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SUMMARY KEYWORDS

Cultured human catecholaminergic and non-
catecholaminergic donor cells were used in
neural transplantation experiments in a rat
model ofParkinson’s disease. Using two different
human eatecholaminergic neuroblastoma cell
lines, one control non-catecholaminergic neuro-
blastoma cell line, and one sham control (tissue
culture medium), transplants were made into the
striatum using a modified Ungerstedt
hemiparkinsonian rat model. Significant
decreases in apomorphine-induced rotational
behavior were produced by two of three
catecholaminergic cell lines. Grafted cells stain-
ing positively for tyrosine hydroxylase (TH) and
catecholamine fluorescence indicatedviable cate-
cholamine activity in the two cell lines which pro-
duced reductions in rotational behavior.
Catecholamine fluorescence was not detected in
either of the two controls. These data suggest a
link between catecholamine secretion by trans-
planted cells and motor improvement using a rat
rotational behavior model.
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INTRODUCTION

Since 1985, when Backlund et al. /3/ presented
the first clinical tests of transplants of
dopaminergic tissue in two Parkinson’s patients,
Parkinson’s disease has been the focus of many
transplant attempts. Neural tissue transplants
have been performed on rats/5/, monkeys/15/,
and humans /23/. Recent transplants to the
striatum that utilized autologous human adrenal
medullary dopamine-producJng tissue have
yielded variable results/2,18/. Human fetal tissue
transplants may offer greater promise/11, 24, 26/
but the complex moral and ethical issues raised by
this procedure makes its potential for widespread
human application uncertain. Experimental neu-
ral transplants in animals that use adrenal medul-
lary grafts and fetal dopaminergic grafts have
proved promising, producing good results in both
rodents and primates/7, 27, 31/. Another source
of neurotransmitter-producing tissues are cul-
tured cells which are transplanted into neuro-
transmitter deficient areas of the host brain.
However, cell grafts consisting of cultured cells
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have yielded poor long term results/32/due to
technical difficulties, primarily the severe disrup-
tion of the cell processes caused by dissociating
cells/14/, and secondarily the proper maintenance
of tissue culture/32/. We transplanted cultured
cellswhich are abundant, provoke no ethical prob-
lems, and may be genetically engineered.
Furthermore, the use of cultured cells prevents
the introduction ofunrecognized infections or de-
generative diseases.

Transplants of cultured cells to remedy exper-
imental parkinsonism have been investigated/16,
19/. (It has been possible to maintain satisfactory
primary cultures of fetal neurons for long periods
oftime/24, 31/.) Numerous studies on intracereb-
ral transplantation of various immortal cell lines
into the rat striatumhave beenpublished in recent
years. These include combined grafts of C6
glioma cells with chromaffin cells/4/, a wide em-
ployment of PC-12 cells/1, 13, 21/, B16/C3 mela-
noma cells/12/, and neuroblastoma cells similar to
those employed here/22/.

The approach involves injection of cultured,
immortal cells through a needle into specific sites
in the brain. The advantages of this method are
the following: In comparison towhole tissue trans-
plants, injection of cells in suspension appears to
allow a more uniform and wider anatomical distri-
bution of the donor cells over the entire needle
track. Grafts into multiple sites and multiple in-
jectiom in the same needle track might help the
graft become better integrated with the host brain
/14/, and decrease tissue damage sometimes asso-
ciated with whole tissue transplants in rats/25/.
Having several graft sites might better target spe-
cific dopamine deficient tissues, and injection of
cells along the entire needle track and not just the
base of the track will better disperse the cells,
allowing increased integration with the host. This
becomes important when attempting to influence
a large structure such as the striatum in higher
order animals/10/. Furthermore, immortal cell
lines can provide anunlimited supply of cells. And
finally, cell cultures may be genetically modified,
as are the genetically modified temperature sensi-

tive dopaminergic cells reported byBredesen et al.
/6/and Whittemore et al. /37/ which stop dividing
and mature at body temperature.

This study focuses upon catecholaminergic
cells derived from neuroblastoma, suitable for
neural transplants in the short term, like that of
Horellou et al./20/, and suggests why they might
provide insight into the best ways to remedy
parkinsonian deficits. We also suggest why a
neuroblastoma control cell line that is non-
catecholaminergic is unable to diminish a parkin-
sonian deficit.
A rotational behavior model for the study of

nigro-striatal function was described by Un-
gerstedt/33, 35, 36/. In the present study dopa-
mine-producing and non-dopamine producing
cell lines which both stain positively for TH were
stereotactically introduced into the striatum defi-
cient in dopamine, and alterations in rotational
behavior observed.

To our knowledge the direct comparison of
closely related dopaminergic and non-
dopaminergic cell lines whichboth expressTH has
not been attempted. The purpose ofthis studywas
to examine the capability of a catecholaminergic
line to remedy parkinsonian behavior in the
model, as well as to investigate the possibility of a
more direct link between dopamine production
and this model’s behavioral improvement.

MATERIALS AND METHODS

The experimental protocol consisted ofthe fol-
lowing steps spanning four months: Rats received
SN lesions, were allowed to mature for 1 month,
were tested for rotational behavior in the follow-
ing month, and those showing a comtant fre-
quency of rotations during at least 10 consecutive
sessions (30 days) were selected for study. All
animals chosen for transplant to the striatum ipsi-
lateral to the damaged substantia nigra displayed
at least 4 fullbody turns/min over a 10 min interval
after the apomorphine had taken effect. A total
of27 lesioned rats fulfilled this criterion. Animals

Abbreviations:ANOVA, analysis ofvariance; AP, anterior/posterior; D, depth; EDTA, ethylene-diamine tetra acetic acid; H&E,
hemotoxylin and eosin; HEPES, hydroxy ethyl piperazine ethane sulfonic acid; L, lateral; 6-OHDA, six-hydroxydopamine; SN,
substantia nigra; SPG, sucrose-potassium phosphate-glyoxylic acid; TH, tyrosine hydroxylase; VTA, ventral tegmental area.
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were randomly assigned to groups such that 7
received injections of the dopaminergic cell line
LA-N-6, 8 received dopaminergic SMS-LHN, 6
received non-dopaminergic cell line SMS-KCN,
and 6 received SHAM, i.e. tissue culture medium
alone (Pucks-EDTA; Gibco) Apomorphine-in-
duced rotational tests againwere performed up to
30 days post-transplant. Mean rotations per min-
utewere calculated for each animal. The ratswere
sacrificed 30 days after striatal transplant, and
histochemical staining and immunofluorescence
workups were performed on brain sections.

Lesioning procedure

The rats were anesthetized imraperitoneally
with 50 mg/kg ofnembutal. The 6-hydroxydopam-
ine (6-OHDA) solution was prepared at room
temperature by dissolving 2.6 mg salt to produce
3 mg/ml of active base of 6-OHDA (2,4,5-
trihydroxyphenylalanine-HC1) in 0.15M saline so-
lution, with 0.2 mg/ml anhydrous ascorbic acid as
a vehicle. Using a modification of the Ungerstedt
method/34/, two unilateral lesions were made on
male 250 gram Sprague-Dawley rats, one in the
substantia nigra (SN) and one in the ventral teg-
mental area (VTA).

From the bregma the modified Ungerstedt co-
ordinates ofthe lesionwere: forVTA,APwas -5.3
mm, L-0.7 mm, and D -8.3 mm from bregma; for
SN, AP was-5.3 mm, L-2.5 mm, and D-8.3 mm.
A slow, gradual 5/l injection of6-OHDA solution
at the coordinates was administered over a 5 min
period at a rate of 1/1 per minute using a 25 gauge
10/1micro syringe (Hamilton Co., Reno, Nevada)
fixed to a micromanipulator. The syringe was
withdrawn slowly 5 min after the last increment of
injection, the incision sutured and the animal al-
lowed to recover.

Rotational behavior

Three days after striatal transplants, apomor-
phine-induced rotational trials were started, and
continued every 3 days for four weeks, for a total
of 10 sessions. Animals were injected intraperito-
neally with a 250/g/kg solution of apomorphine
in sterile water, then placed in a black topless
plexiglass 24x24x24 inch box. After waiting for 15

min for the apomorphine to take effect, we then
observed rotational movement for 10 min and
calculated number of complete rotations/min.
The means of data from 2 animals which expired
prior to completing the 30 days of post-transplant
testing, one each from SMS-LHN and SHAM,
were also calculated.

Statistical methods

We measured the number ofrotations per min-
ute every three days up to 30 days before trans-
plant procedures and every three days up to 30
days after transplant. The value of each day for
each animal was the number of rotations for the
10 minute measurement divided by 10, resulting
in a value in units of rotations per minute. We
defined the Baseline value as the mean of the last
five pre-transplant measurements. We defined
the Post-transplant value as the mean of the ten
post-transplant measurements. To establish
group comparabilitywe used a one-way analysis of
variance (ANOVA) to test the null hypothesis that
the four group baseline means were equal.

To investigate the effect of the transplant we
derived for each rat two measures from the base-
line and the post-transplant values. One measure
was the Change (baseline minus post-transplant)
in number of rotations per minute. The other
measurewas the Percent Improvement (100 times
Change divided by the baseline value). For each
group we used a t-test on each measure to test the
null hypothesis ofmean zero.

To compare the four groups on Change and
Percent Improvementwe used anANOVA to test
the null hypothesis of equal means. Pairwise com-
parisons were performed using the Bonferroni
approach.

All tests were two-tailed. Significance was de-
fined as a p-value less than 0.01. Because of the
small sample size andthe exploratory nature ofthe
study we also report p-values less than 0.10.

Donor cell lines

Three neuroblastoma cell lines and one tissue-
culture substance were transplanted. SMS-LHN
and LA-N-6 are examples of relatively slow-grow-
ing neuroblastoma while SMS-KCN grows faster.
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All cell cultures were established from surgically
removed human primary abdominal tumors.
Cells were maintained at37C in a humidified5%
CO atmosphere incubator in RPMI 1640 with
10% fetal bovine serum.
SMS-LHN cells did not show catecholamine

fluorescence in vitro, but were TH positive in
freshly stained tumor tissue and in vitro/28/. SMS-
LHN and LA-N-6 tumor tissue exhibited marked
catecholamine fluorescence when excised/34/.
The control SMS-KCN cell line is similar in ultra-
structure, neurite outgrowth, neuron-specific en-
olase, and neurotransmitter biosynthetic enzymes
(choline acetyltransferase, tyrosine hydroxylase,
aromatic L-amino acid decarboxylase, and dopa-
mine beta-hydroxylase) to SMS-LHN andLA-N-6
cell lines/10, 29/. However, the SMS-KCN line
was derived fromatumor that showedno evidence
of catecholamine production by glyoxylic acid
catecholamine fluorescence and immunohisto-
chemistry at the time of excision, and also showed
no fluorescence in vitro/28/. The SMS-KCN line
served as an important controlbecause of its over-
all similarities to the other lines with the exception
of its lack of catecholamine productionboth in the
donor patient and in cell culture. The other con-
trol consisted of injecting tissue culture medium
(Pucks-EDTA) only.

Cells were harvested from tissue culture flasks
non-enzymatically with Pucks saline A using 10
mM HEPES and 1 mM EDTA (Pucks-EDTA)
/28/, and triturated into a single cell suspension.
Cell viability and counts were determined using a
hemocytometer by trypan blue exclusion. 50 x 106
viable cells were aliquoted to a 1.5 ml sterile
Eppendorf centrifuge tube. The cells were
washed and microcentrifuged at 400 g for 3 min.
Prior to surgery we resuspended the cell pellet in
1/2 ml ofPucks-EDTA. Cell clumpswere dissoci-
ated by gentle pipetting with a Pasteur pipet prior
to loading the cells into the microsyringe.

Cell line transplantation

Prior to striatal surgery, we injected animals
intraperitoneally with 10 mg/kg of cyclosporin A
(provided by Sandoz Pharmaceutical Corp., East
Hanover, NJ). Tissue culture cells were injected
into a single site in the caudate-putamen. Cau-

date-putamen site coordinates from bregmawere
AP + 0.2 mm, L-3.2 mm, andD -6.5 mm. 10/1 of
Pucks solution, inwhich the cellswere suspended,
was gradually injected at 1 pl/minute using a
Hamilton 26 gauge 25pl syringe. The needle and
syringe were left in place for an additional 10
minutes and then slowly withdrawn. Animals
remained on an 8 mg/kg daily dosage of
cydosporin thatwas continued for the duration of
the experiment to prevent rejection of the cellular
graft. Animals which were not given cyclospofin
failed to show evidence of cell survival.

Sacrifice, tissue handling, and histochemieal
technique

Animals were sacrificed by a lethal dose of
intraperitoneal nembutal and then decapitated.
The skull was opened rapidly and the entire brain
removed. For TH immunohistochemistry, the
brainwas fixed for 3 days in4% paraformaldehyde
in phosphate buffered saline (pH 7.4). After fixa-
tion, a block was dissected surrounding the cell
graft in the left caudate-putamen. The tissue
block was then stored in a solution of 30% su-
crose/0.1 M PBS/0.1% sodium azide prior to cut-
ting 15/m coronal sections.
TH immunohistochemistry was performed on

brain sections. Nickel intensification of TH im-
munohistochemistry, cresyl violet, and hemo-
toxylin and eosin (H&E) staining were also
performed on some tissue sections. Sections for
TH staining were incubated overnight at4C with
anti-tyrosine hydroxylase anti-serum (Eugene
Tech International, Inc., diluted 1:50 in0.1% BSA,
0.1% Triton-X 100 in PBS). Primary amibodywas
detected with Vectastain ABC kit (Vector Labo-
ratories), using biotinylated goat-anti-rabbit anti-
body, HRP-labeled ABC reagent and 3-3’-
diaminobenzadine tetra hydrochloride (Vector)
as chromagen. Every third section was processed
as recommended by the manufacturer.

For catecholamine fluorescence, snap-frozen
brain sections were processed with sucrose-potas-
sium phosphate-glyoxylic acid (SPG) solution
/30/. This SPG method has a high specific sensi-
tivity for monoamines/8, 9/. We selected WC5
and PC12 cells as controls for the SPG prepara-
tion. WC5 is characteristically negative while
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PC12 cells are known positive. These sections
were examined with an Olympus Vanox fluores-
cence microscope (equipped with a 455/490 nm
band pass excitation filter, a 500 beam-splitting
mirror, and 515 nm emission barrier filter). Blue-
green fluorescence in tumor cells is specific for
cateeholamines/8/.

RESULTS

Rotational behavior

Table 1 presents for each group the means and
standard deviations for Baseline and Post-trans-
plant rotations/minute. The ANOVA showed no
statistically significant differences in Baseline
means.

Table 2 presents for each group the means and
standard deviations for the Change and Percent
Improvement measures. The mean Change is sig-
nificantl different from zero for the LA-N-6 and
SMS-LHN groups (p 0.0015 and p 0.0066, re-
spectively). The mean Percent Improvement is
significantly different from zero for the LA-N-6
and SMS-LHN groups (p 0.0027 and p 0.0001,
respectively) and borderline significant for the
SHAM group (p 0.0111).

For comparison of the four groups the
ANOVA showed no statistically significant group
differences in Change means (p 0.0638). There
was a statistically significant group difference in
mean Percent Improvement (p 0.0006).
Bonferroni pairwise comparisons (at a 0.01) re-
vealed a statistically significant difference only
between SMS-LHN and SMS-KCN. Relaxing the
Bonferroni level of significance to 0.05 allowed us
to identify three pairwise significant group differ-
ences in Percent Improvement: LA-N-6 vs. SMS-
KCN, SMS-LHN vs. SMS-KCN andSMS-SHN vs.
SHAM.

Figure 1 shows rotational behavior over the 30
days post-transplant for each transplant group.
Prior to transplantation, the number of rotations
inducedby apomorphine in the6-OHDA lesioned
hemiparkinsonian rats gradually increased and
eventually plateaued. Decreases in rotationswere
evident by one week after transplantation, and
remained at approximately the same value until

TABLE 1
Pre- and post-transplant values: mean (SD)

(rotations/minute)

Group n Pre-transplant Post-transplant
(Baseline)"

SMS-LHN 8 17.3 (17.0) 7.7 (10.4)

LA-N-6 7 18.1 (8.0) 9.7 (6.S)

SMS-KCN 6 14.7 (4.6) 13.1 (6.1)

SHAM 6 21.0 (8,9) 14,9 (3,9)

From the one-way ANOVA on Baseline values there is no evidence that
the groups have different means.

TABLE 2
Change and percent improvement: mean (SD)

(rotations/minute)

Group Change t Percent Improvement (%)

SMS-LHN 9.54 (7.07) 60.5 (17.2)

LA-N-6 8.33 (4.02) 51.8 (27.9)

SMS-KCN 1.50 (1.90) 13.1 (15.9)

SHAM 6.04 (6.62) 25.1 (15.7)

ANOVA p-value* 0,0638 0.0006

LA-N-6 (p 0.0015) and SMS-LHN (p 0.0066) Change means are
each significantly different from zero (one-sample t-tests).

LA-N-6 (p 0.0027), SMS-LHN (p 0.0001) and SHAM (p 0.0111)
Percent Improvement means are each significantly different from zero
(one-sample t-tests).

The p-values are from one-way ANOVAs comparing all four groups.
See the text for results of Bonferroni method pairwise comparisons
performed on Percent Improved.

the animals were sacrificed (see Figure 1). Of the
two animals that died prior to completion of the
10th measurement, one SMS-LHN rat died after
the 6th measurement, and one SHAM rat died
after the 4th measurement.

Histology

To determine the effectiveness of the lesion,
frontal sectionswere cut through the SN andVTA.
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Fig. 1: Effect of SMS-LHN, LA-N-6, SMS-KCN, or SHAM transplants placed into the caudate nucleus of 6-OHDA lesioned
rats. Rats receiving SMS-LHN and LA-N-6 showed significant improvement, (i.e., reduction in apomorphine-in-
duced rotation) over time. Rats receiving SMS-KCN non-dopamine producing donor cells or sham surgeries
showed some reduction in rotation which was not statistically significant.

Histochemical analysis of catecholamine activity
in the region of the lesioned SN andVTA showed
that the 6-OHDA had destroyed almost all TH-
containing cell bodies (see Fig. 3A). There was
also reduction in activity to background levels of
TH-positive fine fibers and catecholamine-spe-
cific fluorescence on the lesioned side. Because
questions have arisen in recent reports/17/con-
cerning the impact of unilateral lesions on the
level ofTH and the presence of other substances
in the other hemisphere, we performed 2 pilot
studies prior to this study, comparingTH reactiv-
ity in control animals without lesions to animals
with unilateral 6-OHDA lesions. These unpub-
lished studies examined 10 animals and showed no
significant difference inTH reactivitybetweenthe
control animals andTH reactivityfrom tissue con-

tralateral to 6-OHDA lesions in the experimental
animals. This analysis was performed by gross
inspection of tissue stained for TH.

At the time of death, four weeks after trans-
plantation, there was no evidence of mass dis-
placement on visual inspection of the coronal
brain slices. The injection sites and needle tracks
were easily seen on sections stained with H&E.
On microscopic examination 30 days post-trans-
plant, surviving graftsfromSMS-LHN, andLA-N-
6, and SMS-KCN cell lines consisted of groupings
ofTH positive cells packed within and throughout
the needle track. This was in contrast to rats sac-
rificed one or two days after transplantation in our
preliminarywork; these animals showed clumps of
cells clustered at the base ofthe needle track. The
comparison suggests significant multiplication of
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Fig. 2: A: Photomicrograph from the striatum of a 6-OHDA nigral lesioned rat with a LA-N-6 cell graft filling and somewhat
expanding in the needle tract at 30 days post-transplant. The section was stained for tyrosine hydroxylase (TH).
G graft. Scale bar 0.5 mm. B: High power photomicrograph of a TH stained SMS-LHN graft showing cell body
staining at edge of graft and host tissue. Scale bar 0.1 mm.
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the grafted cells by 30 days. The grafted cells did
not appear to penetrate into the surrounding tis-
sue of animals at 30 days (see Fig. 2A, B).

Histology of the SMS-LHN and LA-N-6 grafts
showed viability, as determined by TH im-
munoreactivity (see Fig. 2B). In many of the ani-
mals therewasTH staining in and around the graft
site. Some animals also showed goodTH staining
on the side contralateral to the graft, while there
was a nicely circumscribed TH positive graft on
the grafted side. It appeared the TH activity was
endogenous to the graft rather than a host re-
sponse, since there was no apparent TH staining
except immediately adjacent to the graft. Nickel
intensification of TH staining of SMS-LHN and
LA-N-6 grafts showed marking specific to TH
antibody labeling (see Fig. 3B). Bright positive
blue-green catecholamine fluorescence radiated
from the cells, consistent with neurite outgrowth;
however, because of clumping, clear processes
were not visible at low power. At high power
catecholamine fluorescence was clearly visible
(see Fig. 3D). A diffuse fluorescence from the
area surrounding the cells was also visible, sugges-
tive of an active secretion of catecholamines and
moderate diffusion (see Fig. 3C). No gradientwas
apparent. For the SMS-KCN grafts no fluorescing
cellswere found at the site oftransplantation after
the SPG procedure.

All cell lines exhibited uncontrolled growth in
vivo, and therefore are not practical for transplant
in animal studies of more than one month dura-
tion.

DISCUSSION

Results of this experiment show that apomor-
phine-induced rotational behavior in a hemi-
parkinsonian rat can be partially corrected by
catecholaminergic dissociated cell grafts placed in
the caudate-putamen.

The analysis indicates a statistically significant
difference amonggroups in Percent Improvement
in number of rotations/minute. The Bonferroni
pairwise comparisons at the conservative 0.01
level of significance resulted in only one signifi-
cant pairwise difference between SMS-LHN, with
the (maximum) improvement of 60%, and SMS-

80-

70-

30

10-

(27.9)

(15.7)

(15.9)

SMS-LHN LA-N-6 SHAM SMS-KCN

GROUP

Fig. 4: Percent improvement and standard deviations for
the four groups. LA-N-6 (p =0.0027), SMS-LHN
(p=0.0001) and SHAM (p=0.0111). SMS-LHN
showed the greatest Percent Improvement.
These Percent Improvement means are each sig-
nificantly different from zero by one sample t-
tests.

KCN, with the (minimum) improvement of 13%
(see Fig. 4). Though other pairwise comparisons
were not significant at a =0.01 the data suggest
that percent improvement is similar in the SMS-
LHN and LA-N-6 groups, and that these groups
are different fromboth the SMS-KCN andSHAM
groups which are similar.

The mean Changes, while not statistically dif-
ferent among the groups, are ordered in the same
way as the Percent Improvement means; the
smallest Change is in SMS-KCN and the largest is
in SMS-LHN. This measure, Change, is more
variable among animals, perhaps because it does
not account for the inter-rat variability in baseline
(pre-transplant) rotations/minute. Though lack-
ing statistical significance the data suggest an ef-
fect similar to that found using Percent
Improvement.

Several phenomena are at work in the present
experiment. In view of the greater magnitude of
reduction in circling associated with the
catecholaminergic cell lines as compared to the
two control procedures, it is reasonable to con-
clude that the former is probably producing dopa-
mine, or having aunique effect on the surrounding
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brain which may be caused by the presence of an
unknown neurotransmitter. It is puzzling that as
the cell lines apparently divided and grew, there
were no fttrther reductiom in rotational behavior.
The question ofthe mechanismby which the rota-
tional behavior is improved is presently under
further investigation. Reports by Gerfen et al./17/
have recently looked at the balance between
nigrostriatal systems and the unknown factors in-
volved in this rotational model, such as differences
in an individual animal’s response to apomor-
phine prior to lesioning. They have proposed that
the system may have many complex and delicate
interdependencies.

Returning to the present experiment, the data
seem clear that the active cell lines, namely SMS-
LHN, and LA-N-6, have a beneficial effect on
apomorphine-induced rotational behavior in the
parkimonian rat model. This is in addition to an
injury-related effect seen inpure form in the sham
procedures.

The cells employed here were neoplastic cells,
coming from neuroblastoma lines. As we and
others/22/found, these cell lines continue to grow
in number. Therefore, these cells are not suitable
for long-term animal experimentation and partic-
ularly not for consideration in humans. However,
if cell lines can be rendered amitotic in tissue
culture, they may be useful for long term investi-
gational use. Gash et al. /16/ rendered a human
neuroblastoma cell lone amitotic and then grafted
it into adult African green monkeys. The amitotic
cells survived for up to 340 days, remained differ-
entiated, and did not revert to an active mitotic
state. Kordower et al. /22/ transplanted both mi-
totic and amitotic humanneuroblastoma cell lines
into rodents and found that both survived. How-
ever the amitotic lines had fewer surviving cells.
Kordower’s dopamine-producing cell lines also
reversed lesion-induced parkinsonian defects in
rats as demonstrated bymaze testing. The present
study adds to existing research because it includes
a non-dopaminergic neuroblastoma graft that ex-
hibited no dopaminergic activity and also pro-
duced no appreciable improvement in rotational
motor deficit.

The concept ofgenetically engineering cells via
oncogene insertion or some other method to pro-
duce immortal cells lines that carry specific neu-

rotransmitter characteristics is exciting. Bredesen
et al./6/, in a preliminary finding, have utilized
genetically modified temperature-sensitive donal
neural cells for neural transplantation and suggest
that this type of modification could by applied to
cells ofany neurotransmitter system. Since cloned
genes maybe inserted into cells prior to transplan-
tation, the dopaminergic potential of transplanted
cells could be enhanced. We are presently study-
ing such nerve cell lines which are showing prom-
ise in both rodent and primate models.
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