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ABSTRACT

TRANSPORT 1is a computer program for first-order and second-order
matrix multiplication, intended for the design of static-magnetic beam-—
transport systems. It has been in existence in various versions since
1963. The first part of the report is a user's manual, and supersedes
the earlier report CERN 73-16., The second part is a reproduction of the
Fermilab document '"TRANSPORT appendix", by the same authors, which des-
cribes the theory of charged-particle beam optics and the applications of
transformation matrices for numerical computation of beam trajectories

and properties, as applied in the program.
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INTRODUCTION

TRANSPORT is a first- and second~order matrix multiplication computer
program intended for the design of static-magnetic beam transport systems.
It has been in existence in various evolutionary versions since 1963. The
present version, described in this manual, includes both first- and second-

order fitting capabilities.

Many people from various laboratories around the world have contri-
buted either directly or indirectly to the development of TRANSPORT. The
first-order matrix methods were developed by the AGS machine theorists?)
followed by a paper by Penner?). The extension of the first-order matrix
methods to include second and higher orders was conceived and developed
by Brown, Belbeoch and Bounin®) in Orsay, France, in 1958-59. The origi-
nal first—order TRANSPORT computer program was written in BALGOL by
C.H. Moore at SLAC in collaboration with H.S. Butler and S.K. Howry in
1963. The second-order portion of the program was developed and debugged
by Howry and Brown“), also in BALGOL. The resulting BALGOL version was
translated into FORTRAN by S. Kowalski at MIT and later debugged and im-
proved by Kear, Howry and Brown at SLACS). In 1971-72, D. Carey at FNAL
completely rewrote the program and developed an efficient second-order
fitting routine using the coupling coefficient (partial derivatives) of
multipole components to the optics as derived by Brown®). This version
was implemented at SLAC by F. Rothacker in the early spring of 1972 and
subsequently carried to CERN in April, 1972, by K.L. Brown. C. Iselin of
CERN made further contributions to the program structure and improved the

convergence capabilities of the first-order fitting routines.

A standard version of the resulting program has now been adopted at
SLAC, FNAL, and CERN. This manual describes the use of this standard

version and is not necessarily applicable to other versions of TRANSPORT.

Copies of this manual may be obtained from

1) Scientific Information Service, CERN, 1211 Geneva 23, Switzerland

(Ref. CERN 80-04).

2) The Reports Office, Stanford Linear Accelerator Center, P.0. Box 4349,
Stanford, CA 94305, USA (Ref. SLAC-91, without the Appendix).

3) The Reports Office, Fermi National Accelerator Laboratory, P.0. Box
500, Batavia, IL 60510, USA (Ref. NAL-91, "TRANSPORT Appendix" avai-

lable under separate cover).



The program may be obtained from:

1) 1IBM Version:

Frank Rothacker

TRANSPORT Program Librarian

Mail Bin 88

Stanford Linear Accelerator Center
P.0O. Box 4349

Stanford, CA 94305, USA

2) 1IBM, CDC or PDP10 Versions:
David C. Carey

Fermi National Accelerator Laboratory
P.O0. Box 500
Batavia, IL 60510, USA

3) IBM or CDC Versions:

Program Library
Division DD

CERN

CH 1211 Gensve 23
Switzerland

The present authors assume responsibility for the contents of this
manual, but in no way imply that they are solely responsible for the

entire evolution of the program.

In order to make this report available without delay, the Appendix

has been reproduced directly as published by FNAL.



MATHEMATICAL FORMULATION OF "TRANSPORT" *)

General conventions

A beam line is comprised of a set of magnetic elements placed se-
quentially at intervals along an assumed reference trajectory. The refer-
ence trajectory is here taken to be a path of a charged particle passing
through idealized magnets (no fringing fields) and having the central

design momentum of the beam line.

In TRANSPORT, a beam line is described as a sequence of elements,
Such elements may consist not only of magnets and the intervals between
them, but also of specifications of the input beam, calculations to be done,
or special configurations of the magnets, A certain relation, described
below, of the magnets and their fields to the assumed reference trajectory
is considered normal. Alternative configurations can be described by

means of elements provided for such purposes.

The two coordinates transverse to the initial reference trajectory
are labelled as horizontal and vertical. A bending magnet will normally
bend in the horizontal plane. To allow for other possibilities a coordi-
nate rotation element is provided. Because of such other possibilities,
when describing bending magnets we shall often speak of the bend and non-
bend planes. The transverse coordinates will also often be labelled x

and y, while the longitudinal coordinate will be labelled z.

All magnets are normally considered "aligned" on the central trajec-
tory. A particle following the central trajectory through a magnet ex-
periences a uniform field which begins and ends abruptly at the entrance
and exit faces of the idealized magnet. Therefore, through a bending
magnet the reference trajectory is the arc of a circle, while through all
other magnetic elements it is a straight line. To accommodate a more
gradual variation of field at the ends of a bending magnet a fringing
field element is provided. In order to represent an orientation with
respect to the reference trajectory other than normal of a magnet or

section of a beam line, a misalignment element also exists.

The magnetic field of any magnet, except a solenoid, is assumed to

have midplane symmetry. This means that the scalar potential expanded

%) TFor a more complete description of the mathematical basis of TRANSPORT,
refer to SLAC-75 “), and to other references listed at the end of this
manual.
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in transverse coordinates about the reference trajectory is taken to be
an odd function of the vertical coordinate. If a coordinate rotation is
included, then the potential is odd in the coordinate to which the verti-
cal has been rotated. For a bending magnet this will always be in the

non-bend plane,

The program TRANSPORT will step through the beam line, element by
element, calculating the properties of the beam or other quantities, des-
cribed below, where requested., Therefore one of the first elements is a
specification of the phase space region occupied by the beam entering the
system. Magnets and intervening spaces and other elements then follow
in the sequence in which they occur in the beam line. Specifications of
calculations to be done or of configurations other than normal are placed

in the same sequence, at the point where their effect is to be made.

The transfer matrix R

The following of a charged particle through a system of magnetic
lenses may be reduced to a process of matrix multiplication. At any spe-
cified position in the system an arbitrary charged particle is represented
by a vector (single column matrix) X, whose components are the positions,
angles, and momentum of the particle with respect to the reference trajec-

tory, i.e,

X
6
y
X =
¢
2
6]
Definitions:
x = the horizontal displacement of the arbitrary ray with respect

to the assumed central trajectory.

6 = the angle this ray makes in the horizontal plane with respect
to the assumed central trajectory.

y = the vertical displacement of the ray with respect to the
assumed central trajectory.

¢ = the vertical angle of the ray with respect to the assumed

central trajectory.



_5_

Py
]

the path length difference between the arbitrary ray and the

central trajectory.

O
[}

Ap/p is the fractional momentum deviation of the ray from the

assumed central trajectory.

This vector, for a given particle, will henceforth be referred to as
a ray. The magnetic lens is represented to first order by a square
matrix R, which describes the action of the magnet on the particle coordi-

nates. Thus the passage of a charged particle through the system may be

represented by the equation

X(1) = RX(0) , (1

where X(0) is the initial coordinate vector and X(1) is the final coordi-
nate vector of the particle under consideration., The same transformation
matrix R is used for all such particles traversing a given magnet [one

particle differing from another only by its initial coordinate vector X(O)].

The traversing of several magnets and interspersing drift spaces is
described by the same basic equation, but with R now being replaced by the
product matrix R(t) = R(n) ... R(3)R{(2)R(1) of the individual matrices of
the system elements. This cumulative transfer matrix is automatically
calculated by the program and is called TRANSFORM 1, It may be printed

where desired, as described in later sections,

This formalism may be extended to second order by the addition of
)

4 . . .
another term . The components of the final coordinate vector, 1n terms

of the original, are now given as
X, (1) =JZRij X, (0) +§Tijk X,(0) X, (0) ,

where T is the second-order transfer matrix. It too is accumulated by the
program as one traverses a series of elements. At each point the series

is again truncated to second order. Normally the program will calculate
only the first~order terms and their effect. If it is desired to include
second-order effects in a beam line, an element is provided which specifies
that a second-order calculation is to be done. For more information on

the T matrix, see the references at the end of the manual.



The following of a charged particle via TRANSPORT through a system
of magnets is thus analogous to tracing rays through a system of optical
lenses, The difference is that TRANSPORT is a matrix calculation which
truncates the problem to either first- or second-order in a Taylor's

expansion about a central trajectory. For studying beam optics to greater

precision than a second-order TRANSPORT calculation permits, ray-tracing

programs which directly integrate the basic differential equation of motion

are recommended’’.

The beam matrix o

In accelerator and beam transport systems, the behaviour of an indi-
vidual particle is often of less concern than is the behaviour of a bundle
of particles (the beam), of which an individual particle is a member. An
extension of the matrix algebra of Eq. (1)bprovides a convenient means for
defining and manipulating this beam, TRANSPORT assumes that the beam may
be correctly represented in phase space by an ellipsoid in the six-
dimensional coordinate system described above. Particles in a beam are
assumed to occupy the volume enclosed by the ellipsoid, each point re-
presenting a possible ray. The sum total of all phase points, the phase
space volume, is commonly referred to as the '"phase space'" occupied by

the beam,

The validity and interpretation of this phase ellipse formalism
must be ascertained for each system being designed. However, in general,
for charged particle beams in, or emanating from accelerators, the first-
order phase ellipse formalism of TRANSPORT is a reasonable representation
of physical reality, For other applications, such as charged particle

spectrometers, caution is in order in its use and interpretation.
The equation of an n-dimensional ellipsoid may be written in matrix

form as follows:

x(0)To(0) " 'x(0) = 1, 2)

where X(O)T is the transpose of the coordinate vector X(0), and c(0) is

a real, positive definite, symmetric matrix,

The volume of the n-dimensional ellipsoid defined by sigma is

L . . .
[ﬂn/z/T(n/Z + 1)] (det 0)?, The area of the projection in one plane is



=

A = m(det 0,)*, where 0, is the submatrix corresponding to the given

plane. This is the ''phase space'" occupied by the beam.

As a particle passes through a system of magnets, 1t undergoes the
matrix transformation of Eq. (1). Combining this transformation with
the equation of the initial ellipsoid, and using the identity RR™ = I
(the unity matrix), it follows that

-1
x(0) TRRT )0 (0)"I(RTR)X(0) = 1

from which we derive

T T+-1
[(Rx() ] [rRo(OR] [RX(H] =1 . (3)
The equation of the new ellipsoid after the transformation becomes

x(W oM™ xay = 1, (4)

where

o(l) = Ro(O)RT . (5)

It can readily be shown that the square roots of the diagonal terms
of the sigma matrix are a measure of the ''beam size" in each coordinate.
The off-diagonal terms determine the orientation of the ellipsoid in
n-dimensional space (for TRANSPORT n = 6)*). Thus, we may specify the
beam at any point in the system via Eq. (5), given the initial "phase

space'' represented by the matrix elements of ¢(0).

The initial beam is specified by the user as one of the first ele-
ments of the beam line, Normally it is taken to be an upright ellipse
centred on the reference trajectory; that is, there are no correlations
between coordinates. Both correlations and centroid displacements may

be introduced via additional elements,

*)  See the Appendix of this report, or the Appendix of Ref. 5, for a
derivation of these statements.



The phase ellipse may be printed wherever desired. For an interpre-

tation of the parameters printed see the section under type code 1.0.

When a second-order calculation is specified the second-order matrix
elements are included in the beam matrix. For details on how this is done

see the Appendix to this manual,

Fitting

Several types of physical elements have been incorporated in the pro-
gram to facilitate the design of very general beam transport systems. In-
cluded are an arbitrary drift distance, bending magnets, quadrupoles,
sextupoles, solenoids, and an accelerator section (to first-order only).
Provision is made in the program to vary some of the physical parameters
of the elements comprising the system and to impose various constraints
on the beam design. In a first-order rum oneimay fit éifher the
TRANSFORM (R) matrix representing the transformation of an arbitrary ray
through the system and/or the phase ellipse (sigma) matrix representing
a bundle of rays by the system as transformed. In a second-order run one
may fit either the second-order TRANSFORM (T) matrix or minimize the net

contribution of second-order terms to the beam (sigma) matrix,

The program will normally make a run through the beam line using
values for the physical parameters as specified by the user and printing
the results, If constraints and parameters to be varied are indicated,
it will attempt to fit, To do this it will make an additional series of
runs through the beam line, Each time it will calculate corrections to
be made from the previous step to the varied parameters to try to satisfy
the indicated constraints, When the constraints are satisfied (or the
fitting procedure has failed) the program will make a final run through
the beam line again printing the results, In this final run the values
of the physical parameters used are those which are the result of the

fitting procedure.

Thus, in principle, the program is capable of searching for and
finding the first- or second~order solution to any physically realizable
problem. In practice, life is not quite so simple. The user will find

that an adequate knowledge of geometric magnetic optics principles is a
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necessary prerequisite to the successful use of TRANSPORT. He (or she)
should possess a thorough understanding of the first-order matrix algebra
of beam transport optics and of the physical interpretation of the various

matrix elements,

In other words, the program is superb at doing the numerical calcu-
lations for the problem but not the physics. The user must provide a
reasonable physical input if he (or she) expects complete satisfaction
from the program., For this reason a list of pertinent reprints and
references are included at the end of this manual, They should provide

assistance to the inexperienced as well as the experienced user,
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INPUT FORMAT FOR TRANSPORT

By the TRANSPORT input DATA SET is meant the totality of data read
by the program in a single job. A DATA SET may consist of one or more
problems placed sequentially. A problem specifies a calculation or set

of calculations to be done on a given beam line.

A problem, in turn, may consist of one or more problem steps. The
data in the first step of a problem specify the beam line and the calcu-
lations to be made. The data in succeeding steps of the same problem

specify only changes to the data given in the first step.

A common example of a problem with several steps is sequential
fitting. 1In the first step one may specify that certain parameters are
to be varied to satisfy certain constraints. Once the desired fit has
been achieved the program will then proceed to the next step. The data
in this step now need specify only which new parameters to vary, or old
ones no longer to vary, or which constraints to add or delete. The values
of the varied parameters that are passed from one step to the next one

are those that are the result of the fitting procedure.

A problem step contains three kinds of DATA cards: the TITLE card,
the INDICATOR card, and the ELEMENT cards.

The TITLE card contains a string of characters and blanks enclosed
by single quotes., Whatever is between the quotes will be used as a

heading in the output of a TRANSPORT run.

The second card of the input is the INDICATOR card. If the data
which follow describe a new problem, a zero (0) is punched in any column
on the card. If the data which follow describe changes to be made in
the previous problem step, a one (1) or two (2) is punched in any column
on the card. For further explanation read the Indicator Card section of

this manual.

The remaining cards in the deck for a given problem step contain the
DATA describing the beam line and the calculations to be done. The DATA
consist of a sequence of elements whose order is the same as encountered

as one proceeds down the beam line. Each element specifies a magnet or
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portion thereof or other piece of equipment, a drift space, the initial
beam phase space, a calculation to be done, or a print instruction.
Calculation specifications, such as misalignments and constraints, are
placed in sequence with the other beam line elements where their effect
is to take place. The input format of the cards is "free-field", which
is described below. The data for a given problem step are terminated by

the word SENTINEL, which need not be punched on a separate card.

Each element, in turn, is given by a sequence of items (mostly
numbers), separated by spaces and terminated by a semicolon. The items,
in order, are a type code number, a vary field, the physical parameters,

and an optional label.

The type code number identifies the element, indicating what sort
of entity (such as a magnet, drift space, constraint, etc.,) is represented.
It is an integer (number) followed by a decimal point. The interpretation
of the physical parameters which follow is therefore dependent on the type
code number. The type code numbers and their meanings are summarized in
Table 1., If the type code number is negative, the element will be ignored
in the given problem step. However, storage for that element will be
allocated by the program, so that the element may be introduced in a later

step of the same problem. Storage space for any element in any problem

step must be allocated in the first step of the problem.

The vary field indicates which physical parameters of the element
are to be adjusted if there is to be any fitting. It is punched immedia-
tely (no intervening blanks) to the right of the decimal point of the
type code number, See the section under type code 10.0 for an explana-

tion of the use of vary codes.

The physical parameters are the quantities which describe the
physical element represented. Such parameters may be lengths, magnetic
fields, apertures, rotation angles, beam dimensions, or other quantities,
depending on the type code number. The meanings for the physical para-
meters for each type code are described thoroughly in the section for that
type code. A summary, indicating the order in which the physical para-
meters should be punched, is given in Table 1. For any element the first

physical parameter is the second entry in Table 1 or the second parameter
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in the section describing a given element. In some cases the parameters
of an element do not really refer to physical quantities, but will never-

theless be referred to as such in this manual.

The label, if present, contains one to four characters and is en-
closed by single quotes, slashes or equal signs. During the calculation
the elements will be printed in sequence and the label for a given element
will be printed with that element. Labels are useful in problems with
many elements and/or when sequential fitting is used. They must be used
to identify any element to be changed in succeeding steps of a given

problem.

Provision has been made in the program to allow the user to introduce
comments before any type code entry in the data deck. This is accomplished

by enclosing the comments made on each card within single parentheses.

Each element must be terminated by a semicolon (3). Optionally a

semicolon may be replaced by an asterisk (*) or a dollar sign (§). Spaces
before and after the semicolon are allowed but not required. If the pro-
gram encounters a semicolon, dollar sign or asterisk before the expected
number of parameters has been read in and if the indicator card was a

zero (0), the remaining parameters are set to zero. If the indicator
card was a one (1) or two (2), then the numbers indicated on the card are
substituted for the numbers remaining from the previous solution; all

other numbers are unchanged.

The "free-field" input format of the data cards makes it considerably
easier to prepare input than the standard fixed-field formats of FORTRAN.
Numbers may be punched anywhere on the card and must simply be in the
proper order. They must be separated by one or more blanks. Several
elements may be included on the same card and a single element may con-
tinue from one card to the next. A single number must be all on one card,
it may not continue from one card to the next. The program storage is
limited to a total of 2000 locations (including type codes and those para-

meters not punched but implied equal to zero) and 500 elements.

A decimal number (e.g. 2.47) may be represented in any of the

following ways:
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2.47
.00247+3
.0247E+02
247E-2
247000-5

The sample problem below contains two problem steps, each beginning
with title and indicator cards and terminating with a SENTINEL. The first
step causes TRANSPORT to do a first—order calculation with fitting. The
second initiates a second-order calculation with the data that is a result
of that fitting, Corresponding elements between the two steps are identi-

fied by having the same label.

The type ten element which specifies the fitting condition is labelled
FIT1., It is active for the first-order calculation, but is turned off for
the second-order calculation. The vary codes for elements DRl are set to
zero for the second-order problem. The second-order element, SECl, is
ineffective during the fitting, but causes the program to compute the

second-order matrices in the second calculation,
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An Example of a TRANSPORT Input Deck

'"FORTRAN H CHECK ON BETA FIT' Title card

0 Indicator card

=17 'SECl' 3 13 3
3.3 2.745 'DR1' First problem
step

2 0 3 4 9.879 10 .5 3 2 0 ;% Elements

3.3 2.745 'DR1'

13 4
10 -1 2 0 .0001 'FIT1' )
SENTINEL /
' SECOND ORDER' Title card
1 Indicator card

>
17 'SEC1l' Second problem

. — Elements to be step
3 'DR1 H
changed

-10 'FIT1' ; /
SENTINEL
SENTINEL Second sentinel signifies end of run.

As many problems and problem steps as one wishes may be stacked in

one job.

Note that in previous versions of TRANSPORT a decimal point was

required with every numerical entry except the indicator card {(which

must not have a decimal point in any version of TRANSPORT).
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The use of labels

The use of labels is available for identification of individual
elements. When inserted for the user's convenience, the association of
a label with a given element is optional. If the parameters of an ele-
ment are to be changed between steps of a given problem, a label is re-
quired, The label identifies the element in the earlier step to which

the changes specified in the later step are to apply.

The label may be placed anywhere among the parameters of a given
element. It should be enclosed in quotes, slashes, or equal signs,
Blanks within a label are ignored. The maximum length of a label is

four non-blank characters,

As an example, the following all denote the same drift space:

'DRF’ 3. 1.5 ;
3/DRF/15-1%
3. .15E1 =DRF = $

On a 15.0 type code element the label may not be the third item.
This is to avoid ambiguities with the unit name. Thus the following are

not equivalent:
This entry 1s used as the units symbol.

This entry is used as a label.

15. 1. 'FT' 'co! H
15. 1. ' 'FT' H

If the parameters describing an element are to differ in succeeding
steps of a given problem the element must be included in both steps,
having the same label each time. All elements which appear in a problem
must be included in the first step (indicator card 0) of that problem.
Only those to be changed in later steps need to be labelled. In later
steps (indicator card 1) of a problem only those elements to be changed

are specified. The elements to be changed are identified by their labels.

If the type code number of an element is negative in a given step
of a problem, that element will be ignored when the calculation is per—
formed. However, storage space in the computer will be allocated for the
element for possible activation in later steps of the problem. In the

later step, only those parameters to be changed need to be specified.
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The storage space allocated for the parameters of a given element is de-
termined only by the type code. The sole exceptions are the continuation

codes for type codes 1.0 and 14.0.

For example, if a fitting constraint is to be ignored in the first
step of a problem, but activated in a later step, it should be indicated

in both steps. In the first step such an element might appear as
-10. 'FIT' ;

In the later step one would then insert
10. 1. 2, 0.0 .001 'FIT' ;

causing a waist constraint to be imposed on the beam. Alternatively one
can specify the physical parameters in the first step and then, in the
later step, merely indicate that the element is now to be activated. The

above procedure is therefore equivalent to placing the element:
-10. 1. 2. 0.0 .001 'FIT' H

in the first problem step, and the element
10. 'FIT' 3

in the later step.

Vary codes may also be inserted or removed in passing from one
problem step to the next. For instance, one might wish to vary the field
of a quadrupole in one step of a problem and then use the fitted value
as data in the following step. The first step might then contain the

element:
5.01 5.0 10.0 5.0 'QUAD' R
and the following step would contain the element
5. 'QUAD' ;
Since, in the second step, the first item on the card contains no vary

code the vary code is deleted. All other parameters, not being re-

specified, are left unchanged.

Several elements may have the same label. If, as in the above
example, one wished to vary the field of several quadrupoles in one step,

then pass the final values to the next step, one could give all such
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elements the same label. There might be four quadrupoles, all labelled
'QUAD', being varied simultaneously. If the data for the next step con-

tain the single element
5. "QUAD' ;
the vary code on all elements labelled 'QUAD' will be deleted.

The physical parameters of an element may be changed between steps
of a problem. In the first step a bending magnet may be given a length

of 5 metres.
4, 5.0 10.0 0.0 'BEND' 5

In a succeeding step, its length could be increased to 10 metres by in-

serting the element
4. 10.0 'BEND' s

All parameters, up to and including the one to be changed, must be speci-
fied. The remaining, if omitted, will be left unchanged from the previous

step.
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Table 1: Summary of TRANSPORT type codes
. . ee 2nd Ird 4th Sth oth th Bth 9th
MOSICAL ELEMNT | (g INTRY ENTRY TNTIY INTRY INTRY ENTRY ENTRY | ENTRY
BEAM L.vwwvvv0 | x(om) o(mr) y{m) ¢(mr) t(cm) d(perecent) Py
S, ATION TO &
;r:ns[-MANLIIrTé 1. vv00] Ax(cm) 80(mr) Ay (ca) 34 (ar) at{cm) Aé(percent) ((l;eV/C) °
ANGLE .OF
POLE F_’ALI ROTATION | 2.v ROTATION (degrees)
DRIFT v LINGTIE (metres)
- : - FIELD GRADIENT
BENDING MACNET 4.vvy EENGTIY (metres) FIELD (kG (n-value)
QUAINRIIPOLL: 5.wi 1IENGRL (mctres) FIELD (KC) {ALF-APERTIRE (cm)
TRANSFORM 1 IPDATE 6.0 0.0 1.0
TRANSIORM 2 LPDATE ] 6.0 0.0 2.0
BEAM CENTROIN SHIFT | 7.0 SINFT (x)(cm) SUTFT (0) (wmr} SHIFT (y)(cm) SIET (4} (mr) SUIFT (t)(cm) SHIFT (8 percent)
ALIGNENT TOIERANCE | 8.vvvwvwvO | IHSPLACEMENT {x)(cm) ROTATION (8)(mr) DISPLACIMENT (y)(cm)| ROTATION (¢)(mr) | DISPLACIMENT (z)(cm) ROTATION (a)(mr) MMIR
- MMBER OF
REPEAT CONTROL 9.0 RIEPEATS
ICSIRED VALLE OF
FITTING CONSTRAINTS | 10.0 1 J (1,J) MATRIX 'A(IZ%_]IRA(Y oF
ELEMINTS
Note:  ¢f is used for fitting a beam (o) matrix elcment. -1 is used for fitting an Rl matrix element.
- (I + 20} is wsed for fitting an RZ matrix elemont.
N E (encrgy gain) 4 (phase tag) -
ACCELERATOR t.n LENGTH (metres) (GeV) (degrees) (WAVELENGTIT) (em)
BEAM . : . .
(Rotated Ellipse) 2.0 TE FIFTEEN ODRRFIATIONS AMDNG T SUX ELRMINTS (This cntry must he precoded by a type code 1.0 entry.)
INPUT/OINTPYIT 3.0 (TNTROL.
0PTIONS - (ML MRMBIER
ARBITRARY R MATRIX | 14.vvvevve] R(J, 1) R(J,2) R(I,3) R(J,4) R(J,S) R(J,6) J
WNITS OWNTROL 4
(Yransport 15.0 o UNIT STMBOL, SCALE FACTOR
Dimens ions) (If required)
I TE | 16.0v 1.0 ey - 8 oein units of transverse length (cm)
.I%SIE?: PARTIQES | ¢ o 3.0 Wm (dimensionless)| m « mass of electron
HALF-~-APERTURE OF
BENDING MAGNET 16.0 4.0 w/2 (cm)
IN x-PLANE
HALF-APERTURE OF
BENDING MAQET 16.0 5.0 /2 (om)
IN y-PLANE (gap)
LENGTH OF SYSTEM 16.0 6.0 L (metres)
FRINGE FIELD CDR-
RECTION COEFFICIENT 16.0 7.0 K, {dimensionlcss)
FRINGE FIELD COR- .
RECTION CDEFFicient | 16-0 8.0 K, (dimonsionless)
CQURVATURE OF
ENTRANCE FACE OF 16.0v 12.0 (1/R)) (L/mectres)
BENDING MAGNET
CURVATURE OF
EXIT FACE OF 16.0v 13.0 (1/R2) {1/metres)
BENDING MAGNET
FOCAL PLANE 16.0 15.0 Angle of focal plane rotstion (degrees).
ROTATION ‘ ¢ Sec type code 16.0 {or details.
INITIAL BEAM LINE
x~COORDINATE 16.0 16.0 X4
INITIAL BEAM LINE
J~COORDINATE 16.0 17.0 Y
INITIAL BEAM LINE
T CORBINATE 16.0 18.0 24
INITIAL BEAM LINE
HORTZONTAL ANGLE 16.0 19.0 [
INITIAL BEAM LINE
VERTICAL ANGLE 16.0 20.0 L
SECOND-ORLER 17.0
CALOMATIONS *
SEXTUPOLE 18.0v 1INCTIY (mctres) FIELD (kG) TALE-APERTIRE (om)
SOH ENOTD 19.vv LINGNL (mctres) FIELY [KG)
ANGLL OF
qw ROTATION 20.v ROTATION (degroes)
STRAY FIELD 21.0 Sce later section ol report.

Note:
Yary Codes.

The wnits are standard TRANSPORT units (as shown) wnless clanged via type code 15.0 entries.

The v's following the type codes indicate the parameters which may hic varied, Sce section under type code 10.0 for a detailed cxplanation of
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OUTPUT FORMAT

General appearance

Here we give a brief description of the general appearance of the
output and its meaning. The user may refer to the sample output shown on
pages 22 through 27. It is the printed output resulting from the sample
data shown in the section on input format. In a simple example it is not
possible to show each of the different type codes. Several of the type
codes produce output which is not characteristic of all other type codes,
We therefore refer the user to the sections on the various type codes for

an explanation of any features peculiar to a given type code.

The output for each step of a given problem is printed separately.
The printing for one step is completed before that for the next step is
begun. Therefore we will describe the output for a single problem step.

The output shown below is from a problem with two steps.

Initial Tisting

For each problem step, the program begins by printing out the user's

input records.
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Listing during the calculation

The program now begins the calculation. If there is no fitting, one
listing of the beam line will be made. If there is fitting there will
normally be two listings. The first will represent the beam line before
any fitting has occurred. The second will be based on the new values of
the physical parameters which were altered by the fitting process. If
sequential fitting is employed and an indicator card of two (2) is used
the first run will be omitted. The user should read the section describ-

ing the indicator card for further explanation.

In any listing the elements are printed in order with their labels
and physical parameters. Elements with negative type code numbers are
ignored. Each listed element is preceded by the name of that type of
element, enclosed in asterisks. All physical elements are listed in this
way. Some of the other elements are not explicitly listed but produce
their effect in either the calculated quantities or the listing of the
beam line. For descriptions of individual cases, the reader should

consult the sections on the type codes.

Calculated quantities appear in the listing as requested in the input
data. Important cases will be described in greater detail below. The
physical parameters for each element are printed with the appropriate
units. For some elements a calculated quantity, not in the input data,
will appear, enclosed in parenthesis. Such quantities are explained in

the sections under the individual type codes.

Calculated quantities

The important cases of calculated quantities which appear in the
output are the transfer matrices, the beam matrix, the layout coordinates,
and the results of the fitting procedure. The transfer and beam matrices
and layout coordinates appear as requested in the listing of the beam
line. The results of the fitting procedure appear between the two list-

ings. All these quantities are explained in greater detail below.

The transfer and beam matrices appear only where requested. A re-
quest for printing of layout coordinates should be made at the beginning
of the beam line. The coordinates will then be printed after each physi-

cal element. 1In all cases the quantities printed are the values at the
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interface between two elements. They are evaluated at a point after the
element listed above them and before the element listed below. For fur-
ther explanation of calculated quantities the user should read the sec-
tion on the mathematical formulation of TRANSPORT, the appendix to the

manual, and the section on the appropriate type code. For the transfer
matrix the appropriate type code is thirteen; for the beam matrix it is

one, and for the coordinate layout it is again thirteen.

Quantities relevant to the fitting appear between the two listings
of the beam line. At each iteration of the fitting procedure a line is
printed containing the value of the relaxation factor used, the value of
chi-squared before the iteration was made, and the corrections made to
each of the varied parameters. Once the fitting is complete the final
chi-squared and the covariance matrix are printed. For further details
the user should read the section on type code 10.0, and the section on

fitting in the appendix.
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TITLE CARD

The title card is the first card in every problem step of a TRANSPORT

data set. The title card is always required and must be followed by a

0, a1l or a 2 card (see next section) to indicate whether the data to

follow is new (0 card) or a continuation of a previous data set (a 1 card

or a 2 card).

The title must be enclosed within either quotation marks ('),

slashes (/), or equal signs (=) on a single card. The string may begin

and end in any column (free field format), for example
'SLAC 20 GEV/C SPECTROMETER'
°r /SLAC 20 GEV SPECTROMETER/
Note that whichever character is used to enclose the title must not

be used again within the title itself.

Example of a DATA SET for a single problem step

SENTINEL (need not be on separate card)

Elements

O or 1 or 2

Title card
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INDICATOR CARD

The second card of the input for each step of a problem is the in-
dicator card. If the data which follow describe a new problem, a zero (0)
is punched in any column on the card. If the data which follow describe
changes to be made in the previous step of a given problem, a one (1) or

two (2) is punched in any column on the card.

If a given problem step involves fitting, the program will normally
list the beam line twice, printing each time the sequence of elements
along with transfer or beam matrices where specified. The first listing
uses the parameters of each element before any fitting has taken place.
The second shows the results of the fitting. If a problem involving
fitting has several steps, the second run of a given step often differs

little from the first run of the following step.

If the second or subsequent step of a problem involves fitting and
one wishes to print both runs through the beam line, a one (1) is punched
on the indicator card. If the first listing is to be suppressed a two (2)
is punched. If no fitting is involved, the program will ignore the two

and will do one single run through the system.

If the initial listing is to be deleted, 10 is added to the indicator
to give 10, 11, or 12. In order to be consistent with earlier versions
of TRANSPORT, an indicator of minus one (-1) is interpreted as a two (2),

but nine (9) is not interpreted as twelve (12).

The sample problem input shown on page 14 causes TRANSPORT to do a
first-order calculation with fitting (0 indicator card) and then to do a
second-order calculation (1l indicator card) with the data that is the

result of the fitting.
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COMMENT CARDS

Comment cards may be introduced anywhere in the deck where an
element would be allowed by enclosing the comments made on each card
within single parentheses. No parentheses are allowed within the
parentheses of any comment card. The comments are not stored, but appear

only in the initial listing of the given problem step.

Example of the use of comment cards in a data set

'Title Card' -

0

(THIS IS A TEST PROBLEM TO ILLUSTRATE THE)
(USE OF COMMENT CARDS)

elements

(COMMENTS MAY ALSO BE MADE BETWEEN)

(TYPE CODE ENTRIES)

elements

SENTINEL
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LISTING OF AVAILABLE TRANSPORT TYPE CODE ENTRIES

INPUT BEAM: Type code 1.0

The phase space and the average momentum of the input beam for a
TRANSPORT calculation are specified by this element. The input is given

)

in terms of the semi-axes of a six-dimensional erect* beam ellipsoid
representing the phase space variables x, 6, y, ¢, &, and §. Each of
these six parameters is entered as a positive quantity, but should be
thought of as *x, %0, etc; hence, the total beam width is 2x, the total

horizontal beam divergence is 26 and so forth.

Usually the BEAM card is the third card in the deck. If other than
standard TRANSPORT units are to be used, the units specification cards
(type code 15.0) should precede the BEAM card. Standard TRANSPORT units
for x, 6, y, ¢, £, and & are cm, mr, cm, mr, cm and percent. The standard
unit for the momentum p(0) is GeV/c. Also if a beam line coordinate
layout is desired, the card specifying that a layout is to be made (a 13.0
12.0 element), and any initial coordinates (see type code 16.0) all precede

the BEAM card.
There are eight entries (all positive) to be made on the BEAM card.

- The type code 1.0 (specifies a BEAM entry follows).

-~ One-half the horizontal beam extent (x) (cmvin standard units).
- One-half the horizontal beam divergence (8) (mr).

One-half the vertical beam extent (y) (cm).

- One-half the vertical beam divergence (¢) (mr).

- One-half the longitudinal beam extent (&) (cm).

- One-half the momentum spread (6) (in units of percent Ap/p).

0w NN s~ W N
|

-~ The momentum of the central trajectory [p(O)] (GeV/c).

All eight entries must be made even if they are zero (0). As for all

other type codes, the last entry must be followed by a semicolon, dollar

sign, or asterisk. Thus a typical BEAM entry might be

Label if
desired.
1. 0.5 2. 1.3 2.5 0. 1.5 10. ! ! 5

*) TFor a rotated (non-erect) phase ellipsoid input, see type code 12.0.
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meaning, X = *0.,5 cm, 8 = 2,0 mr, y = +1.3 cm, ¢ = #2,5 mr, 2 = $0,0 cm,

§ = *1.5 percent Ap/p, and the central momentum p(0) = 10,0 GeV/c,

The units of the tabulated matrix elements in either the first-
order R or sigma matrix or second order T matrix of a TRANSPORT print-out
will correspond to the units chosen for the BEAM card. For the above
example, the R(12) = (x/0) matrix element will have the dimensions of
cm/mri and the T(236) = (6/y8) matrix element will have the dimensions

mr/(cm * percent) and so forth.

The longitudinal extent 2 is useful for pulsed beams. It indicates

the spread in length of particles in a pulse. It does not interact with

any other component and may be set to zero if the pulse length is not

important.

The phase ellipse (sigma matrix) beam parameters may be printed as
output after every physical element if activated by a (13. 3. ;) element.
Alternatively, individual printouts may be activated by a (13. 1. ;)
element. The projection of the semi-axes of the ellipsoid upon each of
its six coordinates axes is printed in a vertical array, and the correla-
tions among these components indicating the phase ellipse orientations

are printed in a triangular array (see the following pages).



The phase ellipse beam matrix
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The beam matrix carried in

the computer has the following

construction:
X 0 y o L $
X o(1l1)
S g(21) 0(22)
y og(31) g(32) g(33)
S g(41) a(42) c(43) o(44)
L g(51) 0(52) ag(53) g (54) a{(55)
§ g(6l) g(62) 0(63) a(64) a(65) g(66)

The matrix is symmetric so that only a triangle of elements is

needed.

In the printed output this matrix has a somewhat different format

for ease of interpretation:

X 8 y o L
x Yo (11) cM
8 Vo (22) MR r(21)
y Vo (33) CM r(31) r(32)
b Vo (44) MR r(41) r(42) r(43)
2 Vo (55) CcM r(51) r(52) r(53) r(54)
8 Vo (66) PC r(61) r(62) r(63) r(64) r(65)
where: r(ij) = 0(ij)

bGieGn] ¥

As a result of the fact that the 0 matrix is positive definite, the

r(ij) satisfy. the relation

lr (i) |

1.
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The full significance of the 0(ij) and the r(ij) are discussed in
detail in the Appendix ("Description of Beam Matrix"). The units are

always printed with the matrix.

In brief, the meaning of the vo(ii) is as follows:

Vo (11) = X oax - the maximum (half)-width of the beam envelope in the
x(bend)-plane at the point of the print-out.

/5(22) = 6max = the maximum (half)-angular divergence of the beam
envelope in the x(bend) plane.

vo(33) = Ynax = the maximum (half)-height of the beam envelope.

Yo (44) = ¢max = the maximum (half)-angular divergence of the beam
envelope in the y(non-bend)-plane.

/5(55) = Qmax = one-half the longitudinal extent of the bunch of
particles.

vo(66) = & = the half-width (}E Ap/p) of the momentum interval

being transmitted by the system.

The units appearing next to the vo(ii) in the TRANSPORT print-out
are the units chosen for coordinates x, 8, y, ¢, £ and § = Ap/p, respect-

ively.

To the immediate left of the listing of the beam envelope size in a
TRANSPORT print-out, there appears a column of numbers whose values will
normally be zero. These numbers are the coordinates of the centroia of
the beam phase ellipse (with respect to the initially assumed central
trajectory of the system). They may become non-zero under one of three

circumstances:

1) when the misalignment (type code 8.0) is used,
2) when a beam centroid shift (type code 7.0) is used, or

3) when a second-order calculation (type code 17.0) is used.
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To aid in the interpretation of the phase ellipse parameters listed

above, an example of an (x,6) plane ellipse is illustrated below. For

further details the reader should refer to the Appendix of this report.

0 = Vo022 = e

= 022(1 -3, —‘Vr

CENTROID Vo=

A TWO-DIMENSIONAL BEAM PHASE ELLIPSE

The area of the ellipse is given by:

|
P4
A = m(det 0)*% = Tx 6. = Tx, 8
max int int max

The equation of the ellipse is:

yx? + 20x6 + B% = ¢

where
011 021 B -u
g = = E
021 O22 —Q Y
and
2 =0
By —a“ =1, Y1 = ryo= =
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r.m.s. addition to the BEAM

To allow for physical phenomena such as multiple scattering, pro-

vision has been made in the program to permit an r.m.,s. addition to the

beam envelope. There are nine entries to be included:
1 - Type code 1.0 (specifying a BEAM entry follows).
2 - The r.m.s. addition to the horizontal beam extent (Ax) (cm).
3 - The r.m.,s. addition to the horizontal beam divergence (A8) (mr).
4 - The r.m.s. addition to the vertical beam extent (Ay) (cm),
5 - The r.m,s. addition to the vertical beam divergence (A¢) (mr).
6 - The r.m.s. longitudinal beam extent (AL) (cm).
7 - The r.,m.s, momentum spread (AS) (in percent Ap/p).
8 - The momentum change in the central trajectory [Ap(O)] in (GeV/c).
9 - The code digit 0. indicating an r.m.s. addition to the BEAM is

being made,

The units for the r.m.s. addition are the same as those selected
for a regular BEAM type code 1.0 entry. Thus a typical r.m,s. addition

to the BEAM would appear as follows:

1. .1 .2 .15 .3 0. .13 ~-0.1 0.

-

where the last entry (0.) preceding the semicolon signifies an r.m.s,
addition to the BEAM is being made and the next to the last entry indi-

cates a central momentum change of -0.1 GeV/c,
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FRINGING FIELDS and POLE-FACE ROTATIONS for bending magnets:
Type code 2.0

u
To provide for fringing fields and/or pole-face rotations on bending

magnets, the type code 2.0 element is used.
There are two parameters:

1 - Type code 2.0.

2 - Angle of pole-face rotation (degrees).

The type code 2.0 element must either immediately precede a bending
magnet (type code 4.0) element (in which case it indicates an entrance
fringing field and pole-face rotation) or immediately follow a type
code 4.0 element (exit fringing field and pole-face rotation) with no
other data entries between*). A positive sign of the angle on either

entrance or exit pole-faces corresponds to a non-bend plane focusing

action and bend plane defocusing action.

For example, a symmetrically oriented rectangular bending magnet
whose total bend is 10 degrees would be represented by the three entries

2. 5. 4, === 3 2. 5.3

The angle of rotation may be varied. For example, the element
2,1 5. 3 would allow the angle to vary from an initial guess of
5 degrees to a final value which would, say, satisfy a vertical focus
constraint imposed upon the system. See the type code 10.0 section for

a complete discussion of vary codes.

Even if the pole-face rotation angle is zero, 2. 0. 3y entries
must be included in the data set before and after a type code 4,0 entry

if fringing-field effects are to be calculated.

A single type code 2.0 entry that follows one bending magnet and

precedes another will be associated with the latter.

*) It is extremely important that no data entries be made between a
type code 2.0 and a type code 4.0 entry. If this occurs, it may
result in an incorrect matrix multiplication in the program and
hence an incorrect physical answer. If this rule is violated, an
error message will be printed.
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Should it be desired to misalign such a magnet, an update element
must be inserted immediately before the first type 2.0 code entry and the
convention appropriate to misalignment of a set of elements applied, since,
indeed, three separate transformations are involved. See section under
type code 8.0 for a discussion of misalignment calculations and the sec-

tion under type code 6.0 for a discussion of updates.

The type code signifying a rotated pole-face is 2.0. The input
format is:

Label (if desired)
i

2, B. 'RO" ;

The units for B are degrees.
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Pole-face rotation matrix

The first-order R matrix for a pole-face rotation used in a

TRANSPCGRT calculation is as follows:

71 0 0 0 0 0 N
tan B 0 0 0 0
Po
" - 0 0 1 0 0 0
0 o - tan(B-¥) 0 0
Po
0 0 0 0 1 0
( O 0 0 0 0 1 )

Definitions: B = angle of rotation of pole face (see figure on following

page for sign convention of B)

pg= bending radius of central trajectory
g = total gap of magnet
Y = correction term resulting from spatial extent of

*)

*
fringing fields

_x, [g)[L* sin’B)1, _ g *
where Y = Ky (DJ [ cos B ] [1 Ki1K» [QJ tan B}

*
)See type code 16.0 for input formats for g, K;, and K, TRANSPORT

entries.
)

**) y
See SLAC-75

(page 74) for a discussion of V.
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DRIFT: Type code 3.0
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A drift space is a field-free region through which the beam passes.

There are two parameters:

1 - Type code 3.0 (specifying a drift length).

2 -~ (Effective) drift length (metres).

The length of a drift

space may be varied in either first- or second-order fitting.

Typical input format for a DRIFT:

DRIFT space matrix

Label (if desired) (not to

exceed 4 spaces between

quotes).

The first-order R matrix for a drift space is as follows:

1

0

where

L

L

1

0

0

0

0

0

0

0N

0

the length of the drift space.

The dimensions of L. are those chosen for longitudinal

— units symbol

l 1:________ scale factor (if needed)

15. 8. ' ' ; type code entry (if used) preceding the

length via a

BEAM (type code 1.0)

card. If no 15. 8. entry is made, the units of L. will automatically be

in metres (standard TRANSPORT units).
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WEDGE BENDING MAGNET: Type code 4.0

A wedge bending magnet implies that the central trajectory of the
beam enters and exits perpendicularly to the pole-face boundaries (to
include fringing-field effects and non-perpendicular entrance or exit

boundaries —-- see type codes 2,0 and 16.0).

There are four first-order parameters to be specified for the wedge

magnet via type code 4.0:

1 - Type code 4.0 (specifying a wedge bending magnet).

2 - The (effective) length L of the central trajectory in metres.
3 - The central field strength B(0) in kG,
B(0) = 33.356 (p/po),
where p is the momentum in GeV/c and pyis the bending radius of
the central trajectory in metres.
4 — The field gradient (n-value, dimensionless); where n is defined
by the equation
By(x,O,t) = By(0,0,t) (1 - nhx + ...) ,
where

h = 1/ps. See SLAC-75 (page 31) *).

The quantities L, B(0), and n may be varied for first-order fitting

(see type code 10.0 for a discussion of vary codes).

The bend angle in degrees and the bend radius in metres are printed

in the output.

A typical first-order TRANSPORT input for a wedge magnet is

abel (not to exceed
4 spaces)

4, L. B. n. "'

If fringing field effects are to be included, a type code 2.0 entry
must immediately precede and follow the pertinent type code 4.0 entry (even
if there are no pole-face rotations). Thus a typical TRANSPORT input for
a bending magnet including fringing fields might be:

Labels (not to exceed

l 4 spaces) if
desired
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For non-zero pole~face rotations a typical data input might be

2, 10. H 4. L. B(0). n. 5 2. 20. H

Note that the use of labels is optional and that all data entries may be

made on one line if desired.

The sign conventions for bending magnet entries are illustrated in

the following figure. For TRANSPORT a positive bend is to the right

looking in the direction of particle travel, To represent a bend in
another sense, the coordinate rotation matrix (type code 20.0) should

be used as follows:

A bend up is represented by rotating the (x, y) coordinates by

-90.0 degrees about the (z) beam axis as follows:

Labels (not to exceed 4 spaces)
if desired

20. =90, e,

2. B(1). e 3

4. L. B, n. v 3

2. B(2). v 3

20. +90, v 3 (returns coordinates to their initial

orientation)
A bend down is accomplished via:

20. +90. v H

20, -90. ' 3

A bend to the left (looking in the direction of beam travel) is

accomplished by rotating the x, y coordinates by 180 degrees, e.g.

20. 180. T ;
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The field expansion for the midplane of a bending magnet is taken
from Eq. (18) page 31 of SLAC-75, thereby defining the dimensionless

quantities n and B as follows:
By(x,O,t) = By(0,0,t) [1 - nhx + Bn%x? + yhx® + ...]

The type code signifying a BEND is 4.0. The input format for a
TRANSPORT calculation is:
&———-Label (not to exceed 4 spaces)
4, L. B. n. ' '

If n is not included in the data entry, the program assumes it to
be zero. A B entry for a second-order calculation is made via the

16.0 1.0 element. (Do not confuse this B with a pole-face rotation.)

The standard units for L and B are metres and kG. If desired, these
units may be changed by 15.0 8.0 and 15.0 9.0 type code entries preceding
the BEAM Card.
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QUADRUPOLE: Type code 5.0

A quadrupole provides focusing in one transverse plane and defocus-

ing in the other.

There are four parameters to be specified for a TRANSPORT calculation:

1 - Type code 5.0 (specifying a quadrupole).

2 - (Effective) magnet length L (in metres).

3 - Field at pole tip B (in kG). A positive field implies horizontal
focusing; a negative field, vertical focusing.

4 - Half-aperture a (in cm). Radius of the circle tangent to the

pole tips.

The length and field of a quadrupole may be varied in first-order

fitting. The aperture may not be.

The strength of the quadrupole is computed from its field, aperture
and length. The horizontal focal length is printed in parentheses as
output. A positive focal length indicates horizontal focusing and a
negative focal length indicates horizontal defocusing. The quantity
actually printed is the reciprocal of the (8/x) transfer matrix element
(1/R21) for the quadrupoles. Thus two identical quadrupoles of opposite
polarity will have different horizontal focal lengths due to the difference

between the sine and the hyperbolic sine.

The type code for a QUAD is 5.0. The input format for a typical

data set 1is:

Label (if desired) not to exceed
4 spaces between quotes

5. L. B. a. v 3

The standard TRANSPORT units for L, B, and a are metres, kG, and cm,
respectively. If other units are desired they must be chosen via the
appropriate 15.0 type code entries preceding the BEAM (type code 1.0)

card.
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First-order quadrupole matrix

cos kL % sin k L 0 0 0 0
q
-k sin k L cos k L 0 0 0 0
q q q
0 0 cosh k L l-—-sinh k L 0 0
q k q
q
0 0 k sinh k L cosh k L 0 0
q q q
0] 0 0 0 1 0
0 0 0 0 0 1

These elements are for a quadrupole which focuses in the horizontal
(x) plane (B positive). A vertically (y-plane) focusing quadrupole

(B negative) has the first two diagonal submatrices interchanged.

Definitions: L the effective length of the quadrupole

a = the radius of the aperture
By = the field at radius a
k: = (Bo/a)(1/Bpg), where (Bpg)= the magnetic rigidity

(momentum) of the central trajectory.
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TRANSFORM 1 update™): Type code 6. 0. 1.

To re-initialize the matrix TRANSFORM 1 (the product of the R
matrices, R1) use type code 6.0. A (6, 0. 1. ;) card effects an update
of the Rl matrix and initiates the accumulation of a new product matrix
at the point of the update., This facility is often useful for misaligning

a set of magnets or fitting only a portion of a system.

The matrix Rl is updated by no other element. It is not used in the
calculation of the beam matrix, The beam matrix is calculated from the

auxiliary transfer matrix R2 described on the next page.

A TRANSFORM 1 matrix will be printed at any position in the data

set where a (13. 4, ;) entry is inserted,

See the following section for the introduction of an auxiliary trans-
formation matrix R2 (TRANSFORM 2) to avoid the need for TRANSFORM 1 up-

dates,

The (6. 0. 1. 3) card also causes an update of the R2 matrix.

*) By ''updating" we mean initiating a new starting point for the accumu-
lation (multiplication) of the R matrix., At the point of update the
previous accumulation is discontinued. When the next element posses-
sing a transfer matrix is encountered, the accumulated transfer
matrix Rl is set equal to the individual transfer matrix R for that
element., Accumulation is resumed thereafter,
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AUXILIARY TRANSFORMATION MATRIX (R2): Type code 6. 0. 2.

The Rl matrix represents the accumulated transfer matrix from either
the beginning of the beam line or the last explicit Rl update (6. 0, 1, ;).
However several elements in TRANSPORT which affect the beam matrix cannot
be represented in any transfer matrix. To avoid update complications
with Rl an auxiliary transfer matrix R2 exists. The beam matrix is then

calculated from the R2 matrix and the beam matrix at the last R2 update.

Both the Rl and R2 matrices are normally available for printing.
However there is no redundancy in computer use, since, internally to the
program only R2 is calculated at each element. The matrix Rl is calculated

from R2 only as needed.

The R2 matrix is updated explicitly via a (6., 0. 2. 3) entry, It
may be printed by a (13. 24, ;) entry. Constraints on R2 are imposed
similarly to those on Rl. For details see the section describing type

code 10,0,
The complete list of elements which update TRANSFORM 2 is:

1) a beam type code 1.0 entry

2) the (6. 0. 1. 3) entry

3) the (6. 0. 2. ;) entry

4) a centroid shift type code 7.0 entry
5) a misalignment type code 8,0 entry

6) a stray field type code 21.0 entry.

Please note that automatic updates of TRANSFORM 2 occur when an
align element (type code 8.) is inserted specifying the misalignment of
all subsequent bending magnets. These TRANSFORM 2 updates take place
immediately before and immediately after any bending magnet which has
either the entrance or exit fringe fields specified via a type code 2

entry.
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SHIFT IN THE BEAM CENTROID: Type code 7.0

3 . . - . **
Sometimes it is convenient to redefine the beam centroid ) such
that it does not coincide with the TRANSPORT reference trajectory. Pro-
vision has been made for this possibility via type code 7.0. Seven para-

meters are required:

1 - Type code 7.0,

(2 to 7) - the coordinates x, 6, y, ¢, &, and & defining the shift in the
location of the beam centroid with respect to its previous
position. The units for x, 8, y, ¢, &, 8§ are the same as
those chosen for the BEAM (type code 1.0 entry), normally cm,

mr, cm, mr, cm, and percent.

Any or all of the six beam centroid shift parameters may be varied
in first-order fitting. The centroid position may then be constrained at

any later point in the beam line by this procedure.

The transformation matrix R2 is updated by this element.

In order for this code to function properly, the initial BEAM entry

(type code 1,0) must have a non-zero phase space volume, for example a
1., 0 0 0 0 0 0 p(0). H

BEAM entry is not permissible when calculating a shift in the beam

centroid; whereas a
1. 1. 1, 1. 1. 1. 1. p(0). H

entry (non-zero phase volume) is acceptable.

**) By 'beam centroid" we mean the centre of the beam ellipsoid,
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MAGNET ALIGNMENT TOLERANCES: Type code 8.0

The first-order effects of the misalignment of a magnet or group of
magnets are a shift in the centroid of the beam and a change in the beam
focusing characteristics. Two varieties of misalignment are commonly
encountered: 1) the magnet is displaced and/or rotated by a known amount;
or 2) the actual position of the magnet is uncertain within a given tole-
rance. TRANSPORT has the capability of simulating the misalignment of
either single magnets or entire sections of a beam line. Any combination
of the above alternatives may be simulated through the use of the "align"
element. The results may be displayed in either the printed output of
the beam (sigma) matrix or tabulated in a special misalignment table

(described below).
There are eight parameters to be specified:

- Type code 8.0 (specifying a misalignment).

- The magnet displacement in the horizontal direction (cm).
rotation about the horizontal axis (mr).
displacement in the vertical direction (cm).

rotation about the vertical axis (mr).

rotation about the beam direction (mr).

o N NN
|

A
A
A
- A displacement in the beam direction (cm).
A
A

three-digit code number (defined below) specifying the type

of misalignment.

The three displacements and three rotations comprise the six degrees
of freedom of a rigid body and are used as the six misalignment coordi-

nates. The coordinate system employed is that to which the beam is re-

ferred at the point it enters the magnet. For example, a rotation of a

bending magnet about the beam direction (parameter 7 above) is referred
to the direction of the beam where it enters the magnet. The units em-
ployed are the standard TRANSPORT units shown above, unless redefined by
type code 15. entries. If the units are changed, the units of the mis-
alignment displacements are those determined‘by the 15. 1. type code

entry; the units for the misalignment rotations are those determined by

the 15. 2. type code entry.

The misalignment of any physical element or section of a beam line

may be simulated. Misaligned sections of a beam line may be nested. A
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beam line rotation (type code 20.) may be included in a misaligned sec-
tion. Thus, for example, one can simulate the misalignment of magnets

that bend vertically. The arbitrary matrix (type code 14.) may not be

included in a misaligned section. A misalignment must never be included

in a second-order run (type code 17.).

A misalignment element may indicate that a single magnet or section
of the beam line is to be misaligned, or it may indicate that all subse-
quent magnets of a given type (quadrupoles and/or bending magnets) are to
be misaligned. The type of misalignment is specified in the three-digit
code number, and the location of the type code 8. align element depends

on the type of misalignment.

If a misalignment pertains to a single magnet or a single section of
the beam line, then the misalignment element (type code 8.) must directly
follow that magnet or section of the beam line. If a misalignment ele-
ment indicates that all subsequent magnets of a given type are to be
misaligned, it must precede the first of such magnets. Further descrip-

tion of the available types of misalignment is given in the table below.

The results of the misalignment may be displayed in either the beam
(sigma) matrix or in a misalignment table. If the results are displayed
in the beam (sigma) matrix, then that matrix is altered by the effects of
the misalignment. The effects of additional misalignments cause further
alterations, so that at any point along the beam line; the beam (sigma)

matrix will contain the combined effects of all previous misalignments.

The misalignment table can be used to show independently the effects
on the beam matrix of a misalignment in each degree of freedom of each
misaligned magnet. Each new misalignment to be entered in the table
creates a new set of six duplicates of the beam matrix. Printed for each
duplicate beam matrix are the centroid displacement and the beam half
width in each of the six beam coordinates. Each of the six matrices shows
the combined result of the undisturbed beam matrix and the effect of the
misalignment in a single coordinate of a single magnet or section of the
beam line. In a single TRANSPORT run the results of misaligning up to
ten magnets or sections of the beam line may be included in the misalign-
ment table. Further requests for entry in the misalignment table will be
ignored. Examples of such a table and the input which generated it are

shown below.
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When the user specifies that the actual position of the magnet(s) is
uncertain within a given tolerance, the printout will show a change in
the beam (sigma) matrix resulting from the effects of the misalignment(s).
Thus, if one wishes to determine the uncertainty in the beam centroid re-
sulting from uncertainties in the positioning of the magnets, the initial
beam dimensions should be set to zero, i.e. the beam card entry at the

beginning of the system should appear as follows:
1. 0. 0. 0. 0. 0. 0. p(0).

If it is desired to know the effect of an uncertainty in position on
the beam focusing characteristics, then a non-zero initial phase space
must be specified. The printout will then show the envelope of all pos-
sible rays, including both the original beam and the effects of the mis-

alignment.

If the misalignment is a known amount, it may affect the beam cen-
troid as well as the beam dimensions. Therefore one should place on the
BEAM card the actual dimensions of the beam entering the system. For a
known misalignment, the program requires that the initial beam specified
by type code 1 must be given a non-zero phase volume, to insure a correct

printout.

An align element pertaining to a single magnet or section of the
beam line updates the BEAM (sigma) matrix and the R2 matrix, but not the
Rl matrix. A misalignment element which indicates misalignment of all
subsequent magnets of a given type will update the BEAM (sigma) matrix
and the R2 matrix before each bending magnet with fringe fields and after

each misaligned magnet of any type.

The tolerances may be varied. Thus, type-vary code 8.111111 permits
any of the six parameters (2 through 7 above) to be adjusted to satisfy
whatever BEAM constraints may follow. For fitting, a misalignment must
pertain to a single magnet or single section of the beam line, and the
results must be displayed in the beam (sigma) matrix. (See the section

under type code 10. for a discussion of the use of vary codes.)

The meaning of the options for each digit of the three-digit code

number is given in the following table.
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The units position specifies the magnet(s) or section of the

beam line to be misaligned.

CODE
NUMBER

INTERPRETATION

XXO0.

XX2.

XX3.

The single magnet (type code element) immediately preceding
the align card it to be misaligned. A bending magnet with
fringe fields should be misaligned using one of the options

described below.

The last Rl matrix update (the start of the beam line or a
6. 0. 1. ; type code entry) marks the beginning of the sec-
tion to be misaligned. The misalignment element itself
marks the end. The section is treated as a unit and mis-
aligned as a whole. The misalignments of quadrupole trip-
lets and other combinations involving more than two quadru-

poles may be studied using this code digit.

The last R2 matrix update (see type code 6. for a list of
elements which update R2) marks the beginning of the mis-
aligned section. The misalignment element marks the end.
This option makes use of the fact that R2 matrix updates do

not affect the Rl matrix.

A bending magnet with fringing fields or pole face rotations
(type code 2.) should be misaligned using this option. See

examples 1 and 2 below for an illustration of this.

An array of quadrupoles provides another example of the use
of this option. By successive application of align elements,
the‘elements of a quadrupole triplet could be misaligned
relative to each other, and then the triplet as a whole

could be misaligned. See example 3 below for an illustra-

tion of this.

All subsequent bending magnets and quadrupoles are indepen-
dently misaligned by the amount specified. This option is
useful in conjunction with the tabular display of the mis~-
alignment results (see below). A bending magnet, with fring-
ing fields included, is treated as a single unit and mis-

aligned accordingly.
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XX5.

B.
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All subsequent bending magnets, including fringing fields,
are independently misaligned by the amount specified. See

XX3 above for further comments.

All subsequent quadrupoles are independently misaligned by
the amount specified. See example 4 below for an illustra-

tion of this. See XX3 above for further comments.

The tens position defines the mode of display of the results of

the misalignment.

X0X.

X1X.

C.

The beam matrix contains the results of the misalignment.
The beam matrix is printed wherever a 13. 1. ; card is
encountered. The beam matrix will then contain contributions

from all previous misalignments.

A table is used to store the results of misalignments. The
effect of up to ten independently misaligned magnets may be
shown in the table in a single run. The table is printed via
a 13. 8. ; card, and may be compared with the undisturbed
beam matrix (printed by a 13. 1. ; card) at any point. An

example of such a table is shown below.

The hundreds position distinguishes between an uncertainty in

position (0XX.) or a known displacement (1XX.).

Any combination of digits may be used to define the exact circum-

stances intended. Thus, code 111. indicates the deliberate displacement

of a set of magnets (referred to the point where the beam enters the set),

with the results to be stored in a table.



- 59 -

Example No. 1: A bending magnet with a known misaligrment

A bending magnet (including fringe fields) misaligned by a known

amount might be represented as follows:

3 L(1).

6

2. 0. 3 4., 1. B. n. ;3 2. 0. ;
8

3

L(2).

This represents a known rotation of the bending magnet about the in-
coming beam direction (z axis) by 2.0 mr. The result of this misalign-
ment will be a definite shift in the beam centroid, and a mixing of the
horizontal and vertical coordinates. The use of the 6. 0. 2. ; transform
2 update and the misalignment code number XX2 is necessary because the
magnetic array (bending magnet + fringing fields) consists of three type

code elements instead of one.
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Example No. 2: A bending magnet with an uncertain position

A bending magnet having an uncertainty of 2 mr in its angular posi-

tioning about the incoming beam (z axis) would be represented as follows:

3 L(1).

6 0. 2.

2. 0. ;3 4., L. B. n. ; 2. 0. ;
8. 0. 0. 0. 0. 0. 2.0 002. ;

3. L(2).

To observe the uncertainty in the location of the outcoming beam
centroid, the input BEAM card should have zero phase space dimensions as

follows:
1. 0. 0. 0. 0. 0. 0. p@). ;

If the beam dimensions on the input BEAM card are non-zero, the re-
sultant beam (sigma) matrix will show the envelope of possible rays, in-

cluding both the input beam and the effect of the misalignment.
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Example No. 3: A misaligned quadrupole triplet

One typical use of both the Rl and R2 matrices is to permit the mis-
alignment of a triplet. For example, an uncertainty in the positions

within the following triplet

5. 1. -8. 10.
5. 2. 7. 10.
5. 1. -8. 10. ;

may be induced by appropriate 8. elements as noted:

6. O. 1.

5. 1. -8. 10. ;

6. O. 2 ;

5. 2. 7. 10.

5. 1. -8. 10.

8. —-—— === == -== == -—— 000. ;
8. ——— == —mm —e— = ——— 002,
8., -— —= == == —== -—— 001.

The first 8. card in the list refers to the misalignment of the
third magnet only. The second 8. card refers to the misalignment of the
second and third magnets as a single unit via the R2 matrix update (the
6. 0. 2. ; entry). The last 8. card refers to the misalignment of the
whole triplet as a single unit via the Rl matrix update (the 6. 0. 1. ;

entry).

The comments about the BEAM card (type code 1. entry) in example 2

above are applicable here also.



- 62 -

Example No. 4: Misaligned quadrupoles in a triplet

Individual uncertainties in the positions of the quadrupoles in the

triplet in example no. 3 above may be induced by a single misalignment as

follows:
8 ——— e e oo e —__ 015.
5. 1. -8. 10. ;
5 2 7 10.
5 1. -8. 10.

The effect of each misalignment coordinate on each quadrupole will
be stored separately in a table. This table is printed wherever a

13. 8. ; type code is inserted.
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REPETITION: Type code 9.0

Many systems include a set of elements that are repeated several
times, To minimize the chore of input preparation, a 'repeat' facility

is provided.
There are two parameters:

1 - Type code 9.0

2 - Code digit, If non-zero, it states the number of repetitions
desired from the point it appears. If zero it marks the end

of a repeating unit.

For example, a total bend of 12 degrees composed of four 3-degree
bending magnets each separated by 0.5 metres could be represented by
9, 4, 3 4., - 3 3. .53 9, 0, 3 Those elements (in this case a bend

and drift) between the 9, 4, ; and 9. 0. ; would be employed four times.

There is no indication of the 9.0 cards in the printed TRANSPORT
output when calculating except for the repeated listing of the elements

they control,

Vary codes may be used within a repeating unit in the usual fashion.

However all repetitions of a given varied element will be coupled.

Repeat cards may be nested four deep. By 'mesting' we mean a repeat

within a repeat. An example is given below,



_68_

Example of Nesting

9. 2, )

3. 10. H

9, 3. H

3. 20. H

9. 4. b ————— Next

3. 50, ; | __ Inner | __ inner | __ Outer
block block block

9. 0. H |

9. O. ]

3. 1.5 H

9. 0. H

The total length of this sequence is:

2%(10. + 3*%(20 + 4* 50) + 1.5) = 1343,
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VARY CODES and FITTING CONSTRAINTS: Type code 10.0

Some (not all) of the physical parameters of the elements comprising
a beam line may be varied in order to fit selected matrix elements. In
a first-order calculation one might fit elements of the Rl or R2 trans-
formation matrices or the beam (sigma) matrix. In second order one might
constrain an element of the second-order matrix Tl or minimize the net
contribution of aberrations to a given beam coordinate. Special constraints

are also available,

One may not mix orders in fitting. First order vary codes and con-
straints must be inserted only in a first-order calculation, and simi-

larly for second order.

The physical parameters to be varied are selected via 'Vary Codes'
attached to the type codes of the elements comprising the system. The
fitting constraints on matrix elements are selected via type code 10,0

entries placed in the system where the constraint is to be imposed.

Vary codes

Associated with each physical element in a system is a vary code
which specifies which physical parameters of the element may be wvaried,
This code occupies the fraction portion of the type code specifying the
element. It has one digit for each parameter, the digits having the
same order in the code as the physical parameters have on the card, A
'0' indicates the parameter may not be varied; a '1' that it may be,

For instance, 3.0 is the combined type (3) and vary code (0) for a drift
length which is to remain fixed; 3.1 indicates a drift length that may
be varied (by the virtue of the .1). The type code 4.010 indicates a
bending magnet with a variable magnetic field. 1In punching the code 3.0,
the zero need not be punched., In punching the 4.010 code, the first zero

must be punched but the second zero need not be,
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First-order vary codes

In a first-order run the following parameters marked v may be varied,

those marked 0 may not be wvaried.

R.M.S. ADDITION..

ROTAT......

DRIFT......

BEND.......

QUAD.......

AXIS SHIFT..

INITIAL

COORDINATES. .

MATRIX.....

SOLENOID...

BEAM ROTATION....

l.vvvvvv0 - All components of the input beam may be

varied, except the momentum.

l.vvvvvv00 - All components of an r.m.s. addition may

be varied except the momentum change Ap.

2.v - The pole face angle of a bending magnet may be

varied.
3.v -~ The drift length may be varied.

4.vvv - The length, the field, and/or the n-value may

be varied.

5.vv0 - The length may be varied; the field may be,

the aperture may not be.

7.vvvvvv - Any of the axis shift parameters may be

varied.

8.vvvvvv0 - Any of the alignment parameters may be

varied.

16.0v - Any of the three initial position floor coordi-

nates or two angle coordinates may be varied.

ld.vvvvvv0 - Any of the first order matrix elements

may be varied.
19.vv - The length and/or field may be varied.

20.v - The angle of rotation may be varied.

The use of the permissive 'may' rather than the imperative 'will'

in discussing variables is meaningful. The program will choose the para-

meters it will vary from among those that it may vary. 1In general it

chooses to vary those parameters that have the greatest influence upon

the conditions to be fit.
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Second—order vary codes

In a second-order run the following parameters may be varied:

DRIFT..... 3.v - The drift length may be varied. Variation of a drift
length should be done with caution as it may affect the
first-order properties of the beam line, But inversely coupled
drift spaces straddling a sextupole will, for example, show

only second-order effects.,

E(l)eennn. 16.0v 1. - The normalized quadratic term (sextupole component)
in the midplane expansion for the field of a bending magnet

may be varied.

1/Rl...... 16.0v 12. - The pole face curvature of a bending magnet

entrance may be varied.

1/R2.40uns 16.0v 13, - The pole face curvature of a bending magnet

exit may be varied.
SEXTUPOLE 18.0v - The field strength may be varied,

The special parameter cards (type code 16.0) once introduced apply
to all subsequent magnets in a beam line until another type code 16.0
specifying the same parameter is encountered. Thus if such a parameter

is varied, the variation will apply simultaneously to all subsequent

magnets to which it pertains. The variation will persist until the para-
meter or vary code attached to the parameter is changed by the introduc-

tion of another type code 16.0 card specifying the same parameter,
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Coupled vary codes

It is possible to apply the same correction to each of several
variables. This may be done by replacing the digit 1 in the vary code
with one of the digits 2 through 9, or a letter A through Z., All such
variables whose vary digits are the same, regardless of position will
receive the same correction. For example, the three type-vary codes
(5.0A, 5.01, 5.0A) might represent a symmetric triplet, The same cor-
rection will be made to the first and third quadrupoles, guaranteeing

that the triplet will remain symmetric.

If a vary digit is immediately preceded by a minus sign, the computed
correction will be subtracted from, rather than added to, this variable.
Thus parameters with the same vary digit, one of them being preceded by
a minus sign, will be inversely coupled. For example the type-vary code
sequence (3.B, 5.01, 3.-B) will allow the quadrupole to move without
altering the total system length,

Vary digits may also be immediately preceded by a plus sign without
changing their meaning., Thus 5.0A is the same as 5.0+A. TFor historical
reasons, the vary digits (9 and 4), (8 and 3), and (7 and 2) are also
inversely coupled. Inverse coupling may not be used with type codes

1.0 or 8.0.

The total number of independent variables in a first—order run is
limited to 20 by reasons of the mathematical method of fitting and to
10 for a second-order run. So far as this limit is concerned, variables
that are tied together count as one. Variables within repeat elements

(type code 9,0) also count only one,
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Possible fitting constraints

A variety of possible constraints is available, Fitting may be done
in either first- or second-order, but not in both simultaneously. The
order of the constraint must be appropriate to the order of the run., A
list of constraints available is given below. They are explained more

fully on later pages.

First-order constraints

1) An element of the first-order transfer matrix Rl,
2) An element of the auxiliary first-order matrix R2,
3) A ¢ (BEAM) matrix element,

4) The correlations r in the beam coordinates,

5) The first moments of the beam,

6) The total system length,

7) An AGS machine constraint.

8) The reference trajectory floor coordinates.

Second-order constraints

1) An element of the second-order transfer matrix Tl.

2) An element of the second-order auxiliary transfer matrix T2,

3) The net contributions of aberrations to a given coordinate of the beam
matrix O.

4) The strength of sextupoles used in the system.

The second-order matrices are actually computed using the auxiliary
matrix T2. Therefore, when activating second-order fitting, one must not
include any element which causes an update of the R2 matrix. For a com-

plete list of such elements see type code 6.0.

The present value of the constrained quantity, as well as the desired
value, is printed in the output. In the case of transfer matrix elements
this value may be checked by printing the transfer matrix itself. Certain
other constrained quantities may be checked similarly. Exceptions are

noted in the explanations following.
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Rl matrix fitting constraints

There are five parameters to be specified when imposing a constraint

upon the (i, j) element of an Rl matrix.

- Type code 10.n(specifying that a fitting constraint follows).
- Code digit (-i),

Code digit (j).

Desired value of the (i, j) matrix element,

L &~ w D
1

- Desired accuracy of fit (standard deviation).

Note that any fitting constraint on an Rl matrix element is from
the preceding update of the Rl matrix. An Rl matrix is updated only

by a (6. 0. 1. ;) entry.

The symbol (n) is normally zero or blank. If n = 1, then entry 4
is taken to be a lower limit on the matrix element. If n = 2, entry 4

is taken to be an upper limit.
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Some typical Rl matrix constraints are as follows:

Desired optical condition

Typical fitting constraint

Point to point imaging:

Horizontal plane R(12) = 0

Vertical plane R(34) = 0O
Parallel to point focus:

Horizontal plane R(11l) =0

Vertical plane R(33)

Point to parallel transformation:

Horizontal plane R(22) =0
0

Vertical plane R(44)

Achromatic beam:

Horizontal plane

R(16) = R(26) =0

Zero dispersion beam:

Horizontal plane R(16) = 0

Simultaneous point to point and
walst to waist imaging:

Horizontal plane

R(12) = R(21) = 0

Vertical plane

R(34) = R(43) =0

Simultaneous parallel to point and
waist to waist transformation:

Horizontal plane

R(11) = R(22) = O

Vertical plane

R(33) = R(44) = 0

10.
10.

10.
10.

10.
10.

10.

10.

10.

10.
10.

10.
10.

10.
10.

10.
10.

-1. 2. 0.
-3. 4. 0.
-1. 1. 0.
-3. 3. 0.
-2. 2. 0.
-4, 4

-1. 6.

-2. 6. 0.
-1. 6. 0.
-1. 2. 0.
-2. 1. 0.
-3. 4. O,
-4. 3 .
-1. 1. 0.
-2, 2. 0.
-3. 3. 0.
-4. 4. 0.

.0001
.0001

.0001
.0001

.0001
.0001

.0001
.0001

.0001

.0001
.0001

.0001
.0001

.0001
.0001

.0001
.0001

‘Fl';
|F2|;

'F3';

'Fl}';

'Fs';
'F6';

IF7l;
|F8';

ngl;

'F10'

'F11';
'F12';
'F13';

'F14';
'F15°';
'Fl6';
'F17';

.
b
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R2 matrix fitting constraints

There are five parameters to be specified when imposing a constraint

upon the (i, j) element of an R2 matrix.

- Type code 10.,n
Code digit -(20 + 1i).
Code digit (j).

Desired value of the (i, j) matrix element.

1
2
3
4
5 Desired accuracy of fit (standard deviation).

Some typical R2 matrix constraints are as follows:

The symbol (n) is normally zero or blank. If n = 1, then entry 4 1is
taken to be a lower limit on the matrix element. If n = 2, entry 4

is taken to be an upper limit,

Desired optical condition Typical fitting constraint
Point to point imaging:
Horizontal plane R(12) = 0 10. =21, 2, 0. .001 'F1'
Vertical plane R(34) =0 10. =-23. 4, 0. .001 'F2'
Parallel to point focus:
Horizontal plane R(11l) =0 10. =-21. 1. 0. .001 'F1'
Vertical plane R(33) =0 10. -23. 3. 0, .001 'F2'
Achromatic beam:
Horizontal plane 10, =21. 6. 0. .001 'F3'
| R(16) = R(26) = 0 10, =22, 6, 0. .00l 'F4'
4

See type code 6.0 for a complete list of elements which update the

R2 matrix,
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O(BEAM) matrix fitting constraints

There are five parameters to be specified when imposing a constraint

upon the (i, j) element of a O(BEAM) matrix.

- Type code 10.n

- Code digit (i), (1 =z j)
Code digit (j).

- Desired value of the (i, j) matrix element.

v W N
|

- Desired accuracy of fit (standard deviation).

The symbol (n) is normally zero or blank. If n = 1, then entry 4 is
taken to be a lower limit on the matrix element. If n = 2, entry 4 is
taken to be an upper limit, If i = j, then the value inserted in entry 4

L L
is the desired beam size (0(ii))? e.g. x(max) = (0(11))? etc.

Some typical O matrix constraints are as follows:

Desired optical condition Typical fitting constraint
Horizontal waist 0(21) = 0 10, 2. 1. 0. .001 'F1'
Vertical waist 0(43) =0 10. 4, 3, 0, .001 'F2' 3
Fit beam size to x{(max) = 1 cm 10. 1. 1. 1. .001 'F3'
Fit beam size to y(max) = 2 cm 10. 3. 3. 2, .001 'F4'
Limit max beam size to x = 2 cm 10,2 1. 1. 2. .01 'F5'
Limit min beam size to y = 1 cm 10.1 3. 3. 1, .01 'F6'

In general, it will be found that achieving a satisfactory 'beam' fit
with TRANSPORT is more difficult than achieving an R matrix fit, When
difficulties are encountered, it is suggested that the user 'help' the
program by employing sequential (step by step) fitting procedures when
setting up the data for his problem. More often than not a 'failure to
fit" is caused by the user requesting the program to find a physically
unrealizable solution. An often encountered example is a violation of

Liouville's theorem.
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Beam correlation matrix (r) fitting constraints

Five parameters are needed for a constraint on the (i, j) element

of the beam correlation matrix.

- Type code 10.n
Code digit (10 + i),

- Code digit (j).

- Desired value of the (i, j) matrix element.

UL W N e

- Desired accuracy of fit (standard deviation).

TRANSPORT does not print the beam (0) matrix directly, Instead it
prints the beam half widths and represents the off-diagonal elements by
the correlation matrix., If one wishes to fit an element of this matrix

to a non-zero value it is convenient to be able to constrain the matrix

element directly.

Some typical r matrix constraints are as follows:

Desired optical condition Typical fitting constraint

Horizontal waist r(21) = 0 10, 12, 1, 0. .001 'F1'

yy' correlation =r(34) = 0,2 10, 13. 4. 0.2 ,001 'F2'
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First moment constraint

In first order, known misalignments and centroid shifts cause the
centre (centroid) of the phase ellipsoid to be shifted from the reference
trajectory, i.e., they cause the beam to have a non-zero first moment.
The first moments appear in a vertical array to the left of the vertical

array giving the vo(ii). The units of the corresponding quantities are

the same,

It is perhaps helpful to emphasize that the origin always lies on
the reference trajectory. First moments refer to this origin., However,
the ellipsoid is defined with respect to its centre, so the covariance

matrix, as printed, defines the second moment about the mean.,

First moments may be fitted. The code digits are i = 0 and j,
where j is the index of the quantity being fit, Thus 10. 0. 1, .1 ,013
constrains the horizontal (1,) displacement of the ellipsoid to be

0.1 * 0.01 cm.

This constraint is useful in deriving the alignment tolerances of
a system or in warning the system designer to offset the element in order

to accommodate a centroid shift,
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System length constraint

A running total of the lengths of the various elements encountered
is kept by the program and may be fit. The code digits are i = 0.,
j=On

Thus the element (10. 0. 0. 150. 5. 3) would make the length of the
system prior to this element equal to 150 * 5 metres. Presumably there
would be a variable drift length somewhere in the system, By redefining
the cumulative length via the (16. 6. L. ;) element, partial system

lengths may be accumulated and fit.
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*)

AGS machine constraint

Provision has been made in the program for fitting the betatron phase

shift angle u, associated with the usual AGS treatment of magnet systems.

In the horizontal plane: wuse code digits i = -11., j = 2., and

specify:

1 -1 .
A= o7 cos [0.5 (Ry; + Rzz)] %F (horiz)

freq./(No. of periods).

In the vertical plane: 1 = -13,, j = 4., and

1 =1
A = 5= Cos [0.5 (R33 + qu)] = %F (vert) .
For example, if there are 16 identical sectors to a proposed AGS
machine and the betatron frequencies per revolution are to be 3,04 and
2.14 for the horizontal and vertical planes respectively, then the last

element of the sector should be followed by the constraints:

10, ~-11. 2., .190 .00l
10. -13. 4. .134 ,001

. 3.04 _ 2.14
l1.¢e,. —'TE-—' = 0,190 and 16 = 0,134 .,

For example: A typical data listing might be:

5.01 --- 3
3. - H
5.01 -—- 5
3. - 3

10. -11. 2, 0.190 .00l ;
10, -13. 4. 0.134 .001 ;

*) See Courant and Snyderl). Also note that this constraint is valid
only when the unit cell structure and the corresponding beta functions
are both periodic.
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Floor coordinate fitting constraint

Five parameters are needed to specify a floor coordinate constraint:

- Type code 10.

- Code digit 8.
Code digit (j).

- Desired value of floor coordinate.

v & W N
|

- Desired accuracy of fit (standard deviation).

The code digit (j) indicates the floor coordinate to be constrained.
Its possible values are 1 to 6 indicating the floor x, y, z, theta, phi,
and psi, respectively. Theta is the angle which the floor projection of
the reference trajectory makes with the floor z axis. Phi is the verti-
cal pitch. Psi is a rotation about the reference trajectory. This is
also the order in which coordinates are printed in the floor layout acti-
vated by the 13. 12. ; element. Initial coordinates are given on type

codes 16. 16. ; through 16. 20. ; and type code 20.

The floor coordinates are actually zero-th rather than first order
properties of a beam line. However, in TRANSPORT, they may be constrained

in a first-order fitting run, and therefore are included here.
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Tl matrix fitting constraints

Five parameters are needed for a constraint on the (i, j, k) element

of the second-order transfer matrix T1.

- Type code 10,0

Code digit (-i).
Code digit (10j + k).

1
2
3
4 - Desired value of the (i, j, k) matrix element.
5

Desired accuracy of the fit (standard deviation).

Note that upper and lower limit constraints are not available for

second order fitting.

Some typical Tl matrix constraints are as follows:

Desired optical condition Typical fitting constraint

I
o

Geometric aberration Tjy5 = 10. -1, 22, .0 .,001 'Fl
Chromatic aberration T3yg = .5 10, =3. 46. .5 ,001 'F2'

-

There must be no updates of the R2 matrix when constraining an element
of the Tl matrix. There is no limit on the number of constraints which

may be imposed,

If no drift lengths are varied the problem will be linear and the
absolute size of the tolerances will be unimportant, Only their relative
magnitude will be significant. Sometimes only a subset of the elements

of the matrix Ti' which give significant contributions to beam dimensions

k
need be eliminatid. In such cases one may wish to minimize the effect of
this subset, by weighing each matrix element according to its importance.
One does this by including a constraint for each such matrix element, and
setting 1its tolerance equal to the inverse of the phase space factor
which the matrix element multiplies. For a matrix element Tijk acting on
an uncorrelated initial phase space, the tolerance factor would be
1/(x0jx0k), where xoj and Xy are the initial beam half widths specified

by the type code 1.0 card.
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T2 matrix fitting constraints

Five parameters are needed for a constraint on the (i, j, k) element

of the second order auxiliary transfer matrix T2.

1 - Type code 10.0

2 - Code digit - (20 + i).
3 - Code digit (10j + k).
4
5

- Desired value of the (i, j, k) matrix element.

- Desired accuracy of the fit (standard deviation)

Note that upper and lower limit constraints are not available for

second-order fitting.

Some typical T2 matrix constraints are as follows:

Desired optical condition Typical fitting constraint

I
(@]

Geometric aberration T;;» 10, =-21. 22. .0 .001 'F1' 3

10. -23. 46. .5 .00l 'F2'

I
w

Chromatic aberration Tiug =

By using a T2 constraint the user may fit an element of the second-
order transfer matrix which pertains to any section of the beam. One
causes an RZ update at the beginning of the section with a 6. 0. 2.
element. One then places the T2 constraint at the end of the section.
Any number of such constraints may be imposed. This is the only second-

order constraint that may be used in conjunction with an R2 update.

If a printing of the Tl matrix is requested via a 13. 4. ; element
it will be the second-order transfer matrix from the last Rl update. The
comments about phase space weighting, made in connection with the Tl con-
straint, are equally valid for the T2 constraint, provided the phase space

factors are obtained from the beam matrix at the position of the R2 update.
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Second-order 0(BEAM) matrix fitting constraint

Five parameters must be specified for a constraint on the second-

order contributions to a beam matrix diagonal element IR

- Type code 10.0

Code digit (i).

Code digit (i).

1
2
3
4 - The number 0.
5

1

Desired accuracy of the fit (standard deviation).

If, for example, one wished to minimize the net contributions of
second-order aberrations to the horizontal divergence, one would insert
the following card:

10. 2. 2. .0 .01 ;

The quantity that is minimized is the net increase due to second-
order terms in the second moment of the beam about the origin. This
quantity is treated as the chi-squared of the problem, so the only meaning-
ful desired value for the fit is zero. The square root of this quantity
is printed in the output. It is computed using the Ry matrix. Therefore,
once again, one must not include any element which updates the R matrix.
Centroid shifts must not be inserted when doing second-order fitting,

even immediately following the beam card.

The second-order image of the initial beam centroid at some later
point in the beam is not necessarily the beam centroid at the later point.
The parameters printed by TRANSPORT are the new centroid position and the
beam matrix about the new centroid. One must therefore look at both of
these to ‘observe the effects of the fitting procedure. It may even
happen that an improvement in one parameter will be accompanied by a

slight deterioration in the other.

The beam profile at any point is a function of the initial beam
parameters. One may therefore impose weights on the effect of the various
aberrations by the choice of parameters on the BEAM card. One might, for
example, adjust the strength of the correction of the chromatic aberrations
by the choice of the Ap/p parameter, In particular, when using a BEAM
constraint, one should not attempt to minimize or eliminate chromatic

aberrations if Ap/p is set equal to zero on the beam card (type code 1.0).

Correlations (the 12.0 card) may also be included in the initial

beam specification,
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Sextupole strength constraints

Five parameters must be specified for a constraint on sextupole

strength,
1 - Type code 10.0
2 - Code digit 18,
3 - Code digit O,
4 - The number 0.
5 - Desired maximum sextupole field strength.

A single sextupole constraint card applies to all sextupoles which
follow. The maximum field strength is treated as a standard deviation

and may be exceeded on an optimal fit,

One can employ this constraint to find the optimal locations for sex-
tupoles. By placing inversely coupled drift lengths before and after the
sextupole its longitudinal position may be varied. By constraining the
field strength the sextupole can be slid to a position where the coupling
coefficients to the aberrations will be largest, One will need to experi-
ment with adjusting the maximum field strength to achieve the best confi-

guration,
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A set of upper and lower bounds on the value of each type of parameter

is in the memory of the program.

If a correction is computed for a para-

meter which would take its value outside this range, it is reset to the

limit of the range. The current limits are:

Type code Limits

1.0 0 < input beam

2.0 -60 < pole-face rotation < 60 (deg)
3.0 0 < drift

4.0 0 < magnet length

5.0 0 < quad length

20.0 -360 < beam rotation < 360 (deg).

These limits apply only when

values that exceed this range may

a parameter is being varied., TFixed

be used as desired.

These constraints were included to avoid physically meaningless

solutions,
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Corrections and covariance matrix

When the program is fitting, it makes a series of runs through the
beam line. From each run it calculates the chi-squared and the correc-
tions to be made to the varied parameters. For each iteration a single

line is printed containing these quantities.

The program calculates the corrections to be made using a matrix
inversion procedure. However, because some problems are difficult, it
proceeds with caution. The corrections actually made are sometimes a
fixed fraction of those calculated. This fraction, used as a scaling
factor, is the first item appearing on the line of printed output. The
second factor is the chi-squared before the calculated corrections are
made. Following are the corrections to be made to the varied parameters.
They are in the order in which they appear in the beam line. If several
parameters are coupled, they are considered as one and their position is

determined by the first to appear.

When convergence has occurred, the final value of the chi-squared
and the covariance matrix are printed. The covariance matrix is symmetric,
so only a triangular matrix is shown. The diagonal elements give the
change in each varied parameter needed to produce a unit increase in the
chi-squared. The off-diagonal elements give the correlations between

the varied parameters.
The appearance of the chi-squared and covariance matrix is:

*COVARIANCE (FIT y2)

vC1,
riz vCoo2
T A o vC
n n,n-1 nn

For more details on the mathematics of the fitting, the user should
consult the Appendix. For an example of the output of the program he

(or she) should refer to the section on output format.
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ACCELERATION: Type code 11.0

An energy gain is reflected in both the divergence and the width of
the beam, This element provides a simulation of a travelling wave linear
accelerator energy gain over a field free drift length (i.e. no externally

applied magnetic field),
There are five parameters:

- Type code 11,0

Accelerator length (metres).

Energy gain (GeV).

1
2
3
4 -~ ¢ (phase lag in degrees).
5

A (wavelength in cm).
The new beam energy is printed as output.

The energy of the reference trajectory is assumed to increase linear-
ly over the entire accelerator length, If this is not the case, an appro-
priate model may be constructed by combining separate 11.0 elements. An

11.0 element with a zero energy gain is identical to a drift length,
None of the parameters may be varied,

Second-order matrix elements have not been incorporated in the

program for the accelerator section.

The units of parameters 2, 3, and 5 are changed by 15. 8., 15. 1l1l.,

and 15. 5. type code entries respectively,
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BEAM (rotated ellipse): Type code 12.0

To allow the output beam from some point in a system to become the
input beam of some succeeding system, provision has been made for re=-
entering the correlation matrix which appears as a triangular matrix in
the beam output., (See section under type code 1.0 and/or the Appendix

for definitions,)
There are 16 parameters:

1 - Type code 12.0

2 to 16 - The 15 correlations (r(ij)) among the 6 beam components -

in the order printed (by rows).

Several cards may be used to insert the 15 correlations, if neces-

sary.

Since this element is solely an extension of the beam input, a 12.0

element must immediately be preceded by a 1.0 (BEAM) element entry.

The effect of this element in the printed output is shown only in
the beam matrix. If the beam matrix is printed automatically, it is not
printed directly after the BEAM element but only after the correlation

matrix has been inserted.
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Qutput PRINT CONTROL instructions: Type code 13.0

A number of control codes which transmit output print instructions

to the program have been consolidated into a single type code:
There are two parameters:

1 - Type code 13.0

2 - Code number.

The effects of the various code numbers will be described below (not in

numerical order).

Several codes are available to control various aspects of the printed
output. Most type codes produce a line of output that advertises their
existence. Those that do not, usually have an obvious effect upon the

remainder of the output and thus make their presence clear.

Beam matrix print controls 1., 2., 3.

(13. 1. 3): The current beam (0) matrix is printed by this code.

(13. 3. ;): The beam (0) matrix will be printed after every physi-

cal element which follows this code.

(13. 2. ;): The effect of a previous (13. 3. ;) code is cancelled
and the beam (¢) matrix is printed only when a (13. 1. ;) code is en-
countered or when another (13. 3. ;) code is inserted. The suppression

of the beam matrix is the normal default.

Trans formation matrix print controls 4., 5., 6., 24.

(13. 4. ;): The current transformation matrix R1 (TRANSFORM 1) is
printed by this code. If the program is computing a second-order matrix,
this second-order transformation matrix will be included in the print-out.
This matrix is cumulative from the last R1 (TRANSFORM 1) update. The
units of the elements of the printed matrix are consistent with the input

units associated with the type code 1.0 (BEAM) entry.

(13. 6. 3): The transformation matrix Rl will be printed after
every physical element which follows this code. The second-order matrix
will be printed automatically only if the one-line form (code 13. 19. ;)
of the transformation is selected. The second-order matrix will, however,
be printed at each location of a (13. 4. ;) element. The first-order

matrix will not be repeated.
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(13. 5. ;): The automatic printing of Rl will be suppressed and Rl

will be printed only when subsequently requested.

(13. 24. ;): The TRANSFORM 2 matrix, R2, will be printed by this
code. The format and units of R2 are identical with those of Rl, which
is printed by the (13. 4. ;) code. For a list of elements which update

the R2 matrix, see type code 6.

The units of the tabulated matrix elements in either the first-order
R or sigma matrix or second-order T matrix of a TRANSPORT print-out will
correspond to the units chosen for the BEAM card. For example, the
R(12) = (x/0) matrix element will normally have the dimensions of cm/mr;
and the T(236) = (8/yS8) matrix element will have the dimensions mr/ (cm-

percent Ap/p) and so forth.

Misalignment table print control 8.

The misalignment summary table is printed wherever a (13. 8. 3)
element is inserted. 1Its contents are the effects of all previously
specified misalignments whose results were to be stored in a table. A
full description of the table and its contents is to be found in the

section on the align element (type code 8.).

Coordinate layout control 12.

One can produce a layout of a beam line in any Cartesian coordinate
system one chooses. The coordinates printed represent the x, y, and z
position, and the angles theta, phi, and psi, respectively, of the refe-
rence trajectory at the interface between two elements. Theta is the
angle which the floor projection of the reference trajectory makes with
the floor z axis. Phi is the vertical pitch. Psi is a rotation about
the reference trajectory. In the printed output the values given are
those at the exit of the element listed above and at the entrance of the

element listed immediately below.

A request for a layout is specified by placing a (13. 12. ;) card
before the beam card. If no additional cards are inserted the reference
trajectory of the beam line will be assumed to start at the origin and
proceed along the positive z-axis. The y-axis will point up and the x-
axis to the left. One can also specify other starting coordinates and
orientations by placing certain other cards before the beam card. For a

description of such cards see type code 16.0 (special parameters).
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The calculation of the coordinates is done from the parameters of
the physical elements as given in the data. Therefore, if effective
lengths are given for magnetic elements, the coordinates printed will be
those at the effective field boundary. The effects of fringing fields in

bending magnets are not taken into account.

sl

General output jormar controls 7

[

pat

b~y

‘s ., 15,

(13. 17. ;): The subsequent printing of the physical parameters of
all physical elements will be suppressed. Only the type code and the
label will remain. This element is useful in conjunction with the
(13. 19. ;) element which restricts the beam (0) matrix and the transfor-
mation (R) matrix each to a single row. The elements of these matrices
then appear in uninterrupted columns in the output, similar to the TRAMP

computer code used at the Rutherford Lab, CERN, and elsewhere.

(13. 18. ;): Only varied elements and constraints will be printed.
This element, in conjunction with the various options on the indicator
card, can produce a very abbreviated output. The entire output of a
multistep problem can now easily be printed on a teletype or other

terminal.

(13. 19. ;): The beam (o) and transformation (Rl or R2) matrices,
when printed, will occupy a single line. Only those elements are printed
which will be non-zero if horizontal midplane symmetry is maintained. The
second-order transformation matrix will obviously occupy several lines.
This element, in conjunction with the 13. 17. ; element and either the
13. 3. ; element or the 13. 6. ; element, will produce output in which
the printed matrix elements will occupy single uninterrupted columns.

For visual appearances it is recommended that, if both beam (o) and
transformation matrices are desired, they be printed in separate steps

of a given problem.

(WS}

4

o]

1., 22., 33., 3

., 36.

Cr

Punched output controle 28., 30.,

*2

If the control is equal to 29, all of the terms in the first-order

matrix and the x and y terms of the second-order matrix are punched.

If the control is equal to 30, all of the terms of the first-order

matrix and all second-order matrix elements are punched out.
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If the control, n, is greater than 30, all of the first-order terms
are punched and the second-order matrix elements which correspond to
(n-30.), i.e. if n = 32, the second-order theta matrix elements are
punched out. If n = 31, the second-order x matrix elements are punched,

and so forth.
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ARBITRARY TRANSFORMATION input: Type code 14.0

To allow for the use of empirically determined fringing fields and
other specific (perhaps non-phase-space-conserving) transformations,
provision has been made for reading in an arbitrary transformation

matrix. The first-order 6 X 6 matrix is read in row by row.

There are eight parameters for each row of a first-order matrix

entry:

1 - Type code 14,0

2 to 7 - The six numbers comprising the row. The units must be those
used to print the transfer matrixj; in other words, consistent
with the BEAM input/output,

8 - Row number (1, to 6.)

A complete matrix must be read and applied one row at a time. Rows

that do not differ from the unit transformation need not be read.

For example, (14, -,1 .9 0. 0. 0. 0. 2, ;) introduces a transforma-
tion matrix whose second row is given but which is otherwise a unit matrix.
Note that this transformation does not conserve phase space because

R(22) = 0.9, i.e. the determinant of R # 1.

Any of the components of a row may be varied; however, there are

several restrictions,

Type code 14.0 elements that immediately follow one another will all
be used to form a single transformation matrix. If distinct matrices are
desired, another element must be inserted to separate the type code 14.0
cards. Several do-nothing elements are available; for example, a zero

length drift (3. 0. ;) is a convenient one,.

When the last of a sequence of type code 14.0 cards is read, the

assembled transformation matrix will be printed in the output.
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Note that
1 0 a] a2 aii ayz
#
azy azo 0 1 azi aze
Hence, a matrix formed by successive 14. (3. 0. 3;), l4. - elements

is not always equal to the one formed by leaving out the (3. 0. 3)

element.

If components of a 14.0 card are to be varied it must be the last
14.0 card in its matrix. This will force a matrix to be split into

Al
factors if more than one row has variable components.

If it is desired to read in the second-order matrix coefficients for
.th . o . K%
the 1 row, then the following 22 additional numbers may be read in ).

9 - continuation code O.

10 to 30 - the 21 coefficients:
T(i1l) T(il2) T(i13) T(il4) T(il5) T(ilé)
T(1i22) T(i23) T(i24) T(i25) T(i26) T(i33)
T(134) T(135) T(i36) T(i44) T(i45) T(i46)
T(i55) T(i56) T(i66)

in that order, where i is the row number. It is
necessary to read in the first-order matrix row
which corresponds to the second-order matrix row

being read in.

As in the first-order case, full rows not different from the
identity matrix [i.e., R(ii) = 1, all other R(ij) = 0, and all
T(ijk) = O] need not be read in.

**) This feature frees the user from making repetitive, expensive,
second-order runs through a fixed portion of his system while
experimenting with other magnets. This is done by reading the full
matrix of this portion (obtained from a previous run) back into the
machine as a single "arbitrary matrix."
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Input-output UNITS: Type code 15.0

TRANSPORT is designed with a standard set of units that have been

used throughout this manual. However, to accommodate other units con-

veniently, provision has been made for redefining the units to be

employed.

This is accomplished by insertion of one or more of the follow-

ing elements.

There are four parameters to be specified:

1_
2_
3_

Type code 15.0

Code digit.

The abbreviation of the unit (see examples below).

This will be printed on the output listing. It must be enclosed
in single quotes and is a maximum of three characters long (four
for energy). The format for insertion is the same as for labels.
The scale factor (if needed).

The scale factor is the size of the nmew unit relative to the
standard TRANSPORT unit. For example, if the new unit is inches

and the standard TRANSPORT unit cm, the scale factor is (2.54).
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The various units that may be changed are:

Code Quantit Standard Symbols used in
Digit Lty TRANSPORT Unit SLAC-75
1.0 | horizontal and vertical cm X,y

transverse dimensions,
magnet apertures and mis-

alignment displacements.

2.0 | horizontal and vertical mr 0,0
angles and misalignment

rotation angles

3.0 vertical beam extent cm

A

*
(only) ) and bending
magnet gap height

*

4,0 | vertical beam divergence ) mr ¢
(only)

5.0 | pulsed beam length and cm L

wave length in accelerator
6.0 | momentum spread percent (PC) S

7.0 { bend, pole face rotation, and degrees (DEG)

coordinate layout angles

8.0 length (longitudinal) metres (M) t
of elements, layout co-
ordinates and bending

magnet pole face curvatures

9.0 | magnetic fields kG § B
10.0 mass electron mass m
11.0 momentum and GeV/c p(0)

energy gain in accelerator GeV AE
section

*) These codes should not be used if the coordinate rotation (20.0) type

code is used anywhere in the system.
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Units are not normally restored at the end of a problem step. Once
changed, they remain the same for all succeeding problem steps in an input
deck until a 0 indicator card is encountered, at which time they are re-
set to standard TRANSPORT units. The units may be reset to standard units

by inserting a (15. ;) type code entry.

The 15.0 elements are the first cards in a deck (immediately follow-
ing the title card and the 0 or 1 indicator card) and should not be in-
serted in any other location. They produce no printed output during the
calculation, their effect being visible only in the output from other

elements.

Example: To change length to feet, width to inches, and momentum
to MeV/c, add to the front of the deck the elements

15. 8. ' FT' 0.3048;
15. 1. ' IN' 2.54;
15. 11. 'MEV' 0.001;

The scale factor, 0.3048, multiplies a length expressed in the new unit,

feet, to convert it to the reference unit, metres, etc.

For the conventional units listed below, it is sufficient to stop
with the unit name (the conversion factor is automatically inserted by
the program). If units other than those listed below are desired, then
the unit name and the appropriate conversion factor must be included. If

the automatic feature is used with older versions of the program, there

must be no blank spaces between the quotes and the unit name.
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SPECIAL INPUT PARAMETERS: Type code 16.0

A number of constants are used by the program which do not appear as
parameters in elements of any other type code. A special element has
been provided to allow the designer to set their values. These special
parameter entries must always precede the physical element(s) to which

they apply. Once introduced, they apply to all succeeding elements in

the beam line unless reset to zero or to new values.

There are three parameters:

1 - Type code 16.0

2 - Code digit.

3 - Value of the constant.

A number of such constants have been defined in this manner. All have

a normal value that is initialized at the beginning of each run.

Code digits for spectal parameters

1. €(l) - a second-order measure of magnetic field inhomogeneity in

bending magnets, 1If

) -
B = 3(0) |1 - ) + B2 - J
L (Oo) Po
is the field expansion in the median (y = 0) plane, then
€(l) is defined as
2
1

e(l) = Bﬁ;;)

(where 0oy 1s measured in units of horizontal beam width -
normally cm), This parameter affects second-order calcula-
tions only., Normally the value if 0., It may be varied in

second-order fitting.

3, (M/m)~- Mass of the particles comprising the beam, in units of the
electron massy normally O, A non-zero mass introduces the
dependence of pulse length on velocity, an important effect

in low-energy pulsed beams.

4, W/2 - Horizontal half-aperture of bending magnet, in the same units
as horizontal beam width, normally 0 (i.e. effect of horizontal

half aperture is ignored).
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5. g/2 - Vertical half-aperture of bending magnet, in the same units

6. L
7. K,
8. Ko

as vertical beam height; this parameter must be inserted if
the effect of the spatial extent of the fringing fields upon
transverse focusing is to be taken into account. (See type

codes 2.0 and 4.0 as a cross reference) normally O.

- Cumulative length of system, in the same units as system

length. It is set to zero initially, then increased by the length
of each element, and finally printed at the end of the system.

This element allows the cumulative length to be reset as desired,

An integral related to the extent of the fringing field

of a bending magnet. See section under type code 2.0 and
SLAC-75 page 74 for further explanation.

If the (16. 5. g/2. 3) element has been inserted, the program
inserts a default value of K; = % unless a (16, 7. Ki. 3)
element is introduced, in which case the program uses the K;

value selected by the user, The table below shows typical

values for various types of magnet designs.

- A second integral related to the extent of the fringing

field. Default value of K, = 0 unless specified by a

(16. 8. K. ;) entry.

Typical values of K, and Ky are given below for four types

of fringing field boundaries:

a)
b)
c)

d)

a linear drop-off of the field,
a clamped '"Rogowski" fringing field,
an unclamped "Rogowski' fringing field,

a "square-edged" non-saturating magnet
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Model K, Kz*)
Linear 1/6 3.8
Clamped Rogowski 0.4 4.4
Unclamped Rogowski 0.7 4.4
Square-edged magnet 0.45 2.8
12, 1/R; - Where R; is the radius of curvature (in units of longitudinal

length, normally metres) of the entrance face of bending magnets.

(See figure on p.

13. 1/R2 ~Where R; is the radius of curvature (in units of longitudinal
length, normally metres) of the exit face of bending magnets,

(See figure on p.

The pole face curvatures (1/Ri) and (1/R:2) affect the system only in
second-order, creating an effective sextupole component in the neighbourhood
of the magnet. If the parameters are not specified, they are assumed to be
zero, i,e, no curvature and hence no sextupole component. Either parameter

(or both) may be varied in second-order fitting.

*) For most applications K; is unimportant, If you find it is
important to your result you should probably be making a more
accurate calculation with a ray-tracing program (see References
at the end of the manual,)
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Ttlt-to-focal plane (16. 15. «a. ;) element

Very often it is desired to have a listing of the second-order
aberrations along the focal plane of a system rather than perpendicular
to the optic axis, i.e. along the x coordinate. If the focal plane makes
an angle a with respect to the x axis (measured clockwise) then
provision has been made to rotate to this focal plane and print out

the second-order aberrations. This is achieved by the following pro-

cedures:

Alpha is the focal-plane tilt angle (in degrees) measured from the

perpendicular to the optic axis (a is normally zero).

The programming procedure for a tilt in the x(bend)-plane (rotation

about y axis) 1is:

16. 15. a.

3. 0. ; (a necessary do-nothing element)
13. 4.

16. 15. -a. ; (rotate back to zero)

3. 0. (a necessary do-nothing element)

16. 15. 0. ; (to turn off rotation element)
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The programming procedure for a tilt in the y-plane (rotation about

x—-axis) 1s:

16. 15. o. ;

20. 90.
3 0. 3
20. -90.
13. 4.
16. 15. =-o. 3 (rotate back to zero)
3 0.

16. 15. 0. ; (to turn off rotation element)
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Inttial beam line coordinates and direction

When requesting a beam line coordinate layout via a (13. 12. ;)
element one can employ any coordinate system one desires. The position
and direction of the beginning of the reference trajectory in this
coordinate system are given on elements 16. 16. through 16. 20. Such

cards should be placed before the beam card, but after any units changes.

Their meanings are as follows:

16. 16. Xg, Yo, and zg, respectively, the coordinates of

16. 17. the initial point of the reference trajectory

16. 18. in the units chosen for longitudinal length,

16. 19. B89 and ¢o the initial horizontal and vertical angles
16. 20. of the reference trajectory in degrees.

When specifying the initial orientation of the reference trajectory
via the two angles, one must give the horizontal angle first. The
meaning of the two angles is given in the following figure. Any of the

above five parameters not explicitly specified will be taken to equal

zZero.

The initial coordinates may be varied in first-order fitting. Their
values will affect only the beam line floor coordinates and not any beam

or transfer matrix element.
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REFERENCE
TRAJECTORY

\

SPECIFICATION OF INITIAL ANGLES ©¢ AND ¢p FOR BEAM LINE LAYOUT.



- 110 -

SECOND-ORDER CALCULATION: Type code 17.0

A second-order calculation may be obtained provided no alignments are
employed. A special element instructs the program to calculate the second-
order matrix elements. It must be inserted immediately following the beam

(1. element).
Only one parameter should be specified:

1 - Type code 17.0 (signifying a second-order calculation is to be

made).

To print out the second order Tl matrix terms at a given location in
the system, the (13. 4. ;) print control card is used., For T2, the
(13. 24. 3) print control card is used. The update rules are the same
as those for the corresponding first-order R matrix. See SLAC-75 for

definitions of subscripts in the second order T(ijk) matrix elements.

The values of the BEAM (sigma) matrix components may be perturbed
from their first-order value by the second-order aberrations. In a
second~order TRANSPORT calculation, the initial beam is assumed to have
a Gaussian distribution. For exact details the reader should consult
the Appendix. For the beam matrix to be calculated correctly, there
should be no elements which update the R2 matrix. If a centroid shift is
present, it must immediately follow the beam (type code 1.0) or beam

rotated ellipse (type code 12.0) card.

Only second-order fitting may be done in a second-order run. See
the section on type code 10.0 for a list of quantities that may be con-
strained in a second-order run. If a beam constraint is to be imposed in

second-order, there must be no centroid shifts present anywhere.

Second-order matrices are included in the program for quadrupoles,
bending magnets (including fringing fields), the arbitrary matrix, sex-
tupoles, and solenoids. They have not been calculated for the accelera-

tion (type code 11.0) element.
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SEXTUPOLE: Type code 18.0

Sextupole (hexapole) magnets are used to modify second-order aber-
rations in beam transport systems. The action of a sextupole on beam
particles is a second and higher order effect, so in first order rums

(absence of the 17.0 card) this element will act as a drift space.

There are four parameters:

1
2

Type code 18.0

Effective length (metres).
3 - Field at pole tips (kG). Both positive and negative
fields are possible (see figures below).

4

Half-aperture (cm). Radius of circle tangent to pole tips.

Other orientations of the sextupole may be obtained using the beam

rotation element (type code 20.0).

The pole tip field may be varied in second-order fitting. It may
also be constrained not to exceed a certain specified maximum field.
(See the explanation of vary codes in the section on type code 10.0).
Such a constraint allows one to take into account the physical realities

of limitations on pole tip fields.

See SLAC-75 for a tabulation of sextupole matrix elements. The

TRANSPORT input format for a typical data set is:

F—— Label if desired (not to exceed
1 4 spaces)
18. L. b. a. 5
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SOLENOID: Type code 19.0

The solenoid is most often used as a focusing element in systems
passing low-energy particles. Particles in a solenoidal field travel
along helical trajectories. The solenoid fringing field effects neces-

sary to produce the focusing are included.
There are three parameters:

1 - Type code 19.0

2 - Effective length of the solenoid (metres).
3 - The field (kG). A positive field, by convention, points in the

direction of positive z for positively charged particles.

The length and the field may be varied in first-order fitting. Both

first- and second-order matrix calculations are available for the solenoid.

A typical input format is:

F—————— Label if desired (not to exceed
4 spaces)
19. L. B. '
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First-order solenoid matrix

Solenoid R matrix

Definitions: L effective length of solenoid

K = B(0)/(2Bpy), where B(0) is the field inside the
solenoid and (BQO) is the (momentum) of the central

trajectory.
C = cos KL
S = sin KL

For a derivation of this tranformation see report SLAC-4 by
R. Helm.

Alternate forms of matrix representation of the solenoid:

o2 1 1.2 A
C SC sC S 0 0
-KSC c? -KS? sC 0 0
-sC —-%sz c? %sc 0 0
R(Solenoid) =
Ks? -SC -KSC c? 0 0
0 0 0 0 1 0
0 0 0 0 0 L
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Rotating the transverse coordinates about the z axis by an angle

= -KL decouples the x and y first-order terms, i.e.

-
C 1g 0 o |o 0\
K
-KS 0 0 0 0
1
0 0 C ES 0 0
R(-KL) ° R(Solenoid) =
0 0 -KS 0 0
0 0 0 0 1 0
(0 0 0 o o [1)
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COORDINATE ROTATION: Type code 20.0

The transverse coordinates x and y may be rotated through an angle o
about the z axis (the axis tangent to the central trajectory at the point
in question)**). Thus a rotated bending magnet, quadrupole, or sextupole
may be inserted into a beam transport system by preceding and following
the element with the appropriate coordinate rotation. (See examples

below.) The positive sense of rotation is clockwise about the positive

z axis.
There are two parameters to be specified for a coordinate rotation:

1 - Iype code 20.0 (signifying a beam coordinate rotation).

2 - The angle of rotation o (degrees),

The angle of rotation may be varied in a first-order fitting (see

type code 10.0),

Note

This transformation assumes that the units of (x and y) and (6 and ¢)
are the same, This is always true unless a 15.0 3.0 or a 15.0 4.0 type

code has been used.

*%) See SLAC—7SH), page 45 and Fig. 4, page 12 for definitions of x, vy,
and z coordinates,
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Examples:

For a bending magnet, the beam rotation matrix may be used to

specify a rotated magnet.

Example No. 1

A bend up is represented by rotating the x, y coordinates by -90.0

degrees as follows:

{—————- Labels (not to exceed 4 spaces) if desired

20. -90. ' '

2. B(L. "t

4 L. B. n Y

2. B(2y. " ' oy

20. +90. ' ' 3 (returns coordinates to their initial

orientation)

A bend down is accomplished via a +90 degree rotation.

20. +90. ' '
2.
4.
2.
20, -90. ' '

A bend to the left (looking in the direction of beam travel) is
accomplished by rotating the x, y coordinates by 180 degrees, e.g.
20. 180. ' '
2.
4.
2.
20. -180. ' '
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Example No. 2

A quadrupole rotated clockwise by 60 degrees about the positive z

axis would be specified as follows:

20. 60. vy
5. L. B. a. ' '
20. -60. ' '

N Y/

where C = cos Q,
S = sin d,
0 = angle of coordinate rotation about the beam axis,

blank spaces are zeros.
e.g. for a = +90 degrees, this matrix interchanges rows 1 and 2 with

3 and 4 of the accumulated R matrix as follows:
0 0 1 o0 R(11) R(12) R(13) R(14) R(31) R(32) R(33) R(34)
0 0 0 1 R(21) R(22) R(23) R(24) R(41) R(42) R(43) R(44)

=1 0 0 O] [R(31) R(32) R(33) R(34) -R(11) -R(12) -R(13) -R(14)

._9 -1 0 _QJ _5541) R(42) R(43) R({il _:F(Zl) -R(22) -R(23) —R(Zil

(The rest of the matrix is unchanged.)
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STRAY MAGNETIC FIELD: Type code 21.0

1 - Element No. 21.0

2 - Code No. n. n 4: horizontal deflection

n = 2: vertical deflection.

<BL> mean value of Ide.

w
1

4 -+ < o BL> +: Gaussian random number generator;
affects beam first moment.
-: uncertainty in jﬁdz - affects beam

second moment.

Uses the misalignment element (8.) to calculate an angular deflection

Bdz

equal to (—BFB—

This type code is not functioning in the present version of the

program.
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SENTINEL

Each step of every problem in a TRANSPORT data set must be terminated
with the word SENTINEL. The word SENTINEL need not be on a separate card.
For a description of the form of a TRANSPORT data set see the section on

input format.

An entire run, consisting of one or several problems, is indicated

by an additional card containing the word SENTINEL. Thus, at the end of

the entire data set the word SENTINEL will appear twice.
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APPENDIX

Introduction

This appendix has been included as an addition to the manusl in an
attempt to better acquaint the user with 'what TRANSPORT does', and with the
notation and mathematical formalism used in a8 TRANSPORT calculation.

The first section (Beam Transport Optics - Part I and Part II) is =
rewrite of two lectures given to members of the SLAC technical staff on the
elementary matrix algebra of optics. We include them here for the benefit of
the new user who may need a brief refresher course on charged particle optics
and/or has & need to become familiar with TRANSPORT notation. The new user
should also acquaint himself with the contents of the books and other publications
listed under 'references' at the end of the manual. References 1 and 2 are
essential if the user is to obtain the maximum value from TRANSPORT.

The second section of this appendix was written to introduce the mathe-
matical formalism of the first-order R matrix and Sigma matrix (phase ellipsoid)
beam optics used in a TRANSPORT calculation and to correlate this with the
printed output.

Section three discusses second-order calculations and, in particular, a
procedure for calculating the "Sextupole" strengths required to minimize and/or
eliminate second-order aberrations in a beam transport system.

Section four is a brief derivation of the mathemstical formalism used by
TRANSPORT for calculating magnet alignment tolerances.

Section five deals with the first-order parameter optimization code of
TRANSPORT and includes a brief explaration of the covariance matrix that is

printed after each first-order fit routine.
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BEAM TRANSPORT OPTICS
Section T

Beam Trancport Opties - Pert I

(K. L. Brown)

1. Introduction

A convenient starting point for this lecture is the equation relating

the magnetic rigidity of a particle (Bp ) to the particle momentum P

10°
Bp = P or Bp = 33.356 P
2.99793
where
B is in kilogauss
p is the bending radius in meters
P is the particle's momentum in BeV/c.

A note of caution: When using this equation for a TRANSPORT calculation,
it is necessary to use at least 5 significant figures for the constant to

avoid round«off errors in the reasiout.

2. Geometric Light Optics vs. Magnetic Optics

To relate geometrical light optics to charged particle optics, we
begin vith the thin lens. Figure 1 shows a thin lens with a ray leaving
a focal point A at an angle 9(), impinging on the lens at X, - As the
rey leaves the lens, it is at xl and going toward a focal point B at an

angle of ©
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61

7\‘

Figure 1

Thin lens optics says that 1/p + l/q = l/f . Using this equation it is
readily verified that the matrix transformation for the lens action between

principal planes is

The transformation for a drift distance L is

x5
2

Figure 2

r&l 1 L xo
e1 0 t eo

Note thest the determinant of the metrix in both examples is equal to
unity. This is always the case as will be proved formally later. That this
is so is a manifestation of Liocuville's theorem of conservation of phase

space area,
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Consider now a thick lens, as illustrated in Figure 3.

Figure 3

If Ll is the object distance to the face of the lens and L2 is the

corresponding image distance, then, in general,

a
1/Ll + 1/L2 1/t .

If, however, we introduce two planes P and P2 located at a distance
1
2 and z from the entrance and exit faces of the lens, it is always
1

2
possible to find a z1 and a 22 such that the equation
1/p + 1/q = 1/f 1is valid.

where

When this is so, P1 and P2 are called the principal planes of the lens.

Now, relating the above statement to matrix formalism, the matrix
transformation for a thick lens between the input and output faces of the

lens has the general form:



X R R X
1 11 1z o]
= (1)
6 R R ; 2]
1 21 22| o)
-— -— — -— —
is not

where as before the det R =1 . For a general transformation, Rle

necessarily equal to 0O and Rll and R22 are not necessarily equal to 1

The principal planes may oe located by the transformation

— - - - - - - -
R R 1 2 i 1 0 1 z

11 1z 2 1

= (@)
0 -1/f 0
-ﬁ21 Rzg- B 1 /£ 1 1._-J
Using the relation
1 Z 1 -2 1 0
= = 1 (the unit matrix)
0 1}1]0 1 0] 1

R 2280, [_l -z 11 12 L "2y 1 0
Rll-z R21 -22(R22-21R21) = I = (3)
' i
R, | R,-z,R Lo 1 | R, R| |0 1 -1/t 1
~— — At

Solving for z, and z,, we find

R -1
22
zl T em——
R21
Ry, - 1
z o ————
2 R
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where z1 and 22 are the location of the principal planes as shown in

Fig. 3. The principal planes of any system may be determined by this method.

Note that R21 = -l/f is not affected by the transformation and that
the upper right hand matrix element is zero if det R =1 . The principal
planes may coincide, may be close together, be far apart; or in many systems,
may be located external to all of the elements comprising the system. An

example of the latter case is a quadrupole psir.

Some examples of principal plane locations for simple systems follow:

A quadrupole singlet:

Figure &

The principal planes in a single guadrupole are located very close
to each other and very near the center of the lens. As such, a quadrupole
singlet msy be considered as a thin lens if the object and image distances
are measured to the center of the lens.

A simple uniform-field Pl P2
vedge magnet:

Figure 5
If the optic axis enters and exits perpendicularly to the pole boundary,

the principasl planes are at the "center" of the magnet, as shown in Figure 5.
From this, we conclude that a simple wedge bending magnet may be considered
as a "thin" lens if the object and image distances are measured to the lens

center O .,
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A quedrupole pailr:

defocusing focusing

p )’ — 3
A 4\ /' <;V;> /r B M<1l
(-) (+) P, P,
> plane Figure 6
focusing defocusing
VA AN
i Y
A X B M>1
P, P, (+) (=)
Y _plane Figure 7

For a quadrupole pair, the principal planes are displaced toward and,

usually, beyond the focusing element of the pair, as shown in Figures € and 7.

For any lens system, no metter how many elements are invclved

object image

k P — « —
Figure 8 Py P,
1/p + 1/a = 1/f , if p and q are distances measured to the principal

planes. Then the magnification between object and image planes is M = q/p .

Since the quadrupole pair is different in the two planes, (x) and (y),
both situations must be examined. The interesting result turns out to be
that in the x plane, the principal planes are to the right (Figure 6) and
in the y plane, they are to the left (Figure 7). Therefore, in the y plane
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the magnification is greater than 1, and in the x plane the magnification

is less than 1. Typically, for a quadrupole pair the ratio of

M /MX

may be as high as 20:1 and such cases can be disastrous if not recognized
beforehand. This is a first-order image distortion. For example, if the
source is a circular spot at A , the image at B will appear as 8 long

thin line.

The situation is different for the

Quadrupole triplet:

- = x|
S\ I VA

\ \
x_plane Figure 9

k=, T-”sy —

O\ 3
/NN AV Vi

Y_plsne Figure 10
In the symmetric triplet, as shown in Figures 9 and 10, the principal
planes are located symmetrically about the center of the system, although

z, > zy . This is, perhaps, the dominant reason why quadrupole triplets
are used. The magnificatlon is approximately equal in both planes; con-
sequently, a circular spot can be imaged through the éystem with much less
first-order image distortion than is the case for the doublet.
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3. Introduction of MQE?EEBW Diggizgion into the Matrix Formalism

The foregoing discussion and exauples dealt only with monoeneregetic
first-order effects. First-order dispersion may be taken into account bty
introducing & 3 X 3 matrix as follows:

Consider two particles of momentum pO and Po + &p rassing through

the midplane of a static magnetic field, as illustrated in Flgure 11.

]

Figure 11

Since the scalar momentum of a particle is constant in a stetic magnetic

field, the transport equation froam A to B may be expressed as:

—_— - — - - -
’& Byp f Bpp | 4 )
?
b0 [=|Ba | Rp | @ %
] 0 0 1 b
. JB L L _la
where
5 =29/,
d = the spatial morentum dispersion
a' = the derivative of the dispersion (the angular
manentum disparsion)
and 1l = a carrying term to generate a square matrix and

denote a constant momentum.
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The determinant of the matrix ]R! is equal to 1 as for the 2 x 2
matrix. However, because of the zeros in the bottom row, the fact that
IR' = (R,_ R_-R__R_) = 1 only checks the 2 X 2 matrix and not the

11 " 22 21

12
terms containing 4 and 4!

Consider now a general system from an object point A to an image point

*1=0 for all ©
(o]
B

Figure 12

The above matrix equation is still valid for midplane trajectories.
If A is a source point and if R,,=0 (i.e., x is independent of 60),
then B 1s an image point for monoenergetic particles.

Under these circumstances:

R11 = Mx is the X plane megnification
R =+ l/M because det R =1
22 X
and R_=-1/f
21 x
In fact, Rzl = - l/fX for the system between A and B , even if

A and B are not foci.

It is now convenient to develop a more general definition of the matrix
elements Rij and, at the same time, introduce the first-order matrix
transformation for the y(non-bend) plane. Consider, again, a general system
where the projection of the central trajectory is allowed to bend. in the
X plane but 1s a straight line in the y plane. The x plane and y plane matrix

transformations may be written as follows:
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For the x plane x1 =R_x

x o
/ /
x cx\t) sx(t) dx\t) X
', ' '
or 91 = Cx=,t) Sx\t) dx\ t) 60
é 0 0 1 é

Similarly, for the y plane, y =R yo

1 M
A EEOREECIREA
or =1 1
o | o) | o) | e,

The ¢ and s functions may be defirned in terms of their initial conditioas.

Let T be the distance measured along the

T
A( 1=0)
Figure 13
central trajectory. Then:
s(0) =0 S'(O) =1 where si(T) = ggéll
o) =1 ¢ (0) =0 e (1) = dg_r" = -%

Within an "ideal" magnet, where the bendiug radius P, is constant, s and

¢ are sine and cosine or else sinh and cosh functions. Because of
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this, the terminoclogy s = a sine-like function and c¢ = a cosine-like
function has been adopted for describing the general case where P, = po(-r)
is a function of T.

By analogy with previous discussions, we observe that whenever s{T) = 0,
we are at an image of point A. Also, c(T) at the position where s(T) = O

is the magnification of point A at that image.

e'(t) = - l/f where f 1is the focal length of the system between A
and B. The dispersion dX may be derived from the general differential
equations of motion of & charged particle in a static magnetic field.(l)
The results may always be expressed as a function of Sy and c, as
follows:

t t
a,(t) = 5 (%) 5[ e, (T)aor - cx(t)of s (7)o
and
t t
d}'{(t) = s}'{(t) o’/ cx('r)da - c}'((t) o'[ sX(T)da
where
dr
W=

is the differential angle of bend of the central trajectory. At an image
point ‘:s(t) = 0:] note that

t
a(t) = - c(t)of s(T)der

This approach to the problem may be generzlized to include all of the

second-order aberrations of & system. When this is done, it is always

(1) See SIAC-75 for a derivation of these equations.
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Bossible to express these aberrations as functions of the first-order

matrix elements c_, s, d_, ¢ and s
x’ x7 x’ Ty N

Having developed the above physical concepts and mathematical tools,
we are now in a position to study more complicated systems. As an example,

we consider the general system shown in Figure 1k,

Ll I‘2 L3 Lu
2 i |—o~ o

njg
o

Figure 1k

=
I

drift elements

magnetic elements

The matrix formalism states that in the x plane, the transformation

from A tc B 1is given by the following matrix equation.

x1 Xs
¢ = R_. R R R R._ R R._|o®
1 L4 2 L:5 ql LZ 1 LL o
b b
- b -

As in all matrix calculations, the order of writing down the elements
comprising the system is from right to left, The individual matrix elements
must be derived from the solution of the equation of motion within each element.
If this has been done, then the calculation for the total system is carried

out in the fashion shown by the above equation.

4, Second-Order Matrix Formalism (1)

It 1is possible to exténd the 3 X 3 matrix formalism to solve simul-

taneous sets of power series by generating a second-order matrix equation
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as follows:
b'd 3 x3 second -order xo
1 first-order terms terms
“R 17"

01 1 90

é é

2 = 2

xl xo

11 zero ng@n X
x1Q1 & 1 065
all other
X 8 x & order
1 ? terms
S, ] - —— S —

The "Ri" term is obtained by squaring the upper left cormer (3 X 3)
matrix so as to obtain second-order equations for xf ’ lel 3 xld , etec.,
as functions of products of the initial first-order variables X 00, and § .
This 1s, then, & convenient mathematical formalism for keeping all the
terms desired and dropping those undesired. In the sbove exanple, all first-
and second-order terms are retained and all higher-order terms are automatically

dropped by the matrix multiplication.

5. Transformations Involving Many Trajectories

All of the discussion to this point relates to the transformation of
a single trajectory (in addition to the central trajectory) through a static
magnetic system. We wish now to extend the discussion to include "bundles"
of rays. To accomplish this, we take advantage of Liouville's Theorem, which
states that the "phase space" is conserved through the system. While the

Theorem is strictly true to all orders, & convenient mathematical transformation
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Theorem is the fact that [R| =1 .

A manifestation of Liouville's

Now, so long as there is no coupling mechanism between the x plane

and y plane of 2 magnetic-optical system (which is thre case if the midplane

symmetry prevails throughout the system) then, the phace space area in a

given plane is also conserved. Consider a bundle of rays represented by

the parallelogram, shown
distribution of the rays
phase space distribution
we observe the the ©

max
In other words, the area

has been conserved."

8
o

in Figure 15(a), representing the phase space

at some initial position.

If we now look at the

of the same bundle after it has drifted down stream,

boundary and the x intercept x5 remain unchanged..

of the parallelogram is the same or "phase space ares

(a)

nax

Figure 15

(v}

For mathematical convenience, the parallelogram is rather difficult

to work with and, hence, a phase ellipse is usually used.

8
[¢]

2

[

i

Figure 16

o

~
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The phase ellipse transformation for & drift distance is illustrated
in Figure 16, Figure 16(a) corresponds to a beam which is at its minimum
width (a "waist") and Figure 16(b) shows the same beam after it has drifted
downstream from the waist position, The physical meaning of this is that
particles entering at © = 0 are parallel to the optic axis and, therefore,
cannot change their relative positions with respect to the optic axis; that
is, all particles on the X, axis act in this manner. Those that enter

at a given angle continue at the same angle.

The phase ellipse transformation for a thin lens is illustrated in
Figure 17. In passing throygh a thin lens, © changes and the x dimension
remains constant for a given trajectory.

e

[o}

after lens action

before lens action

(o]
C-LL& -Enﬁ}s
\: N T

3,3 2 c!

Figure 17

Stated in other terms, X oax remains constant, as does Gi (the ©

intercept). It is apparent, in the given example, that the spot size
now becomes, or can become, smaller at the new image because gmax is larger.
This can be related to the physics of the system by saying that the x
magnification is less than unity. This fact is observed directly by comparison
of the x intercept of the ellipse before and after the lens action. It is
interesting to observe that a particle initially at ¢ 1is transformed to
¢' and that particles entering at x = O do not change their direction
(9i is constant). If the particles are now allowed to drift, the ellipse
rotates clockwise; when the ellipse if vertical, the spot size is at a

minimum, namely, Xax = Xy » 85 was 1llustrated in Figure 16.
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Beam Transport Optics - Part TII
(K. L. Brown)

1. Introduction
In Part I, the basic concepts of bean transport op-ics were established.

Starting from the essentials of geometric optics, the methods of matrix

algebra vwere introduced with the example of calculating the principal planes

of a thick lens. The 3 X 3 matrix for the first- order beax transport

calculations were introduced to take into account the particle momenta.

2. First Order Transforuwation Matrix

Figure 1 shows a general region containing & magnetic field.

Central
Ray

Figure 1: General Magnetic Field Configuration

The matrix presents a convenient way of writing the family of equa -
tions which describe the transformation from surface A to surface B, If
Xos Q}and ® represent the conditions of a ray entering the system at A,
then the conditions of the ray at B are X, Oland 5., Here xo is the
distance from the central ray to the ray C, 90 is the angle between C and
the parallel to the central ray and % is the ratio Ap/p where &p is the

difference between the momentum of C and the momentum of the central ray.
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The linear transformation equations are:

X TOX, * 5B 4B
61 = c)'(xo + s 90 + d;b
8=0+0+ 5
Expressed as a matrix, Eq. (1) are:
r¥l—1 P;x sx d;fq r.x;—
61 = c! s d; 90
_5..4 _(.) © l_ L.5_4

The equation & = 3 expresses the fact that the magnetic field cannot

change the scalar momentum of the particle. The & terms in the x and ©

equations express the momentum dispersion of the system.

If it happens that A is an object point and B is an image point of

0.

the system, then xlis independent of eo, thus Sy = In this case, Cy

is given by ce = xl/xo = Mx = the magnification in x plane, (ford = 0).

c! x

if © % = 0, then © -x /f or c!=-1/f. It must always
(o] X ©0 o] X

1
be true that the determinant of the matrix |R|, is unity. Thus for this
special case of s =0, it follows that s! = l/Mx.

3. Beam Switchyard

As an example of a system which can be calculated with the matrix
method, we next consider the beam switchyard of the two-mile accelerator.
Figure 2 shows the three essential elements, two bending magnets and a
quadrupole lens. In common with many beam transport systems, this one is
designed to be achromatic, Mathematically, this means that the matrix
elements, dx and d; should be zero, so that there is no x or 8 dependence

on the momentum of the particles.

(1)

(2)
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f L
X—E po +4 3
AA M2
iu VLT
Po o Po
i L L J

Figure 2: The Essentials of the Beam Switchyard

As a preliminary step, we will find the matrix expression for a bending

magnet when measured from the principal planes. The matrix for a bending

magnet, when measured from the ends of the poles, is given by:

s l-c
Rbend = i (3)
0 1

where ¢ = cos @ and s = sin @ and @ is the deflection angle of the central

ray. This expression has been normalized bty setting the bending radius

equal to unity. To restore ordinary units it is only necessary to insert

the bending radius wherever & length is needed dimensionally. In this

case, the matrix then becomes

c ps p(1-c)

Rbend = -s/p ¢ s (%)

0 0 1l

If the distance from the entrance plane to the first principal plane

is Z; and the distance from the second principal plane to the exit plane

is z

2, we can find the values zl and 22 by solving the following matrix
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equation:
1 -z, O s 1l-c 1 -z, O 1 0 a,
0 1 0 c s 0 1 ol=1{1/¢ 1 a (5)
o 0 1 0 1 o 0o 1 0 0o 1

The matrix multiplication need only be done for the 2 X 2 matrices
as outlined. To illustrate matrix multiplication the indicated operations

will be given below in natural stages as follows:

| 25 c | -cz; + s 1 | 6—
I 1] |-s | sz, + c ) -l/fl 1

-

—_— — _—
c + 2,8 -czl + s [:jl 0
+52122 - cz, -l/f 1

-

—
1

0
S

-S +s52Z + o] (6)
S —

Note that these transformations do not change the focal length expression,
-l/f = -s. In order for two matrices to be equal, each individual element

must be equal to its counterpart in the other matrix. Thus we have

c + z2_s
1

1]
|
N
)
S

which when solved for zl end z yield
2

2, = (1-c)/s and z, = (1-c¢)/s

If we substitute the trigonometric equivalents, and apply standard identities,
we have Zp =2y = tan (a/2) which can be seen from Figure 3 to indicate that
the two principal planes are coincident with the symmetry plane in the middle

of the magnet.



Figure 3: The Principal Planes of a Simple Bending Magnet are

Coincident with the Center Plane

The simplified matrix for a bending magnet measured to the principal
planes is then:

r- 1 0 0
Rbend =] -s 1] ¢ (8)
0 0 1

To calculate the transformation matrix for the entire Beam Switchyard
system as shown in Fig. 2, we write the matrices in opposite order from that
in which the beam passes through the elements. That this must be true can

be seen from the way in which one element alone is calculated by

X X
1 0]

o, | =R, | oo (9)
é é

x2 Xl X
] = 8 =

R R, 1 RgRl eo (10)
é é é

and so forth.
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If we sllow the system to be symmetrical, i.e. s, = s, end L1=L2 ;
the ccmplete series of matrices for Fig. 2 are
1 {Oojo}j1JL{oO 1 Jjojoft1tL)otl1r{oto
Rpoy =| -s(1]s||of1]o0 -i/ffifoljof1lol|-s|1s (11)
O {0]1]]0]0]1 O JojijJofol1ljo {01

We will show the step-by-step multiplication of the matrices to get
t
the dx and dx terms.

1 |L 0 1 0 6] 1-sL L |Ls
RBSY =} -s|1l-sL |s 1/efrlol|-s s
0 1]0 1 0 0 1;1 0 011
—_ —
(12
£ L L
L L(Z—E) LS(2-?)
-LS(Z-E)
Lo 9]0 L
Rpgy = |(Ls-1) 254?(1-Ls)J s(1-Ls) (2-3) (12)
-Ls(2-Z)
T
0] 0 1
L .
To obtein the required condition that dy = di = 0, we set
2 <
( - ?) =0 or f= 5
then
- '
-1 0 o]
Rpsy = |- £ (1-Ls)| -1 | o (13)
0] 0 1
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Thus the quadrupole act:c as a lens to refocus rays from the center of
the first bending magnet to the center of the last one. For the serious
student, it is a worthwhile exercise to dc the BSY problem without the

simplification which resulted from introducing the principal planes.

4, TRANSPORT

As an aid to solving beam transport problems, a computer program
TRANSPORT has been developed at SIAC which takes the greatest amount of
labor out of this wopk. The program operates in about the way as the BSY
example above was calculated, but with some important exceptions. Most

importantly:

1. TRANSPORT has the ability to find the best first-order solution
given a certain set of constraints;

2. TRANSPORT also calculates the transformation of a whole family
of rays as found in a beam by means of the concept of '"phase space" which
was introduced in Part I;

3. TRANSPORT can, as an option, calculate the second order effects
on the beam. By second order is meant, for example, terms which depend not

linearly on the displacement X5 but on xi

or Xo eo , ete.
To aid in the discussion of TRANSPORT and of the second order terms
we now introduce an abbreviated notation. By writing out the complete equations

for x and y , to second order, we will adequately have displayed the new

notation.
x = (x|x0)xO + (xl@o)eo + (x| 8)8

2y, 2
+
(XIXO)XO + (Xlxoeo)xoeo + (x|x05)x05

(14)
2 92 ’ 2 2
+(x|90) ot (x|905)eos + (x|82)8
p=4 2 2 2
+(x|yo)yo + (x|y0®o)yo®o + (x|®o)¢o
v, = Wy + (v]e )0,
+ .
(ththb+(”xfohﬁo+(yw&omﬁb (15)

+(y|60®0)90®o + (y|yoa)yos + (y|5oo)a¢o
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The abscence of certain terms which might otherwise be expected in
Egs. (1L) and (1%) is due to the fact that horizontal mid-plane symmetry
has been assumed in the derivation. That is, the field on the horizontal
mid-plane is normal to the plane. Thus there can be no (y|x) or (y|g) term.
Similarly, there can only be even powers of y and ¢ , such as (x,yi) and
(x'yod%), in the x equation. Also, note that there is no (y|3) or (y15°) term
if there is mid-plane symmetry.
TRANSPORT uses a numerical notation to signify the six basic coordinates:
xgyd)*ﬂ& (16)
1 2 3 4 5 6
The £ term has not been introduced here before. Its significance is the
preservation of the bunch length of a beam such as the SIAC electron beam.
The first order output from TRANSPORT is a 6 X 6 matrix printout of the
R matrix where the labels are implied by row and column position of the elements.
For example the element appearing at the intersection of row 3 and column 4
is the coefficient (qu%) ete.

The second order terms are labelled by the convention indicated in Egs.
(14), (15) and (16). For example, (xlxi) becomes 1 11 and (x|665) becomes
1 26.

5. Second Order Matrix

Normally the matrix method is expected only to apply to the solution
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of linear, i.e. first order, equations. However, the method
has been extended to include second order terms as discussed
in Part I.
For a more extensive discussion of the second-order matrix

formalism, the reader is referred to SLAC report number 75 by

K.L. Brown.
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FIRST-ORDER R MATRIX FORMALISM FOR TRANSPORT
Section II

Bean transport optics may be reduced to a process of matrix multiplica-
tion(1,2). To first-order, this is represented by the matrix equation (using the

notation of SLAC-75).

x(t) = D B x(0) (1)

where
x =x x2=0 X=Y x),=¢ x5=l and x6=6

The determinant [RI = 1. This is a direct consequence of the basic equation of
motion for a charged perticle in a static magnetic field and is a manifestation of
Liouville's theorem of conservation of phase space volume. (See SLAC-75, page 41
for a proof that |R] = 1.)

For static magnetic systems possessing midplane symmetry, the six simul-

taneous linear equations represented by Eq. (1) may be expanded in matrix form as

follows:
x(t) Ry [Ryp | © 0 0 |Rg Eco‘
6(t) Ry [Ryp | O | O O |Rygi |6,
y(t) i 0 0 R33 R3LL 0 0 Yo
o(t) O 10 IRy3|Byy | O] O |[e
£(t) Ry [Rsp [ O 1O |1 Rsg £,
_d.(t)_ _o o folo |o lJ _604 (2)
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where the transformation is from an initial position T = O to & final position
T = t measured along the assumed central reference trajectory.

Thus at any specified position in a system, an arbitrary charged particle
is represented by a vector (single column matrix), X, whose componehts are the

positions, angles, and momentum of the particle with respect to a specified reference

trajectory.
[ x
6
Y
i.e. X =
@
8
.
where:

x = the radial displacement of the arbitrary ray with respect to the
assumed central trajectory.

6 = the angle this ray mskes in the radial plane with respect to the
assumed central trajectory.

¥y = the transverse displacement of the ray with respect to the assumed
central trajectory.

¢ = the transverse angle of the ray with respect to the assumed central
trajectory.

{ = the prath length difference between the arbitrary ray and the central
trajectory.

é= AP/P is the fractional momentum deviation of the ray from the assumed

central trajectory.
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The magnetic lens is represented by the square matrix, R, which describes
the action of the magnet on the particle coordinates. Thus the passage of a charged

particle through the system may be represented by the matrix equation:
X(1) = R X(0) (3)

where X(0) is the initial coordinate vector and X(1) is the final coordinate vector
of the particle under consideration; R is the transformation matrix for all such
particles traversing the system (one particle differing from another only by its
initial coordinate vector X{0)).

The traversing of several magnets and interspersing drift spaces is des-
cribed by the same basic equation but with R now being the product matrix R = R(n)...
R(3)R(2)R(1) of the individual matrices of the system elements. TRANSPORT calculates
and tabulates the product matrix R representing the system.

The zero elements RlS = th = R23 = R2h = R3l = R32 = Rhl = Rh2 = R36=Rh6=o
in the R matrix are a direct consequence of midplane symmetry. If midplane symmetry
is destroyed, these elements will in general become non-zero. The zero elements in
column five occur because the variables x, §, ¥y, ¥, and 8 are independent of the
path length difference f. The zero's in row six result from the fact that we have
restricted the problem to static magnetic fields, i.e., the scalar momentum is a
constant of the motion.

In SLAC report 75 (Ref. 1), a physical significance has been attached to
the non-zero matrix elements in the first four rows in terms of their identification
with characteristic first-order trajectories. We include figures showing these
characteristic functions as a convenient reference.

We now wish to relste the elements appearing in column six and those in
row five in terms of simple integrals of the characteristic first-order matrix elements
cx(t) = R, and sx(t) = R),- In order to do this, we make use of the Green's func-
tion integral, Eq. (43), Section II of SLAC-75, and of the expression for the

differential path length in curvilinear coordinates
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CENTRAL
TRAJECTORY

C,(0) =1 748A8
. dC,
Cx(0)=37~ t=O-O

FIG. 3--COSINE-LIKE FUNCTION c (t) = R,, IN MAGNETIC MIDPLANE. c)‘c(t) = R

21°
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~ bl
OBJECT CENTRAL )

S, (0)=0
s . dS
Sx(0)= o7%| =l

T48A7

FIG. --SINE-LIKE FUNCTION s (t) = Ry, IN MAGNETIC MIDPLANE. s!(t) = Rp,.
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CENTRAL
TRAJECTORY

dx(O) =0 748A9

! - d(dx) _
MO = I

'
©)

FIG. 5--DISPERSION FUNCTION dx(t) = Rjg IN MAGNETIQ MIDPLANE. d)'((t) = Ryg-
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I Cy(t)
P y
Cy(0) =1
/ _dCy B
Cy(0)= dt f:O-O 74846

FIG. 6--COSINE-LIKE FUNCTION cy(t) = R33 IN THE NON-BEND (y) PLANE. c;’(t) = R,B.
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Y plane
—_t
OBJECT IMAGE
' _ dSy l _ |~
SY(O)— dt t=0-l 748A5

FIG. 7--SINE-LIKE FUNCTION s (t) = Rq), IN NON-BEND (y) PIANE. S{,(t) = Ry
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1/2
dT = [(dx)e + (ay)? + (1+nx)° (dt)e] / (4)

used in the derivation of the equation of motion.

First-Order Dispersion

The spatial dispersion dx(t) = Rl6 of a system at position t is derived
using the Green's function integral, and the driving term f(t) = h(7) = EATET for
)

the dispersion (see Table I of SLAC-75). The result is
t
a () = Ryg = s (t) f c (*) n(7)ar - c (t) / s (%) n(t)ar (5)
0 o

where T is the variable of integration. Note that h(T)dtT = do is the differential
angle of bend of the central trajectory at any point in the system. Thus first-order
dispersion is generated only in regions where the central trajectory is deflected
(i.e., in dipole elements.) The angular dispersion is obtained by direet differen-
tiation of dx(t) with respect to t, the curvilinear distance along the central

trajectory.

X

t
d'(t) Ry = s'(t) J cx(r) h(t)dt - c;c(t) f sx('r) h( T)dz (6)

where

1 1
,cx(t) R, and sx(t) = Rpp

First-Order Path Length

The first-order path length difference is obtained by expanding and inte-
grating Eq. (4) and retain%ng only the first-order term, i.e.,

/- [o = (T - t) =f x(7) h(7)dt + higher order terms

5}
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from which
t t t
l = X, f cx(r) h(t)dTt + 8, / sx(-r) h(t)at + lo + 4 f dx('t) h(t)aT
0 o ©
= Rg) X, *+ Ropf, + 4, + Rsgd (1)

Inspection of Egs. (5), (6), and (7) yields the following useful theorems:
Achromaticity: A system is defined as being achromatic if R16 = R26= o,
\
i.e., if dx(t) = dx(t) = 0. Therefore it follows from Eq's. (5) and (6) that the

necessary and sufficient conditions for achromaticity are that

t t

[ s mmans [ e aimar -0 (8)

¢} o

By comparing Eq. (7) with Eq. (8), we note that if a system is achromatic, all
particles of the same momentum will have equal (first-order) path lengths through
the system.

Isochronicity: It is somewhat unfortunate that this word has been used
in the literature to mean equal path lengths since equal path lengths only imply
equal transit times for highly relativistic particles. Nevertheless, from Eq. 7,
the necessary and sufficient conditions that the first-order path length of all
particles (independent of their initial momenta) will be the same through a system

are that R51 = R52 =R

t t t
f e (7) h(7)ar = / s () h(7) d7 = f a_(7) n(v)at =0 (9)
° o

[o)

56 = 0 i-e., if

First-Order Imaging

First-order point-to-point imaging in the x plane occurs when x(t) is

independent of the initial angle 00. This can only be so when

5. (t) =R, = 0. (10)
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Similarly first-order point-to-point imeging oceurs in the y plane when
t) =R, = 0. 11

First-order parallel-to-point imaging occurs in the x plane when x{t) is independent

of the initial particle position X, This will occur only if

c (t) =R, =0. (12)

c (t) =R,, = 0. (13)
A parallel ray entering a system exits parallel to the central trajectory if

Ry = O. (14)

¢ (t)

in the x plane; and if

c;r(t) Rys = O. (15)

in the y plane.

Point-to-parallel imaging occurs in the x plane if

R,., = 0. (16)

1
s,(t) =Ry

and in the y plane if

[
(@]

(17)

Focal Lengths
A simple ray diagram of a "thick" lens demonstrates that R2l and Rh3 have

the following physical interpretations

cx(t) =R, = - %; and cy(t) = Rh3 = -

21 (18)

L
3
y

where fx and fy are the system focal lengths in the x and y planes respectively.
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Zero Dispersion

For point-to-point imaging, using Eq's. (5) and (10), the necessary and
sufficient condition for zero dispersion at an image is

t

dx(t) = Rl6 = g/- sx(r) h(T)dt =0 (19)

For parallel-to-point imaging, (i.e., cx(t) = 0),the condition for zero dispersion

at the image is
t

dx(t) = Rg = b/ cx('r) h(t)dt = 0. (20)

Magnification

For monoenergetic point-to-point imaging in the x-plane, the magnification

is given by
M =w = R = ¢ (t)
x X 11 X
o
and in the y plane by
M =R,, = t 21
y = R33 = ¢(8) (21)

where a negative number means an inverted image.

First-Order Momentum Resolution

For point-to-point imaging the first-order momentum resolving power Rl

(not to be confused with the matrix R) is the ratioc of the momentum dispersion to

the total image size. Thus if 2xo is the total source size then

Ri6

N
=1 s/
1 AP c.XoRll

] e I
T I2xc (t
o x



- 167 -
For point-to-point imaging sx(t) = 0. Using Eq. (5), the dispersion at an image

is

0 (0) == o6) [ 500 n(oar (22)

from which the first-order momentum resolving power Rl becomes

a () ¢
t

A G R W ASEC I R LA R
o]

Equation (23) for the first-order resolving power of & system may be
expressed in a number of useful forms. If we consider a ray (particle) originating
at the source with xo =0 and §~= éPE = 0 and lying in the midplane. (i.e., a mono-
energetic point source), the first-order equation representing the midplane dis-

Placement, x, of this trajectory is

x(t) = s (t) 6 (24)

We may then rewrite Equation (23) as follows:

t t
. (4-1)
2x R = f () n(0as = f K1) BT = = = [Ryy | (29)

(o}
O (o}

or we may. also write it in the form

t t
_ 1 x(t)atr  _ 1 1
R]__2x9 f BS50 ‘(2x9) (Bp)/BdA (26)
(o 1fe} S o} [ele] o S

where /BdA is the magnetic flux inclosed between the central trajectory and the

ray represented by Eq. (24), and Bp is the magnetic rigidity (momentum) of the
central trajectory. Please note, however, that if the ray crosses the central

trajectory or the sign of B changes, this changes the sign of the integration.



- 168 -

Some important observations may be made from Eg's. (25) and (26).

1) Resolving particles of different momentum requires that a path
length difference must exist between the central trajectory and the trajectory
defined by Eq. (22). The greater the path length difference, the greater the
resolving power.

2) From Eq. (24), we may define resolving power as the magnetic flux

inclosed per unit phase space area per unit momentum (BP) of the central ray.
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First-Order g Matrix (Phase Ellipse) Formalism for TRANSPORT

In accelerators and beam transport systems, the behavior of an individual
particle is often of less concern than is the behavior of a bundle of particles
(the BEAM) of which an individual particle is a member. An extension of the matrix
algebra of Eq. (3) provides.a convenient means for defining and manipulating this
BEAM. TRANSPORT assumes that the bundle of rays constituting a BEAM may correctly
be represented in coordinate phase-space by an ellipsoid whose coordinates are the
position, angle, and momentum coordinates of the arbitrary rays in the beam about
an assumed central trajectory. TRANSPORT is a matrix calcuiation thet truncates
the problem to either first- or second-order in a Taylors expansion about the
central trajectory. Particles in a BEAM are assumed to lie within the boundaries
of the ellipsoid with each point within the ellipsoid representing a possible ray.
The sum total of all phase points, the phase space volume, is commonly referred
to as the "phase space" occupied by the BEAM. The validity end interpretation of
this phase ellipse formalism must be ascertained for each system being designed.
However, in general, for charged particle beams in, or emanating, from accelerators,
the first-order phase ellipse formelism of TRANSPORT is a reasonable representation
of physical reality; but for other applications, such as charged particle spectro-
meters, caution is in order in its use and interpretation.

Thé equation of an n-dimensional ellipsoid may be written in matrix

form as follows:

x(0)T (o)™t x0) =1 (27)

where X(O)T is the transpose of the coordinate vector X(0), and ¢(0) is a real,

positive definite, symmetric matrix.



- 170 -

The volume of the n-dimensional ellipsoid defined by sigma is

n

S (det 6)1/2, the area of the projection in one plane is A = n{det 0)1/2.

2
n
I+
This is the "phase space” occupied by the beam.

As a particle passes through a system of magnets, it undergoes the matrix

transformation of Eq. (3). Combining this transformation with the equation of the

initial ellipsoid, and using the identity RR-l = I (the unity matrix), it follows
that:
. -1
x(0)T (8'RT ) o(0)t (rR) x(0) =1
from which:

(rx(0))” (Ro(0) RT)™ (RX(0)) =1 (28)

The equation of the ellipsoid representing the "BEAM" at the end of
the system is thus:
x1)" o) x1) =1 (29)
where the equation for the sigma matrix at the end may be related to that at the

beginning by:

o(1) = R g(0) BT (30)

In addition to calculating the product matrix R, TRANSPORT also computes
the sigma "BEAM" matrix at the end of each physical element via Eq. (30).

All of the important physical parameters of the BEAM ellipsoid may be

expressed as functions of the matrix elements of the sigms matrix at the location
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“in question. In particular the square roots of the diagonal elements @J;;ITE) are
the projection of the ellipse upon the coordinate axes and thus represent the
maximum extent of the BEAM in the various coordinate directions. The correlation
between components (the orientation of the ellipse) is determined by the off-diagonal
terms (the aij's). An illustration of this is given below for & 2-dimensional

ellipse.

Description of the Sigma BEAM Matrix

Consider a 2-dimensional (x, ) plane projection of the general 6-dimensional

ellipsoid. Let

’— -
%1 921
o' =
%21 920
L B

be a real, positive definite, symmetric matrix; the inverse of which is

~ o]

%2 ~ %
P _ 1
€2

~% °11J

where 62 is the determinant of o .

The 2-dimensional ccordinate vector ( column matrix) and its transpose

are:
X
X = and X = (x )
\e
The expansion of the matrix equation fr c 1 X =1 is the equation of the ellipse
2 = €2 =
Ipp X - 20, X6 + ollee- € = gdet ¢ (31)

The (x,6 ) plane BEAM ellipse represented by Eq. (31) is shown in the following

figure along with the physical meaning of the sigma matrix elements.
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bmax = V2

2
nt = %y (1-T12y

CENTROID

The area of the ellipse is given by:

/2 _ ax

A = n(det ¢g) ax

1358At

= =]
int ﬂx:tnt: max ( 32)

A Two Dimensional BEAM Fhase Ellipse

The correlation between x and © (the orientation of the ellipse) depends

upon the off-diagonal term Oo1 - This correlation is defined as

r

%21

21 T o T /=
Vo1 %0

So defined r always falls in the range

-1

4

r

n
’_‘

The correlation, r, measures the tilt of the ellipse and the intersection of the

ellipse with the coordinate axes.
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Since the det R = 1 for all static magnetic beam transport elements, it
follows that the determinant of o(l) and o(0) are identical under the transforma-
tion of Eq. (30). Hence the "phase space" area is an invariant under the transfor-
mation of Eg. ( 30). This is a statement of Liouville's Theorem for the magnetostatic
fields employed and results from the fact that the det R = 1.

It is perhaps worthwhile noting that this 2-dimensional representation
of the BEAM matrix has a one to one correspondence with the Courant-Snyder treatment

of the theory of the Alternating Gradient Synchrotron* as follows:

93 921 B - aj
= € (33)
%21 922 -a 4
- ] - -

The Phase Ellipse Beam Matrix used by TRANSPORT

For static magnetic systems possessing midplane symmetry, the (x,6)
plane and (y,¢) plane trajectories are decoupled in first-order, i.e. there is
no mixing of phase space between the two planes. However for mathematical simplicity
and to allow for the possibility of more general systems, the sigma BEAM matrix used

in a TRANSPORT calculation has the following general 6-dimensional construction.

x 6 y @ ! é
x | o(11)
6 | of21) of 22)
vy | of31) of 32) o(33)
@ | o{41) a( 42) of 43) of k)
! | o(51) o(52) o(53) of 54) a(55)
6 | of6l) of 62) o( 63) of 64) o( 65) a( 66)

* E. D. Courant and H. S. Snyder, "Theory of the Alternating Gradient
Synchrotron", Annals of Physics 3, pp 1-48 (1958).
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The matrix is symmetric so that only a triangle of elements is needed.
In the printed output this matrix has a somewhat different format for

ease of interpretation:

X 6 y @ 1

x | Wo(11) o

6 [\o(22) m  x(a)

y 9( 33) CM r(31) r(32)

@ o 45) MR r(b1) r(42) r(43)

£ (55 M r(51) r(52) r(53) r(5k)

¢ a( 66) FC r(61) r(62) r(63) r(64) r(65)
where:  r(ij) = -%Ld) (34)

Jo 1) U(.J'J)Jl/e

As & result of the fact that the matrix is positive definite, the r(ij)'s

satisfy the relation

I=(15)] g 1 (35)
The physical meaning of the 'dciii)'s is as follows:

X ax = The maximum (half)-width of the beam envelope in the

X plane at the point of the printout.

o 22

]
S o]
"

nax The maximum (half)-angular divergence of the beam envelope

in the x plane.

max The maximum (half)-height of the beam envelope.

= ¢hax = The maximum (half)-angular divergence of the beam envelope

in the y plane.

a ﬁl ﬁ’ <, ﬁl
N = w ~
(9,1 = w \P—;
I "
e
N

Zmax = 1/2 the longitudinal extent of the bunch of particles.

o66) = & = The half-width 1/2 (AP/P) of the momentum interval being

transmitted by the system.
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The units appearing next to the\ﬁv(ii)‘s in the TRANSPORT printout sheet

are the units chosen for coordinates x, 6, v, ¢, fand 6 = AF/P respectively.

To the immediate left of the listing of the beam envelope size in a
TRANSPORT printout, there appears a column of numbers whose values will normally
be zero. These numbers are the ccordinates of the centroid of the beam phase ellipse
(with respect to the initially assumed central trajectory of the system) . They may
become non-zero under one of three circumstances:

1) When the misalignment (Type Code 8.) is used.

2) When a Beam Centroid shift (Type Code 7.) is used.

or 3) When a 2nd-order calculation (Type Code 17.) is used.

Physical Interpretation of Various Projections of the 2-dimensional BEAM Ellipse

Consider again Eq. (30} o(1) =R o0) R' and expand it in it's most

general fox:rn for the 2-dimensional {x,6) plane case.

Ry Rip\ [91(9) 95 (0) 11 By 0,(1)  oy(1)
a{1) = =
Rop  Ropf \9(0)  0,5(0) ) \Rj, Ry 9 (1) 055(1)

the result is:

2
Ry19%1(0)+2R ;R 0, (O) +R12 9,5(0) LRW“Re‘“ (0)+{(Ry - Ryp¥Ry oRy: ) 0 (0) 4R, JR559,,5(0)
o(1l) = >
/ Ry 911 0) 428 5 Ry 0 (0) 4855 055(0) (36)

In the special case when the initial ellipse is erect i.e., °é1(0)=0’

o(1) reduces to:

o2
R7119,(0) + R12 9,5(0) LRnRa"n(o) + Ry Roppp(0)

o«1) = 2 2
/I Rp191(0) + Ryp9ps(0)

Similar results are, of course, obtained for the (y,¢) plane.

(37)
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If an arbitrary beam transport systgm is reduced to the most elementary
first-order form of representing it as an initial drift distance, followed by a
lens action between two principal planes, and a final drift distance; then we ob-
serve that for the 2-dimensional representation there are only two basic phase
ellipse transformations of interest.

(1) An arbitrary DRIFT distance and

(2) A LENS action

Each of these elementary cases are illustrated on Fig.8 for both a
parallelogram &s well as ellipse phase space transformations. Note that a DRIFT
followed by a LENS action is not necessarily equal to a LENS action followed by
& DRIFT; i.e., the matrices do not necessarily dommute.

The phase ellipse transformations for a DRIFT and for a LENS action
(between principal planes) as shown in Fig. (8 ) may be readily calculated using
the results of Eq. (37).

The 2-dimensional R matrix representing a drift of distance L is:

1 L
R(Drift) = < ) (38)
0 1

Substituting into Eg. (37) we find

5,,(0) +L2022(O) Lo, (0) o, (1) | oy (1)

o1) = (39)

LOEE(O) 022(0) cél(l) Oée(l)

Attaching the physical meaning to the matrix elements yields the following

interpretations:

a1(1) = @3(0) + 1505(0)

or
2 2 2,2
)

(xl)max = (xb max +L (00>max (hO)
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similarly
0p(1) = 0y5(0)
or 2 )
(al)max = (Go)max (1)

Noté that this transformation assumes that the initial phase ellipse is erect,
i.e., 021(0) = 0.

The 2-dimensional R matrix for a lens actions (between principal planes)

is 1 0
R(Lens) =|_1 1 (b2)
3
Substitution into Eq. { 37) yields
. —_ — —
a . (0) o,.(2) o..(2)
0,,(0) ) 1% 11 21
o(2) = i} (43)
i °i;(°) °11;°) +°22(o) 0, (2) 0,,(2)
£ L _

Agalin ettaching physical meaning to the matrix elements we have:

611(2) = oll(O)

or

(xg)max = (%)m&x (M'.)
and (0)

0..(0

9,05(2) = 1;2 + 9,55(0)

or
2 1,2 2
Do = 5 (D + (03 (45)

Note the change in sign of the Oél elements for the Drift and the Lens actions
indicating the different sense of orientation of the resulting ellipses as

illustrated in Fig. 8,
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The Upright Ellipse:

A case of particular interest in any 2-dimensional phase ellipse projection
(e.g., the (x,0) plane or the (y,¢) plane) is when the off-diagonal correlation
matrix elements are equal to zero; i.e., an erect ellipse. In a field-free regzion
this correspords to & so-called "waist" in the BEAM as illustrated im Fig. 9.

It is important to understand correctly the meaning of a waist: For an
existing beam, it is the location of the minimum beam size in a given region of
the system. Although the waist is the minimum beam size in any given beam, the

minimum beam size achievable at a fixed target position by varying the focal

strength of the preceding lens system is not the same as the above defined waist.

See Fig. 10. In a field-free region, the minimum beam spot size achievable at a
fixed target position will occur when the preceding lens system is adjusted such
that a waist precedes the target position. Only in the limit of zero phase space
area do these quantities occur at the same location. A useful criterion that
determines the physical proximity of these gquantities is the following: If the
system has been adjusted for the smallest spot size at a fixed position and if the
size of the beam at the principal planes of the optical system is large compared to
its size at the waist, or at the minimum spot size, then the location of these
quantities, the waist and the minimum, will closely coincide; if, on the other
hand, the size of the beam does not change substantially throughout the system,
then the locations of a waist and the minimum beam size may (and usually will)
differ substantially. The numerical proximity of these two gquantities will be
discussed in greater detail later in the report.

In a field free region (i.e., a Drift), the distance to a waist from any
location may be readily calculated if the ¢ matrix at the location is known. Using

Eq. (36) and the R matrix for a Drift (Eq. 38) we have for the (x,) plane:

021(1) = 021(0) + L 022(0) = 0 (specifying that o{1) shall be at a waist)
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or the dictance to the waist is:

_ (0 ‘}“11
HC BRI "

Similarly for the (y,¢¥) plane the distance to a waist is:

cu3(0) ,033
L:-m—o—y= —ru3 m (h’?)

Relationship between a Waist and a Parallel-to-Point Image

A parallel-to-point image in the (x,8) plane occurs when Ry; = 0. The
R matrix corresponding to this is
R = = = (48)

Since |R| =1, Ry R, =-1 for this situation.
If we assume an erect ellipse o(0) as the beginning of the system, the

final beam matrix o{l) is given by substitution of Eq. (48) into Eq. (37) as

follows:

12722%02
g (1) = o 5 - > (49)
Ry oRo0%2 R51937(0) + Ropa,5(0)

Rizcee(o) | R..R (0)

for parallel-to-point imaging.
Several conclusions may be extracted from this result: The first observa-

tion is that a waist and a parallel-to-point image will coincide if R 0. This

11°Fop=

is equivalent to requiring that the object and image distances (measured to the

principal planes) are both equal to the focal length f of the system.
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The distance to a waist in this example is:

1
L = 021\ l) _ R22R12022( O) _ SxSxoze( O) ( 50)
T T o 1y T 2 2 = A T 5
22 Rgldll(o)+R22022(O) (cx) all(o)+(sx) 022(0)

L}
It stx = R12R22 = 0, a waist and a parallel-to-point image coincide.

1

1]
If sxsx = R12R22 > 0, the waist precedes the image; and if sxsx = R12R22 < 0,

the waist follows the image; unless a,.(0) 0 (zero phase space area) in which

22(
case a waist and an image always coincide.

The size of the beam at the image is:
(x3) =0 (1) = Ro.0..(0) = £2(8°) (51)
/max T ‘11 12%2 0’ max

independent of the source size X, and of the object distance.

The size of the beam at the waist is:

(0)o,,(0)
(size at waist)e = lg(ogl) = Uél P22 5 (52)
' 22 Ral°11(°) + R22022(O)

1
If 322 =s = O, the two sizes are equal as expected, otherwise the

size at the waist is always smaller.

Relationship between a Waist and a Point-to-Point Image

A point-to-point first-order image in the (x,0) plane occurs when

R12 =8, = O. The R matrix representing this case is:

(53)

where |R| =1 = Ry Ropy @nd M is the magnification.



4

If we apain assume an erect ellipse o(0) as the beginning, the final

beam matrix o(l) is given by Eq. (37) as:

2
R}199,(0) I Ry1Rp1 913 (0)
o (1) = . . (54)
R13Rp1 93 (0) l Rpy911(0) + Rgp0p5(0)

for point~to-point imaging.

OQur first observation is that except for a zero scource size, an image
and a waist will coincide only if R12 = R21 = 0. Clearly this is not possible
with a single lens; at least two lenses are needed. Such an optical situation is

as follows:

¢ * Ry, s.=R

]

b ¢
A
f.—.'

(g
]

X
(1]
[
1}

ot — fl

1510A26

The distance to a waist is

o,,(1) R..R..0. .(0)
_ 21 _ 11721711
L = = E;;TIT = - S 5 (55)

Rp1911(0) + Ryp0,5(0)

1
So if RllREl =cpe = O, a waist and a point-to-point image coincide.

1] 1]
If cxcx > 0, the waist precedes the image and if cxcx < 0, the waist follows the

image.
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The size of the beam at the image is

"f max - O11(Y) = Rll 0),(0) = { 0)2' (56)

and the size of the beam at the waist is:

°Zem ) 2 (0) + R2.0..(0) 1)
21 ll 22 22

(size at waist)

Thus if R2l = 0, the two sizes are equal since IR[ = =1.

RllR22
Otherwise the size at the waist is smaller than the image size.

Relationship between a Waist and the Smallest Spot Size Achievable at a
Fixed Target Position

Consider the following general situation:

Principal Planes of Lens System Being Adjusted

——— Vo (min)(@Target

- R(fixed) ————

./o-“(lens) ‘}
+/ 0, (Waist) *

f(Variable) TARGET

Z >

1510427

Assume that the size of the beam \Joll(lens) at the principal planes of the lens

system being adjusted is held constant (i.e., that no other preceding optical
elements of the system are being varied); and that the remainder of the system

may be represented by a general matrix R which is also held constant. The focal

length f 1is then varied until a minimum spot size\Jcll(min) is achieved at the

target location. The sigma beam matrix at the target position then has the
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following unique form independent of the orientation of the initial beam ellipse

at the lens.

2
Ry 5l ol R Rypl ol — —
-
cllilensi 3, (tens) cll(min)l/ggl(min)
o{at target) for a = =
- . 2 .
minimum spot size o,.(lens) RZ.|o] 0,,(min)
11 22 22
at target +
R2 o.,(lens) | b— —
12 11
— — (58)
thus
AL
Opptminl = cllklensi
or 1/2
R |0l
*nin = X(lens) (59)
If the position of the waist and the minimum beam size both fall within
the seme field-free region, then the distance to the waist from the target is:
. oel(min) . R Ry Comm cll(walst) (60)
o..(min) 2 o,.(lens) 12722 o, (lens)
22 R22 + 11 11
ollimini

1]
So if S5 = R12R22 = 0, the waist and the minimum spot size coincide. If

R12R22 > 0, the waist precedes the target; and if R12R22 < 0, the waist occurs
after the target position.
If the waist and the target positions fall within the same field-free

region, the following simple relationship exists between the beam size at’ the

lens qcll(lens), at the waist \,crll(walst), and at the target \’Gll(mln)‘
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e
R
1 22
a (uiist) T G Tminy T 9 lensy (61)
11 11 11

If now the lens system is readjusted to form a waist at the target position as
shown by the dotted lines in Fig. 10, the relative size of this waist and the

minimum spot size achieved by the previous lens setting is:

2
. ( s
(min at target) Ryp0,, (waist at target)

11
- -=1 - (62)
cll(walst at target) cli(lens)

Again we observe that the two quantities approach each other if the size of the
beam at the lens is large compared to the beam size at the target.
There are several cases of special interest taat mey be derived frow

the above equations:

1) If R22 = 0 at the target position, then a minimum spot size at the
target is also a waist. This corresponds to point-to-parallel imaging from the
principal planes of the variable lens system to the target position. Beyond the
last lens in the field-free region preceding the ﬁarget, R12 = a constant if
R22 = 0; thus we conclude from Eq. (59) that in this field-free region, the
minimum spot size achievable at a target is a waist and is independent of the
target position. Such a system is a "Zoom" lens.

2) If there are no lenses beyond the variable lens system, i.e., R

is an entirely field-free region (a'drift), tuen R is of the form:

1L Rll R12
R = =
o 1 R2l R22
In this situation R12R22 =L 1s a positive guantity, consequently the waist alwavs

precedes a minimum spot size at a target. A case of particular interest is when
the minimum spot size achievable is equal to the initial beanm size at the lens. It

then follows from Eq. (60) that Z = -L/2, i.e., & waist occurs midway between the
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lens and the target. From Eq. (61), the ratio of the size of the beam at the lens

and at the waist is:

o,,(lens)
x(lens _ 11 _ r‘
xswaisti - olliwaists = V2 (63)
Combining this result with Eq. (59),
R 2
L =R . = x(lens)x(min) _ x“(lens)
12 ~ o] 1/2 ~ x(waist)6(waist)
or
_ 2 x(waist)
L= O(waist (6h)

where L is the longest distance & beam can drift without exceeding its initial

size at the lens.

Imaging from an Erect Ellipse to an Erect Fllipse

The genersl sigms matrix for imaging from an erect ellipse to an erect
ellipse may be derived by inspection from Eq. {36) by setting a21 = 021{0) = C.

The result is:

]2.1 a,(0) + R12°22(°) 011(1)
(1) =
0 | R21"11(0 + Ree 20(0 °22(1 (65)

Using this property and the fact that

For symmetric magnetic systems Rll = R22.

2
IR] =1, it follows that R1232l = (Rll - 1). So for symmetric magnetic systems

Eq. (65) reduces_to:

=z ol M7 —
[- Rz i J 0 0,,(1) 0
o(1) = =
[ Ra[al]l/? 0 "22(1)—] (66)
0 - )
Rio —
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The above equations may be used to calculate the optimum design parameters for

periodic beam transport systems.

Example No. 1:
Consider a unit-cell of a periodic focusing array consisting of focusing

elements only as indicated below.

Beam Envelope /0'” (w)
4,h(()) 4 Onl(l)

f f 1510A28

The R matrix for the unit-cell, i.e., from the principal planes of the first lens

to the principal planes of the second lens, is

R = (67)
iy

If now we require that the beam envelope poscess simme“ry coiucident with the lens

s nuetry i.e., t at erect ellipses occur at tiue principal plasnes of eaci lens and

& walst midway in vetween, and furthermore trat the ream size at the sezond lens

be kept to a minimum and equal to the beam size at the first lens: then substituting

Eq.(67) into Lg. (66) and seiting all(l) to be & minimum yields:

1l
A E=CE =) i
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where 011(0) and 622(0) are measured at the principal planes of the first lens.

and finally

x(max) 11(0)
= Ty - Ve (69)
x(min) O\

Note that the ratio of the maximum to the minimum beam size (Eq. 69) is inde-

pendent of the phase space area and of the lens spacing.

Example No. 2:

If the unit cell is a FCDO array as follows:

Beam Envelope
r/ o (w)
.\/0'“(0) 5 ’ \/U““)

Ve

f -f

1510A29

The R matrix for the unit cell (from the principal planes of the first lens to the

principal planes of the third lens) is:

N
R ((2+3%)
'L?'(2'?) Ry

If we now impose the symmetry requirements that erect elliypses occur at

the principal planes of each lens; and that the beam size \’oll(l) at lens 3 be

& minimum and equal to the beam size cll(O) at lens 1, then it follows that:
Vo, (1) = o, (0)
.f. = b > 1.236 (71)



a,,(0) 2.3y
Tt 1-45
or
(0)
x/max) _ 91" ~
x(min) = oy, = 2.055 (72)
and finally
0,.{0)
1 L (73)

]
(@}
(o8}
(@}
O
w
Q
n
n
O

where 011(0) and 022(0) are measured at the principal planes of the first
lens in the FODO sarray.

For a FODO quadrupole array where the field strength is held constant
for all elements rather than the focal lengths, the results are somewhat

different than those above. This case may be readily calculated via TRANSPORT

using the above results as initial guesses in the calculation.

Relationship between a First-Order Point-to-Point Image and the Minimum Spot
Size Achievable at a Fixed Target Position

This broblem is not as easy to explore as were the preceding ones because
the question arises "the first-order image of what?" If, however, we restrict

the discussion to a thick or thin lens system that does not have intermediate

images between the source and the image under consideration, then the following
comments are applicable.
The ratioc of the minimum beam size to the size of a first-order image

at a fixed target position may be calculated using Eq.'s (56) and (59). From

Eq. {59) we have: 2
a (min) = L—L?—l—y
11 Ull lens

and fron Eq. (56) ti:e size of & first-order image at Lue varget position is:

«(ﬁlﬂimage) = M| oll(object) = (%) cll(object)
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where M is the magnif ication of the first-order image, p is the object distance
measured to the principal planes, and L is the distance to the target measured from
the principal planes.

The ratio of sizes is

i 2
all(mln) _ Lo 1)
cil(lSt order image) cll(object)cll(len§7
Using Eq. (36), we may write
oil(lens) = cll(object) + 2p cel(object) + p2 022(object) (75)

and since

lo| = o ,(object) o, (object) - azlz(ob,ject)

it follows that the first-order image will coincide with the smallest spot size only
if the orientation of the initial beam ellipse at the object is such that

) cel(object) = - cil(object) (76)

or if cll(object) =0 i.e., for a point source.
For an erect ellipse at the source and the lens adjusted to provide a
minimum spot size at the target, it can be shown that the first-order image will

always follow the target position (the minimum spot size) by a distance

] [ Ull(object) | xi (77)
Z =L[M ———1-——-—y-‘ = LiM| —5— [
‘11 tens x2(lens)

where L 1s the distance to the target position from the principal planes of the lems
system, X, is the source size, and M is the magnification of the first-order image.
Again we observe that the ratio of the beam size at the source and the beam size at

the "lens" is the criterion determining the proximity of these two quantities.

Orientation of the Major Axes of a Phase Space Ellipse

The matrix equation for a coordinate rotation as shown in Fig. 11 is
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Fig. 11

x
o

1510A3}
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b d cos Q -sina { x
1 o]
( ) = | (78)
Ol sina cos @ 6
or
X1 =MX
o)

The equation of an ellipse in either set of coordinates is

X

ot x=1 where X=(9);XT=(X9)

and the transformation from o{0) to o{l) is

o(1) = M o(0) M¥ (79)

provided lMl = 1,which it does.

If we assume a general ellipse for 0(0) and an "erect" ellipse for o(1),
i.e.,

cll( 0) 021( 0)

oll( 1)

a(0)- = and g (1) =

90(0) 0 [ 9,5(1)

021( 0)

It follows from Eq. (72) that:
= = M__o
Opy (1) =0 =M My ), (0) + (M) My, + MM 5) 0 5(0) + My M, 50,,(0)

from which
29,,(0) (80)
Tan 2Q = 5. (0) = 0..(0)
22 11

or using the definition

%

b of = e ——————————
21
\J"n %2
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an alternate form of expressing the ellipse orientation is

eroy Va1 %2 ery

Tan 2o = =
0. -3
: a o
22 11 50 i 11
g
cJll 22

Clearly a is dependent upon the units chosen for a.Ll and

except in the obvious case of @ = 0; i.e., an erect ellipse.

0'r
2z

(81)
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SECOND-ORDER ABERRATIONS
Section III

TRANSPORT has the capability of calculating the second-order matrix
elements (aberration coefficients) of any static-magnetic beam transport system
composed of combinations of bending magnets, quadrupoles, solenoids, sextupoles
and interspersed drift spaces. It is assumed that mid-plane symmetry prevails for
any given magnetic element in a system (except for solenoids) but not necessarily
for the system as a whole. The notation used in a TRANSPORT printout is desecribed
in reference 1 (SLAC-75) beginning on page 46. The subscript notation is the same
as that used for first-order where the subscript 1 means X, 2 means 8, 3 means y,
4 means ¢, 5 means f, and 6 means 5.

The symbol Rij has been used to signify a first-order matrix element and
the symbol Tijk will be used to signify a second-order matrix element. Thus we
may write the second-order Taylor expansion representing the deviation of an arbi-

trary trajectory from the central trajectory as:

6 _6

6
xi(t) = Zl Ri,jxj(o) + Z ZTijka(o) xk(O)
3=

=1 k=1

where x1=x x2=0 x3=y xh=¢7 x5=£ and x6=5 denotes the subscript
notation. In an actual computer printout, the TiJk's are abbreviated as (i Jk);
for example T 06 = (xlOOS) would appear in a printout'as (1 26) followed by the
computed value of the aberration coefficient for the system being designed.

In order to modify the magnitude of any given aberration coefficient, it
1s necessary to introduce multipole component(s) of the magnetic field of order
equal to or less than the order of the aberration. Thus sextupole, quadrupole and
dipole components of the field may all be used to modify any given second-order
aberration. But, in practice, the second-order éberrations are usually minimized
by only introducing sextupole components so as not to disturb the first-order

optics of the system. It should always be kept in mind, however, that it may be
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beneficial to go back and change the first-order solution {optical mode) so as to
provide a more favorable situation for correcting aberrations; a wise selection
of the first-order optical mode may in many instances be the deciding factor bet-
ween the success or failure of a design.
For a fixed location of a sextupole component, the partial derivative

of any second-order aberration coefficient Ti’ with respect to the strength S

Jk 2

of a given sextupole component is a constant. 1i.e.,

3T

Ergij& = a constant = the coupling coefficient of S, to T, .
2

2 ijk

i

Thus minimizing a selected group of aberrations is a straight forward problem
of solving a set of simultaneous linear equations once the coupling coefficients

are known.

The strengths of the sextupole components may be determined
directly by TRANSPORT. The user may either constrain certain
second order matrix elements to certain values, or may minimize
the net second~order contributions to a given component of the

beam ellipsoid

Second-Order Phase Ellipsoid Formalism

It will be noted by the user, that a second-order TRANSPORT calculation
modifies the phase-ellipsoid printout. In a second-order run, TRANSPORT calculates

and prints out the second-moments of the phase space distribution function in the

\{E;; columns. In additicn, it also calculates and prints out the new coordinates
of the centroid (first-moment) of the phase space distribution function and tab-
ulates this result to the left of the \[5;; columns in the same manner as it does
for a magnet misalignment run.

Caution should be used in the use and interpretation of the second-order

rhase ellipsoid results especially if it is known or suspected that the phase space
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distribution resulting from a second-order run is not symmetrical
about the beam centroid. To be certain of the situation in any
given design, it would be wise to calculate the actual distribution
function by using the Monte-Carlo computer program TURTLEl.

The actual method used in TRANSPORT by which the second-
order terms are included in the beam ellipse is described in the
following report. The reader should bear in mind that the
derivation is based on a gaussian initial beam distributipn.
For any other initial distribution the second order effects on

the beam ellipsoid should be regarded only as an approximation.

1 D. C. Carey, "TURTLE, A Computer Program for Simulating Charged
Particle Beam Transport Systems", N.A.L. Report No. 64,
Fermi National Accelerator Laboratory, Batavia, Illinois (1971).
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Second Order Contributions to Beam Dimensions

David C. Carey

May, 1972

I. Introduction

The phase space region occupied by an aggregate of charged
particles in a beam line is often represented by a higher
dimensional ellipsoid. Given no further information, one
might interpret such an ellipsoid as an envelope inside of which
particles are distributed uniformly, or as giving the scale
dimensions of a gaussian distribution. The latter case has
the advantage that is easily adapted to include higher order
effects of the beam line. In either case the parameters of
the ellipsoid are simply related to the first and second moments
and therefore the width of the distribution in any coordinate.
In first order an ellipsoid at any point in a beam line is
transformed into another ellipsoid at any other location in a
beam line. 1In second and higher orders a transformation from
one location in a beam line to another will cause the ellipsoid
to become distorted. One can still, however, calculate the
first and second moments of the distribution, and thereby
obtain a measure of its dimensions in any coordinate.

Below we elaborate on the methods for calculating the
ellipsoid parameters at any poipt in the beam line. Much
of the first order thcory can be found in the work of Brown

and uowry.l It is included here for completeness.

o . - A . . . -
:';'?: Orerated by Universilies Rescarch Association Ine. Under Contfact wilh the United States Atomic Encrgy Commissi.
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II. The Fllir:ooid Formalirm

The position and motion of a particle in a beam line may

be represented via a six~dimensional vector.

/ %
( 8

X = z (1)

|2
\&/

The coordinates x and y represent respectively the

horizontal and vertical displacements at the position of the
particle, 6 and ¢, the angles with the axis of the beam line

in the same planes. The qguantity % represents the longitudinal
position of the particle relative to a particle traveling on
the magnetic axis of the system with the central momentum
designed for the system. The remaining quantity § = %E
gives the fractional deviation of the momentum of the particle
from the central design mcmentum of the system.

An ellipsoidal hypersurface in this six-dimensional space

may be represented by the equation:

xTo™ x = 1 (2)
where ¢ ~ is a symmetric positive definite matrix. We represent
this matrix as an inverse for reasons which will become apparent
later. At this stage the center of the ellipsoid is assumed
to liec at the origin of the coordinate system. The ellipsoid
may be taken to be the envelope of a uniform distribution, or
the scale in a gaussian distribution, giving a particle density:

p = C exp(-%xTo 1x) (3)



- 203 - FN-243
2042
For any rcal symmetric matrix there exists a coordinate
system in which that matrix is diagonal and an orthogonal
transformation to that coordinate system.2 Let us represent
the orthogonal transformation by the matrix 0, so that:

N

iy %5 (4)

X. =L 0
i .
]

where Qj are the coordinates in the frame where the transform of

c-l and therefore that of o are diagonal. Calling the matrix ¢

N
transformed to the new frame o we now have:

v
13 7 7, %ix %kg O30 (5)
and equation (1) becomes
ot %= (1a)

Specializing to the gaussian distribution, it is now an easy
matter to calculate the second moments in the new frame since

the coordinates are decoupled. We arrive at:

N ny n,
xixj = Oij = éij cjj (6)

The second moments in the old frame are now:

non M"Y

X = ¥ 0, X, X £0.,, 0,, xx
173 X ik 732 Tk K2 ik 732 "k7e
n,
= 1&2 O,k ojl Oy = Gij' (7)

Therefore in this case the elements of the matrix g give the
second moments of the distribution in the original coordinate

system. The density function, properly normalized, now becomes:

N exp(—%xTG‘lX) (8)

©
]
e}

Vdet (o) (2r)3
where NO is the total number of particles. Since the matrix

0 is orthogonal the determinants of o and & are equal.
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The elcments of the matrix o may'be put in more convenient
form for interpretation. The square roots of the diagonal
elements may be taken as giving the half widths X, of the
distribution in a given coordinate while the off-diagonal elements

may be related to the correlations rij’ sO

Xoi -VEZZ.

rij oij/yc..o.. (9)

Since, for any positive definite symmetric matrix o, we have:2

2
o5 Ojj - Oij >0 (10)
the correlations must all obey the inequality

lr..] <1 (11)

ij
If the ellipsoid is interpreted as describing the envelope

of a uniform distribution, then the X3 represent the maximum

extents of the beam in the given coordinates.

III. The Effect of a Beam Line

A, First Order

If we now let x;l) be the coordinates of a ray at the

initial point in a beam line, and xiz) the coordinates at some

later point, the two are related by the eguation:

(2) _ (1)
x4 = § Rij Xj (12)

If we continue to assume a distribution centered at the origin
the first moments at both initial and final point will be zero.

The second moments will now be given by:
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o2 2 LY Ly R R XD (D (13)
1j 1 3 K4 ik "j2 Tk L
(1)
=L R,, R., ©
k4 ik "jR k&

Or more concisely

(2) _ po(1)gT

o} (14)
To first order an ellipsoid at the initial point will
transform into an ellipsoid at the final point, so that the
eqguation:
T
x(2).%c(2)) 1 .2 _ 1 (15)

will give the envelope of the particle distribution at the later
point.

B. Second Order

In second order the transformation on the coordinates

effected by the beam line is given by:

(2) _ (1) (1) (1)
X = § Rig %577 # §k Tije *57° % -

(16)

-

We employ here a symmetric T matrix whose off-diagonal elements
are half those of the T matrix used by Brown. The first and

second moments of the distribution at the final point are now

given by:
xﬁzi = I R,, xglj + I T, . xFI] x{lj (17)
i A 1 B ijk 73 k
3 k
(2) 2y _ . 1y (D)
X, X. Zz R X X
i j k2 ik "j2 "k '3

0 1.0 O .
IRk Tiem * Tikg Rym ¥k X Xp

oy (1) (1) (1)
+ L Tik& ijn xk Xy *m *n
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For a symmetric, on-axis initial distribution, the first and
third moments vanish. The problem now reduces to dctermining
the fourth moments of the initial distribution.,
As an extension of previous notation we now denote the
fourth moments of the distribution about the initial point by
oé§i2. We consider the coordinate system in which the matrix of

second moments Oij is diagonalized, denoting the moments in

this frame by ¥. Then from equation (7) we have:

G.. =132 b

i kzoik 054 %2 (18)

-
v

ik %5k %kk

Lo
k
We continue to specialize to a gaussian distribution so that
the fourth moments will be directly derviable from the second

moments. In the diagonal frame the coordinates separate, and

the fourth moments are easily calculated. The only ones which

n-zero are s b or o £ i # 3 nd g
are non-zero Oiijj' Uijij’ i394 or i j, a 9 iii
with:
v Y N
O3i45 = 9ii 955 (19)
4" L] N
= o}

°13i3 T %41 %53

n v v
Oy = 0, 0L
13371 11l 33
N Y N
= g

C. .o 3 0.. ‘s
iiii i1 il

so that in general:

N n, N, n n,
ik = 835 Ox2 %31 %kk * Six S50 %ii %53
+ 6. 8. O.. O.. (20)

ig “jk Tii T33.
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Now if under the transformation 0, the fourth moments transform

as:

n
%i5ke inop Oim Ojn %o olp “mnop (21)

then from equation (la) we finally arrive at:

Oi5k8 = %5 %x2t Yix %58 T %ig %4k (22)
Substituting into equation (17) we determine that:
(2) (1)
X =3I T.. 0. (23)
i 3k ijk “Jk
2 2) _ (1) (1) (1)
0% T 0 R e % P T T %) B Ty )
(1) (1)
+ 2 im (ﬁ Tikl I%m ) (i ijn %¢n )

Note that, because of the symmetry properties of both T and ¢
that the two expressions in parentheses in the last term of the
second egquation represent the same array. From a practical
standpoint this means that it needs to be calculated only once.
We see from eqguation (23) that the centroid of the distribu-
tion at the final point no longer coincides with the beam axis.

(2)

Letting ¢ represent the matrix of second moments about the

new centroid we now have:

Oéi) - ;}?) X§2) _ XEZ) x§27 (24)
_ (1)
= iz Rix Ryp kg

(1) (1)
t 2 im (i Tikz 0km ) (ﬁ ijn Oln )

IV, Off-Axis Initial Distribution

Now .concider a gaussian distribution whose center does not
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coincide with the beam axis. Letting the coordinates of the

centroid by ngT, we have for the coordinates of a ray:
(1y _ (D (1) .
x5 = x; + Ei (25)

We let the matrix ¢ represent the moments of the distribution

about its centroid so that:

Ty SUIT _ (1)
gi gj = oij (26)
Iy 0 I 0 (1)
TR S ¥ = 934k

Equation (17) continues to hold for the moments of the distribution
about the b eam axis, while equation (22) holds for the moments
about the centroid. We must therefore express one set of moments
in terms of the other.

Using equations (22), (25), and (26) and applyving the first
prart of eguation (24) to the initial distribution, the initial
third and fourth moments are given in terms of the initial
first and second moments as follows:

U 6 D Y Ty 6 RN 60 B ¢ B I 6

M D D

i j k X3 j x ¥ %5 i %k
+ X}il) Xél) xj(l) -9 xi(l) xj(l) xél)
e x;l) S Y x;l) SR I SO e x§1) ey
(27)

Substituting into equation (17) and rearranging terms we arrive
at the following expressions for the first and second moments

of the distribution at the final point.
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xizj = I Ri. xglj + I Ti'k x.l xkl)
i J ] ik ] J (28)
x} ) x§2} = L R.,, R, x(i) x(l) + x‘z) x{?) - 2 xfz) x§2)
3 K2 ik 732 Tk L 1 3 i j
(1) (1 1) (1)
+ 2 Em (Ril xm + E Tikz xk X ) (ij x2 +
1 1), _ (1) (1)
) ijn x2 xn ) (Z Rik xk }y (Z ij X )
n k m
where
xfz) = I R. x(lj + I T, x{I) lej
i k ik Tk K2 ikf Tk 2

is the image of the original centroid.
We may now again use equations (9) and (24) to relate this
matrix of second moments to the final beam half widths and

correlations.
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A Systematic Procedure for Designing High Resolving Power Beam Transport Systems
or Charged Particle Spectrometers

The following is a report submitted to the Third International Magnet
Symposium held in Hamburg, Germany - May 1970. It is a general description of a
suggested procedure for designing systems to any order and includes the derivation
of the coupling coefficient of an nth-order multipole to any nth-order aberration
coefficient. The report also derives the multipole strengths for the three
techniques for introducing multipole components into a system: namely, 1) pure
multipole fields, 2) non-uniform fields, and 3) contoured entrance or exit boundaries
of magnets.

The notation used in this report is identical to TRANSPORT notation
except for the following:
Replace x' and y' in the report by 6 and 9 respectively to convert to

TRANSPORT notation.
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REPORT SUBMITTED TO THE THIRD INTERNATIONAL MAGNET SYMPOSIUM
HELD IN HAMBURG, GERMANY-May 1970

by

Karl L. Brown
Stanford Linear Accelerator Center
Stanford, California

Summagz

By extrapolating the systematics of the general first- and second-order
theory of beam transport opties (1,2,3) to include higher order multipole
terms, it has been possible to evolve a simple, step by step, procedure for
the design of high resolving power static-magnetic beam transport systems.
The choice of the appropriate dipcle and quadrupole elements for a given system
may be determined once the resolving power, solid angle, momentum range and
detector system of the instrument have been specified. The partial derivative
of any nth-order aberration coefficient with respect to an nth-order multipole
component located anywhere in the system has been derived. From this "coupling
coefficient", the strength and the optimum location of multipole element(s) to

correct or modify a given aberration or group of aberrations is uniquely deter-
mined.
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I. Introduction

Within the last two decades, significant advances have been made in the
understanding of charged particle optics. Perhaps the first major contribution
was the development of the theory of the Alternating Gradient Synchrotron (A.G.S.)
by Courant, Livingston, and Snyder(4) which led to the first-order matrix algebra
formulation of beam-transport optics. Subsequent to this a second-order matrix
algebra was developed by Brown, Belbeoch, and Bounin(5); followed by the develop-
ment at SLAC of the digital computer program called TRANSPORT(6) that is widely
used today in many laboratories for solving first- and second-order static-
magnetic beam transport problems. In principle, the second-order matrix formalism
may be extended to any order, but in practice this approach has proved to be too
cumbersome. Thus beyond second-order it has been more efficient to use computer
ray-tracing programs which integrate the basic differential equation of motion
of the charged particles through the known or assumed magnetic fields. The funda-
mental difficulty with ray-tracing has been the required computational time to
complete a design involving the minimization of many higher-order aberrations.

In this report, we will outline & systematic procedure for the design of
high-resolution systems based upon the extrapolation of the first- and second-
order theory (1,2,3) to include higher-order multipole components. A general
equation has been derived for the coupling coefficient of an nth-order multipole
to any given nth-order aberration coefficient. As will be shown later, these
coupling coefficients are a function only of the characteristic first-order
trajectories (matrix elements) introduced and defined in References 1 and 2.

Given this information, a systematic procedure for designing high resolu-
tion beam transport systems is as follows:

1) Find s satisfactory first-order solution to the problem using
TRANSPORT or its equivalent.

2) Calculate and make the necessary corrections to the second-order
aberrations by introducing sextupole components into the system.
The "best" locations and strengths of the sextupole components
required may be selected via the coupling coefficients for the
aberrations to be minimized.

3) Calculate and make the necessary corrections (via ray-tracing) to
the third-order aberrations by introducing octupole components into
the system. (Note that an nth-order multipole couples with terms
of order n or higher but not with terms of order lower than n. Thus
an octupole component will not disturb the first- and second-order
solutions already found from steps 1 and 2.)

4) Repeat the above procedure up to the multipole order desired or
needed to achieve the design objectives.

If the design requires & solution to nth-order and m multipoles at each
order are necessary to minimize the aberrations, the number of computer runs
previously needed to complete a design was at least (n+m)°. Having a know-
ledge of the coupling coefficients, after the first-order design has been
selected, now {in principle) reduces the number of computer runs required to
n. Since ray-tracing is very time consuming, this is indeed a significant
saving.



- 214 -

II. Theory*

The following results are applicable to static-magnetic charged particle
optical systems possessing median plane symmetry. As in Ref. 1, we shall use &
right-handed curvilinear coordinate system (x,y,t) where x and y are the trans-
verse coordinates. x is the outward normal distance in the median plane away
from the central trajectory, y is the perpendicular distance fram the median
plane, t is the distance along the central trajectory, and h=h(t) is the curva-
ture of the central trajectory.

The existence of the median plane requires that the scalar potential'¢
‘be an odd function of y, i.e., ®(X,¥,t) = - ®(x,-y,t). The most general form

of @ may therefore, be expressed as follows:

o @ n 2m+1l
- EE: 2 : x_
%, y,t) = =t L A2m+l,n n! %55:17? (1)
where the coefficients A2m+l,n are functions of t.

In this coordinate system, the differential line element 4T is given

by

dT2 = dx2 + dy2 + (1+hx)2 dt2

The Laplace equation has the form

_ 1 ) 39 82q> 1 d 1 Pl _
v = (1+hx) Ox () 2l + = + Ty 52 (T 58] 7 ° (2)
. oy

Substitution of (1) into (2) gives the following recursion formula for the

coefficients:
- = " 1" L [}
A2m+3,n A2m+1,n + 2n+l,n~-1 nh A2m+l,n-l + A2m+1,n+2 (3)
2 3
+ Gubhy oo+ a(3elbAy o+ a(e-D Ay,
+ 3nhA + 3n(n-l)h2A + n(n-l)(n-2)h3A
2n+3,n-1 2n+3,n-2 2m+3,n-3

d
where prime means T’ and where it is understood that all coefficients A with

one or more negative subscripts are zero. This recursion formula expresses all

* The notation used in this report follows that used
in Ref. 1 unless otherwise indicated.
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the coefficients in terms of the midplane field By(x,o,t):

where 3"
A = (-——X) = functions of t. (4)
x=0

1,n 3™
y=o0
Since @ is an odd function of y, on the median plane we have Bx = Bt = 0. The
normal (in x direction) derivatives of By on the riference curve defines By over
the entire median plane, hence the magnetic field B over the whole space. The
components of the field are expressed in terms of @ explicitly by g = 5¢ or

© © n 2m+1
Bx—g% - Z 2 A2m+:l. n+l % 2m+1) ¢
m=0 n=o0 ’ :
acp e Ll xn 2m
By "% . EH
y 9y 2;:0 ré 2n+l,n n! (2m
ks il 2m+1
1 3% _ 1 . X"
Bt—.'(1+hx5 ot  (T+nx mz; I; A2m+l,n n' 22m+l)! (5)
The expression for the magnetic field on the midplane is
L] “n
= x_
B(x,0,8) = Z; A n o (6)

At this point we deviate from the notation and formalism of Ref. 1 and
introduce Kn(t), the multipole strength per unit length; and S,s the total
multipole strength of a static-magnetic field.

We rewrite equation (6) as

-]
n
B_(x,0,t) = Bp Z K (t) x (7
y n=o ¢
B Po
Where Bp = e P is the magnetic rigidity of a particle of momentum Po and

charge e along the central trajectory; from which

:
w0 ()3 () - (B () @
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We define Sn as

L

sn=/ Kn(t)dt | (9)

o

Sn so defined is the strength of the nth-order multipole component of a field

over the interval of integration.

Multipole Strengths for Pure Multipole Fields
Consider the scalar potential of an nth-order [2(n+l)pole]pure multipole

element:
B rn+l
P = =2 - [sin (n+1) e] (10)
(n+1)a
where
X = r cos6 and ¥y = r sin®

Bo is the field at the pole and a is the radial distance to the pole from the
central trajectory.
Expanding ¢ as a function of x and y and differentiating, we have

_ o9 _ Bo n
By = Fy = 8—5 [x + .---oo-]
From which
S _‘Le) 1
n an Bp
and
s = (Eﬂ) L (11)
n an Bp

Where L is the length of the multipole element.
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For & dipole n=0 and the dipole strength is

S =

o = & (The angle of bend of the central trajectory)

ot

For a quadrupole n=1 and

For a sextupole n=2 and

etc. for higher-order multipoles.

Multipole Strengths for a Non-Uniform Field Expansion

From the midplane field expansion of & non-uniform magnetic field
2 3
B(x,0,8) =B (0,0,t) [L-nhxB(hx)™4y(nx)™+ «+oeeeo (12)
the multipole strength factors are:
K =h = = nh K, = Bh3 t
= h, Ki = s 5 = » ete.

and Sn evaluated over the length L of the central trajectory is:

[ 7]
1l

hl. = & as before,

w0
]

- nhaL, and S, = Bh3L, ete.

Multipole Strengths for a Contoured Entrance or Exit Boundary of a Magnet

A third method of introducing multipole components is via & curved entrance
or exit boundary of a magnet. To calculate the multipole strengths in this case,
we integrate equation (7), holding x constant, as follows:

L L
f By(x,o,t)dt =B D x" f K (t)dt = Bsznx“ (13)
0 [e]
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To relate this to the field boundary, we assume By to be a constant 1nside
the effective field boundary and zero outside (i.e., we ignore the finite extent

of the fringing field). In this sharp-cutoff approximation, the field boundary

7 = 2(x) is:
k s
1 _ 1 n _ 2 .2 ..
Z =5 f By(x,o,t)dt = HZSnx = -x tan B + = X + (14)
y (o]
where h = % and B is the angle of rotation of the entrance or exit face of

the magnet at x=o. A positive P implies radial (x) defocusing and transverse

(y) focusing. We note that:

S1 = - h tan B = The "quadrupole strength"

The radius of curvature of the boundary is related to the sextupole strength

as follows:

L 25,
= 2 =
R (1+Z‘2)3 h sec” B
or
3
s, = h s;; B - The "sextupole strength”

From equation (13), we note that & positive multipole component of the field

increases the Jrﬁdt for a positive x; thus a positive sextupole is represented

by a concave surface of the entrance or exit boundary.

The Description of the Trajectories as & Taylor's Expsnsion

The deviation of an arbitrary trajectory from the central trajectory is
described by expressing x and y as functions of t. The expressions will also
contain Xy Yo xé, yé and 8, where the subscript o indicates that the quantity
is evaluated at t=o. The prime (') denotes the derivative with respect to t,

and 5 = %E is the fractional momentum deviation of the ray from that of
<o

the central trajectory. These five initial boundary values will have the value
zero for the central trajectory itself. x and y are expressed as a five-fold
Taylor expansion using these initial boundary values. The expansions are

written:
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(g) = KA gth iU g X Ko d otH ¥ X
x(t) Z(xlxo yAx oyt e)xXyrxtt vy b

y(t) =D (ylxXyAxtt yiP eX)xKyh it yi¥ pX (15)

Here, the parentheses are symbols for the Taylor coefficlents; the first part
of the symbol identifies the coordinate represented by the expansion, and the
second indicates the term in question. These coefficients are functions of t
to be determined. The symbol.zz: indicates summation over zero and all positive
integer values of the exponents X, A, u, v, X; . The constant term is zero,
and the terms that would indicate a coupling between the coordinates x and y

are also zero; this results from the midplane symmetry. Thus we have

(xj]1) = (y]l1) = o0
(xly) = (ylx)) = o
(xy}) = (ylx)) = o (16)

Here, the first line is a consequence of choosing the central trajectory as
the reference axis, while the second and third lines follow directly from
considerations of median plane symmetry.

Since they will appear often in the formalism, it is convenient to

introduce the following abbreviations for the first-order Taylor coefficients:

i}

(xlxg) = c(t)  (xlx) =s (8)  (xl8) = a(6)

X

s (t) (17)

(yly,) y

e (t) (vly2)

When the transverse position of an arbitrary trajectory at position t is
vwritten as a first-order Taylor's expansion as & function of the initial
boundary conditions, the above five guantities are Just the coefficients

appearing in the expansion for the transverse coordinates x and y &s follows:

- t -
x(t) cx(t) x, o+ sx(t) X!+ dx(t) 5 + higher-order terms

and

t) = c (& + ' - )
y(t) cy( ) Y, sy(t) ¥, + higher-order terms
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ITII. Solution of the Equations of Motion

The general differential equation of motion of a charged particle in a

static-magnetic field valid to all orders in x and y and their derivatives as

derived in Ref. 1, equation (5) is:

% {(x” - h(1+hx)] -

(::)2 [x'x" + y'y" + (l+hx)(hx'+h'x)}}

+3 {Y" - Zi%;g [x'x" + y'y" + (l+hx)(hx'+h'x)]}

+ 2 {(zhxwh'x) - ﬁ—(“‘;’é) [x'x" + y'y" + <1+hx><nx'+h'x)1}
TI

r3
~
3y
X
oy
i
1o

bl {?c[y'Bt - (1+hx)By] + ’;}[(J.mx)lsx - x'Bt]

+ G[x'By - y'Bx}} (18)

If this equation is solved to nth-order for the Taylor's coefficients

of equation (15), it will be observed that the result has the remarkably

simple form:
t
Kohge otV e Xy _ F nt K B Vr ey X
(x| kyhety ey [,a e [ s AT DXk (ar
<1
+ Terms containing Ko, cecacean Kn-l (19)

where the variable of integration is Tand n=(Kk+ A+ u + V+ X).

The Xy have the following meaning:
x, = x(t) x, = x'(t) x3 = ¥(t) x, = y'(t)

cx, Cy’ sx, sy, and dx are defined by equation (17) and in general are func-
tions of the variable of integration T over the interval of integration. Kn
is defined by equation (8) and in general is also a function of *.

The Gi's are Green's functions where:
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6 (6, = (x(8)[x'() = s (e)e(v) - e (t)s (7)
567 = (x'(8)[x (D)= s(t)e (V) - ext)s (1)
65(t,7) = (w(8)ly'(v) = s, (8)e,(T) - e (£)s (%)
G, (6,7) = (y'(t)[y'(0)= s (8)e (7) - el(8)s () ( 20)

Note that the Gi‘s are Just first-order Taylor's coefficients measured from
the location (T) of the multipole component to the end of the system (t).

Thus we see that the coupling coefficient to an nth-order multipole is
a function only of the first-order matrix elements € cy, S, s&, dx and
their derivatives with respect to t.

From median-plane symmetry considerations, the allowed aberrations are
those with y and/or y' appearing an even number of times in the Taylor co-
efficient. For example (xlxg), (x[yoyé) and (y[ygyé) are allowed aberra-

tions; whereas (xlyo), (xlxgyé) or (ylyS) are not allowed and are there-

fore equal to zero.

The minus sign is used when y and/or y' appear O, 4, 8, 12 «+-- times
ard the plus sign is used when y and/or y' appear 2, 6, 10 ¢+++++ times, For
example for the coefficients (xlxg) and (y]yg), the minus sign is applicable;
whereas for the coefficients (xlyg) and (y'[&éyée) the plus sign is
applicable.

Equation (19) is derived by observing in the pattern of the solution of
the differential equation that an nth-order aberration term containing the
nth-order multipole strength factor Kn cannot include multipole strength factors
of lower order than n; or stated physically, an nth-order multipole cannot
couple to aberrations (terms) of order lower than n. This fact allows the

recursion formula equation (3) to be reduced to the simple form

(a1)

A2m+3,n - A2m+1,n+2

in so far as it applies to the derivation of nth-order terms containing only
K . As a consequence, the scalar potential for deriving these terms assumes

n
the simplied form

[ ] n 2m+1
. )" Xy
xy,t) = g;; ;Z; (D78 open aT )T (22)
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From which, il follows thut

T o o
N _l o m §2m+n+].;'. n_2m+l
Bx(x,y,t) - <e ) 2;; 22; (-1) K2m+n+l nt(2m+l)! xy
and
- P © o/
(Fo m {2m+n)t _n 2m
By(%,y,t) (a—)n;’ 2 (D K T ET XY (23)

form:

Lae T 14
e

y + REEER = Bx (2)4’)

10

Substituting the Taylor's expansion of equation (15) and solving for the
nth-order terms using a conventional Green's function solution (see Ref. 1)

yields equation (19) above.

IV. Interpretation and Use of Equation (19)

For most practical cases of interest, Kn will be a constant over the
interval of integration. In this event we may define the coupling coefficient
of an nth-order multipole to an nth-order aberration as the partial derivative

of equation {19) with respect to the K in question as follows:

K h BV o X L :
B(xilxoyoxo yé &%) + n! K V. X
.t |___n! KAHsYaX3t (25)
) Kn R rNNR Gicxcy xsy X 5
o

where now the interval of integration is over the multipole length L represented
by Kn' For a distributed multipole component (such as in & non-uniform field
bending magnet), equation (25) is used.

In meny cases where a curved entrance or exit pole contour is used or a
short multipole magnet is used such that the characteristic first-order func-
tions Cys cy, sx, sy and dx are essentially constants over the interval of
integration (the length of one multipole), then the coupling coefficient is best

defined as the partial derivative of equation (19) with respect to s, as follows:
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K tH VX
M AZ S A VI RO (26)
Biﬁn KA i xyxyx
Examples

Assume a situation where the end of the system is a point-to-point image
or the origin (i.e., sx(t)=o), then using equation 26, the coupling coefficients

of a sextupole of strength 82 to various second order aberration coefficients

are:
a(xlxéﬁ) 5
55, T %) s
B(x[xéz) 3
55, %t %
3(x]y y?)
3_§;—__—_ =.2 cx(t) ¢, 8y 8y (27)

etc. Where the Green's function used in these examples is

G = sx(t)cx - cx(t)sx = - cx(t)sx (since sx(t) =0 ?or P01nt-to-p01nt
imaging)

The aberration and cx(t) are evaluated at the end of the system. cx(t) is
equal to the magnification Mx in the examples given. The remaining coefficients

Cor Sy sy and dx are evaluated at the location of the sextupole S The

Y
above results are in agreement with Table VII of Ref. 1.

o

To illustrate a more complex example, consider the fourth-order aberra-
tion coefficient (ylygyéé and assume parallel-to-point imaging in the y

coordinate (i.e., cy(t) = 0). The appropriate Green's function is:
G =s (t)e - ¢ (t)s = s (t)c
, =5 (t) S8y = s (8)e,

and the coupling coefficient to a fourth-order multipole of strength Sh is:

3y ly2yze) i (h!

3
5, §T) sy(t)cysydx (28)
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2
where again the aberration coefficient (ylyoyéb) and sy(t) are evaluated
at the end of the optical system and cy, sy, and dx are evaluated at the

location of the fourth-order multipcle Sh'

V. A Systematic Procedure for Designing High Resolution Systems

First-Order Considerations

In many respects, the determination of a satisfactory first-order magnetic-
optical design is more difficult to achieve than is the subsequent higher-order
design. This is true not only because the basic equipment configuration is
dominated by first-order optical considerations but also because the choice of
the first-crder cptics affects the magnitude of all higher-order aberrations
and the ease with which these aberrations may be minimized by introducing
multipole components into the design.

The dominating design parameters that must be clearly specified in order
to evolve a first-order design are the momentum resolving power; the spatial
resolution of the particle detector system to be used (this determines the
momentum dispersion required); the required vhase space acceptance (the solid
angle, the source size, and the momentum range) of the instrument, and the
first-order imaging requirements in both the x and ¥ coordinates.

Given the above specifications (assuming they are self-consistent), the
optical mode and physical configuration of the instrument may be determined.
Often, more than one theoretical solution exists; in which case the choice is
usually resolved by practical or economic considerations. In other cases,
no solution is evident and the basic specifications must be modified accord-
ingly. In any event, the following equations and discussion are applicable to

the solution of the problem.

1) First-Order Resolving Power

A general equation for the first-order resolving power has been de-
rived in References (1,2, and 3). For point-to-point imaging the first-order
momentum resolving power Rl is defined as the ratio of the momentum dispersion
at the image plane to the total image size. Thus if 2xo is the total source

size then from Reference 1 we have:

a_(t) -
R, =§§= ex: = | = 5)11_ f s (T)n(T)dr (29)
o X [o] S

Note that h(Tt)dr
of the optical system.

d@ is the differential angle of bend of the central trajectory
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Equation (29) muy be expressed in a number of useful forms. If we consider
a particle originating at the source with X, =0 and & = %E = 0 and lying in
o
the midplane (i.e., a monocenergetic point source), the first-order equation of

its trajectory is

x(T) = sx(T)xé (30)

We may then rewrite equation (29) as follows:

t

(L-1)
y e == | onmar| - 2 (31)

2x _x! 2x x!
oo 0 oo

where (l-A%) is the path length difference between the trajectory described by
equation (30) and the central trajectory. Or we may also write equation (31)
in the form

t

t
o1 Bx(var|_ (1 1)
Ry % <! / BO (aoxé) (Bp) Of BdA (32)

o 0 o

where .rBdA is the magnetic flux enclosed between the central trajectory and
the trajectory described by equation (30), and Bp is the magnetic rigidity of
the central trajectory. Please note, however, that if the trajectory of
equation (30) crosses the central trajectory or the sign of B changes, this
changes the sign of the integration. From equation (32) we may define resolv-
ing power as the magnetic flux enclosed Per unit phase space area (2x xo), per
unit momentum (Bp) of the central ray.

In any given design, one or more of the above equations may be used as a
guide toward achieving the required resolving power. One of the design decisions
that must be made is the appropriate choice of the dipole magnet parameters
(width and length) to achieve the required 'deA. From first-order considera-
tions, this choice is dominated primarily by practical and economic factors.
However, a study of the nature of the origin of aberrations (see for example
Ref. 1) suggests that it is advisable to keep the amplitude of Sy small. In
order to simultaneously satisfy this requirement and meet the requlred resolv-
ing power Rl, we see from equation (29) that the total angle of bend & of the
central trajectory should be chosen as large as is practical. Also, in general,
the focal plane angle tends to be more normal to the optic axis for larger

Q - a property usually desired in most designs.
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2) Dispersion
From Reference 1, 2, or 3; for point-to-point imaging (sx(t)=o) the
dispersion at the image plane is
t

a(t) = - e (t) J s (Oh()ar (33)

where cx(t) is the magnification at the image plane.

The dispersion and hence the magnification in the design of a spectro-
meter is dominated almost entirely by a compromise between the spatial resolu-
tion of the particle detectors used at the image plane and the momentum range
to be covered by the instrument; or in the case of a momentum defining (analyz-
ing) system, by the acceptable momentum-defining slit spacings.

3) The Selection of the Optical Mode

By optical mode, we mean the type of imaging (e.g., point-to-point
or parallel-to-point, etc.) required at the image plane in both the x and y
coordinates, and the number of intermediate images imposed between the source
and image planes. The imaging requirements at the image plane are usually
dominated by the physics to be performed by the instrument and the nature of
the particle detectors used. However often (especially at low energies) the
imaging in the y plane may be unimportant as far as the physics requirements are
concerned which in turn provides some additional flexibility in the optics design.

A study of the coupling coefficients to the aberration coefficients
(equation 19) shows the not surprising result, that multipoles located at
intermediate images in a system do not couple to aberrations in the plane in
which the intermediate image occurs. Hence it often proves beneficial to
intentionally create an intermediate image in the y plane of an optical system
so as to achieve some degree of “"orthogonality" in the minimizing of x and ¥y
aberrations.

The considerations of 1), 2), and 3) above are the determining factors
in the selection of the first-order solution of a system design.

The optical mode and dispersion of the system are determined to a great
extent by the choice of the quadrupole components chosen to achieve the first-
order imaging although it is clear that the dipole elements also influence the
first-order imaging to a greater or lesser extent depending upon the total
angle of bend of the system.

L) Averrations and their Correction

A study of the source of second- and higher-order aberrations (see

for example Ref. 1) suggests that it is advisable to maintain the characteristic
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first-order functions cx, sx, dx and cy, Sy and their derivatives as small as
is feacible through the magnetic elements of a system when choosing the first-
order design. This procedure will tend to reduce the initial size of the
aberrations and hence simplify the problem of minimizing them by the addition
of multipole components to the system design.

The procedure for minimizing aberrations has already been outlined in the
Introduction and as such will not be repeated here. The "key" to the minimiza-
tion procedure is the coupling coefficient given by the integral expression in
equation (19). The "best" location for the correcting multipole is where the
coupling coefficient has its maximum value.

The preferred method of introducing the multipole components, i.e., via
pure multipoles, contoured entrance or exit boundaries, or non-uniform fields
is a combination of practical and economical considerations ard, of course,
personal taste and experience. All three methods have been used with pure
multipoles dominating the situation for higher energy physics and the other two
methods dominating medium and low-energy physics applications. All three
techniques should be considered in any given design situation to be certain

that an important economic or practical advantage has not been ignored.
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The misalignment of a magnet in a beam line will cause
an alteration of the beam envelope at any later point in that
beam line. The position of a misaligned magnet may be described
in terms of six coordinates, three translational and three
rotational. The effect of a misalignment on a single particle
trajectory is derived to first order, including bilinear terms.
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envelope is calculated, both for a known magnet displacement and
for an uncertain magnet position. The formalism has been included

in the computer program TRANSPORT.l
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I. Introduction

The effects of magnet misalignments are an important
consideration at every stage of beam line design, installation,
and operation. The selection of the optical mode, determination
of surveying accuracy requirements, and the choice of correcting
elements are all dependent on misalignment information.

Two types of misalignment information are typically needed.
To assess the general effect of misalignments in the design stage,
one needs to know the change in beam position and beam line
transmission characteristics due to uncertainties in the position
of each magnetic element in each seperate coordinate. Secondly,
to provide for correcting elements, one needs to know the effect
on the beam of specific misalignments. |

In the following we derive a method of determining the
effect of magnet misalignments on a particle beam. We first
define a reference system in which to express misalijnments.

Then we determine the effect of a misalignment on individual
particle trajectories. Finally we express the effect on the beam
envelope which describes the ensemble of particles comprising the
bean.

II. Particle Trajectory Coordinates

To specify the position and direction of a particle at any
instant in time, we employ a coordinate system defined with respect
to the beam line reference trajectory.2 The z axis is taken to
point along the reference trajectory; the x axis points to the

left, and the y axis points up. The position and direction of
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the particle trajectory can then be given by a vector with six

components

X = (l)

| 6
The quantities x, x', y, and y' are respectively the horizontal
displacement and slope, and vertical displacement and slope of
the ray with respect to the central reference trajectory. & is
the longitudinal seperation of the ray from a ray which enters
the beam line at the same time as the given ray and travels
along the central trajectory. & is the fractional momentum
deviation of the particle from the design momentum of the beam
line.

When a charged particle passes through a perfectly aligned
magnet, the transformatiop may be described to first order by the
matrix equation2

X(1) = R x(0) (2)
The sets of six coordinates X(0) and X(1) give the particle
position and direction at the entrance and exit faces of the
magnet respectively.

When a magnet is misaligned, the central trajectory of the

magnet is no longer continuocus with the central trajectory of
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the beam line (see figure 1 below). In particular, at both
the entrance and exit faces, the reference coordinate system
external to the magnet no longer coincides with the reference
coordinate system internal to the magnet (see figure 2 below).
The misaligned and aligned reference coordinate systems are
related by a translation of origin plus a rotation of axes.

We continue to use X(0) and X(1) to denote respectively
the entrance and exit face ray coordinates in the aligned
coordinate systems. We use a subscript f to denote the ray
coordinates Xf(O) and xf(l) expressed in the misaligned
reference coordinate systems. To first order the ray coordinates
in the misaligned coordinate systems may be expressed in terms
of those in the aligned coordinate systems by an affine

transformation

Xf(O) So X(0) - D (3)

(o)

Xe (1) S, X(1) - D, (4)

The symbols So and Sl represent six by six matrices, whose

form will be derived below. The two six-vectors Do and Dl

are translations in the six dimensional space of particle

coordinates. The three vectors 56 and Bl formed from the

displacement coordinates (x, y. and z) of Do and D, give the

1
displacement due to the misalignment of the origins of the
reference coordinate systems. These two three-vectors are

shown in figure 1.
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IIX. Magnet Misalignment Coordinates

The alignment of a rigid magnet has six degrees of freedom,
three translational and three rotational. These are conveniently
represented by the six quantities

5x

6
x

sy
m = (5)
ay

"

where 6x, 8y, 8z are the displacements in the x, vy, and 2z

directions, and ex, 6 and Bz are the rotations about the

v’
X, ¥, and z axes respectively. The origin of the xyz coordinate
system, called the pivot, is the point about which the
misalignments are measured. If the pivot point is located at

some point on the reference trajectory, the x, Y, and z axes

of the alignment coordinate system are taken to coincide with

the x, y, and z axes of the beam line reference coordinate

system.

The misalignments form a mathematical group, which is the
Euclidean group in three dimensions. This group is non-commutative
and the order in which the nisalignments are imposed is important
if terms of higher order than linear are included. In practice,

however, misalignment values are sufficiently small so that a

first-order approach is justified. For these reasons, we consider
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only those terms which are of first order in the misalignment
parameters.

IV. Transformation of Particle Trajectory Coordinates

We now temporarily delete the indices 0 and 1 indicating
the entrance and exit magnet faces respectively, and consider
the effect of a misalignment at a single magnet face. Later
we will combine the results from the two faces to obtain the
net effect of a misalignment.

When the components of the misalignment vector m are
small, we may expand the matrix S and the centroid displacement
D in the misalignment parameters. Retaining only first-order

terms we have

D = Am

S=1I+ Bm (6)

The six by six matrix A represents a transformation from the
misalignment parameters to the particle coordinates. I is the
identity matrix, and B represents a set of six matrices, one
for each of the misalignment parameters. A single six by six
matrix Bm is obtained by multiplying each of the six matrices
by its corresponding misalignment parameter and summing the
results. In terms of the misalignment parameters, the particle
coordinates in the misaligned reference coordinate system now

take the form
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To derive the forms of the matrices A and B, we consider
separately the effect of each of the various misalignment
parameters on each of the ray coordinates. First we derive
the effect on the ray coordinates of the various misalignments
as expressed in the coordinate system of the aligned magnet
face. Then we will express the misalignment of the magnet
face in terms of the misalignment parameters about the pivot
point.

A rigid translation of the magnet face will change the
X, ¥, and z coordinates of a ray by the amount of the displacement.
The z translation will also introduce a short drift distance
(positive or negative length) at the magnet face, and will
contribute to B via the transformation matrix of that drift
space.

To determine the effect of a rotational misalicnment we
form from the ray angles x' ( = dx/dz) and y' ( = dy/dz) and
the number 1 ( = dz/dz), a three-vector (x',y",1) giving the
ray direction. We let 5;, 5&, 3; be the three rotational
components of the misalignment vector. Then, including only

first-order effects, this three-vector is transformed as

x! 1 ez -ey x'

[ = | -8 Yy
v 6, 1 8| |y (8)
1 () -8 1
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coordinate system the ray angles become

|
<
+
|
1
@]
"

(9)

Thus coordinate rotations about the aligned magnet face x and

y axes only shift

mixes x' and y'.

If we let m

the ray angles. A rotation about the z axis

represent the misalignment parameters relative

to the aligned magnet face coordinate system, and A and B

be the corresponding matrices, then equation (6) holds using the

barred quantities.

Using the results derived above, the matrices

X and B are now given by

1 0 0 0 0 0
0 0 01 0 0
_ 0 01 00 0
A (10)
0-1 0 0 0 0
0 0 00 1 0
0 0 0 0 0 O
Byas = Byys = 1
By3g = Boge = ~ B3¢ = T Byge = 1 (11)

The first two indices for B correspond to the ray coordinates

and the third corresponds to the misalignment parameters. All

other elements of

B are zero.
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In order to express the quantities m in terms of m, the
misalignment parameters at the pivot point, we need two items.
First is the orthogonal matrix O giving the three translational
coordinates at the magnet face in terms of those at the pivot
point

Xf =0 Xp (12)

Also needed is the three-vector P which gives the position of
the origin of the aligned magnet face coordinate system, in
the coordinate system of the pivot.
We now define two three-vectors which give the translational
m and rotational mg parts of the misalignment vector m. We
also do the same for m. Then the contribution of m,  to ﬁg

is given by equation (11), so that

m, = 0 m {13)

The contribution of m, to ﬁe is zero, since parallel translations
do not affect angles.

The displacement of a point due to a rotation about the
pivot is given by the vector product of the rotation vector and
the position vector of the point. Therefore the displacements
of the magnet face ﬁk due to a rotation at the pivot are given
by

m, =0 'meX P ) (14)

The orthogonal transformation indicated by the matrix O gives

the misalignment parameters in the magnet face coordinate



- 238 -
system; Finally the transformation of rotational misalignment
parameters is again given by equation (11), so that
m, = O my (15)

V. Evaluation of the Relevant Matrices

We choose the pivot to be the origin of the aligned magnet

entrance face coordinate system. Therefore we have

AO=A

B, = B (16)

For the exit face, the matrix O transforms from the
aligned entrance face coordinate system to the aligned exit
face coordinate system. The vector P gives the position of
the origin of the aligned exit face coordinate system in the
aligned entrance face coordinate system. In figure 1 it is
the vector which reaches from A to B.

For the exit face of a bending magnet we therefore have

cosa O sina
0= 0 1 0 (17)

-sina 0 cosa

- p{(1 - cosa)
P = 0 (18)

psina
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where p is the radius of curvature of the central trajectory

and a is the total bend angle.

Al and Bl

B(1l);,; =

B(1);,4

B(1);,5 =

B(1)3,

B(l);3¢ =

All other elements of B(l) are zero.

We then derive for the matrices

cosa 0 0 sina sina 0 \
0 0 1 0 0
-sina 1 0 0 -p{(l-cosa)
(19)
~-cosa 0 0 0 -sina
~sina (o] 0 -p(l-cosa) coso 0
0 0 0 0 0
B(l)341 = - sina
= B(l)344 = - p(l - cosa)
B(1)345 = cosa
= B(l)242 = = B(l)312 = - B(l)422 = sina
B(l)246 = - B(l)316 = -~ B(l)426 = - cosa (20)

To calculate Al and Bl for a quadrupole, we take the

limit o+0 with ap = L, the length of the magnet being held
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fixed. Then we have

{ 1 0 0 L 0 0
0 0 0 1 0 0
0 -L 1l 0 0 0

Al = (21)
o -1 0 0 0O 0
0 0 0 0 1l 0
\ 0 0 0 0 4] 0

and B; = B as given above.

VI. Effect on the Beam Envelope

To first order, the coordinates at the misaligned magnet
exit face are related to those at the misaligned entrance face

by a transfer matrix, so that
Xf(l) = R Xf(O) (22)
or
X(1) -~ Am + BX(L)m = R [X(O) - Am + BOX(O)m] (23)

If we solve for X(1l) and discard all terms in m of order

higher than first, we then derive

X(1) = R X(0) + [Al - RAO] m + [RBO - BlR] X{(0)m (24)

For later use we define two new matrices F and G given by

o lR (25)
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so that
X(l) = RX(0) + Fm + GX(0)m (26)

An ensemble of particles in a beam line is often
represented as a six-dimensional ellipsoid. The equation of

this ellipsoid may be written in matrix form as follows:
X0 'X=1 (27)

where XT is the transpose of the coordinate vector X, and o
is a real, positive definite, symmetric matrix. The square
roots of the diagonal terms of the sigma matrix are a measure
of the beam size in each coordinate. If the centroid of this
ellipsoid does not fall on the central trajectory, then one
needs to specify this centroid position also. The sigma matrix
then gives the beam dimensions as measured about the centroid.
The beam envelope entering a misaligned magnet may be
described in terms of the position in the aligned coordinate
system of the beam centroid and the sigma matrix. For a known
misalignment m, the centroid is transformed as in equation (25).

The sigma matrix is transformed by
o(1) = Ro(0)RT + Go(0)mRT + Ro(0)mTcT

+ Gc(O)mmTGT (28)

where the superscript T indicates a transpose.

For an uncertainty in position we define a covariance
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matrix <an>, measuring the distribution of possible magnet
positions. The sigma matrix, which represents the beam
envelope entering the magnet may contain contributions from
both the original beam and from the uncertainty in positions
of previous magnets. We assume there is no correlation of
errors of positioning between any two magnets. The beam
centroid is unaffected by an uncertainty in position. The

transformed sigma matrix becomes
o(1) = Ro(ORT + FlanDFT + Go(0) {mm?)6T (29)

If the original sigma matrix is zero, then the resultant
sigma matrix represents the uncertainty in the beam centroid
upon leaving the magnet. If the original sigma matrix encloses
a region of phase space, then the resultant sigma matrix
represents the envelope of possible particle trajectories,
including both the undisturbed sigma matrix and the effects of
the misalignment.

VII. Implementation

This model for misalignments has been implemented in the
computer program TRANSPORT.l An arbitrary misalignment m may
be imposed on any magnet or section of the beam line.
Misalignments may also be nested. The effect of all misalignments
may then be added into the sigma matrix and thereby be traced

through the system. Alternatively, the effects of separate

components of the misalignment vector on individual magnets
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may be stored in a table. This table is traced through the
beam line and may be compared with the unperturbed sigma
matrix at any later point. Details of implementation are

described in the TRANSPORT manual.



Figure 1

Figure 2
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Figure Captions

Perfectly aligned and misaligned bending magnets.
With the misaligned magnet the beam line reference
trajectory is no longer continuous with that inside
the magnet. The displacements of the origins of the
entrance and exit face reference coordinate systems
are shown as ﬁs and 51 respectively.

Magnet entrance and exit face coordinate systems.
The misalignment causes both a translation and a

rotation of the reference coordinate system.
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FIRST-ORDER PARAMETER OFTIMIZATION AND COVARIANCE
Section V

To optimize the selected parameters, TRANSPORT uses the method of non-
linear least squares, differential correction, a good description of which is -found
in Ref. (7) below pages, 390-393. A useful by-product of this method is the covariance
matrix C, printed by the program at the successful conclusion of any run involving
parameter fitting. In many applications C may be used to estimate tolerances on
the fitted parameters subject to the specified tolerances (i.e., the standard devia-
tions) of the constraints.

The covariance matrix C is symmetric. This admits a geometrical interpre-
tation as an ellipsoid, and is printed in the same suggestive format as is the beam
ellipsoid g, except that in this case the dimension is equal to N, the number of

parameters varied. The center of the ellipsoid is at

o o o o

A=A, N N (1)
the N values found by TRANSPORT to be the best estimate of the varied parameters.

The equation of the covariance ellipsoid is

—_— —_—

(n =A%) ¢t (;}- AT <1 (2)

where (Cll)l/g, the first diagonal element printed, measures the maximum extent of

the ellipsoid along the Kl axis (the first varied parameter) in the same sense that

(011)1/2 measures the maximum extent of the beanm ellipsoid along the x axis. The

off diagonal elements are normalized so that they are < 1 in magnitude, in analogy
with the rij of the beam matrix, and can be interpreted as measures of the orienta-

tion of the covariance ellipsoid.

(7) SOLMITZ, Analysis of Experiments in Particle Physics,
Ann. Rev. Nuc. Sci., Vol 14, 1964.

K. Halbach, "A Program for Inversion of System Analysis
and its Application to the Design of Magnets", Second
International Conference on Magnet Technology, Oxford,
1967.
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The best estimates (or optimized values) of the varied parameters A are

precisely those that minimize the quantity:

" 2
{]
o 5K-fK(x1....kN) (3)
X = S 3
K=1 KK
where:
M = number of contraints
fK = a function selected by the code digits (i, J) on the constraint definition
(Type Code 10.). For example, i = -1, j = 1 means that the transform
matrix element Rll is to be constrained.
EK = the desired value of the selected function.
sKK = the desired accuracy of fit (i.e., the standard deviation).

In our notation this minimum is expressed by:

2

M o o
£, - £ AN it AD)
xzmin = Z [ " £ s1 ¥ } (L)

K=1 KK

xemin is printed at the successful conclusion of any run involving parameter fitting.
—

2
Whether or not the optimization (X min ’ Ko) is 'acceptable' depends on each applica-

in

tion and must be evaluated by the user. Values of Xemin ~ (M-N) are sometimes (but

not necessarily) regarded as 'good'. In particular if M=N, then an exact solution,

xzmin = 0 should be found by TRANSPORT.

If the resulting fit is acceptable, then the following interpretation may

—t
be put on the covariance matrix C: Let the parameters be changed to values A\ near
—

the optimum Ko, such that they stay within the ellipsoid defined by:

A=A ctn-29Te

Then the resulting deviation of the specified constrained quantities is

bounded by: M 2
bt (M) 2 :
Z[_s?’ < Xgip *1 ()

K=1
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This interpretation is strictly true if the constrained functions fK are linear in
the parameters—f. In the non-linear case, it is an approximation valid only in
some neighborhood of?.
Example:
On the following page is an example of a TRANSPORT dats deck and the resulting
covariance fit of a first-order run. We have ask for a point-to-point image in both

the x and y planes by varying the fields of the quadrupole triplet. The following

definitions and solution are applicable:

BL =My By =g Bl = A, By =, f) =R, 1, Ry §) =0, §, =0
Sll = 0.005, 822 = 0.005 and N=2.
*
From the data deck and the TRANSPORT printout shown on the following
page, we learn that:

X2 i
&:O_s

B) = - 7.4096 Kg, B} = 6.1577 Kg

Icll = 0.079
} Covariance matrix information
r12 = - 0,883 |022 = 0.038

The ellipsoid (B - B°) ¢t (B - Bofrsg 1.0 can then be constructed as

shown:

B,
T
0.038
222%2%225222?7%\ Y B8
(87.83) !
57
=—0.079 “j 1510430

¥
Note: the printout format is:

2
COVARIANCE (FIT X min/N)

\lcll
e (%,
rln LI I WY rn,n-l |CNN
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POINT IMAGE AT TAPAFT!

Data Deck for TRANSPORT Run

IMAGE AT TARGET

4,000 1v ( -3.208 FT )
4,000 11« 2.673 FT )
4,000 1M ( <-3,208 FT )

{ Constraint on Rl2}

{Constralnt on R3h§

Example:
1. 'USE TRIPLET TO FORM POINT-TO-
2. 0
3. 13, 2, : \
4, 15, 1, "im? 15. 8. 'FT* ;
5, 1. 0. 0. 0. 0. 0. 0. 1.05 ;
6. 3.0 12. ;
7. 5.02 1.5 -8.0 4,0 'n1' ;
8. 3.0 0.5 ;
g, 5,01 3.0 7.0 4.0 'N2' ;
10, 3.0 0,5 ;
11. 5.02 1.5 -8, 4.0 'n1' ;
12. 3.0 7.0 ;
13. 10, -1. 2. 0. .005 'FIT1' ;
14, 10. -3, 4, 0., .005 'FIT2' ;
15. SENTIMNEL ]
16, /* Xz
J——‘( min)
*COVARIANGE  ( FIT 0.8 )
0.079 Covariance Matrix
-0.883 0.038
USE TRIPLET TO FQPM POINT-TO-PNIMT
*BEAM# 1.000000 1.05 RFY
o]
*DRIFT» 3.0 12.0000 FT By
*NUAD = 5.00 1.50000 FT -7.5096 KA
o]
*DRIFT* 3.0 0.5000 FT B,
*UAD * 5.00 3.00000 FT 6.1577 X6
Q
*DRIFT* 3.0 0.5000 FT By
P emt—
+OUAD 5.00 1.50000 FT =-7.4096 KA
*DRIFT* 3.0 7.0000 FT,
1
*F T 10,0 -1, 2., 0.0 / 0.005
-0.000
LAREL = FIT1
§o
*F 1T+ 10.0 -3, 4, 0.0 / 0.005
-0.000
ILABEL = FIT2
*LFNGT 26.0000 FT
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Interpretation:

So long as Bl and B2 fall inside the shaded area (this is the tolerance
requirement), then the ellipsoid representing the corresponding deviations of the

{5):
matrix elements R, and R3h is wusing Eq. !5)

2 2
0 -R 0-R
12 34 < 2 -
( 0.005 ) +( o.oos) S Xpip *1.0=26
or

2
ng + R3h < 2.6(0.005)2

Note that it is not enough to Prescribe tolerances |'AB1[ < .079 and ]ABel
<< .038, since there is unshaded area inside the rectangle defined by these values.
The strongly tilted covariance ellipse (i.e., lrl?’ ~ 1) suggests that the triplet
power supplies should be designed so that any drift in magnetic field Bl-causes a

compensating drift in the magnetic field 82 S0 as to stay inside the shaded area

shown in Figure 1.
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