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Transplantation of olfactory 
ensheathing cells on functional 
recovery and neuropathic pain 
after spinal cord injury; systematic 
review and meta-analysis
Babak Nakhjavan-Shahraki1, Mahmoud Yousefifard2, Vafa Rahimi-Movaghar1, Masoud 

Baikpour  3, Farinaz Nasirinezhad2, Saeed Safari4, Mehdi Yaseri5, Ali Moghadas Jafari6, Parisa 

Ghelichkhani7, Abbas Tafakhori8,9 & Mostafa Hosseini5,10

There are considerable disagreements on the application of olfactory ensheathing cells (OEC) for spinal 

cord injury (SCI) rehabilitation. The present meta-analysis was designed to investigate the efficacy of 
OEC transplantation on motor function recovery and neuropathic pain alleviation in SCI animal models. 

Accordingly, all related studies were identified and included. Two independent researchers assessed the 
quality of the articles and summarized them by calculating standardized mean differences (SMD). OEC 
transplantation was shown to significantly improve functional recovery (SMD = 1.36; 95% confidence 
interval: 1.05–1.68; p < 0.001). The efficacy of this method was higher in thoracic injuries (SMD = 1.41; 
95% confidence interval: 1.08–1.74; p < 0.001) and allogeneic transplants (SMD = 1.53; 95% confidence 
interval: 1.15–1.90; p < 0.001). OEC transplantation had no considerable effects on the improvement 
of hyperalgesia (SMD = −0.095; 95% confidence interval: −0.42–0.23; p = 0.57) but when the analyses 
were limited to studies with follow-up ≥8 weeks, it was associated with increased hyperalgesia 
(SMD = −0.66; 95% confidence interval: −1.28–0.04; p = 0.04). OEC transplantation did not affect SCI-
induced allodynia (SMD = 0.54; 95% confidence interval: −0.80–1.87; p = 0.43). Our findings showed 
that OEC transplantation can significantly improve motor function post-SCI, but it has no effect on 
allodynia and might lead to relative aggravation of hyperalgesia.

Spinal cord injury (SCI) is among the most important causes of mortality and disability in the young, with a 
reported global prevalence of 236 to 4178 cases per one million people, to which 180,000 cases are added every 
year1. Nevertheless, no de�nite treatment has been introduced for SCI and most measures are supportive and aim 
at alleviating symptoms of the patients2,3. Functional impairment, neuropathic pain, and diminished quality of 
life are the most prominent complications that patients with SCI encounter4.

In recent years, regenerative medicine has opened a promising window towards e�ective treatments for SCI5,6. 
Cell therapy is one of the important methods applied in this �eld, and can improve symptoms associated with SCI 
through creating new neural connections at the level of injury and driving di�erentiation of cells into neurons 
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along with its neuroprotective activities. Various sources can be used for cell therapy ranging from stem cells to 
neural supporting cells7–11. Olfactory ensheathing cells (OEC) are also viable candidates for cell therapy which 
can improve neuropathic pain and motor function in patients with SCI through multiple mechanisms including 
phagocytosis of axonal debris, immunoprotective characteristics that help axonal recovery, migration towards 
glial scars, and secretion of neutrotrophic factors12. However, their e�cacy has been questioned by multiple 
surveys13–16 and their association with aggravation of allodynia and hyperalgesia has limited application of this 
method17,18. Moreover, only a few studies have assessed improvement in sensory function a�er OEC transplanta-
tion and they have reported contradictory results19–21.

In this regard, in 2014 a meta-analysis evaluated the e�cacy of OECs on motor function recovery. Six studies 
were reviewed and the results depicted that transplantation of these cells can enhance functional recovery, but the 
study had considerable limitations. Firstly, in their systematic search only 95 non-repetitive articles were found. 
Secondly, their study su�ered publication bias and their applied keywords were not able to yield the maximum 
number of articles22. In another meta-analysis conducted in 2016, OEC transplantation was shown to improve 
motor function of the animals with spinal cord injuries23, but the sensory status a�er transplantation was not 
evaluated in their study.

Therefore, a new meta-analysis was be performed with the same goal in order to reach a consensus. 
Furthermore, various treatment protocols have been used for OEC transplantation in spinal cord injuries that 
di�ered in injury phases, number of transplanted cells, OEC source (olfactory bulb or mucosa), timing of inter-
vention, location of injury, use of antibiotic and immunosuppressive agents. �ese di�erences can cause signi�-
cant variations in the reported results and the e�ect of treatment protocol on the e�cacy of OEC transplantation 
in SCI is yet to be determined. Accordingly, the present systematic review and meta-analysis was designed to 
investigate the e�cacy of this treatment along with the e�ects of di�erent treatment protocols applied.

Results
Characteristics. Extensive search in databases produced 3247 articles, from which 1971 were found to be 
non-repetitive. A total of 113 articles were screened initially through evaluation of titles and abstracts, among 
which 41 met the inclusion criteria. Four additional studies were found through manual search. A�er elimi-
nation of duplicate reports and quality assessment of the articles, 40 studies were included in the meta-anal-
ysis5,16,19–21,24–57. Only three of these articles were Chinese language32,53,56 and the remaining 37 were in 
English5,16,19–21,24–31,33–52,54,55,57. Figure 1 depicts the �owchart drawn for the process of searching and selecting the 
articles.

�irty-one articles only assessed motor function in the animals5,16,24,26,27,30–32,34–39,41–49,51–57, three evaluated 
sensory function33,40,50 and six included both these entities19–21,25,28,29. As presented in Table 1, showing the char-
acteristics of included surveys, �ve studies reported at least two separate experiments; two compared the e�cacy 
of transplantation in acute phase with the subacute phase21,37, one compared the e�cacy in two injury models 
of transection and photochemical37, another article compared the e�cacy of OECs obtained from the olfactory 
mucosa with those derived from the olfactory bulb on post-SCI motor function53 and in the last one the e�ects of 
allogeneic transplantation of OECs was compared with xenogeneic transplantation of these cells on neuropathic 
pain33. Accordingly, data from 45 experiments were extracted from these 40 articles.

Figure 1. Flowchart of including studies in the meta-analysis.
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Overall, data from 933 animals (control group = 464, treatment group = 469) were pooled together and ana-
lyzed. �irty-one experiments were conducted on female animals and 14 were carried out on male subjects. 
Forty-three included rats and the other two evaluated mice. �e most common injury models in the included 
articles were contusion with 19 experiments followed by transection with 14, hemisection with 7, photochemical 
with 3 and compression with 2 experiments. �e mean (standard deviation) time interval between injury induc-
tion and transplantation was 5.3 ± 8.0 days (ranging from 0.05 to 45 days). In 26 experiments transplantation 
was done simultaneously with induction of injury (acute phase), in 15 experiments there was a 3 to 10-day gap 
between them (subacute phase) and in 4 experiments transplantation was carried out more than 2 weeks a�er 
the injury (chronic phase). Transplantation was intra-spinal in 44 experiments. �irty-seven experiments used 
allogeneic transplants and the rest of studies applied xenogeneic transplantations. �e number of transplanted 
cells per kg of body weight ranged from 3.6 × 105 to 4.4 × 107.

Author, Year
Gender, Species, 
Weight (gr)

Model, Location of injury, 
Severity

OEC derivation origin, Donor, Gra�, Dose, 
Type, Intervention time (day)

Immunosuppressive, 
Antibiotic, Blinding

Follow 
up (day)

Amemori19 Male, Rat, 270–300 Compression, T10, Moderate Mucosa, Rat, IS, 3 × 105, Allogeneic, 7 Yes, Yes, Yes 56

Barbour24 Female, Rat, 180–200 Contusion, T10, Moderate Bulb, Rat, IS, 5 × 105, Allogeneic, 14 No, Yes, Yes 126

Bretzner25 Male, Rat, 300–400 Contusion, C4–C5, Moderate Mucosa, Mice, IS, 1.65 × 105, Xenogeneic, 1 Yes, No, No 28

Cao26 Female, Rat, 180–220 Transection, T8, Severe Bulb, Rat, IS, 2 × 105, Allogeneic, 1 No, Yes, No 56

Deng27 Female, Rat, 240–270 Contusion, T10, Moderate Bulb, Human, IS, 2.5 × 105, Xenogeneic, 1 Yes, Yes, Yes 35

Deumens28 Male, Rat, 200–250 Hemisection, T11, Severe Bulb, Rat, IS, 4 × 105, Allogeneic, 1 No, No, Yes 70

Deumens29 Female, Rat, 185–220 Hemisection, T13, Severe Bulb, Rat, IS, 4 × 105, Allogeneic, 1 No, No, No 70

Garcia–Alias20 Female, Rat, 200–250 Photochemical, T8, Moderate Bulb, Rat, IS, 1.8 × 105, Allogeneic, 1 No, No, Yes 90

Gorrie30 Female, Rat, 110–147 Contusion, T10, Moderate Mucosa, Human, IS, 1 × 106, Xenogeneic, 7 No, Yes, Yes 35

Guest31 Female, Rat, 140–155 Transection, T9–T10, Severe Bulb, Macaca, IS, 4 × 105, Xenogeneic, 1 No, Yes, No 140

Jiang32 Male, Rat, 250− Transection, T9, Severe Bulb, Rat, IS, 1 × 105, Allogeneic, 1 No, No, No 84

Lang33 NR, Rat, 180–250 Hemisection, T10, Severe Bulb, Mice, IS, 3 × 106, Xenogeneic, 1 Yes, No, No 28

Li34 Male, Rat, 200–250 Contusion, T10, Moderate Bulb, Rat, IS, 9 × 104, Allogeneic, 7 No, Yes, No 42

Li35 Male, Rat, 200–250 Contusion, T10, Moderate Bulb, Rat, IS, 9 × 104, Allogeneic, 7 No, Yes, Yes 36

Liu36 Both, Rat, 250–280 Hemisection, T13, Severe Bulb, Rat, IT, 1 × 105, Allogeneic, 0.5 Yes, Yes, Yes 28

Luo40 Female, Rat, 180–250 Transection, T7–T9, Severe Bulb, Rat, IS, 3 × 105, Allogeneic, 1 Yes, No, Yes 28

Lopez-Vales37 Female, Rat, 250–300 Transection, T8, Severe Bulb, Rat, IS, 1.5 × 106, Allogeneic, 1 and 7 No, No, No 270

Lopez-Vales37 Female, Rat, 250–300
Transection and Photochemical, 
T8, Severe and Moderate

Bulb, Rat, IS, 1.5 × 106 and 1.8 × 105, 
Allogeneic, 1

No, No, No
90 and 
270

Lopez-Vales38 Female, Rat, 250–300 Transection, T8, Severe Bulb, Rat, IS, 1.5 × 106, Allogeneic, 45 No, No, No 195

Lu39 Female, Rat, 250–300 Transection, T10, Severe Mucosa, Rat, IS, 1 × 105, Allogeneic, 28 No, Yes, Yes 70

Ma41 Female, Rat, 180–220 Contusion, T9, Moderate Bulb, Rat, IS, 1 × 105, Allogeneic, 1 No, Yes, No 64

Masgutova42 NR, Rat, 200–250 Hemisection, T8, Severe Mucosa, Human, IS, 2 × 105, Xenogeneic, 1 No, No, No 54

Pearse43 Female, Rat, 180–200 Contusion, T9, Moderate Bulb, Rat, IS, 2 × 106, Allogeneic, 7 No, Yes, Yes 63

Resnick44 Male, Rat, 275–325 Contusion, T8–T9, Moderate Bulb, Rat, IS, 2.5 × 105, Allogeneic, 1 No, No, Yes 42

Ruitenberg45 Female, Rat, 200 Hemisection, Cervical, Severe Bulb, Rat, IS, 2 × 105, Allogeneic, 1 No, No, Yes 112

Salehi46 Female, Rat, 250–300 Compression, T8–T9, Moderate Bulb, Rat, IS, 1 × 106, Allogeneic, 9 Yes, Yes, No 28

Sasaki48 Female, Rat, 150–179 Transection, T9, Severe Bulb, Rat, IS, 1.5 × 105, Allogeneic, 1 No, No, Yes 35

Sasaki47 Female, Rat, 150–179 Transection, T9, Severe Bulb, Rat, IS, 1.5 × 105, Allogeneic, 1 No, No, Yes 35

Sun49 Female, Rat, 220–250 Contusion, T10, Moderate Bulb, Rat, IS, 4 × 105, Allogeneic, 14 No, Yes, Yes 63

Takami16 Female, Rat, 160–180 Contusion, T9, Moderate Bulb, Rat, IS, 2 × 106, Allogeneic, 7 No, No, Yes 70

Takeoka50 Female, Rat, 210–250 Transection, T9, Sever Bulb, Rat, IS, 4 × 105, Allogeneic, 1 No, No, Yes 210

Torres-Espin21 Female, Rat, 250–300 Contusion, T8–T9, Moderate Bulb, Rat, IS, 4.5 × 105, Allogeneic, 1 and 7 No, Yes, No
35 and 
42

Verdu51 Female, Rat, 250–300 Photochemical, T8, Moderate Bulb, Rat, IS, 1.8 × 105, Allogeneic, 1 No, No, No 89

Wang52 Male, Rat, 200–250 Hemisection, T9, Severe Bulb, Rat, IS, 1 × 107, Allogeneic, 7 No, No, Yes 77

Wang53 Male, mice, 28–30 Transection, T9–T11, Severe Bulb and Mucosa, Rat, IS, 1 × 106, Allogeneic, 1 No, Yes, No 56

Wu54 NR, Rat, 200–240 Contusion, T9–T10, Moderate Bulb, Rat, IS, 4 × 105, Allogeneic, 1 No, No, Yes 84

Wu55 Female, Rat, 250–300 Contusion, T10, Moderate Bulb, Rat, IS, 3 × 105, Allogeneic, 7 No, Yes, Yes 28

Yazdani5 Female, Rat, 300–350 Contusion, T10, Moderate Bulb, Rat, IS, 1 × 106, Allogeneic, 7 No, Yes, Yes 35

Yin56 Male, Rat, 250–300 Transection, T10, Severe Bulb, Human, IS, 2.5 × 105, Xenogeneic, 10 No, No, No 70

Zhang57 Male, Rat, 200–250 Contusion, T10, Moderate Bulb, Rat, IS, 6 × 105, Allogeneic, 7 Yes, Yes, Yes 63

Table 1. Characteristics of included studies. IS: intra-spinal; IT: intrathecal; T: thoracic level of spinal cord; C: 
cervical level spinal cord.
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Meta-analysis. E�cacy of OEC transplantation on functional improvement. 37 articles5,16,19–21,24–32,34–39,41–49,51–57 
including 41 experiments assessed the e�cacy of OEC transplantation with di�erent treatment protocols on the 
motor function recovery a�er SCI (Fig. 2). �e results showed that OEC transplantation signi�cantly improved 
functional recovery (Pooled SMD = 1.36; 95% con�dence interval: 1.05–1.68; p < 0.001; I2 = 74.80%). �is section 
of the analyses had no publication bias (Coe�cient = 0.43; 95% con�dence interval: −0.05–0.91 p = 0.08).

A signi�cant heterogeneity was observed considering the e�ects of OEC transplantation on functional recov-
ery (I2 = 74.80%; p < 0.001). Subgroup analysis revealed that di�erences in location of injury, gra� type and donor 
species were the most prominent sources of heterogeneity between the studies. �e results of these analyses 
indicated that the e�cacy of OEC transplantation on motor function recovery is higher when the injury a�ects 
thoracic region (SMD = 1.41; 95% con�dence interval: 1.08–1.74; p < 0.001) compared to cervical spinal injuries 
(SMD = 0.69; 95% con�dence interval: 0.02–1.37; p = 0.045). Allogeneic transplant was also found to have a 
greater e�cacy (SMD = 1.53; 95% con�dence interval: 1.15–1.90; p < 0.001) compared to xenogeneic transplant 
(SMD = 0.82; 95% con�dence interval: 0.44–1.20; p < 0.001). Transplantation of OECs acquired from rats pro-
vided a higher e�cacy as well (SMD = 1.48; 95% con�dence interval: 1.11–1.85; p < 0.001) (Table 2).

E�cacy of OEC transplantation on spinal cord injury induced hyperalgesia. Six articles19–21,25,33,40 including 9 
experiments investigated the e�cacy of OEC transplantation on improvement of hyperalgesia caused by SCI. As 
presented in Fig. 3, OEC transplantation showed no signi�cant e�ects on improvement of hyperalgesia in animals 

Figure 2. E�cacy of olfactory ensheathing cells transplantation on motor function recovery a�er spinal cord 
injury. CI: Con�dence interval; SMD: Standardized mean di�erence.
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Characteristic P for biasa Model P (I2)b E�ect Sizec (95% CI) Predictive interval P

Gender

Male 0.41 REM <0.001 (77.6%) 1.41 (0.82–2.01) −0.69–3.52 <0.001

Female 0.03 REM <0.001 (75.3%) 1.41 (1.02–1.80) −0.48–3.19 <0.001

Overall signi�cance test among subgroups 0.96

Recipient species

Rat 0.08 REM <0.001 (73.7%) 1.36 (1.05–1.68) −0.36–3.00 <0.001

Mice 0.99 REM <0.001 (94.5%) 2.53 (−1.72–6.82) −0.30–0.33 0.24

Overall signi�cance test among subgroups 0.41

Injury model

Contusion 0.38 REM <0.001 (76.7%) 1.07 (0.60–1.54) −0.80–2.95 <0.001

Clip compression 0.99 REM 0.02 (83.2%) 1.89 (−0.52–4.30) −0.62–5.30 0.12

Photochemical 0.99 REM 0.04 (68.5%) 1.24 (0.08–2.39) −11.82–14.30 0.04

Hemisection 0.80 REM <0.001 (84.0%) 1.70 (0.47–2.94) −2.41–527 0.007

Transection 0.06 REM <0.001 (67.8%) 1.74 (1.23–2.25) 0.00–3.48 <0.001

Overall signi�cance test among subgroups 0.36

Location of injury

Cervical 0.08 FEM 0.68 (0.0%) 0.69 (0.02–1.37) NA 0.045

�oracic 0.99 REM <0.001 (75.9%) 1.41 (1.08–1.74) −0.42–3.24 <0.001

Overall signi�cance test among subgroups 0.40

Severity of injury

Moderate 0.36 REM <0.001 (74.5%) 1.14 (0.73–1.55) −0.63–2.91 <0.001

Severe 0.05 REM <0.001 (73.8%) 1.72 (1.24–2.21) −0.41–3.14 <0.001

Overall signi�cance test among subgroups 0.15

OEC derivation origin

Bulb 0.09 REM <0.001 (75.3%) 1.42 (1.07–1.76) −0.41–3.14 <0.001

Mucosa 0.91 REM <0.001 (80.0%) 1.38 (0.44–2.33) −1.79–4.56 0.004

Overall signi�cance test among subgroups 0.91

Intervention phased

Acute 0.05 REM <0.001 (74.2%) 1.42 (0.99–1.85) −0.46–3.16 <0.001

Subacute 0.75 REM <0.001 (75.1%) 1.21 (0.70–1.73) −0.46–3.10 <0.001

Chronic 0.99 REM <0.001 (83.3%) 2.06 (0.65–3.47) −4.36–8.48 0.004

Overall signi�cance test among subgroups 0.72

Gra� type

Allogeneic 0.81 REM <0.001 (77.8%) 1.53 (1.15–1.90) −0.50–3.46 <0.001

Xenogeneic 0.03 FEM 0.30 (18.0%) 0.82 (0.44–1.20) NA <0.001

Overall signi�cance test among subgroups 0.24

Number of transplanted cells

<3 × 106 cell dose/
kg

0.07 REM <0.001 (73.6%) 1.37 (1.01–1.73) −0.37–3.01 <0.001

≥3 × 106 cell dose/
kg

0.68 REM <0.001 (80.1%) 1.52 (0.83–2.21) −0.98–4.02 <0.001

Overall signi�cance test among subgroups 0.82

Donor species

Rat 0.81 REM <0.001 (77.8%) 1.48 (1.11–1.85) −0.50–3.46 <0.001

Human 0.29 FEM 0.14 (44.9%) 0.98 (0.34–1.62) NA 0.008

Other 0.99 FEM 0.77 (0.0%) 0.67 (0.18–1.16) NA 0.003

Overall signi�cance test among subgroups 0.22

Use of antibiotic

No 0.02 REM <0.001 (68.0%) 1.34 (0.92–1.76) −0.34–2.87 <0.001

Yes 0.98 REM <0.001 (80.6%) 1.48 (1.00–1.97) −0.63–3.60 <0.001

Overall signi�cance test among subgroups 0.74

Use of immunosuppressive agents

No 0.89 REM <0.001 (79.7%) 1.38 (1.03–1.73) −0.47–3.13 <0.001

Yes 0.05 REM <0.001 (75.4%) 1.62 (0.72–2.52) −1.34–4.57 <0.001

Overall signi�cance test among subgroups 0.66

Blinding of observer

No 0.97 REM <0.001 (72.8%) 1.34 (0.89–1.79) −0.52–3.20 <0.001

Continued
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post-SCI (Pooled SMD = −0.095; 95% con�dence interval: −0.42–0.23; p = 0.57; I2 = 24.60%). No publication 
bias was present in this section of the analyses (Coe�cient = 0.48; 95% con�dence interval: −6.12–7.09 p = 0.87).

Nevertheless, the results of subgroup analysis showed that follow-up duration is a factor that a�ects the �nd-
ings of the studies. OEC transplantation was found to aggravate hyperalgesia when only studies with follow-ups 
of equal or greater than 8 weeks were included (SMD = −0.66; 95% con�dence interval: −1.28–0.04; p = 0.04), 
while analysis of the studies with shorter follow-ups found no signi�cant relation between OEC transplantation 
and hyperalgesia (SMD = 0.13; 95% con�dence interval: −0.26–0.51; p00.52) (Table 3).

E�cacy of OEC transplantation on spinal cord injury induced allodynia. Four articles were found in the liter-
ature evaluating the e�ects of OEC transplantation on allodynia21,25,29,50. Evaluation of these studies found no 
signi�cant relation between OEC transplantation and allodynia (Pooled SMD = 0.54; 95% con�dence interval: 
−0.80–1.87; p = 0.43; I2 = 86.30%) (Fig. 3). �is section also had no publication bias (Coe�cient = 11.7; 95% con-
�dence interval: −1.32–24.68 p = 0.07). Although a signi�cant heterogeneity was observed between the studies, 
subgroup analysis could not be performed due to the small number of articles.

Discussion
Findings of the present study showed that OEC transplantation signi�cantly improves motor function recovery 
in animals’ post-SCI. �e observed e�cacy was a�ected by the treatment protocol and it was found to be higher 
when the lesion was in the thoracic region, an allogeneic transplant was used and the cells were derived from rats. 
Although transplantation of these cells had no signi�cant e�ect on allodynia in the animals, longer follow-ups 
were able to reveal that it can lead to aggravation of hyperalgesia.

For the �rst time, this meta-analysis evaluated the e�ects of OEC transplantation on neuropathic pain. Among 
the available literature, a few clinical studies have reported that OEC transplantation does not signi�cantly a�ect 
neuropathic pain in subjects with SCI58, while others have shown a signi�cant improvement in pain a�er this 
treatment59. �is discrepancy could be attributed to the di�erence in follow-up periods. For instance, in their 
study with a follow-up period of 8 weeks, Tabakow et al. found a signi�cant improvement in neuropathic pain 
a�er OEC transplantation58, while Zheng et al. reported no signi�cant improvement in their subjects a�er a 12 
month follow-up period59. �e present study also showed that longer follow-up periods were associated with 
reports of OEC transplantation negatively a�ecting neuropathic pain post-SCI. Hence, further investigations are 
required to reach a consensus on this subject.

The overall results of the present study regarding the effects of OEC transplantation on motor function 
recovery were congruent with the two previous meta-analyses performed; the study conducted by Liu et al. that 
included six animal surveys and reported that OEC transplantation can improve functional recovery22, and the 
study conducted by Watzlawick et al. which con�rmed these results23. �e results of our study cannot be fur-
ther compared to Liu et al.’s since they did not perform subgroup analysis on their data. On the other hand, 
Watzlawick et al. carried out subgroup analysis, the results of which were incompatible with that of the present 
survey. �ese authors found that OEC transplantation performed immediately a�er photochemically induced 
injuries with doses of 1.8 × 105 to 1.5 × 105 is associated with better motor function recovery. Moreover, the OEC 
transplantation was found to be more e�ective when the cells are fractionated, derived from the olfactory bulb 
and injected into the rostral-caudal parenchyma. On the contrary, in the present study allogeneic transplants, 
treatment of thoracic lesions and OECs acquired from rats were associated with greater improvements in motor 
function. �ese discrepancies might be due to di�erences in inclusion and exclusion criteria of the studies. For 
instance, in the present study using directed forelimb reaching test, olfactory tissue blocks and combination pro-
tocols were considered as exclusion criteria to decrease heterogeneity of the included studies; while Watzlawick 
et al. included surveys with these conditions. Furthermore, based on the current guidelines, performing sub-
group analyses and multiple meta-regressions in a meta-analysis can lead to a bias, known as data dredging60. 
Accordingly, we performed subgroup analysis only for the most important factors a�ecting the e�cacy of OEC 
transplantation on SCI complications. �is might be the reason that meta-regression yielded more signi�cant 
factors in the Watzlawick et al.’s study.

The optimum cellular dose for OEC transplantation in SCI was reported to be 1.8 × 105 to 1.5 × 105 by 
Watzlawick et al., while no such relation was observed in the present study which could be due to the di�erence in 
de�nition of cellular dose in the two studies. Watzlawick et al. included crude numbers of transplanted cells into 
their analysis while the cellular dose in our study referred to the crude numbers standardized for the weight of the 
animals. Since di�erent animal species (mice and rat) were evaluated in the included studies, this standardization 

Characteristic P for biasa Model P (I2)b E�ect Sizec (95% CI) Predictive interval P

Yes 0.007 REM <0.001 (78.5%) 1.47 (1.01–1.94) −0.55–3.34 <0.001

Overall signi�cance test among subgroups 0.77

Follow up period

<8 weeks 0.86 REM <0.001 (75.4%) 1.32 (0.77–1.88) −0.42–3.21 <0.001

≥8 weeks 0.07 REM <0.001 (76.3%) 1.46 (1.06–1.86) −0.77–3.42 <0.001

Overall signi�cance test among subgroups 0.73

Table 2. Subgroup analyses of the e�ect of olfactory ensheathing cells on motor function recovery. aPublication 
bias based on Begg’s and Egger’s test; bHeterogeneity among studies; cStandardized mean di�erence; dAcute: 
immediately a�er injury, Subacute: 2–10 days a�er injury; Chronic: equal or more than 14 days. NA: Not 
applicable; REM: random e�ect model; FEM: �xed e�ect, CI: con�dence interval
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seems to be of utmost signi�cance; a certain dose (crude dose) of transplanted cells in mice might be considered 
a high dose, while the same amount in rats might be regarded as moderate or even low dose23.

In the present study, extensive search in electronic databases, contacting authors of the articles and manual 
search yielded the extreme number of articles and included non-indexed literature. �is method led to inclusion 
of 40 articles and 45 experiments in present study. On this basis, data from 933 animals including 464 controls 
and 469 treated animals were analyzed. Lack of publication bias is another advantage of this study. Although a 
signi�cant heterogeneity was observed in evaluation of motor function recovery, the extensive search provided 
homogeneity in assessment of hyperalgesia. �e limitation of heterogeneity in the included studies was tackled 
by performing subgroup analyses. Not blinding the researchers in some of the included studies was another 
limitation of the present survey which might have subjected our results to bias. However, since blinding status 
had no signi�cant relation with e�cacy of OEC transplantation in subgroup analyses, it seems that the bias is at 
its minimum level. Another factor that could be a potential source of heterogeneity is the purity of transplanted 
OECs. Although most of the included articles have declared application of “high purity” OECs, few have actually 
provided evidence for their claim.

Conclusion
�e present meta-analysis showed that OEC transplantation signi�cantly improves motor function recovery of 
the animals a�er SCI. It seems that this treatment is most e�ective on motor function recovery, when it is used 
in a thoracic SCI rather than a cervical injury, when an allogeneic transplant is performed and when the cells are 
derived from rats. Although the treatment does not a�ect allodynia, longer follow-ups reveal relative aggravation 
of hyperalgesia following OEC transplantations. Since �ndings of clinical studies regarding the relation between 
OEC transplantation and neuropathic pain are inconsistent and aggravation of pain is one of the limitations for 
using this treatment, further studies with longer follow-up periods should be conducted to assess the e�ects of 
OEC transplantation on the severity of neuropathic pain. Finally, the e�ects of OEC transplantation should be 
interpreted with caution since the treatment may not be bene�cial in every setting. Accordingly, further investi-
gations are required to determine the subgroups of patients and the speci�c settings that bene�t the most from 
this treatment.

Figure 3. E�cacy of olfactory ensheathing cells transplantation on hyperalgesia (A) and allodynia (B) a�er 
spinal cord injury. CI: Con�dence interval; SMD: Standardized mean di�erence.
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Characteristic P for biasa Model P (I2)b E�ect Sizec (95% CI) P

Gender

Male 0.52 FEM 0.95 (0.0%) −0.37 (−0.88–0.13) 0.14

Female 0.99 FEM 0.09 (50.9%) 0.12 (−0.51–0.74) 0.72

Overall signi�cance test among subgroups 0.25

Injury model

Contusion 0.99 FEM 0.52 (0.0%) 0.31 (−0.28–0.90) 0.30

Clip compression 0.99 FEM 0.99 (0.0%) −0.53 (−1.30–0.25) 0.18

Photochemical 0.56 FEM 0.99 (0.0%) −0.89 (−1.93–0.14) 0.09

Hemisection 0.28 FEM 0.93 (0.0%) −0.36 (−1.24–0.53) 0.43

Transection 0.80 FEM 0.08 (66.7%) 0.16 (−0.48–0.79) 0.63

Overall signi�cance test among subgroups 0.70

Location of injury

Cervical NA NA NA NA NA

�oracic 0.49 FEM 0.16 (33.9%) −0.08 (−0.51–0.36) 0.72

Overall signi�cance test among subgroups NA

Severity of injury

Moderate 0.44 FEM 0.16 (39.4%) −0.12 (−0.68–0.43) 0.69

Severe 0.58 FEM 0.28 (22.3%) −0.03 (−0.62–0.56) 0.92

Overall signi�cance test among subgroups 0.85

OEC derivation origin

Bulb 0.56 FEM 0.55 (0.0%) 0.01 (−0.47–0.50) 0.22

Mucosa 0.99 FEM 0.17 (33.6%) −0.38 (−0.99–0.22) 0.96

Overall signi�cance test among subgroups 0.42

Intervention phased

Acute 0.48 FEM 0.23 (26.0%) −0.08 (−0.53–0.37) 0.73

Subacute 0.99 FEM 0.12 (58.9%) −0.07 (−1.09–0.95) 0.89

Overall signi�cance test among subgroups 0.97

Gra� type

Allogeneic 0.71 FEM 0.11 (42.0%) −0.05 (−0.53–0.44) 0.85

Xenogeneic 0.99 REM 0.76 (0.0%) −0.24 (−1.02–0.53) 0.54

Overall signi�cance test among subgroups 0.71

Donor species

Mice 0.49 FEM 0.07 (50.9%) −0.26 (−0.92–0.40) 0.97

Rat 0.17 FEM 0.95 (0.0%) −0.01 (−0.56–0.53) 0.43

Overall signi�cance test among subgroups 0.61

Use of antibiotic

No 0.48 FEM 0.30 (17.8%) −0.19 (−0.66–0.27) 0.42

Yes 0.14 FEM 0.13 (50.9%) 0.13 (−0.64–0.91) 0.74

Overall signi�cance test among subgroups 0.50

Use of immunosuppressive agents

No 0.97 FEM 0.08 (60.9%) 0.08 (−0.88–1.04) 0.87

Yes 0.98 FEM 0.41 (0.5%) −0.17 (−0.56–0.22) 0.40

Overall signi�cance test among subgroups 0.60

Blinding of observer

No 0.30 FEM 0.58 (0.0%) 0.11 (−0.38–0.60) 0.44

Yes 0.96 FEM 0.09 (54.4%) −0.26 (−0.92–0.40) 0.67

Overall signi�cance test among subgroups 0.40

Follow up period

<8 weeks 0.54 FEM 0.44 (0.0%) 0.13 (−0.26–0.51) 0.52

≥8 weeks 0.99 FEM 0.58 (0.0%) −0.66 (−1.28–0.04) 0.04

Overall signi�cance test among subgroups 0.07

Table 3. Subgroup analyses of the e�ect of olfactory ensheathing cells on hyperalgesia. aPublication bias based 
on Begg’s and Egger’s test; bHeterogeneity among studies; cStandardized mean di�erence; dAcute: immediately 
a�er injury, Subacute: 2–10 days a�er injury; FEM: �xed e�ect model, CI: con�dence interval; NA: not 
applicable because of low number of included studies.
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Methods
The study was conducted in accordance to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines61.

Search strategy. We searched several databases including Web of Science (BIOSIS), Medline (via PubMed), 
Scopus, Embase (via OvidSP), and ProQuest from the beginning of the year 1944 to the end of 2015. Keywords 
related to “olfactory ensheathing cells” combined with terms related to “spinal cord injury” were used in the 
search. �e combined keywords in the three databases of Embase, Medline and Scopus are presented in Table 4. 
�e method through which these keywords were selected and combined is presented in previous surveys62,63.

Along with the conducted systematic search, manual search was performed to yield further articles and grey 
literature. �e search technique for grey literature has been described in the previous meta-analyses conducted 
by the authors11,62–68. Brie�y, search in Google Scholar and Google Search Engine was performed based on the 
keywords related to the study’s questions. Moreover, the authors of articles with similar aims and methods were 
contacted via email and theses were searched in the ProQuest database. Finally, in order to �nd additional articles, 
bibliographies of related articles were reviewed and manual-searching of highly focused journals was carried out. 
Four more articles were found via this method.

Eligibility criteria. All the controlled animal experiments published from the beginning of the year 1944 
until the end of 2015 which evaluated the e�ects of OEC transplantation on recovery of motor function, hyperal-
gesia and allodynia a�er SCI were included in the present study. No linguistic limitations were applied. Inclusion 
criteria were as follows: 1) in vivo animal experiments regardless of the age, gender or species of included subjects; 
2) induction of SCI based on standard models of contusion, compression, hemisection, transection and photo-
chemical injury; 3) moderate and severe injuries. Exclusion criteria included any modi�cations of transplanted 
cells, application of combined therapy methods, transplantation of olfactory tissue blocks, follow-up of less than 4 
weeks, evaluation of the outcome according to unstandardized behavioral tests and lack of a control group (spinal 
cord injured animals, treated by saline or vehicle).

Data extraction and quality assessment. Search, summarization, data gathering and assessment were 
carried out by two independent reviewers. Any disagreements were solved through discussion with a third 
researcher (89% agreement). Data gathering was performed based on an online checklist designed according to 
PRISMA guidelines. A�er elimination of repetitive studies, initial screening was carried out and potentially eli-
gible studies were selected, their full-texts were studied and data were extracted from the ones that met inclusion 
and exclusion criteria. Extracted data are presented in Table 1 which includes characteristics of evaluated ani-
mals, treatment protocol, follow-up duration, outcome and possible biases. �e method proposed by Sistrom and 
Mergo for data extraction from charts was utilized as needed69. If the outcome was assessed multiple times during 
a study, the last measurements were included. If data were not presented in the article, the authors were contacted 
and in cases of no response, two reminders were sent with one week intervals. If the corresponding author did 
not respond, social networks such as LinkedIn and ResearchGate were used to make contact with other authors 
of the article. Finally, quality assessment of the articles was carried out based on the 19-item checklist designed 
by Youse�fard et al.62.

Statistical analysis. All the analyses were performed by the STATA 11.0 so�ware. Data were summarized as 
means and standard deviations, and standardized mean di�erences (SMD) were computed with a 95% con�dence 
interval according to Hedges’ g. Eventually, a pooled e�ect size was calculated. Publication bias was evaluated 
using Egger’s and Begg’s tests70. Interstudy heterogeneity was considered using Chi-squared and I2 tests. If this 
test provided evidence of heterogeneity (p value less than 0.1 or an I2 greater than 50%), random e�ect model was 

Database Search terms

Medline (PubMed)

“olfactory ensheathing cell*“[mesh] OR “olfactory bulb cell*“[mesh] OR “Olfactory ensheathing glia”[mesh] OR 
“ensheathing cell*“[tiab] OR “Olfactory Cortex cell*“[tiab] OR “olfactory cell*“[tiab] OR “olfactory bulb‐ensheathing 
cell line”[tiab] OR “olfactory nerve ensheathing cells”[tiab] OR “ensheathing cell*“[tiab] OR “Olfactory ensheathing 
glia*“[tiab]] OR “olfactory schwann cell*“[tiab] OR “schwann cells of the olfactory nerve”[tiab] AND “Spinal cord 
injuries”[MeSH] OR “Spinal cord contusion”[tiab] OR “Spinal cord transection”[tiab] OR “Injured spinal cord” [tiab] 
OR “Spinal Cord Trauma”[tiab] OR “Spinal cord Hemisection”[tiab] OR “Spinal compression”[tiab] OR “Traumatic 
Myelopath*“[tiab] OR “Spinal Cord Laceratio*“[tiab] OR “Post-Traumatic Myelopath*“[tiab]

EMBASE (OvidSP)

exp olfactory ensheathing cell/OR (olfactory ensheathing cell$ OR olfactory bulb cell OR Olfactory ensheathing$ 
glia OR ensheathing cell$ OR Olfactory Cortex cell$ OR olfactory cell$ OR olfactory bulb ensheathing cell line OR 
olfactory nerve ensheathing cells OR olfactory schwann cell$“ OR schwann cells of the olfactory nerve).ti,ab. AND exp 
Spinal cord injuries/OR (Spinal cord contusion OR Spinal cord transection OR Injured spinal cord OR Spinal Cord 
Traum$ OR Spinal cord Hemisection OR Spinal compression OR Spinal Cord Laceratio$).ti,ab.

SCOPUS

((TITLE-ABS-KEY (olfactory ensheathing cell) OR TITLE-ABS-KEY (olfactory bulb cell) OR TITLE-ABS-KEY 
(olfactory ensheathing glia) OR TITLE-ABS-KEY (ensheathing cell) OR TITLE-ABS-KEY (olfactory cortex cell) OR 
TITLE-ABS-KEY (olfactory cell) OR TITLE-ABS-KEY (olfactory bulb ensheathing cell line) OR TITLE-ABS-KEY 
(olfactory nerve ensheathing cells) OR TITLE-ABS-KEY (olfactory schwann cell))) OR TITLE-ABS-KEY (schwann 
cells of the olfactory nerve))) AND ((TITLE-ABS-KEY (spinal cord injuries) OR TITLE-ABS-KEY (spinal cord injury) 
OR TITLE-ABS-KEY (spinal cord transection) OR TITLE-ABS-KEY (spinal cord hemisection) OR TITLE-ABS-
KEY (injured spinal cord) OR TITLE-ABS-KEY (spinal cord trauma) OR TITLE-ABS-KEY (spinal compression) OR 
TITLE-ABS-KEY (spinal cord contusion)))

Table 4. Keywords used for search in Medline, Embase, and Scopus databases.
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applied, otherwise we used �xed e�ect model. In random e�ect analyses, 95% predictive intervals were calculated 
to illustrate the degree of heterogeneity and to predict true treatment e�ect in an individual study71,72.

Subgroup analysis was conducted to evaluate the di�erences between di�erent treatment protocols in e�cacy 
of OEC transplantation on recovery of motor function and sensory status of the subjects. Statistical signi�cance 
level was considered at a P value of less than 0.05.

Data Availability. �e datasets generated during this meta-analysis could be shared by the corresponding 
author on reasonable request.
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