 3D data should result in the same points

q̂i,j = [X,Y, Z]
T

∈ si ∈ S2 found by the matching

procedure if the object is opaque. Then the transformed

points q̂i,j = Pqi,j are projected into the image plane

by applying K. The resulting 2D points p̂ should also be

consistent with the 2D points p′ of the candidate’s match in

the second view if the object is opaque. Here, we perform

the first check that estimates the extent of offset within the

2D data which should be higher for transparent objects.

∑

∀(j,l)∈C

‖p̂j − p′l‖ (2)

This offset in 2D can be derived from the twist a

transparent object undergoes which was illustrated in 6(a)

and 6(b). Not only causes this twist an offset but also a

rotation between the reprojected and the matched candidate

region what leads to the second check that determines

whether this rotation is above a defined magnitude. From

the correspondence between p′ and p̂ we deduce a similarity

transformation in R2 with 5 degrees of freedom (dof): the

rotation R (2 dof), the translation t (2 dof) and the scaling

s.

argmin
R,t,s

∑

∀(j,l)∈C

p′l
T (

sR t
)

p̂j (3)

This similarity should be resulting in an identity given a

correct 3D data, otherwise the sheering introduced by the

shadow effect can be measured in the R component. We can

define a threshold depending on the movement performed

by the camera between the two views which has to be



exceeded by a transparent object. If the candidate data passed

these thresholds, the 3D data is tested for inconsistencies to

further assure transparency. Given again the 2D point to point

correspondence C, we can triangulate the actual 3D position

of a point r in space. Assuming the 3D ray given by q, q′

expresses and the camera movement P the triangulation of

the 3D values can be seen as the following minimization:

argmin
m1,m2

(m1qi,j)
T
P
(

m2q
′
k,l

)

(4)

where m1,m2 > 0 are scalar factors. From this optimiza-

tion a new 3D point can be calculated using the gained factor

m1 and m2:

q′triangulated =
(m1qi,j) + P

(

m2q
′
k,l

)

2
(5)

The greater the distance of the two factors m1 and m2

from 1, the more likely there is an inconsistency between

the triangulation and the 3D measurement. If we triangulate

all points in the segments we get approximately a planar

structure in 3D which is in correspondence with the measured

3D points, as already mentioned in Figure 9.

The planar body has certain attributes that are correlated

to the scalar factors m1 and m2 which our first 3D related

checks are based on. First the position of the triangulated

points is analyzed which should be between the camera and

the measured 3D points.

qi,j − q′triangulated,i,j > 0 (6)

The second property is that the planar reconstruction

should be nearly orthogonal to the flat shadow of a transpar-

ent object. We reassess this fact by fitting a plane into both

the measured and the reconstructed points and calculate the

angle α between.

α = arccos

(

nT · n′

|n||n′|

)

(7)

with the normals n and n′:

n = argmin
a,b,c,d

(qi,j)
T (

a b c d
)T

(8)

n′ = argmin
a′,b′,c′,d′

(

q′triangulated,i,j
)T (

a′ b′ c′ d′
)T

(9)

After the shadow-like behaviour was checked by means

of its 2D inconsistency and its planarity, a last procedure

checks whether the mentioned 3D movement of the shadow

actually took place. As the movement should be determined

by a rotation of the planar candidate point cloud, we identify

its screw parameters by estimating the 3D transformation

parameters that align the points q and Pq′. In order to obtain

this information our method makes use of a single step of the

ICP-algorithm [19] applying a least-squares-minimization to

the following:

argmin
RicpTicp

∑

∀(j,l)∈C

qTj RicpTicpPq′l (10)

As a matter of fact the angles of rotation around the three

axes are much bigger for the translucent obstacles than for

opaque ones. From the rotation matrix Ricp we can deduce

the 3D twist the respective candidate has undergone. The

overall magnitude of rotation between the point clouds q

and Pq′ indicates a transparent objects with a high value

and an opaque objects with a very low value even if the

measurement is erroneous. All together our method compares

the two views of each candidate by means of image point

distance and twist between the object’s point clouds to

determine whether an observed low intensity area is caused

by an opaque or a translucent object.

VI. RECONSTRUCTION

To finally be able to manipulate a transparent object, its

real 3D occurrence must be recovered. As explained above,

the initially reconstructed 3D points are located in a plane.

Although the reconstruction mentioned in V is closer to

an object standing upright it does not describe the real

volumetric shape well enough to form a manipulable point

cloud. Given the errors introduced in Figure 9, we can

compensate for the error eobject and emove by appending

a set of additional possible intersections inside the object to

the triangulation. The correct triangulation should occur in a

set of reconstructions between qk,k and P · q′k,i with k being

a fixed number and i running from the first to the last column

of the image row p′k,i that corresponds to qk,i and q′k,i.

q′triangulated,i =
(m1qk,k) + P

(

m2q
′
k,i

)

2
(11)

Figure 10 illustrates such a triangulation performed on one

horizontal slice of the objects shadow.

 

view 1 view 2 
P 

ケげk,i qk,i 
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ヴけ 

planar 

reconstruction 

new 

reconstructed 
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Fig. 10. The possible intersection points when triangulating between one
image point of view 2 and all image points in view 1 that are located on a
single image row.

The circle in figure 10 indicates a transparent object. The

points r and r′ satisfy the planar matching error explained

in section IV which also leads to the planar reconstruction

displayed by the blue line and the red dots. In order to

compensate this error we triangulate new points shown as

green dots using the matched points qk,k and q′k,k as well



as the points in q′k,i that yield a point qtriangulated,k,i
that is closer to the second view position than the planar

reconstruction. Yet the method does not intersect qk,k with

all points q′k,i of the respective image row. The last point

used fulfils the following:

|i| = 0.5 · |pk,i| (12)

This approach yields a 3D blob shaped like the 2D

region p′i,j that embodies an average point qtriangulated,i,j
and the deviations around it which closely approximate the

real position of the transparent object. The quality of this

approach will be evaluated in the following section.

VII. RESULTS

To demonstrate the performance of our system we want to

focus on two facts: First, does the system detect transparent

objects without any hallucinating and without detecting any

color changes in the background or even opaque objects as

transparent objects. Second, we want to show that the 3D

reconstruction is good enough to try a grasp of this object

without further modeling.

A. Testing Environments

To rate the performance of our approach, we tested our

methods on a set of different objects shown in figure 11(a)

and 11(b).

(a) Camera image of the objects il-
luminated by laboratory light with a
high proportion of green.

(b) ToF point cloud of the objects.

Fig. 11. Objects that defined the testing environments.

The transparent objects were a plastic mug, a plastic wine

glass, a drinking glass, a glass made of red plastic and a glass

made of yellow plastic which appeared to be transparent

for the SR4k. The opaque objects consisted of an ice tea

container, a package of tea bags, a textured cup, a white cup,

a white plastic cup, a light blue cup and a black thermos jug.

We applied our procedure to every object individually having

it placed on a gray kitchen table. The positions on the table

altered in a way that the respective object was positioned in

the middle or close to one of the edges of the table.

B. Accuracy and Grasping

How accurate our method performed overall on the test

setup can bee seen in table I.

We tested every mentioned object five times at different

relative positions to the robot on a table. For the test we used

a dark table, since it was a newly installed kitchen in our

classified as

type count transparent no transparent object

transparent 105 55.24% 44.76%

opaque 44 0.00% 100.0%

grasp success 24/58 -

TABLE I

THE RATES OF RECONSTRUCTED TRANSPARENT OBJECTS IN THE TEST

WITH ONE TO THREE OBJECTS IN A SCENE.

lab and it represents the most challenging scenario for our

approach: It is striking that we had no false positive detection

implying that our method did not try to reconstruct any object

with a decent response in the ToF-camera. Accordingly, all

the opaque candidates were omitted by the inconsistency

checks. On the other hand, we achieved a higher amount of

false negatives showing that our thresholds were immoderate

at times. Yet we successfully reconstructed 58 out of 105

transparent objects and grasped 41% in a way that our plat-

form confirmed its capability to further manipulate, relocate

or retrieve the reconstructed object.

Our grasping method first executes a probabilistic

encaging and applies corrections by reactively repositioning

the hand in case of collisions which are detected with force

feedback sensors. The failed grasping attempts in our tests

arouse from slight reconstruction errors that either overesti-

mated the height of the object such that the grasping position

was too high or introduced an inaccurate position estimation

what lead to collisions between the grasper and the object.

Those collision could eventually cause wrong corrections of

the hand or they could be missed by the sensors in case of

light objects like the plastic glasses, which would move the

object out of the expceted position.

This test includes objects solely on the table and three

objects at the same time nearby not affecting the test per-

formance which was for the single experiments all about

approximately 53% - 58%. The following figure 12 denotes

which stage of our checks principally contributed to candi-

dates being omitted.
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Fig. 12. Candidates remaining after a certain stage of the inconsistency
checks.

As one can see, the candidates corresponding to opaque

objects are mostly filtered by our segmentation method which

originates from our initial idea of transparent objects yielding



lower intensities through the doubled absorption. Our method

filters further false positives in the matching phase where the

transparent object might not be found in the second view

because it was omitted in the previous segmentation which

of course has to be applied again to the second view data.

The remaining opaque objects then get discarded because

they do not bear the twist a transparent object creates. The

amount of wrong negatives can be tracked in figure 12 as

well. We only lost 3 positive candidates in our segmentation

due to heavy occlusion but a fair amount due to unsuccessful

matching expectedly. The loss occurring during the check of

the 3D twist was identified to be an inconsistency in the

calculations of our ICP method. Nevertheless, the method

did not reject candidates wrongly for the rest of our checks.

VIII. CONCLUSION

We presented a method that extracts candidate regions,

evaluates their attributes comparing two views and recon-

structs the shape of transparent objects. The experiments

showed that our candidate search as well as the determi-

nation between opaque and transparent object attributes is

valid. Alongside, we proved that transparent objects hold the

characteristics of a shadow when they are observed with a

ToF camera. The validity of our reconstruction method was

demonstrated by the successful manipulation of transparent

objects. We were also able to maintain the claimed invariance

to environmental lightening by exclusively relying on the

active illumination of our ToF-camera. The unique behaviour

of transparency in ToF data leads to an identification of

translucent objects and yields a fundament for reconstruction

approaches. Our method is already capable of converting

this information into an object reconstruction that enables

a robot platform to perform successful grasping as well as

collision avoidance procedures. The drawbacks are currently

the relatively high missing rate of actual transparent objects,

which are mostly caused by the difficult conditions for the

segmentation and matching induced by the sensor’s low

signal-noise ratio.

In the future we concentrate on refinements such that

our approach can cope with cluttered scenes, occlusions

and different surfaces. Eventually, transparent objects shall

become manipulable in any situation that occurs in a real

household environment.

Acknowledgments: This work was supported by CoTeSys

(Cognition for Technical Systems) cluster of excellence at

TUM and by MVTec Software GmbH, München.

REFERENCES

[1] G. Eren, O. Aubreton, F. Meriaudeau, L. Secades, D. Fofi, A. Naskali,
F. Truchetet, and A. Ercil, “Scanning from heating: 3D shape estima-
tion of transparent objects from local surface heating,” Opt. Express,
vol. 17, pp. 11 457–11 468, 2009.

[2] I. Ihrke, K. Kutulakos, H. Lensch, M. Magnor, and W. Heidrich, “State
of the art in transparent and specular object reconstruction,” STAR

Proc. of Eurographics, pp. 87–108, 2008.
[3] R. Rusu, A. Holzbach, R. Diankov, G. Bradski, and M. Beetz,

“Perception for mobile manipulation and grasping using active stereo,”
in 9th IEEE-RAS International Conference on Humanoid Robots,

2009. Humanoids 2009, 2009, pp. 632–638.
[4] A. Wallace, P. Csakany, G. Buller, A. Walker, and S. Edinburgh, “3D

imaging of transparent objects,” in Proc. British Machine Vision Conf.
Citeseer, 2000, pp. 466–475.

[5] S. Yang and C. Wang, “Dealing with laser scanner failure: Mirrors and
windows,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation,
2008.

[6] K. Kutulakos and E. Steger, “A theory of refractive and specular 3D
shape by light-path triangulation,” International Journal of Computer

Vision, vol. 76, no. 1, pp. 13–29, 2008.
[7] P. Lagger, M. Salzmann, V. Lepetit, and P. Fua, “3d pose refinement

from reflections,” Computer Vision and Pattern Recognition, IEEE

Computer Society Conference on, vol. 0, pp. 1–8, 2008.
[8] S. Agarwal, S. Mallick, D. Kriegman, and S. Belongie, “On refractive

optical flow,” Computer Vision-ECCV 2004, pp. 483–494, 2004.
[9] M. Ben-Ezra and S. Nayar, “What Does Motion Reveal About Trans-

parency?” in Proceedings of the Ninth IEEE International Conference

on Computer Vision-Volume 2. IEEE Computer Society, 2003, p.
1025.

[10] S. Gudmundsson, Robot vision applications using the CSEM swis-

sranger camera. Master’s thesis. Informatics and Mathematical
Modelling. Technical University of Denmark. Copenhagen. Denmark,
2006.

[11] D. Miyazaki, M. Saito, Y. Sato, and K. Ikeuchi, “Determining surface
orientations of transparent objects based on polarization degrees in
visible and infrared wavelengths,” JOSA A, vol. 19, no. 4, pp. 687–
694, 2002.

[12] J. Pelletier and X. Maldague, “Shape from heating: a two-dimensional
approach for shape extraction in infrared images,” Optical engineering,
vol. 36, p. 370, 1997.

[13] A. Maldonado, U. Klank, and M. Beetz, “Robotic grasping of un-
modeled objects using time-of-flight range data and finger torque in-
formation,” in 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Taipei, Taiwan, October 18-22 2010.
[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in In IEEE International Conference on Robotics and Automation

(ICRA 2009), 2009.
[15] R. Gonzalez and P. Wintz 2nd, “Digital Image Processing 2nd Edition

Addison Wesley,” Reading, Mass, 1987.
[16] W. Niblack, An introduction to digital image processing. Strandberg

Publishing Company Birkeroed, Denmark, Denmark, 1985.
[17] A. Hofhauser, C. Steger, and N. Navab, “Perspective planar shape

matching,” in Image Processing: Machine Vision Applications II, ser.
Proc. SPIE 7251, K. S. Niel and D. Fofi, Eds., 2009.

[18] R. Rusu, A. Holzbach, R. Diankov, G. Bradski, and M. Beetz,
“Perception for mobile manipulation and grasping using active stereo,”
in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS Interna-

tional Conference on. IEEE, 2010, pp. 632–638.
[19] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least square fitting

of two 3-d point sets,” in IEEE Transactions on Pattern Analysis and

Machine Intelligence, Volume 9, Issue 5. IEEE, 1987, pp. 698–700.


