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Abstract 

Background: Hematopoietic stem cell transplantation (HSCT) remains the only treatment for most patients 

with severe combined immunodeficiencies (SCID) or other primary immunodeficiencies (non-SCID PID).  

Objective: To analyze long-term outcome of SCID and non-SCID PID patients from European centers treated 

between 1968-2005.  

Methods: The product-limit method estimated cumulative survival, the log-rank test compared survival 

between groups. A Cox proportional-hazard model evaluated impact of independent predictors on patient 

survival.  

Results: In SCID patients, survival with geno-identical donors (n=25) in 2000-2005 was 90%. Survival using a 

mismatched relative (n=96) has improved (66%), similar to that using an unrelated donor (URD) (n=46) 69%,  

(p=0.005). Transplantation after year 1995, a younger age, B+ phenotype, geno- and pheno-identical donors, 

absence of respiratory impairment, or viral infection prior to transplantation were associated with better 

prognosis on multivariate analysis.  

For non-SCID PID, in contrast to SCID patients, we confirm that, in the 2000-2005 period, using an URD 

(n=124) gave a 3-year survival rate similar to a geno-identical donor (n=73), 79% for both. Survival was 76% 

in pheno-identical transplants (n= 23) and worse in mismatched-related donor (n=47), 46%, (p=0.016).  

Conclusions: This is the largest cohort study of such patients with longest follow-up. Specific issues arise for 

different patient groups. B- SCID patients have worse survival than other SCID, despite improvements in each 

group. For non-SCID PID, survival is less good than SCID, although more conditions are now treated. 

Individual disease categories now need to be analysed, so that disease-specific prognosis may be better 

understood and best treatments planned. 

 

Key Messages 

� Transplantation for primary immunodeficiency before 6 months of age is associated with improved 

outcome and supports the use of newborn screening programmes to facilitate the early diagnosis of SCID. 

� Prognosis following HSCT for PID is multifactorial, including molecular defect, disease status, donor, 

stem cell source and conditioning regimen, and it is important to now analyse the long-term outcome for 

disease-specific groups. 



 4 

 

Key Words: primary immunodeficiency; severe combined immunodeficiency; Wiskott Aldrich syndrome; 

CD40 ligand deficiency; chronic granulomatous disease; hematopoietic stem cell transplantation 

Abbreviations: 

European Blood and Marrow Transplantation – EBMT 

European Society for Immunodeficiency - ESID  

Familial lymphohistiocytosis - FLH 

Graft versus host disease - GvHD 

Hematopoietic stem cell transplantation - HSCT 

MMR - MisMatched Related  

Primary immunodeficiencies  - PID 

RGI - Related Geno Identical 

RPI - Related Pheno Identical 

Stem Cell Transplantation for Immunodeficiencies in Europe - SCETIDE 

Severe combined immunodeficiencies – SCID  

URD - Unrelated Donor 

Wiskott-Aldrich syndrome - WAS 

 

 

 



 5 

Capsule Summary 

This large cohort study of hematopoietic stem cell transplantation for primary immunodeficiency demonstrates 

improved outcome of transplantation before 6 months of age, supporting use of newborn screening programmes 

to facilitate the early diagnosis of SCID. 
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Introduction 

Primary immunodeficiencies (PID) are a genetically heterogeneous group of diseases affecting distinct 

components of innate and acquired immunity including development and function of complement proteins, 

phagocytes, natural killer cells and T and B lymphocytes [1].  Severe combined immunodeficiencies (SCID) are 

the most severe PID, characterized by impaired T and B lymphocyte function, normally leading to death within 

the first year without hematopoietic stem cell transplantation (HSCT) [2]. Other T lymphocyte 

immunodeficiencies may present later; whilst prophylaxis improves outcome, recent studies demonstrate that 

long-term outlook is poor with many patients dying from infectious or inflammatory-related complications or 

malignancy in early adulthood [3,4]. Innate immune defects may present in infancy but prophylaxis has meant 

that many patients survive until early adulthood [5,6]. HSCT has been shown to be curative since 1968 and 

remains the only form of treatment for many patients with PID. European centers have been transplanting these 

patients for over 30 years; previous reports demonstrated an improvement in survival over time [7].  Over that 

period, HLA-tissue typing methods have been refined, new stem cell sources including umbilical cord blood 

have become more readily available [8] and improved methods of isolating HSC including CD34+ stem cell 

selection and CD3+/CD19+ depletion, developed [9].  More grafts using unrelated donors were performed. 

Less toxic chemotherapy conditioning regimens have been developed, improving survival in very sick patients 

[10]. Molecular detection of viral infection enabled pre-emptive antiviral treatment before organ damage 

supervenes [11]. Greater awareness of PID amongst pediatricians has lead to earlier diagnosis and referral to 

specialist centers. With experience of HSCT concentrated in a few centers of excellence, the chance of 

successful treatment with cure of disease and long-term survival has increased. Common guidelines set out by 

the European group for Blood and Marrow Transplantation (EBMT) and the European Society for 

Immunodeficiency (ESID) Inborn Errors Working Party has enabled common treatment protocols to evolve.  

Patient data are collected in the Stem Cell Transplantation for Immunodeficiencies in Europe (SCETIDE) 

registry giving data on almost 1500 patients. In this study, long-term results of HSCT in SCID and non-SCID 

PID, including previous cases of SCID and non-SCID PID reported in 1986, 1990 and 2003, is based on 

analysis of SCID and non-SCID PID patients treated in European centers between 1968-2005. Since many 

innovations in HSCT were introduced in the period 2000-2005, we explored whether better results were 

obtained compared to previous periods. The outcome of transplants from HLA (geno-) identical siblings, 
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phenotypically compatible non-sibling relatives (pheno-identical), unrelated donors (URD) and HLA 

mismatched related (MMR) donors has been assessed. The large number of cases registered in the database 

gives sufficient statistical power for assessment of changing trends in outcome over different periods.
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 Methods 

Data were derived from the electronic SCETIDE database established for EBMT/ESID to register HSCT for 

PID [7].  All centers affiliated to the working party currently undertaking such procedures for SCID and inborn 

errors were enrolled.  Between 1968 and December 31 2005, 37 centers collected and recorded continuous and 

systematic relevant data on children undergoing HSCT for SCID and other PID, gathered on the basis of a 

questionnaire built up and validated by the European Working Party.  Each center was responsible for quality 

control of its own data, collated by data managers in the largest centers. Previous definitions of SCID or non-

SCID PID, as recently published by the International Union of Immunological Societies [12], were used for 

consistency [7]. Data were transmitted to the Department of Biostatistics, Hôpital Necker Enfants Malades, 

Paris. Three time periods have been examined; pre-1995 as a historical period, 1995-1999 and 2000-2005. The 

most recent time period was analysed as a distinct time interval as many innovations in HSCT were being 

introduced as noted above. 

 

Donor and recipient HLA-matching was determined by serology for the earlier patients and low resolution class 

I with high resolution class II molecular DNA typing in more recent patients – methods were dependent on each 

center’s practise. Geno-identical donors were defined as HLA-identical sibling donors, pheno-identical donors 

as HLA-identical non-sibling family donors. Unrelated donors were mainly HLA-matched, although some were 

mismatched at one or two antigens. T lymphocyte depletion was performed by a number of different methods 

including E-rosetting with or without soybean agglutination, and in-vitro Campath 1M antibody with 

complement. Since the late 1990s, CD34+ positive stem cell selection rather than T lymphocyte depletion was 

used [9]. If given, cytoreductive chemotherapy and graft versus host disease (GvHD) prophylaxis (cyclosporine 

or tacrolimus) was given in accordance with the EBMT/ESID Inborn Errors Working Party treatment 

guidelines current at time of transplantation. Broadly, chemotherapy consisted of Busulphan-containing 

regimens;  other chemotherapy without busulphan; ATG, Campath or OKT3 only, or no chemotherapy. 

Precautions to reduce the risk of infection were based on reverse isolation, including gnotobiotic isolation, 

although the exact mechanism employed was center dependent.  

Statistical analysis:  

All records available by December 31, 2005, were retained for analysis. Engraftment was evaluated in patients 
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alive one month after HSCT. Survival times started from date of last HSCT. A center effect was explored, and 

analyses were adjusted for a center effect in the multivariate analysis, comparing centers that transplanted more 

or less than 50 patients. Differences in observed distributions were analysed using the Chi-square test. 

Cumulative survival was estimated with the product-limit method. The log-rank test was used to compare 

survival between different groups. A Cox proportional hazard model with stepwise forward selection process 

was retained to evaluate impact of independent predictors (demographics, comorbidity, transplant 

characteristics and therapeutics before HSCT) on patient survival. Hazard ratios (HR) were provided with their 

95% confidence interval. The SCETIDE database was developed using Access software (Microsoft Access 

2000). Statistical analyses were performed using the SAS system for Windows (SAS Institute Inc, Cary, NC), 

and R software for multivariate analyses, using "GLM" and "Survival" libraries. 
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Results 

Severe combined immunodeficiency patients 

Data on 699 patients with SCID were collected. Details of diagnosis are shown (Table 1); over the whole time 

period, 49% had B+ SCID (including T-B+NK- phenotype - common gamma chain or JAK3 deficiency, and T-

B+NK+ phenotype - IL7 receptor alpha deficiency), 29% had B- SCID (predominantly T-B-NK+ phenotype - 

recombinase activating gene (RAG) 1 or 2, or artemis deficiency) and 22% had other forms of SCID, including 

CD3 subunit deficiency, CD45 deficiency, and other rare molecular defects as well as genetically undefined 

defects. The proportions of patients presenting with each diagnosis was unchanged over time. More unrelated 

donors have been used as a proportion of total transplants in successive time periods, reflecting establishment 

of international registries, improved donor selection and harvesting procedures. 

 

Recipient age at transplantation and number of procedures undertaken is shown (Supplementary Table E1). 

Median age at transplant was slightly lower in 2000-2005, but not significantly, which may reflect a trend 

towards earlier diagnosis and referral, or more rapid identification of suitable donors. In 2000-2005, a higher 

percentage of patients were transplanted > 18 months of age than previous periods, a significant increase, which 

may reflect improvements in supportive care or improved molecular diagnosis picking up older patients with 

atypical forms of SCID. Ten year survival in patients with SCID following transplantation has improved over 

time, although there is no difference in the two most recent time periods (Table 2, Figure 1; p = 0.0003).   

Overall, 10 year survival was better with a sibling geno-identical donor compared to other types of donor 

recipient compatibility (Table 2; Figure 1; p <0.0001). For pheno-identical donors and URD, survival improved 

in the two recent periods, however the numbers per period were low and the differences did not reach 

significance (Supplementary Table E1). Survival using a mismatched relative has improved  (Supplementary 

Table E1; Supplementary Figure E1; p=0.005) with better survival between pre-1995 and 1995-1999 periods. 

There was no significant difference in survival using an URD or a mismatched relative in the period 2000-2005 

(Supplementary Table E1, Supplementary Figure E4). Patients transplanted before 6 months of age had better 

overall survival than those transplanted > 12 months old  (Table 2, Supplementary Figure E2, p=0.0008). 

Survival for B+ and other forms of SCID patients remained significantly better than B- SCID (Table 2; Figure 

3; p <0.0001). Pre-existing respiratory impairment was associated with a worse outcome (Table 2, p = 0,006). 
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Pre-existing septicemia, liver impairment, meningeal infection, and malnutrition were also associated with a 

worse outcome post-HSCT. The use of chemotherapy conditioning did not significantly affect survival 

(chemotherapy=280 [61%]; no chemotherapy, n=399 [63%]; p =0.53) (supplementary information, 

supplementary Tables E2, E3). Multivariate analysis demonstrated that age at transplant, SCID phenotype, 

recipient/donor compatibility, pre-existing respiratory infection, protected environment, antibiotic prophylaxis 

and the presence or absence of T lymphocyte depletion were significantly associated with outcome (Table 2). 

There was a weaker significance with the presence or absence of septicemia. 

 

Other primary immunodeficiency patients 

Data on 783 patients with non-SCID PID were collected. Details of diagnosis, recipient age at transplantation, 

and the number of procedures undertaken are shown (Table 1, Supplementary Table E1). After 1995 the 

numbers and proportion of patients with inborn errors other than Wiskott-Aldrich syndrome increased. Of the T 

lymphocyte deficiencies, 34% had Omenn syndrome, 6% purine nucleoside phosphorylase deficiency, 32% 

HLA class II deficiency, 18% CD40 ligand deficiency and 10% undefined. The proportion of patients with 

CD40 ligand deficiency markedly increased after 1995 and the proportion of patients with other inborn errors 

increased in the latest time period. Of the phagocytic cell disorders, the proportion of patients with leukocyte 

adhesion deficiency was greater before 1995 and that of patients with chronic granulomatous disease much 

greater in the period 2000-2005. Of the hemophagocytic cell disorders, 62% had familial lymphohistiocytosis 

(FLH), 16% Chediak-Higashi syndrome, 10% Griscelli syndrome and 12% X-linked lymphoproliferative 

disease (the proportion of which increased in each of the time periods).  

 

The proportion of children > 2 years being transplanted was significantly greater after 1995. The 4 year survival 

showed a marked improvement in 2000-2005 (Table 2; Figure 2; p = 0.0001), an improvement not seen in the 

SCID patients. Survival was better with URD than pheno-identical transplants (Table 2; Figure 2; p < 0.0001).  

Survival in the period 2000-2005 was better with an URD than a mismatched relative donor, in contrast to 

SCID patients (Supplementary Table E1; Supplementary Figure E5). Furthermore, survival using a geno-

identical donor was almost the same as an URD, a feature not seen in the SCID group. There was a significant 

improvement over time in survival at 3 years for URD transplants (Supplementary Table E1; p = 0.027).  
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Univariate analysis demonstrated that 10 year survival was significantly better for patients with Wiskott-

Aldrich syndrome, phagocytic and hemophagocytic disorders than for patients with T lymphocyte 

immunodeficiencies (WAS, n=168 [71%: 64-79%]; phagocytic, n=92 [63%: 48-83%]; FLH, n=159 [58%: 49-

69]; T deficiency, n=326 [47%: 41-54%]; Figure 2; p <0.0001), although this difference was not significant 

using multivariate analysis. 

Pre-transplant presence of malnutrition, pulmonary infection, gut infection, respiratory or liver impairment had 

a significant deleterious effect on survival (Table 2). Multivariate analysis showed that donor type, pre-existing 

respiratory impairment, or malnutrition and co-trimoxazole prophylaxis during transplant were strongly 

significantly associated with outcome (Table 2).  
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Discussion 

This is largest cohort study on the outcome of patients undergoing HSCT for PID, with the longest follow-up. 

Whilst the data analysis is complex, the large number of patients in the database gives sufficient statistical 

power to assess outcome trends over different periods. Survival continues to improve over time. 

Transplantation using a geno-identical sibling donor now gives survival of 90% [95% CI : 77-100%] for SCID 

patients and 79% [95% CI 69-89%] for patients with non-SCID PID – emphasizing how much safer and 

successful HSCT has become over time. For selected patients with no pre-existing infection, such as newborns 

with SCID, the outcome is even better [13, 14]. This data clearly demonstrates an improved outcome when 

transplanted before 6 months of age. Newborn screening programmes are likely to facilitate the early diagnosis 

of SCID [15], and thus survival can be expected to improve in the future.  Outcome for patients with non-SCID 

PID is almost as good and continues to improve. As data on long-term outcome of specific PID from national 

and international registries become available [4, 5, 16], these data regarding outcome of HSCT for particular 

diseases will help inform clinical decisions for optimal management of these patients. Simple measures 

including protected environment and co-trimoxazole prophylaxis during transplantation remain important 

predictors of outcome. Pre-existing lung and liver damage continue to be associated with a poor outcome, as 

demonstrated in previous studies [7, 17]. 

 

The proportion of HLA-mismatched donor transplants for SCID has diminished over time, likely in part to the 

increasing use of URD transplants. Umbilical cord stem cells, particularly suitable for infant recipients, are 

being used for an increasing number of patients [8], with 14 cord blood transplants for SCID reported to 

SCETIDE and 67 to EUROCORD between 1995 and 2005  [18], including geno-identical sibling, and 

unrelated donor cord blood transplants. A comparative study of unrelated cord blood transplantation versus 

haploidentical related stem cell transplantation for patients with severe T-cell deficiencies is in preparation with 

the Eurocord database. A greater use of molecular tissue typing, and hence more accurate identification of HLA 

matching, is likely to have influenced improved survival for patients receiving stem cells from URD. The 

increased use of non-conditioned transplants in SCID patients receiving geno-identical stem cells may lead to a 

more rapid increase in T lymphocyte counts than after URD transplantation, and hence faster clearance of 

infection. Our data, in contrast to previous reports [19] demonstrates that for patients with SCID, an URD 
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appears to have no significant advantage over a pheno-identical or HLA mismatched donor, and may take 

significantly longer to assess before stem cell donation.  

 

On multivariate analysis, for non-SCID patients, survival is better using an unrelated, rather than pheno-

identical, donor. The reasons for this are unclear, but could be center effect. Related pheno-identical donors are 

a mixed group of geno-identical and partially identical donors, but as both pheno-identical related and unrelated 

donor recipients receive ATG, Campath or OKT3 as part of conditioning, these differences are difficult to 

explain. The accuracy of HLA typing has improved such that URD are likely to now be a better molecular HLA 

match than in historic series, thus explaining improvements over time. Survival is almost equivalent to when a 

geno-identical donor is used, in contra-distinction to SCID patients, where the outcome using a geno-identical 

donor is better. In the non-SCID group, an URD or other identical relatives show a clear advantage over a 

haplo-identical donor.  

 

Specific issues arise for different patient groups. In the SCID group, after multivariate analysis, B+ SCID 

patients have better survival than those with B- SCID, despite improvements in survival in each group over 

time (data not shown). The effect may be skewed by a large number of artemis-deficient patients in the B- 

SCID group, a defect associated with poorer outcome, possibly because of the associated generalized cellular 

radiosensitivity, not confined to cells of hematopoietic origin. However, RAG-deficient B- SCID also has a 

poorer outcome than B+ SCID [20]. Further explanations include a more hostile micro-thymic environment in 

some SCID phenotypes, because of a later block in thymocyte development, leading to pre-cursor competition 

in the thymic niche [21], predisposition to development of autoreactive T cells following engraftment, or organs 

that are more susceptible to damage by chemotherapy, leading to more veno-occlusive disease or GvHD, for 

instance in adenosine deaminase-deficient SCID. Additionally, data have not been analyzed with respect to 

presence or absence of NK cells, in part because of incomplete ascertainment. Some of the results may 

therefore be attributable not to presence of B lymphocytes, but rather lack of NK cells, which may favour 

engraftment over rejection [22]. The lack of improvement in survival over the last time period is striking. 

Patients with SCID are perhaps more difficult to transplant because they are younger at time of transplant, and 

often have severe opportunistic infection at diagnosis. Additionally, physiologically immature organs including 
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lungs and liver may be more susceptible to the effects of veno-occlusive disease or GvHD. The presence of 

more factors of worse prognosis (e.g. more T-B- than T-B+ phenotypes, more mismatched than geno-identical 

donors) in patients of the third period was sought to help explain an absence of survival improvement between 

period 2 and period 3 despite improved diagnostic and therapeutic progress. No difference was found that might 

substantiate this hypothesis, although the analysis may lack power to show a difference (data not shown). 

 

Survival is similar following transplantation for SCID, whether chemotherapy conditioning is used or not. The 

role of chemotherapy conditioning in the treatment of SCID is unclear [23-26]. There is not adequate detailed 

data in SCETIDE to comment about the quality of immuno-reconstitution, including production of 

immunoglobulin and antibody responses to specific protein and polysaccharide antigens, associated with the 

use or absence of chemotherapy. Increasing evidence from other sources suggests that full 

immunoreconstitution with long-term T and B lymphogenesis requires stem cell engraftment evidenced by 

donor myeloid chimerism, at least for some SCID phenotypes [9, 20, 27-29]. The data from SCETIDE need to 

be interpreted with caution however, as non-conditioned patients are likely to be the most sick, with end-organ 

damage, who historically would not have tolerated conventional conditioning regimens. Reduced intensity 

regimens may enable long-term engraftment and immunoreconstution, even in patients with significant end-

organ damage [10]. Whilst reduced intensity chemotherapy conditioning is advantageous for patients with 

significant pre-existing organ damage, the place of fully myeloablative conditioning over reduced intensity 

chemotherapy is undetermined, and further studies on long-term survival, quality of immunoreconstitution, 

long-term effects of GvHD, neuro-developmental outcomes and fertility need to be addressed. 

 

An increasing range of non-SCID PID conditions are now treated by HSCT. Changes in proportion of disease 

categories transplanted over time likely reflect improved diagnosis and better care in early childhood leading to 

survival in later childhood, so facilitating transplantation at an older age. Survival is not yet as good as for 

SCID patients, perhaps reflecting the perception that patients need to ‘earn’ the right to transplantation by 

presenting with significant complications or infections. It is noteworthy that in disease-specific series, outcome 

is better for younger patients without pre-existing organ damage or infection [17, 30-32]. Overall survival for 

each disease category is improving over time, but remains poor for undefined T lymphocyte 



 16 

immunodeficiencies. This may be because without a clear genetic diagnosis, patients are not offered HSCT, in 

contrast to those with a clearly defined clinical and genetic PID. Interestingly, survival was better for patients 

transplanted at 12-47 months, rather than <12 or >48 months of age (data not shown). A possible explanation is 

the inclusion of Omenn syndrome, as well as purine nucleoside phosphorylase and MHC class II deficiencies, 

in the T lymphocyte immunodeficiency category. These patients are generally transplanted before 12 months of 

age. Their outcome is poor, possibly explaining the unexpectedly worse outcome in this younger age group in 

contra-distinction to SCID patients transplanted at the same age (Supplementary Figure E2). A separate 

analysis of the T lymphocyte deficiency category showed worse outcome for these three diagnoses, and the 

generally poor overall outcome for the T immunodeficiency group was not skewed by particularly poor results 

for a specific disease category within the group  (Supplementary Figure E6) – as previously demonstrated in 

disease specific series [33, 34]. Beyond a year survival improves, as well patients with no or minimal organ 

damage, are treated. Decrease in survival beyond 48 months may reflect treatment of older sicker patients with 

diseases such as Wiskott-Aldrich syndrome and CD40 ligand deficiency who had more infection and end-organ 

damage. This study did not look at donor chimerism. Detailed data regarding mixed and mixed split-cell lineage 

chimerism is not available from the current database, but is important as quanitity of donor chimerism, and the 

cell lineages in which it is found may impact on quality of immune function [35].  

 

Since the first HSCT for PID in 1968, survival has continued to improve and the range of disorders for which 

HSCT is considered is expanding. These data from SCETIDE show continuing improvement in survival in all 

categories. As survival improves, the long-term quality of immuno-reconstitution and other life quality issues 

become important. Few studies have examined long-term immuno-reconstitution. Significant long-term 

sequelae are now being identified, including thymic failure in patients without stem cell engraftment [20, 27], 

appearance of human papilloma virus warts, predominantly in patients with common gamma chain or JAK3-

deficient SCID [20, 36], and neurocognitive development in patients post HSCT [37, 38]. It is now critical to 

analyse the long-term outcome for disease-specific groups. The SCETIDE database is now large enough to 

begin analysis of outcome of HSCT for different specific genetic defects, for instance RAG- or Artemis 

deficient T-B-NK+ SCID, although additional data to that routinely collected may be required. The next stage 

will be to carefully analyse individual disease categories, so that the prognosis following HSCT for the different 
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genetic conditions may be better understood [39]. Continued careful data collection is required to gain a 

complete understanding of the outcome for these rare genetic disorders, in order that best treatment can be 

planned, including the different stem cell therapies and gene therapy [40].  
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Figure 1. Cumulative probability of survival in SCID patients after hematopoietic stem cell 

transplantation according to period in which transplanted, donor source (related or unrelated donor) 

and HLA matching 

Figure 2. Cumulative probability of survival in T-B- or T- B+ SCID patients after hematopoietic stem 

cell transplantation through all time periods. 

 

Figure 3. Cumulative probability of survival in non-SCID PID patients after hematopoietic stem cell 

transplantation according to period in which transplanted, donor source (related or unrelated donor) 

and HLA matching and type of immunodeficiency through all time periods. 
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Table 1. Type of immunodeficiency, according to donor origin, HLA matching and year of 
graft 
 
Table 2. Factors affecting outcome after stem-cell transplantation 









Table 1: Type of immunodeficiency, according to donor origin, HLA matching and year of graft 
(N: number of patients, %: percentage) 

SCID N % 
Related donor 

Unrelated 
donor Genotypically 

HLA identical 
Phenotypically 
HLA identical 

HLA 
mismatched 

years of graft < 1995             

Total 361  84 33 229 15 

Reticular dysgenesis 11 3% 2 1 7 1 

ADA deficiency 42 12% 14 1 25 2 

T- B- 105 29% 29 14 60 2 

T- B+ 181 50% 34 13 127 7 

Other 22 6% 5 4 10 3 

years of graft [1995-1999]             

Total 157  26 21 90 20 

Reticular dysgenesis 3 2% 0 0 3 0 

ADA deficiency 15 10% 6 4 2 3 

T- B- 46 29% 3 11 25 7 

T- B+ 80 51% 11 4 57 8 

Other 13 8% 6 2 3 2 

years of graft [2000-02005]             

Total 181  25 14 96 46 

Reticular dysgenesis 5 3% 0 0 4 1 

ADA deficiency 18 10% 5 1 4 8 

T- B- 55 30% 7 5 32 11 

T- B+ 84 46% 9 7 52 16 

Other 19 11% 4 1 4 10 

Non-SCID             

years of graft < 1995       
Total 278  103 17 130 28 

Wiskott-Aldrich syndrome 85 30% 30 3 40 12 

T-cell deficiencies       

   Omenn syndrome 21 8% 4 2 12 3 

   PNP deficiency 3 1% 1 1 1 0 

   HLA class II deficiency 36 13% 13 3 18 2 

   CD40 ligand deficiency 1 0% 1 0 0 0 

   Other 41 15% 13 1 25 2 

Phagocytic-cell disorders       

   Agranulocytosis 5 2% 3 0 2 0 

   Chronic granulomatous disorders 11 4% 7 0 0 4 

   Leucocyte adhesion deficiency 19 7% 6 1 11 1 

Haemophagocytic syndromes       

   Familial lymphohistiocytosis 33 12% 14 1 16 2 

   Chediak-Higashi syndrome 15 5% 7 4 2 2 

   XLP (Purtillo) 0 0% 0 0 0 0 

   Gricelli's disease 2 1% 2 0 0 0 

Other 6 2% 2 1 3 0 
 



Table 1: Type of immunodeficiency, according to donor origin, HLA matching and year of graft 
(N: number of patients, %: percentage) (continued) 

Non-SCID N % 
Related donor 

Unrelated donor Genotypically 
HLA identical 

Phenotypically 
HLA identical 

HLA 
mismatched 

years of graft [1995-1999]             

Total 238  75 25 66 72 

Wiskott-Aldrich syndrome 34 14% 10 4 8 12 

T-cell deficiencies       

   Omenn syndrome 24 10% 6 1 12 5 

   PNP deficiency 1 0% 1 0 0 0 

   HLA class II deficiency 17 7% 4 7 5 1 

   CD40 ligand deficiency 18 8% 4 0 0 14 

   Other 65 27% 20 6 18 21 

Phagocytic-cell disorders       

   Agranulocytosis 0 0% 0 0 0 0 
   Chronic granulomatous disorders 9 4% 9 0 0 0 
   Leucocyte adhesion deficiency 8 3% 3 1 4 0 

   Other 6 3% 3 1 1 1 

Haemophagocytic syndromes       

   Familial lymphohistiocytosis 33 14% 6 3 15 9 

   Chediak-Higashi syndrome 5 2% 3 0 0 2 

   XLP (Purtillo) 4 2% 2 0 0 2 

   Gricelli's disease 6 3% 2 1 2 1 

Other 8 3% 2 1 1 4 

years of graft [2000-2005]             

Total 267  73 23 47 124 

Wiskott-Aldrich syndrome 49 18% 8 3 3 35 

T-cell deficiencies       

   Omenn syndrome 20 8% 3 4 9 4 

   PNP deficiency 7 3% 0 2 2 3 

   HLA class II deficiency 9 3% 2 0 5 2 

   CD40 ligand deficiency 17 6% 5 0 1 11 

   Other 46 17% 15 2 7 22 

Phagocytic-cell disorders       

   Agranulocytosis 5 2% 0 0 0 5 

   Chronic granulomatous disorders 21 8% 13 0 0 8 

   Leucocyte adhesion deficiency 7 3% 4 0 3 0 

   Other 1 0% 1 0 0 0 

Haemophagocytic syndromes       

   Familial lymphohistiocytosis 33 12% 8 4 9 12 

   Chediak-Higashi syndrome 6 2% 1 2 1 2 

   XLP (Purtillo) 15 6% 1 0 5 9 

   Gricelli's disease 7 3% 3 2 0 2 

Other 24 9% 9 4 2 9 
 
  
 



Table 2: Factors affecting outcome after stem-cell transplantation 

SCID 
Univariate analysis  Multivariate analysis 

Patients Deaths 10-Survival 
% (95% CI) p Hazard ratio 

(95% CI) p 

Years of graft       

   2000-2005 181 41 71 (63-80)1 0.0003 1  

   1995-1999 157 40 70 (63-79)1  1.0 (0.6-1.7) 0.97 

   <1995 361 153 56 (51-62)1  1.5 (1.0-2.2) 0.06 

Age at transplantation       

   <6 months 289 79 68 (62-74) 0.0008 1  

   6-11 months 253 92 59 (53-67)  1.3 (0.9-1.9) 0.11 

   >12 months 145 61 51 (42-61)  2.4 (1.6-3.5) <0.0001 

SCID phenotype       

   B+ 345 92 70 (64-76) <0.0001 1  

   B- 300 128 51 (45-58)  2.2 (1.6-2.9) <0.0001 

   Other 54 14 71 (58-87)  1.2 (0.7-2.2) 0.55 

Recipient/donor compatibility       

   Related genotypically identical 135 20 84 (77-91) <0.0001 1  

   Related phenotypically identical 68 18 64 (52-80)  2.6 (1.3-5.3) 0.009 

   Unrelated donor 81 23 66 (55-79)  4.1 (2.1-8.1) 0.0001 

   Related HLA mismatched 415 173 54 (48-60)  8.9 (4.6-17.2) <0.0001 

Respiratory Impairment       

   No 379 123 63 (58-69) 0.006 1  

   Yes 247 102 55 (48-62)  1.6 (1.2-2.2) 0.002 

Septicaemia       

   No 563 197 61 (56-65) 0.003 1  

   Yes 53 27 46 (33-63)  1.8 (1.1-2.8) 0.013 

Viral infection       

   No 432 144 63 (58-68) 0.002 1  

   Yes 191 81 52 (45-61)  1.4 (1.0-1.9) 0.041 

T-cell depletion       

   Yes 422 160 57 (52-63) 0.011 1  

   No 266 71 69 (63-76)  2.0 (1.3-3.3) 0.004 

Protected environment       

   Yes 613 199 63 (59-67) 0.004 1  

   No 55 26 50 (37-66)  2.0 (1.2-3.2) 0.005 

Prophylaxis2       

   Yes 503 173 62 (57-67) 0.021 1  

   No 88 40 54 (44-66)  1.9 (1.3-2.8) 0.0007 



Table 2: Factors affecting outcome after stem-cell transplantation (continued) 

Non SCID 
Univariate analysis  Multivariate analysis 

Patients Deaths 10-Survival 
% (95% CI) p Hazard ratio 

(95% CI) p 

Years of graft       

   2000-2005 267 65 69 (60-78)3 0.0001 1  

   1995-1999 238 93 58 (51-65)3  1.7 (1.2-2.5) 0.005 

   <1995 278 126 54 (49-61)3  1.4 (1.0-2.0) 0.09 

Recipient/donor compatibility       

   Related genotypically identical 251 63 71 (65-78) <0.0001 1  

   Related phenotypically identical 65 24 57 (45-72)  1.9 (1.1-3.2) 0.021 

   Unrelated donor 224 63 63 (54-74)  1.2 (0.8-1.9) 0.29 

   Related HLA mismatched 243 134 39 (32-47)  2.4 (1.7-3.3) <0.0001 

Respiratory Impairment       

   No 522 176 61 (56-67) <0.0001 1  

   Yes 150 76 43 (34-53)  1.5 (1.1-2.1) 0.012 

Malnutrition       

   No 562 187 62 (57-67) 0.0004 1  

   Yes 145 74 44 (35-54)  1.5 (1.1-2.0) 0.017 

Prophylaxis2       

   Yes 590 204 60 (56-65) <0.0001 1  

   No 91 55 33 (23-48)   2.4 (1.7-3.3) <0.0001 
1: 5-Survival is given; 2: trimethoprim-sulfamethoxazole; 3: 4-Survival. 
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Effect of conditioning on outcome. 
 
Conditioning was performed in accordance with guidelines current at time of transplantation. 

A complementary analysis is presented considering the “conditioning” variable composed of 

4 classes: no conditioning, busulfan containing, other chemotherapy without busulfan, and 

ATG, Campath or OKT3 only (supplementary Table E3). Whilst 42% of SCID patients did 

not receive conditioning, only 5% of non SCID PID patients were not conditioned. The 

outcome using busulfan was no better than not giving conditioning, although close to 

statistical significance (HR: 1.4; 95% CI [1.0-2.1] P=0.05). This result was expected since 

recipients receiving stem cells from geno-identical donors as well as those with T-B+ PID did 

not often receive conditioning. 

The outcome using busulfan appeared better than using non-busulfan regimens (HR: 2.1; 95% 

CI [1.3-3.3] P=0.002) (supplementary Table E3). The outcome using busulfan did not appear 

better than using ATG, Campath or OKT3 alone (HR: 1.1; 95% CI [0.5-2.3] p =NS), although 

the number of patients who received ATG, Campath or OKT3 alone was limited (n=29). 

In Non-SCID PID patients survival following transplantation using busulfan conditioning was 

not statistically different to using no conditioning, other chemotherapy, or ATG, Campath or 

OKT3 alone. 



Supplementary Figure E1. Cumulative probability of survival in SCID patients after 

hematopoietic stem cell transplantation according to year at grafting in HLA 

mismatched SCID 

 

Supplementary Figure E2. Cumulative probability of survival in SCID patients after 

hematopoietic stem cell transplantation according to age at transplantation through all 

time periods 

 

Supplementary Figure E3. Cumulative probability of survival in SCID patients after 

hematopoietic stem cell transplantation according to donor source (related or unrelated 

donor) and HLA matching for the period 2000-2005 

 

Supplementary Figure E4. Cumulative probability of survival in non-SCID PID patients 

after hematopoietic stem cell transplantation according to donor source (related or 

unrelated donor) and HLA matching for the period 2000-2005 

 

Supplementary Figure E5. Cumulative probability of survival in non-SCID PID patients 

after hematopoietic stem cell transplantation according to type of T cell deficiency for 

the period 1995-2005. 

 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table E1: Clinical characteristics of patients according to year of graft 

SCID 
Related donor 

Unrelated 
donor Genotypically 

HLA identical 
Phenotypically 
HLA identical 

HLA 
mismatched 

years of graft < 1995         

Total 84 33 229 15 

More than one stem-cell transplantation 8 3 43 4 

Median age at transplantation (months) 5.8 6.2 7.2 13.1 

   <6 46 15 87 2 

   6-11 20 17 98 2 

   12-18 8 0 27 6 

   >18 8 1 15 5 

Year of transplantation     

   1968-85 34 14 57 4 

   1986-90 27 11 89 0 

   1991-94 23 8 83 11 

Conditioning 20 12 160* 11 
Median (range) follow-up (years) 8.8 (0.5-27.8) 9.6 (0.5-32.6) 9.3 (0.5-22.3) 8.9 (5.3-12.8) 

3-year Survival % (95% CI) 81 (73-90) 57 (41-78) 49 (43-56) 53 (33-86) 
years of graft [1995-1999]         

Total 26 21 90 20 

More than one stem-cell transplantation 3 2 17 2 

Median age at transplantation (months) 6.6 4.5 6.9 10.1 

   <6 12 11 34 6 

   6-11 6 4 40 8 

   12-18 5 2 6 2 

   >18 2 3 8 3 

Conditioning 7 2 63 15 
Median (range) follow-up (years) 2.0 (0.4-9.6) 2.5 (0.4-6.2) 4.5 (0.2-10.8) 7.1 (0.9-10.4) 

3-year Survival % (95% CI) 84 (69-100) 80 (62-100) 69 (60-79) 68 (48-97) 
years of graft [2000-2005]     

Total 25 14 96 46 

More than one stem-cell transplantation 0 2 23 5 

Median age at transplantation (months) 4.9 4.2 7.5 9.5 

   <6 16 9 33 18 

   6-11 5 2 41 10 

   12-18 2 0 6 7 

   >18 2 3 13 11 

Conditioning 3 4 78* 37 
Median (range) follow-up (years) 1.0 (0.5-2.1) 1.2 (0.4-4.9) 1.4 (0.2-5.0) 1.8 (0.2-5.4) 

3-year Survival % (95% CI) 90 (77-100) 83 (58-100) 66 (55-78) 69 (54-89) 
* Missing data for one patient of this group. 



Supplementary Table E1: Clinical characteristics of patients according to year of graft 
(continued) 

Non-SCID 

Related donor 
Unrelated 

donor 
Genotypically 

HLA 
identical 

Phenotypically 
HLA identical 

HLA 
mismatched 

years of graft < 1995     

Total 103 17 130 28 

More than one stem-cell transplantation 8 2 21 1 

Median age at transplantation (months) 30.6 21.9 17.7 34.4 

   <12 months 29 6 42 5 

   12-23 months 16 3 38 8 

   2-3 years 19 4 27 8 

   >4 years 39 4 22 7 

Year of transplantation     

   1968-85 31 6 21 4 

   1986-90 32 6 57 3 

   1991-94 40 5 52 21 

Conditioning 96* 16 128 28 
Median (range) follow-up (years) 8.6 (0.5-18.6) 9.5 (0.5-14.6) 8.7 (0.1-16.6) 9.1 (0.5-13.9) 

3-year Survival % (95% CI) 72 (63-81) 46 (27-78) 41 (33-51) 66 (50-87) 
years of graft [1995-1999]     

Total 75 25 66 72 

More than one stem-cell transplantation 1 6 15 4 

Median age at transplantation (months) 50.5 19.2 18.2 50.1 

   <12 months 19 4 22 10 

   12-23 months 4 10 18 14 

   2-3 years 13 3 10 11 

   >4 years 39 8 13 37 

Conditioning 70* 25 63 70 
Median (range) follow-up (years) 2.7 (0.2-10.9) 1.8 (0.2-5.5) 2.6 (0.2-10.4) 3.8 (0.1-11.2) 

3-year Survival % (95% CI) 71 (60-83) 53 (36-78) 41 (30-57) 60 (49-73) 
years of graft [2000-2005]     

Total 73 23 47 124 

More than one stem-cell transplantation 6 4 14 17 

Median age at transplantation (months) 38.5 24.2 19.7 36.5 

   <12 months 19 8 19 23 

   12-23 months 6 3 9 25 

   2-3 years 16 8 9 23 

   >4 years 31 4 10 52 

Conditioning 67* 21 43 113 
Median (range) follow-up (years) 1.5 (0.0-5.0) 1.2 (0.3-3.9) 2.3 (0.4-5.0) 1.4 (0.2-5.0) 

3-year Survival % (95% CI) 79 (69-89) 76 (57-100) 55 (42-72) 79 (71-87) 
* Missing data for one patient of this group. 
 



Supplementary Table E2. Type of conditioning according to year of transplantation and diagnosis: SCID (1968-2005, N=699).  

  No Conditioning  
(n= 285) 

Busulphan contain. 
(n=297 ) 

Other 
chemotherapy 

(n= 69)  

ATG, Campath or 
OKT3 only 

(n=29 ) 

Other Conditioning or 
n.a.  

(n=19 ) 

Stat 
 

 <1995 55.09 % 44.11 % 50.72 % 68.97 % 100% Fisher 
1995-1999 24.56 % 24.58 % 15.94 % 10.34 % 0% 0.00001 
2000-2005 20.35 % 31.31 % 33.33 % 20.69 % 0%  
       
Reticular Dysgenesis 0.7 % 3.37 % 2.9 % 3.37 % 13.79 % Fisher 

ADA deficiency 14.74 % 5.39 % 7.25 % 5.39 % 13.79 % 0.00001 
T-B- 30.88 % 29.63 % 30.43 % 29.63 % 10.34 %  
T-B+ 49.82 % 53.87 % 39.13 % 53.87 % 48.28 %  
Other 3.86 % 7.74 % 20.29 % 7.74 % 13.79 %  
       
Geno ident. 36.84 % 5.05 % 11.59 % 13.79 % 17.65 % Fisher 

Pheno ident. 17.54 % 2.69 % 7.25 % 6.9 % 17.65 % 0.00001 
URD 6.32 % 14.14 % 24.64 % 13.79 % 0%  
Mismatch 39.3 % 78.11 % 56.52 % 65.52 % 64.71 %  
 
 

Supplementary Table E2 (Continued). Type of conditioning according to year of transplantation and diagnosis: Non SCID (1968-2005, 
N=783).   
 

  

Conditioning no 
(n= 40) 

Busulphan contain. 
(n= 499) 

Other chemotherapy  
(n= 116) 

ATG, Campath or 
OKT3 only 

(n=55) 

Other Conditioning 
or n.a. 

(73) 
Stat 

 <1995 22.5 % 23.85 % 29.31 % 81.82 % 100% χ2 

 1995-1999 22.5 % 37.47 % 31.03 % 9.09 % 0% <0.00001 

2000-2005 55% 38.68 % 39.66 % 9.09 % 0%   

       

Geno 37.5 % 31.46 % 25% 10.91 % 58.57 % Fisher 

Pheno 7.5 % 9.22 % 4.31 % 7.27 % 10% <0.00001 

Mud 32.5 % 31.66 % 42.24 % 7.27 % 0%   

Mismatch 22.5 % 27.66 % 28.45 % 74.55 % 31.43 %   



Supplementary Table E3. Outcome of transplantation according to type of conditioning 

regimen used for SCID and non-SCID PID patients. 

 
Variables: SCID HR* 95% CI* p* 

Conditioning : no conditioning vs busulfan 1.4 1.0-2.1 0.05 

                        other chemotherapy vs busulfan 2.1 1.3-3.3 0.002 

                        ATG, Campath or OKT3 only vs busulfan 1.1 0.5-2.3 0.84 

Variables: Non-SCID PID    

Conditioning : no conditioning vs busulfan 1.4 0.7-2.7 0.29 

                        other chemotherapy vs busulfan 1.4 0.9-2.0 0.12 

                       ATG, Campath or OKT3 only vs busulfan 1.3 0.8-2.0 0.33 

*Cox proportional hazard model: HR hazard ratio 95% confidence interval 












