
Transparently Teaching in the Context of Game-based

Learning: the Case of SimulES-W

Elizabeth Suescún Monsalve, Julio Cesar Sampaio do

Prado Leite

Departamento de Informática

Pontifícia Universidade Católica do Rio de Janeiro

Rio de Janeiro, Brasil

emonsalve@inf.puc-rio.br, http://www-di.inf.puc-

rio.br/~julio/

Vera Maria B. Werneck

Departamento de Informática e Ciência da Computação

Universidade do Estado do Rio de Janeiro

Rio de Janeiro, Brasil

vera@ime.uerj.br

Abstract— This work presents a pedagogical proposal, in the

context of game-based learning (GBL), that uses the concept of

Transparency Pedagogy. As such, it aims to improve the quality

of teaching, and the relationship between student, teacher and

teaching methods. Transparency is anchored in the principle of

information disclosure. In pedagogy, transparency emerges as an

important issue that proposes to raise student awareness about

the educational processes. Using GBL as an educational strategy

we managed to make the game, a software, transparent. That is

we made the inner processes of the game known to the students.

As such, besides learning by playing, students had access to the

game design, through intentional modeling. We collected

evidence that, by disclosure of the information about the design,

students better performed on learning software engineering.

Index Terms— Transparency, Games-based Learning,

SimulES-W, Pedagogy.

I. INTRODUCTION

Theories of learning have been developed for a long time.

The educational process is very complex and cannot support

drastic solutions as has been demonstrated throughout history.

However, in recent decades our society has been exposed to a

rapid transformation as a result of the introduction of new

technology. This change is being reflected in social and

personal scopes. In the same way, this impact has been felt in

the way students learn and expect from classes. As such,

education has evolved from the traditional teaching model for

more dynamic models, which are more attractive and effective.

In addition, the “traditional teaching method is based on

memorizing theoretical concepts presented by the teacher in an

abstract manner, dissociated from practical reality” [8]. For that

reason, methods based only on the accumulation of knowledge

have become obsolete, since, with introduction of new

technologies, there is an expectation on learning by doing and

experimenting.

In [16] the authors present an analysis about traditional

teaching based on the Galperin Approach. They argue that

traditional teaching gives the teacher tasks as: explain,

demonstrate and elaborate concepts, and if possible, he/she

evolves the concepts to a level of education. In the same way,

the learners must follow the rationale of the teacher. In

addition, learners must present his/her doubts, memorize

information and learn to use formulas that explain the use of

concepts in certain situations. Galperin [8] emphasizes that this

process compromises the quality of education because the

concepts are presented in an abstract way and it generally does

not reflect reality. The author also mentions that the teacher

could use examples to show the practical application of

concepts, however learners will remain in the status of

“observers”. In addition, the format of tasks is usually done in

an automated way. In this perspective, the traditional teaching

remains a slow, exhausting and, usually, without motivation

process.

On the other hand, dynamic models are being proposed

such that teaching is performed in a more practical way,

investing in “the development of the ability by means of

discovery” [8]. Thus, the teacher has the responsibility to

encourage learners to observe, arouse their curiosity and

challenge them to investigate and find examples. So, a learner

starts his/her own experience and interferes in his/her own

learning. In a similar manner, familiarity with problem-

situations can develop the ability to recognize certain situations

and how to act on them. For that reason, learning by doing is

seen as a possible solution [16]. Our work departs from the idea

that learning by doing is a positive strategy. As such, we also

believe this strategy contributes to a leaner´s motivation.

Moreover, a situation-problem approach allows the usage of

these concepts and allows that their influence on the action

context where they are implanted be observed.

In practice, it is possible to show how concepts of software

engineering are taught and it can be demonstrated by the use of

a mix of lectures and small practical projects [28, 29 and 30].

However, these projects do not simulate situations of big and

complex systems [24]. Software engineering education is

challenged to produce highly qualified people, with mental

flexibility to adapt to changes caused by the introduction of

new technologies. One of the problems of traditional software

engineering education is that it gives a lot the importance to the

theoretical content, and this is often problematic, since it does

not necessarily imply that the learner is able to apply this

content to real life situation. One possible strategy [33, 34 and

36] to mitigate this problem is to use real software projects, and

as such implementing “learning by doing”. However,

providing the proper scenario for this type of strategy is costly

and sometimes hard to implement.

A possible strategy to replace real software projects is the

use of Game-Based Learning. According to [38] the term

games-based learning in general “refers to activity to engage

and hold learners in focus by encouraging them to participate

during the lesson through game-play”. Actually, game-based

learning (GBL) addresses teaching in a dynamic way and has

been successfully used as a support tool in several areas,

Connolly et al in [39] presents evidence, by a large systematic

literature review, of the positive results in using computer

games and serious games, including software engineering [31

and 32].

GBL has been shown to be an alternative to software

projects in providing a situation-problem environment without

the costs and difficulties of conducting a real software project

[35 and 37]. One of these alternatives is SimulES-W [17], a

collaborative platform that implements a simulation of a card

base game where the goal is to produce specific software, with

given characteristics. However, an approach to teaching

software engineering should not forget, in any case, the

importance of knowledge, but it should be addressed in a

dynamic way, bringing at the same time knowledge, skills,

abilities, and values and raising awareness in the learner about

their own learning process., Taking this in consideration we

have added the principles of transparency to the GBL (Simules-

W) strategy as to inform the students about Simules-W design

[13].

II. TRANSPARENCY

Adopting the ideas of Galperin in [8], we explored a way of

teaching software engineering in a more active, engaging and

participative manner. According to Galperin teaching with this

approach should take into account: i) the knowledge or skill to

be taught should be in the form of situation-problem and its

assessment should be the beginning and not the end as in

traditional methods. ii) Activities should be selected and

organized according to potential learners. iii) Activities should

have a sequential presentation and must follow a mapping that

enables the learner to achieve the solution of the problem

immediately before the processing of learning be completed

satisfied. All of this is to provide to the learner the opportunity

to have a situation-problem experience and to learn about the

operational logic of the solution. Lastly, iv) problem-situations

should be correlated, allowing the learner to investigate general

aspects. This approach is named formative-conceptual.

Based on this, we believe that a GBL strategy will meet the

requirements of the formative-conceptual approach. Ebner and

Holzingerb [5] suggest that there is evidence which shows that

the learning results of using games is at least equivalent to the

results from learning using the traditional methods. Besides,

GBL also allow learners to have access to the concepts in

dynamic and operational way. In [13] we show how GBL is

preferred from the point of view of students, which points to

the motivation students have in using games as a supporting

tool for learning. Other important evidence reported in [1] is

that related to long-term learning. Those concepts that are

taught using situation-problem allow the learner to deduce and

apply this concept in different situations.

However, to be more effective in achieving the

requirements of the formative-conceptual approach, we believe

that GBL is not enough. We understand that to be more

effective GBL must consider how to improve the awareness of

the learner. Complementing GBL will involve the learner as an

active participant in their learning. As such, the learner should

know how he/she is taught [14] by a transparent process.

According to [16] awareness is the ability to interpret between

each of the specific situations and its context of occurrence.

That means that the learner gains knowledge by means of

his/her own perceptions or by means of information and

process knowledge. Accordingly, the learner assumes an active

role, being involved on his/her own leaning.

We understand transparency as a concept related to

information disclosure, which is been used in different settings,

mostly related to the empowering of citizens with regard to

their rights to know. In particular we are interested in a process

view of transparency, a general quality, which is implemented

by a set of policies, practices and procedures that allow citizens

to have: accessibility, usability, informativeness,

understandability and auditability of processes held by centers

of authority. In our case the center of authority is the educator.

The use of GBL empowered by a transparent process was

enacted in a software engineering class, in which we collected

facts of how this has affected students’ performance.

III. TRANSPARENTLY TEACHING

A. Transparency Pedagogy

Our approach to teaching uses a vision anchored in the

principle of transparency as information disclosure [11].

Transparency in pedagogy emerges as an important issue,

which aims to make the learner aware about his/her teaching-

learning process and content production [13].

This concept was instantiated defining pedagogy as a

discipline that examines teaching methods to be better suited in

promoting learning of increasingly complex new concepts,

which are considered important for the development of thought

[16]. Teaching-learning is a process that begins when the

teacher creates opportunities for the production and

construction of knowledge [8]. "Equip minds with skills to

understand, feel and act in the society..." says Bruner in [4].

Thus teaching-learning promotes the formation and

development of both subjects of the process [15], and for that

reason, teaching without learning is nonexistent and vice versa

Freire in [7]. So, learners take ownership and become aware of

knowledge, because they learn to act conceptually (the

conceptual practice) Puentes and Longarezi in [15]. That

means, the process is finished when the learner has access to

the meaning of the concept and when he/she have awareness of

this process.

For that reason, we explore transparency. However, from

the perspective of pedagogy, transparency seeks an

environment where goals are open and teaching methods aims

consensus by focusing on learner participation and feedback

arising from his/her participation. Our aim in this paper is to

show how we have instantiated this concept using GBL for

software engineering.

B. SimulES-W

SimulES-W is the digital version of SimulES [6], an

educational board and card game. SimulES is an evolution of

the ideas of the Problems and Programmers (PnP) game [18]

[38]. Different from PnP, SimulES-W does not have any

specific development process and the development process can

be explored pedagogically during the game; for instance one

player can use an agile approach whereas the other can use a

waterfall one. As such the learner may explore different

development processes.

Fig. 1. Main Board SimulES-W [22]

The main precondition to play SimulES-W is being either a

software engineering student or a person with basic knowledge

and involved in software engineering. As described in [24],

SimulES-W is used in both general and specific software

engineering knowledge with an educational component that

allows real practice to be simulated. SimulES-W is a

multiplayer game and the player who wins the game is the one

which first completes the software product with quality and

budget defined in the project card. Figure 1 illustrates the main

screen named Main Board. SimulES-W has been used as a

teaching tool in other experiences with learners in software

engineering. Some experiences have been described in [6, 17,

23, 24 and 25]. Learners exercise different roles where each

role has to deal with the project budget and the hiring and firing

of software engineers. Additionally, the game has a set of

concepts and problem cards that are used to improve the one´s

game or block other players' movement in their games. These

cards display theoretical software engineering concepts that

must be analyzed and applied by the learners. The knowledge

of software engineering in these cards can be used either as

obstacle, or stimulus for the game players´. Moreover, the

game also has an activity for building the software product that

makes the players exercise on the intrinsic software

engineering concepts of the cards as the dynamics of building

and audit, given by embedded bugs. The learners begin the

construction of software artifacts required by the project, make

inspections, and if a defect (bug) appear in some artifact, they

should fix them, otherwise, the delivered product may fail

acceptance test. So, players must take in consideration the risk

of failure, if inspection and debugging are neglected. The first

student, who can construct the software without having any

problems, wins.

As described in [17] SimulES-W was developed for

teaching software engineering in general. Alternatively, it can

be configured to focus on a particular subject of knowledge as

well, as was shown in [24], where it was used to teaching risk

management. Then, since cards can be edited, we can use

problem and concept cards tuned to the interest topic. We can

also configure project cards to deal with specific artifacts.

Experiences with students using SimulES-W [17, 24 and

25] have shown that this game has the necessary elements to

enact particulars of the software process as per concept and

problem cards, making SimulES-W a powerful and useful tool,

but also a fun way to teach [17].

C. Teaching with Transparently SimulES-W

With GBL, as a pedagogical alternative, there is a balance

between entertainment and dissemination of knowledge,

motivating learners to learn while they play [1]. GBL is being

inserted to complement classes [1, 2, 3, 10, 18, 19, 20, 21 and

39], due to increasingly accessible tools and more realistic

environments. Thus GBL allows the use of elements that are

not provided by traditional methods [17]. They are also

potential enhancers of the process in which they are used, by

being in constant evolution of targeted improvements and

suggestions of those who use these tools.

Our approach has three main activities (Figure 3). They are

designed to provide transparency of the GBL process to

students. We want to show how through the use of GBL it is

possible to instantiate the concept of transparency in pedagogy.

Consequently, it is necessary not only that the process be

transparent but also the software (the game) itself. Software

evaluation can be done with a set of heuristics available in [26]

which have already been partly used in building SimulES-W

and were described in [23]. The activities of Figure 3 are: i)

Plan activity, it is responsible for the organization of

information about the teaching material, thus creating the

content to be used. The intentional model written in i* [27] is

available and used to control the activity, since learners have

access to it. In this activity the learners are informed about the

open process strategy, and motivated to provide feedback. In

the planning learners will be asked to fill a pre-test which

assess motivation, preferences, level of knowledge,

expectations, engagement to class, among others; ii) Apply

activity, previous activity allows us to have sufficient

knowledge about learners and know how to address the present

activity. Learners are instructed to use SimulES-W, with the

material for that specific class. On the completion of the

activity, that is playing the game, a post-test is applied. It must

assess how learners felt about participation, benefits and

feedback items. Questions about: context of usage, clear

instructions, didactic strategy, activity, consistency with the

objectives and/or the contents. Finally, learners are called for

an exam. The exam is designed to measure acquisition of

knowledge and learners performance; iii) Evaluate activity, the

information collected is evaluated from different perspectives

and decisions are made with relation to the group and future

activities. To close, as our perspective is addressed to

transparency, students are informed about the results and

measures to be taken.

As mentioned above, intentional models with i* were used

to inform the students how SimulES-W works: strategies and

activities dynamic. Figure 2 is an illustration of this kind of

model, and this one in particular shows the main board of the

game. However, the models were also pretty-printed (as text)

and given to students as to enhance model readability.

Fig. 2. SDsituation: Play round to start [13].

IV. EVALUATION APPROACH

In order to introduce our approach an experiment was

designed to verify the following hypotheses: GBL together with

intentional models (i*) could contribute to the transparently

teaching of software engineering.

Highlighting, the definition of transparency as a principle of

disclosure information was introduced in [11]. Also, there are

the lists of quality attributes [26] such as accessibility,

usability, informativeness, understandability and auditability

that are related to transparency. These quality attributes are

further refined and their composition contribute to transparency

[12] in the context of intentional models. In [9] there is a set of

guidelines for assessing transparency attributes. For that reason

we choose this kind of models to in our approach, trying to

achieve transparency through this mechanism.

During the Planning stage, in the last half of 2013, an

experiment was performed with a 26 student’s class in the

undergraduate software engineering course of the Computer

Science program at the State University of Rio de Janeiro. This

experiment was designed to study how SimulES-W as GBL

with intentional models could influence pedagogy

transparency. So we prepared the knowledge to be learned by

creating specific concept and problems cards about

requirements, design, coding, software quality and project

management as described in [23,40]. The cards were also

edited for the specific features of the class. Afterwards, the

contents were added to the SimulES-W database. Finally, some

tests were conducted to check the contents.

Fig. 3. SADT Diagram which shows activities related to our approach.

The experiment was designed to be applied on three

different groups: (i) Lecture: This group was taught the

concepts and problems in a traditional lecture. (ii) SimulES-W:

This group was taught the concepts and problems using

SimulES-W. (iii) SimulES-W with models: This group was

taught the concepts and problems with SimulES-W however

they had in advance the information how SimulES-W works by

receiving (reading) i* models of SimulES-W.

First, a class was given to all groups and all the students

received the information about experiment and the instructions

about the division into three different groups and their

activities. After that they all filled the pre-test and lastly,

learners were randomly separated into the three groups. The 26

learners in the class were divided according to the fundamental

principle of randomization to ensure the comparability of the

groups and highlighting that they participated as volunteers to

this case study. Each group with its activities was scheduled by

days, participating in specific activities.

In Lecture (Group 1), learners attended a class, specifically

on concepts and problems typical in software engineering.

When the class had finished, the learners filled post-test related

to contents and class perception.

In SimulES-W (Group 2), learners received information

related to the activity and on SimulES-W. They also received

instructions and details about the game: origin of the game,

historical review, basic rules, dynamic rules, goals and main

screens. They were then motivated to use the tool. The activity

took place in a classroom with a teacher and two instructors

who guided the learners and answered questions related to the

activity. During this we emphasized the concepts and the

problems related to subject. Instructions about the tool

including navigation, interface features and execution of

actions were explained.

In SimulES-W with models (Group 3), before class,

learners received, by email, the documentation related to the

game models and to the activity. This activity was the same as

the previous one, except for the documentation provided,

which learners could read and could use during the activity.

The students who used SimulES-W (Group 2 and Group 3)

received previous training about the tool. It happened before

each class through one presentation with the instructions and

monitoring in place. This training took about half an hour

Finally, in another day the students of all groups took an

exam. The activity Evaluate (Figure 3) was performed in 5

days. On the first day, 26 students were given the pre-test and

received instructions about the activity. They were separated

into three groups, each group of 12 students. On the second

day, 8 students (66.6%) attended the class (Group 1) and filled

the post-test. On the third day, 9 students (75%) participated in

SimulES-W (Group 2) activity and filled the post-test. On the

fourth day, 12 (100%) students participated in SimulES-W with

i* activity and filled the post-test. On the fifth day, 22 students

(84.6%) took the exam.

A. Pre-test

The pre-test was quantitative and had 7 closed questions;

each of the questions had a basic description.

The first question: What kind of dynamic learning do you

prefer? Competitive, cooperative or individual. This type of

question can help teachers as to customize course topics. Figure

4 shows that students in that activity prefer cooperative

learning (81%), after competitive (15%) and finally individual

(4%).

Fig. 4. Question 1. What kind of dynamic learning do you prefer?.

 The second question, How do you rate your Software

Engineering knowledge? As answers we listed: Very, Enough,

Insufficient, Don´t not, Neither. We identified that students had

some knowledge but not enough. Figure 5 shows how students

rated themselves: as insufficient knowledge in SE (58%),

enough (23%), Don´t not (12%) and neither (8%).

Fig. 5. Question 2. How do you rate your Software Engineering knowledge?

The third question, What deliverable strategy would you

prefer for the course contents? This question is related to

interest and preference about class material is delivered and

was a multi-selection question. Figure 6 shows: 18 students

chose Labs (69%); 18 students (69%) chose games; 6 students

(23%) chose Lectures; 8 students (30%) chose study case based

on papers; and 14 students (53%) chose tutorials.

Fig. 6. Question 3.What deliverable strategy would you prefer for the course

contents?

The fourth question, How would you like to participate in

improving course quality? This question is addressed to

identify how students would like to participate in improving

the present course, this also was a multi-selection question;

Figure 7 shows 19 students (73%) reported they would like to

participate in collaborative activities; 17 students (65%)

reported they would participate through discussion activities; 4

students (15%) chose feedback activities; 13 students (50%)

chose labs; and finally, 7 students (26%) chose proposing

topics.

Fig. 7. Question 4. How would you like to participate in improving course

quality?

The fifth question, When should the content and objectives

of the course be provided? This question is related to

preferences about foreknowledge of course information. Figure

8 displays: 4 students (15%) expressed that they should be

provided according to the needs of the class; 23 students (88%)

they report that the contents should be provided when the

course begins; and finally, 1 student (3%) reported that the

content should be provided throughout the course.

Fig. 8. Question 5. When should the content and objectives of the course be

provided?

Question six was: What was your motivation to participate?

This question is more general, and with that, we wanted to

know what things are more motivating to the students, it also

was a multi-selection question. Figure 9 portrays that 22

students (84%) reported they like especially practical work;

next 18 students (69%) chose educational games; and finally,

12 students (43%) also chose forums.

Fig. 9. Question 6. What was your motivation to participate?

The last question, How would you like to dig deeper into

content class? This question aims to identify the level of

participation and student preferences and as this should be

done. Figure 10 shows: 18 students (69%) think that the

information should be available in some media; 14 students

(53%) think that they should look for their own information; 13

students (50%) consider that the teacher should provide the

information; and finally 1 student (3%) reported that the

teacher should assist the student in finding information.

We identify with the pre-test, preferences, motivations and

knowledge level of the students; also this information was

useful to identify how the class should be addressed. In

addition, when a teacher knows about students' background

knowledge, skills as well as their needs, the teacher can be

better prepared to promote an effective learning.

Fig. 10. Question 7. How would you like to dig deeper into content class?

As a matter of fact, we also identified motivations and

preferences in general behavior of the group when we observed

them, for example, we had more support among those groups

where students were scheduled in activities with SimulES-W.

One of the activities with SimulES-W was a Friday, early and

with rain and all students attended the activity. The day that

results were presented, we offered a completion activity, those

who did not play or want play again could do that. To our

surprise, all the students stayed for that latter activity. This

shows that students are motivated to learn and to participate in

didactic activities driven by GBL.

B. Post-test

We designed a post-test for each of the experiences. Thus,

The post-test for group 1 (lecture) had 9 questions. The post-

test for group 2 (SimulES-W) had 13 questions. And the post-

test for group 3 (SimulES-W with i*) had 14 questions. Some

questions were closed and others open. Also, we created

specific questions for each experience. We considered it

necessary to do specific questions for each of the activities.

Especially, for activities which used the game. To illustrate, we

asked about software, interface, game dynamic, collaborative

aspects, and competitive aspects, among others. In addition, we

created similar questions for the three groups. And for reasons

space in this paper, we will focus on these last.

In short, we identified more participation and motivation in

those groups where the game was used. It was reported more

negative aspects related to traditional class. Group 3, who used

to SimulES-W with i* got better performance and that was

evident in the response of the questions. All three groups

showed preference for learning software engineering by means

of GBL.

The Table 1 shows a summary of similar questions for the

three groups. The questions 1, 2, 3 and 4 show that Group 3

(SimulES-W with i*) had the best percentage in effective

responses, followed by Group 1 (Lecture) and Group 2

(SimulES-W). Next, all students expressed their preference for

games, being that Group 3 (SimulES-W with i *) reported the

highest percentage. Related to Question 6 in general students

were satisfied with material of the activity. Finally, Question 7

All students found motivating elements in the three activities,

however, Groups 3 (SimulES-W with i*) and Group 2

(SimulES-W) were who most elements found and were more

motivated in the activity. As a whole, according to the

responses and with what we observed in all experiences, the

most unmotivated group was Group 1 (Lecture) being the

group that more criticized the activity.

TABLE I. RESUME POST-TEST

C. Exam

An exam was applied to all groups one week after we had

finished the classes. The exam had 6 questions related to

concepts and problems in software engineering that were

presented during the activities. The exam aimed the

identification of how the concepts that were understood by

learners. In short, the exam was to verify if the process

teaching-learning achieved its goals. The students were asked

to explain: i) What is software engineering. ii) The different

roles people canplay when they participate in a software

project. iii) The artifacts generated in the software development

process. iv) Some problems that can appear during the software

construction process and describe why they happen. v) Types

of concepts considered as good practices in software

engineering and how to describe them. vi) Explain the

importance of software quality assurance as a control

mechanism in a software project.

Fig. 11. Results of each group related to Exam Applied

Fig. 12. Analysis of the Mean related to Exam Applied on Each Group

Figure 11 shows the scores range of each group, the highest

and the low score. The results show that most of the students

who attended the activity with SimulES-W got satisfactory

score. Being that the mean for group as Group 1 (Lecture) 7.5,

Group 2 (SimulES-W) 7.03 and Group 3 (SimulES-W with i*)

7.75. That means students in group 3 had a better performance

on the exam. However, this difference is not significant.

Table 2 presents the results of the means using the ANOVA

(Analysis of the variance). On this test we can conclude that it

is impossible to reject the null hypothesis at 0.025 level so that

is no considerable difference among the means of the three

groups. This result is based on the fact that the F ratio (0.3312)

is less than the value 4,51 of F 0.025, 2,19. Then we test for

each group in separate and we had the same results, that the

three groups have no difference relevant means. The Figure 12

shows the Analysis of the means of each groups and the

average is 7.398 that is a good result. We also can see the

tendency that Group 3 had achieved better performance than

the other two groups and Group 2 had the lowest and Group 1

has been in the average of the two groups.

Analyzing these results we can conclude that the

performance of the groups are equivalent, however there is a

tendency that the group that used a GBL with transparency had

a better performance and more motivation. The group that had

traditional lecture did not lose the lesson content but was the

least motivated.

TABLE II. ANALYSIS OF VARIANCE

Source DF Sum of
Squares

Mean
Square

F Ratio Prob > F

Group 2 2,276831 1,13842 0,3312 0,7221
Error 19 65,305556 3,43713
C. Total 21 67,582386

V. CONCLUSION

Our work goal is to instantiate the concept of transparency

in pedagogy. Transparency in pedagogy emerges as an

important issue, which aims to make the learner aware about

teaching-learning process and content [13]. Our approach is

based on the concept of transparency as information disclosure

[11] and on the formative-conceptual approach of Galperin in

[8]. That approach also supports the idea that students better

meet the learning goals, if they are motivated and the contents

are related to real life situation.

Our approach used intentional models together with GBL to

a Software Engineering teaching activity aiming at a more

transparent class. We compared the results with a traditional

teaching method as well as the use of GBL without intentional

models. Our results, although applied to a small number of

students who used the models, indicates that there is a positive

outcome in the use of the transparency strategy with GBL

(Group 3). This is a strong motivation to do more experiments

focused in this direction that may lead to more conclusive

statements.

In the practice related to teaching software engineering is

necessary to understand and implement new and better

teaching methodologies that aim better results in knowledge

transfer. With this work we point out that pedagogy have

provided quite important efforts to identify and disseminate

methodologies, which seek to promote active participation of

students in teaching-learning. For this reason, it is important

that educators in SE thrive to use better practices in classrooms.

The teaching-learning process is changing and we as educators

must be prepared for these changes. In fact, the student should

be more involved in this process. Armed with this, software

engineering also has the advantage of having tools that should

be taught and at the same time may be part of the practice in

that process. That means, teaching with the same tools that will

be used by students in their professional life is certainly a SE

strength. Using GBL in the classroom, we are putting into

practice what the new pedagogy is preaching and if we disclose

the process to students, such as the case presented with the use

of intentional models with i*, we will be offering a more

transparent teaching-learning process.

Future work should continue evaluation activities as a

feedback generation for improving our understanding on how

to design better strategies for pedagogy transparency based on

GBL. Also, it is necessary to devise a monitoring strategy to

check if students retained the knowledge taught. A possibility

is to strengthen the ties with related future courses, as to check

retention.

ACKNOWLEDGMENT

Leite acknowledges the partial support of CNPq and Faperj,

Cientista do Nosso Estado; Monsalve acknowledges the

support of Capes; Leite and Monsalve also acknowledge the

support of the CNPq 557.128/2009-9 and FAPERJ E-

26/170028/2008 grants for the Brazilian Institute for Web

Science Research.

REFERENCES

[1] A. Baker, E. Navarro, and A. van der Hoek, “Problems and

Programmers: an educational software engineering card game”.

In Proceedings 25th Intern. Conference on Software

Engineering, IEEE Computer Society Press, 2003, pp 614-619.

[2] J. Beatty, and M. Alexander, “Games-Based Requirements

Engineering Training: An Initial Experience Report”,

International Requirements Engineering, RE '08. 16th IEEE,

Catalunya, Spain. (Sept. 2008). Pp. 211-216.

[3] T. Birkhoelzer, E. Navarro and A. Van Der Hoek, “Teaching by

Modeling instead of by Models”, Proceedings 6th International

Workshop on Software Process Simulation and Modeling, St.

Louis, 2005, MO, 4.

[4] J. Bruner, “A cultura da educação”. (2001) Porto Alegre:

Artmed.

[5] M. Ebner and A. Holzinger, “Successful implementation of user-

centered game based learning in higher education: an example

from civil engineering”. Computers and Education, 49(3),

(2007). pp. 873–890.

[6] E. M. L. Figueiredo, C. A. Lobato, K. L. Dias, J. C. S. P. Leite,

C. J. P. Lucena, “Um Jogo para o Ensino de Engenharia de

Software Centrado na Perspectiva de Evolução”, Workshop

sobre Educação em Computação (WEI – 2007), pp. 37-46.

[7] P. Freire, “Pedagogia da autonomia: saberes necessários à

prática docente”. (1996) São Paulo: Paz e Terra.

[8] P.I. Galperin, “Organization of mental activity and effectiveness

of learning.” Soviet Psychology, Moscow, v. 27, n. 3, (may/june

1989) pp. 65-82.

[9] GTS. Wiki of Software Transparency Group. At

http://transparencia.inf.puc-rio.br/wiki/index.php/Transparência.

[10] A. Jain and B. Boehm, “SimVBSE: Developing a Game for

Value-Based Software Engineering”. Proceedings 19th

Conference on Software Engineering Education and Training,

2006, pp. 103 -114.

[11] J. C. S. P. Leite and C. Cappelli, “Software Transparency”.

Business & Information Systems Engineering: Vol. 2, 2010, Iss.

3, 127-139. At: http://aisel.aisnet.org/bise/vol2/iss3/3.

[12] J. C. S. P. Leite and C. Cappelli, (2008). Exploring i*

Characteristics that Support Software Transparency. In iStar (pp.

51-54).

[13] Monsalve, E. S. ; Werneck, Vera M. B. ; Leite, Julio Cesar

Sampaio do Prado . A Case Study to Evaluate the Use of i* for

Transparent Pedagogy. In: iStar 2014 Seventh International i*

Workshop, 2014, Thessaloniki.

[14] E. Monsalve, V. Werneck and J. C. S. P. Leite, “Incorporando

Transparência na Pedagogia através do Uso de Jogos para

Ensino”. 2013. WTRANS, SBES, Brasília.

[15] R. Puentes and A. Longarezi, “Escola e didática

desenvolvimental: seu campo conceitual na tradição da teoria

histórico-cultural” Educação em Revista Belo Horizonte. 2013,

in Portuguese.

[16] A. Resende and H. Valdes, "Galperin: implicações educacionais

da teoria de formação das ações mentais por estágios." Educação

& Sociedade 27.97 (2006). pp. 1205-1232, in Portuguese.

[17] E. Monsalve, V. Werneck and J. C. S. P. Leite, (2011).

Teaching Software “Engineering with SimulES¬W”.

Proceedings of XXIV Conference on Software Engineering

Education and Training (CSEE&T 2011), Hawaii, USA. (pp.

31–40).

[18] PnP Problems and Programmers. (April.2012) at

http://www.problemsandprogrammers.com/.

[19] G. Regev, D. Gause and A. Wegmann, “Requirements

Engineering Education in the 21st Century, an Experiential

Learning Approach”, The 16th International Requirements

Engineering Conference (RE'08), 2008, pp. 85-94.

[20] R. Smith and O. Gotel, “Using a Game to Introduce Lightweight

Requirements Engineering”, in Proceedings of the 15th IEEE

International Requirements Engineering Conference, 2007, pp.

379-380.

[21] R. Smith and O. Gotel, “Gameplay to Introduce and Reinforce

Requirements Engineering Practices”, in Proceedings of the 16th

IEEE International Requirements Engineering Conference,

2008, pp. 95-104.

[22] Software Engineering Simulation by Animated Models

(SESAM) – Stuttgart–Germany. (April.2010)

<http://www.iste.uni-

stuttgart.de/se/research/sesam/overview/index_e.html>.

[23] E. Monsalve, (2014). “Uma Abordagem para Transparência

Pedagógica usando Aprendizagem Baseada em Jogos”. PhD

Thesis in Portuguese, PUC–Rio, April 2014.

[24] E. Monsalve, A. Pereira and V. Werneck, Chapter: Software

Engineering Teaching Through Collaborative Game. Upcoming

book, “Overcoming Challenges in Software Engineering

Education: Delivering Non-Technical Knowledge and Skills”.

Igi-Global, 2013.

[25] E. Monsalve, V. Werneck and J. C. S. P. Leite, SimulES-W:

“Retroalimentação Evolutiva num Jogo para Ensino na

Engenharia de Software”. 2013, FEES, SBES, Brasília.

[26] Software Transparency. (2013) Available:

http://transparencia.inf.puc-rio.br/.

[27] Yu, E. “Modeling Strategic Relationships for Process

Reengineering”. Ph.D. Thesis, Graduate Dept. of Comp.

Science, University of Toronto, (1995).

[28] E. Sweedyk and R.M. Keller, (2005). Fun and games: a new

software engineering course. ACM SIGCSE Bulletin. ACM,

2005. 37(3), 138-142.

[29] M. Barros and R. Araújo, (2008). “Ensinando Construção de

Software Aplicada a Sistemas de Informação do Mundo Real”.

In: Proceedings of the First Forum on Education in Software

Engineering (FEES), Campinas, Brazil.

[30] S. Qin and C.H. Mooney, (2009). “Using game-oriented projects

for teaching and learning software engineering”. In: Proceedings

of 20th Annual Conference for the Australasian Association for

Engineering Education (pp. 49-54). The University of Adelaide.

Engineers Australia.

[31] A. Bollin, E. Hochmuller and R.T. Mittermeir, (2011).

“Teaching Software Project Management using Simulations”.

In: Proceedings of XXIV Conference on Software Engineering

Education and Training (CSEE&T) (pp 81–90); Hawaii, USA.

[32] A. Jain and B. Boehm, (2006). “SimVBSE: Developing a game

for value-based software engineering”. In: Proceedings of 19th

Conference on Software Engineering Education and Training

(CSEET) (pp. 103–114). Turtle Bay Resort, Oahu, Hawaii.

[33] J. Burge, (2009). “Application and Appreciation: Changing

Course Structure to Change Student Attitudes”, Proc.22nd IEEE

Conf. Soft. Eng. Education & Training, pp. 45-52.

[34] Q. B. Li and B. Boehm, (2011). “Making Winner for Both

Education and Research: Verification and Validation Process

Improvement Practice in a Software Engineering Course, Proc.

24th IEEE Conf. Soft. Eng. Education &Training, 2011, pp. 304-

313.

[35] N. Martin, et al. (2011). “Teaching software engineering using

globally distributed projects: the DOSE course”, Proceedings of

the 2011 Community Building Workshop on Collaborative

Teaching of Globally Distributed Software Development. ACM.

[36] S. Jarzabek, (2013), “Teaching advanced software design in

team-based project course”. Software Engineering Education

and Training (CSEE&T), 2013 IEEE 26th Conference on. IEEE.

[37] M. Daun, A. Salmon, B. Tenbergen, T. Weyer and K. Pohl,

"Industrial case studies in graduate requirements engineering

courses: The impact on student motivation." Software

Engineering Education and Training (CSEE&T), 2014 IEEE

27th Conference on. IEEE, 2014.

[38] A. Baker, E. Oh Navarro and A. Van Der Hoek, (2005). An

experimental card game for teaching software engineering

processes. Journal of Systems and Software, 75(1), 3-16.

[39] Connolly, Thomas M., Elizabeth A. Boyle, Ewan MacArthur,

Thomas Hainey, and James M. Boyle. A systematic literature

review of empirical evidence on computer games and serious

games. Computers & Education 59, no. 2 (2012): 661-686.

[40] E. Monsalve. “Uma Abordagem para Transparência Pedagógica

usando Aprendizagem Baseada em Jogos”. Thesis in

Portuguese, Department of Informatics, PUC–Rio, April 2014.

