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Abstract
This article reviews the physical processes responsible for the trans-
port and deposition of particles and their theoretical modeling. Both
laminar and turbulent processes are considered, emphasizing the
physical understanding of the various transport mechanisms. State-
of-the-art computational methods for determining particle mo-
tion and deposition are discussed, including stochastic Lagrangian
particle tracking and a unified Eulerian advection-diffusion ap-
proach. The theory presented includes Brownian and turbulent dif-
fusion, turbophoresis, thermophoresis, inertial impaction, gravita-
tional settling, electrical forces, and the effects of surface roughness
and particle interception. The article describes two example applica-
tions: the deposition of particles in the human respiratory tract and
deposition in gas and steam turbines.
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1. INTRODUCTION

In this article I discuss the physical processes by which solid particles (or liquid
droplets) suspended in a fluid are transported to and deposited on solid walls. Mea-
suring, predicting, and understanding the deposition rate are both scientifically
interesting and important in engineering (in a variety of areas of mechanical engi-
neering, chemical engineering, environmental science, and medicine); consequently,
these have been the subject of a very large number of studies. After presenting ex-
perimental facts, theoretical developments, and computational procedures on de-
position, I discuss two examples: the deposition of drugs and harmful substances
in the respiratory tract (in medical science and engineering) and the deposition of
particles and droplets in gas and steam turbines (in mechanical engineering). Sim-
ilar physical processes take place in the atmospheric dispersal of pollutants and the
determination of indoor air quality (in environmental science), the transport and
sedimentation of various substances in rivers (in civil engineering), the fouling of
process and heat transfer equipments (in mechanical engineering), and the trans-
port of chemical aerosols (in chemical engineering), along with many other exam-
ples. This review emphasizes the physical understanding of transport and deposition
and provides sufficient details for the reader to undertake state-of-the-art compu-
tations of deposition both in the Lagrangian (including stochastic) and Eulerian
frameworks.

In this review we consider only dilute mixtures (i.e., when the volume fraction
of the dispersed phase is low). The particles or droplets therefore are assumed not
to interact with each other and to exhibit one-way coupling (i.e., the particle mo-
tion depends on the fluid flow field but not vice versa). Many practical situations
conform to such a description. The theory presented covers both laminar and turbu-
lent flow of the fluid. Natural convection may also contribute to setting up the fluid
flow field. Some of the particle transport mechanisms are also operative in a static
fluid (e.g., gravitational settling, Brownian diffusion, transport due to electrostatic
forces).

There are two common approaches for deposition calculations: Eulerian and
Lagrangian. As a result of the one-way coupling assumption, it is possible, for the
Eulerian computational scheme, to compute the fluid flow field first, followed by a
separate solution of the equations for the particles. However, the equations for the
particle motion presented in this article can also be solved simultaneously with the
equations for fluid motion, if one so wishes. The Lagrangian schemes involve trajec-
tory calculations typically for a large number of particles moving in a fluid turbulence
field that is generated by various methods, ranging from simple ones to direct numer-
ical simulation (DNS) of Navier-Stokes equations. The implication of the one-way
coupling in this context is that one can track each particle independently from other
particles; hence it is possible to perform parallel computations.

Unless otherwise stated, in this review x is the main direction of fluid flow, and y is
perpendicular to a solid surface (on which deposition occurs). The particle properties
are denoted by the subscript p, and fluid properties are either given without subscript
(for readability) or by the subscript f (where it enhances clarity).
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2. GENERAL EXPERIMENTAL CHARACTERISTICS OF
DEPOSITION AND FICK’S LAW OF DIFFUSION

Usually the results of deposition experiments or calculations are presented as curves of
nondimensional deposition velocity versus nondimensional particle relaxation time.
The deposition velocity, Vdep, is the particle mass transfer rate on the wall, Jwall ,
normalized by the mean or bulk density of particles (mass of particles per unit volume),
ρp,m, in the flow:

Vdep = Jwall/ρp,m. (1)

The particle relaxation time, τ , is a measure of particle inertia and denotes the time
scale with which any slip velocity between the particles and the fluid is equilibrated. As
demonstrated below, τ depends, among other things, on the particle radius; hence the
abscissa of the usual deposition curves represents increasing particle radius. Vdep and
τ are made dimensionless with the aid of the fluid friction velocity u∗: V+

dep = Vdep/u∗,
τ+ = τu2

∗/ν, where ν is the kinematic viscosity of the fluid (ν = μ/ρ).
Many previous studies give experimental measurements of the deposition velocity

(Friedlander & Johnstone 1957, Liu & Agarwal 1974, McCoy & Hanratty 1977, Wells
& Chamberlain 1967). Although there is considerable scatter, these data illustrate the
basic characteristics shown in Figure 1. The results fall into three distinct categories:
(a) At first, as τ+ increases, the deposition velocity decreases. This is the so-called
turbulent diffusion regime, in which a turbulent version of Fick’s law of diffusion (see
below) applies. (b) The striking feature of the next zone, the so-called eddy diffusion-
impaction regime, is that the deposition velocity increases by three to four orders
of magnitude. (c) The third regime of deposition, usually termed the particle inertia
moderated regime, results in an eventual decrease in the deposition velocity for large
particle sizes. The borders between the three regimes are not sharp, as one effect
gradually merges into another, and depend on flow conditions.
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Figure 1
A typical variation in
measured deposition rate
with particle relaxation time
in fully developed vertical
pipe flow. Regime 1,
turbulent diffusion; regime
2, turbulent diffusion-eddy
impaction; regime 3,
particle inertia moderated.
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2.1. Molecular and Turbulent Diffusion

Most mass-transfer textbooks (e.g., Kay & Nedderman 1988) show that one can
calculate the flux of small particles in a turbulent boundary layer by integrating a
modified Fick’s law of diffusion,

J = −(DB + Dt)
dρp

dy
, (2)

where DB is the Brownian diffusivity; Dt is the turbulent diffusivity, which varies
with position; y is the perpendicular distance from the wall; and dρp

dy is the gradient
of particle partial density (same as concentration gradient). DB is given by the Ein-
stein equation incorporating Cunningham’s (1910) correction (CC = 1 + 2.7Kn) for
rarefied gas effects,

DB =
(

kT
6πμr

)
CC , (3)

where k is the Boltzmann constant, T is the absolute temperature, and Kn is the
Knudsen number defined by Kn = l/2r, where l is the mean free path of the sur-
rounding gas and r is the radius of a particle. Another semiempirical form for the
Cunningham factor, CC = 1 + Kn[a + b exp(−c /Kn)], is also widely used: Davies
(1945) gave the values of the constants as a = 2.514, b = 0.8, and c = 0.55. Slightly
different values for these constants are sometimes used in the literature. Equation 3
shows that DB decreases with increasing r. Equation 2 therefore predicts that the
mass flux of particles and deposition velocity decrease continuously with increasing
particle size. Figure 1 shows a more complex behavior, and Fick’s law does not give
a complete description. We describe in the following sections both Lagrangian and
Eulerian computational methods to illustrate what happens in the second and third
regimes of deposition velocity.

3. PARTICLE MOTION AND VARIOUS FORCES

This section describes a few common forces that affect particle motion. The magni-
tudes of various forces are expressed as those per unit mass of the particle (because
both Eulerian and Lagrangian schemes are conveniently expressed in terms of particle
acceleration). The following equations contain vector quantities; hence magnitudes
and directions need to be accounted for properly. The effects of virtual mass and
the Basset history term (Maxey & Riley 1983) are usually not included in deposition
studies—both these terms are small when the ratio of particle material density and
fluid density is large (ρ0

p/ρ � 1), a condition generally satisfied for the motion of
solid particles or liquid droplets in a gas.

3.1. Aerodynamic Drag FD

A particle moving in a fluid experiences a drag force. The drag force is always
present, and it acts as a mechanism by which a particle tries to catch up with the
changing velocities of the surrounding fluid (for discussions on the physical aspects
of relaxation phenomena, see Becker 1970; Guha 1995, 2007). The drag force FD
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(per unit mass of the particle) may generally be expressed as

FD = Vf − Vp

τ
, (4)

where Vf and Vp are fluid and particle velocities, respectively. The equation applies
to instantaneous as well as time-mean values. For spherical particles with small slip
velocity (�V = Vf −Vp ), the magnitude of the drag force is given by the Stokes result,
FD = 6π rμ|�V|/m, where m is the mass of an individual particle (m = 4

3 πr3ρ0
p ,

where ρ0
p is the density of pure particulate material). Inserting this result into

Equation 4, one finds that in the Stokes drag regime τ is given by

τ = 2ρ0
pr2/9μ. (5a)

The curves for the variation of V+
dep versus τ+ are plotted with this definition of the

relaxation time. However, in the numerical calculations, one needs to correct the
relaxation time to account for the slip velocity for large particles and the rarefied gas
effects for very small particles. The rarefied gas effects can be modeled by the Cun-
ningham correction factor CC as used in Equation 3, whereas the effects of a large slip
Reynolds number are modeled by incorporating an empirical particle drag coefficient,
CD. The general expression for the inertial relaxation time τI is then given by

τI = τ
24

ReCD
CC , (5b)

where Re is the slip Reynolds number defined as Re = 2r |�V|/ν, and CD is a function
of Re. Morsi & Alexander (1972) give an empirical equation that is widely used: CD =
a1 + a2/Re + a3/Re2, where the values of a1, a2, and a3 are provided in several piece-
wise ranges of Re. Another much used equation is CD = (24/Re)(1 + 0.15Re0.687);
Clift et al. (1978) attribute this equation to Schiller and Nauman, dating back to 1933.

The aerodynamic drag for nonspherical particles is usually expressed as an em-
pirical correction to the drag of equivalent spheres by introducing suitable shape
factors. Various geometric shape factors for a particle of an arbitrary shape are pro-
posed by combining two of the four quantities: volume, surface area, projected area,
and projected perimeter. For example, a widely used volumetric shape factor is cal-
culated as volume/(4 × projected area/π )3/2. Theoretical and experimental values of
the drag are more readily available for regular nonspherical shapes (e.g., spheroidal,
cylindrical) than for arbitrary shapes, and these values are given by Clift et al. (1978).
Different orientations and the possible rotation of nonspherical particles add to the
complexity.

Sometimes the concept of an aerodynamic diameter (dae) is used, which is the
diameter of a unit density sphere (usually taken as 1 g cm−3) that has the same gravi-
tational settling speed as the particle in question (aerodynamic drag is therefore the
same at the terminal speed). The aerodynamic diameter is given by dae = dV

√
ρ0

p/SD,
where dV is the diameter of an equivalent spherical particle that has the same vol-
ume as the nonspherical particle in question, and SD is the dynamic shape correction
factor. Hinds (1999) gives values for SD for common geometric shapes and particle
types.
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3.2. Inertial Impaction

If the magnitude and direction of the fluid velocity (mean velocity in the context
of turbulent flow) change rapidly, significant velocity slip may develop (as shown in
Equation 4), particularly for larger particles. When the fluid time-mean streamlines
are curved, particles may not be able to follow them as a result of inertia, and the
deviated particle pathlines may make them collide with nearby solid walls and get
deposited, which is known as inertial impaction. This may be an important mech-
anism, for example, for the highly curved blades in steam and gas turbines or for
the complex flow passages with rapid turning in the nasopharyngeal region of the
human respiratory tract or in the branching bronchial tree. Inertial impaction may
be relevant for either laminar or turbulent flow.

3.3. Gravitational Force FG

A particle in a gravitational field experiences a force (weight) in the direction of the
gravitational acceleration g. The particle also experiences a force in the opposite
direction (buoyancy), which, according to the Archimedes principle, is equal to the
weight of the displaced fluid. Hence, the net gravitational force (per unit mass of
particle), FG, is given by

FG =
(

1 − ρ

ρ0
p

)
g. (6)

In situations in which gravity and aerodynamic forces are balanced, a particle acquires
a terminal speed known as the gravitational settling speed, Vgs . One can determine
the magnitude of the gravitational settling speed from Equations 4 and 6: Vgs =
(1 − ρ/ρ0

p )gτI . In noninertial reference frames, centrifugal forces may give rise to
similar body force effects like gravity.

3.4. Shear-Induced Lift Force FS

Saffman (1965, 1968) provided an expression for the shear-induced lift force, which
(per unit mass and in the y direction) is

FSy = 1.542
ρ

ρ0
p
ν

1
r

√
1
ν

∣∣∣∣d V̄f x

dy

∣∣∣∣ (V̄f x − V̄px
)
. (7)

Calculations show that the effect of FS is usually to enhance deposition velocity.
The majority of deposition calculations reported in the literature make use of the
Saffman expression for the lift force. However, Saffman originally derived his result
for an unbounded shear flow. For deposition calculations, one should use modified
expressions for the lift force that include the effects of the proximity of a wall and
finite Reynolds numbers. The sign of the Saffman lift force in a particular direction
depends on the sign of the slip velocity in the perpendicular direction. Guha (1997,
appendix B) discusses a subtle interaction between FS, gravity, and particle convective
velocity toward a wall in vertical flow.
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3.5. Thermophoretic Force FTherm

The thermophoretic force depends on the presence of a temperature gradient:

FTherm = −(η/m)∇ ln T. (8)

Talbot et al. (1980) give an equation for the thermophoretic force coefficient, η:

η = 2.34(6πμνr)(λr + 4.36Kn)
(1 + 6.84Kn)(1 + 8.72Kn + 2λr )

,

where λr is the ratio of the thermal conductivity of the fluid, λ, and that of the particles,
λp (λr = λ/λp ). Numerical calculations given below show that the thermophoretic
force may be significant for smaller particles even in the presence of a modest temper-
ature gradient. In cooled gas turbines, the blade may be cooler than the gas by several
hundred degrees Kelvin; the thermal gradient is large; consequently thermophoresis
strongly influences the motion of particles in the relevant size range.

3.6. Electrical Forces FE

A charged aerosol is subjected to electrical forces. If there is an externally applied
electric field of strength E and the total charge carried by a particle is q, then the
Coulomb force due to the imposed field is qE. A charged aerosol near a solid wall
also experiences an electrostatic force owing to induced charges on the wall (mirror
charging). The easiest way to find the force is the method of images (Nadler et al.
2003). If the wall is conducting, then it is an equipotential line, and one can find the
electrostatic force on a particle at distance y from the wall by placing an opposite
charge (image) at –y. The electrostatic force due to mirror charging is, in this case,
of an attractive nature (i.e., acts toward the wall assisting deposition), and one can
calculate its magnitude per unit mass of the particle using Coulomb’s law. The total
electrical force (per unit mass of a particle) in the y direction is then given by

FEy = qE
m

− 3q 2

64π2ε0ρ0
pr3 y2

, (9)

where ε0 is the electric permittivity of vacuum (or air). Hesketh (1977) gives an expres-
sion for the maximum charging of a particle qmax: qmax = 2000×(1.6×10−19)(r/10−6)2

Coulomb. To make a parametric investigation of the effects of mirror charging on par-
ticle motion, we express q = ξqmax. There are other terms (such as dielectrophoretic
force, dipole-dipole interaction, interaction due to neighboring particles) that are
usually small and are not considered here.

Davies (1966) and Soo (1990) present other aspects of particle dynamics. Crowe
(1982) has given a review of the various computational fluid dynamics (CFD) tech-
niques used for two-phase flows.

4. LAGRANGIAN PARTICLE TRACKING CALCULATIONS

A large number of studies have adopted the approach of particle tracking in a
Lagrangian framework. For example, Kallio & Reeks (1989) calculated the deposition
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of particles in a simulated turbulent fluid field; Ounis et al. (1993) and Brooke et al.
(1994) computed the motion of particles for which the fluid motion was determined
by DNS of the Navier-Stokes equations; Wang & Squires (1996) solved the fluid
velocity field using large eddy simulation; and Fichman et al.’s (1988) and Fan &
Ahmadi’s (1993) calculations were based on the sublayer approach originally pro-
posed by Cleaver & Yates (1975).

In the particle tracking methods, the momentum equation for the particle is writ-
ten and then integrated with respect to time along the particle pathline. Typically
the motion of a very large number of particles is solved, and from this one can con-
struct statistically meaningful ensemble average quantities. The particle momentum
equation and position equation in the i direction can be written on the basis of the
discussions in Section 3:

d Vpi

dt
= Vfi − Vpi

τI
+ FGi + FSi + FTherm,i + FEi + Bi , (10)

dxi

dt
= Vpi. (11)

Equations 10 and 11 can be numerically integrated together, giving the new position
and velocity at the end of each computational time step. It is straightforward to include
other forces not considered here in Equation 10.

The first and last terms in the right-hand side of Equation 10 deserve special men-
tion. If one wants to calculate the impact of fluid turbulence on the particle motion,
one must use the instantaneous fluid velocity Vf in the first term. If one uses the
time-mean value V̄f in the first term, no matter what sophisticated turbulent calcu-
lation method was used in determining it, proper turbulent diffusion and dispersion
characteristics of particles are not captured. The average particle motion calculated
by first determining the time-mean fluid velocity and then using Lagrangian tracking
through this steady fluid flow field is not the same as first using Lagrangian tracking
through a fluctuating fluid flow field and then averaging. Of course, if time-mean V̄f

is used, some particle dispersion and deposition may still be predicted if other mecha-
nisms such as inertial impaction (see Section 3.2) or gravitational settling (Section 3.3)
are present, as they would be in a laminar flow. Under certain combinations of flow
geometry and particle size, these other mechanisms can even be the dominant factors
(but one needs to be aware of these considerations, particularly when using CFD
packages to perform Lagrangian particle tracking with time-mean V̄f ). The fluctuat-
ing turbulent field may also alter the steady-state values of other forces in Equation
10, such as FS, but such effects are considered small and usually are not included
in reported studies. The last term in Equation 10 represents the Brownian force
on a particle and must be included especially for small particles (see regime 1 in
Figure 1).

The attraction of the Lagrangian tracking method is obvious, and the form of
Equation 10 is general and direct. The coding of the computer program is relatively
simple (as compared with the coding of an Eulerian method). The interactions of
particles with the solid boundary (e.g., rebounding) can also be modeled in a simple
manner. A polydispersed droplet population, even when a change in particle size is
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involved, can be accommodated easily. When the particle inertia is very large and
the fluid flow field has significant streamline curvature (such that inertial impaction
and/or gravitational settling is the dominant mechanism), then a picture of the par-
ticle velocity field and deposition can be built from the Lagrangian tracking of a
reasonably small number of particles through the time-mean fluid flow field—such
calculations can be relatively inexpensive. Hence, often in the literature one finds
mixed Eulerian-Lagrangian calculations in which the mean fluid field in complex
three-dimensional geometry is calculated by Eulerian methods, and then Lagrangian
calculations are performed on particles. Most commercial CFD codes have this facil-
ity. However, if calculation of the particle concentration field is also necessary (e.g.,
Marchioli & Soldati 2002) in addition to the particle velocity field, then Lagrangian
calculations face challenges and can be computationally expensive. Moreover, when
particle motion is significantly influenced by fluid turbulence, then Lagrangian cal-
culations with fluctuating fluid velocity are needed (the fluid field being determined
by Reynolds-averaged Navier-Stokes, large eddy simulation, or DNS). Such tracking
calculations are typically performed for a large number of particles (may be 104, 105,
or many more) for statistically meaningful results, and the computational time step
needed is small (particularly for small particles for which Brownian diffusion may also
need to be included); hence stochastic Lagrangian calculations are computationally
intensive and expensive. The method can thus be a good research tool for understand-
ing the flow physics, but it is unlikely to become a practical method for engineering
calculations or be used as a design tool.

4.1. Stochastic Eddy Interaction Models

The instantaneous turbulent fluid velocity may be computed directly by a DNS ap-
proach. Often, instead a Monte Carlo simulation (also known as random walk mod-
eling in this context) is performed. In this approach, a particle’s stochastic trajectory
is modeled as a succession of interactions with turbulent eddies. The time-mean
fluid velocity V̄f is calculated by a suitable turbulent computational method (e.g., the
k − ε model). A simulated fluctuating velocity field is then superposed to calculate
the instantaneous fluid velocity (Vf = V̄f + V ′

f ). A fluid eddy is assigned a fluctuating
velocity V ′

f , which is assumed to stay constant during the lifetime of the eddy te. As
a particle encounters an eddy on its pathline, Equations 10 and 11 are integrated
together to calculate the particle velocity and position at the end of the particle res-
idence time tr . Small particles usually stay within the same eddy during the eddy’s
lifetime (then tr = te ); particles with large inertia may leave the eddy before the eddy
decays (in this case, tr < te ). Once the particle has left the eddy or the eddy lifetime is
over, the particle encounters a new eddy at its current location, and the integration of
Equations 10 and 11 is repeated in the same manner. The calculation for a particle is
continued until the particle is captured by a wall (deposition has then taken place) or
goes out of the computational space. The calculation procedure is repeated for many
particles.

The differences between the various reported schemes are mainly in how the ve-
locity scale, length scale, and eddy lifetime are generated and randomized. An adopted
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scheme should preserve the dispersion characteristics of the original turbulent flow
and needs to be validated for this purpose. The method used for calculating the eddy
lifetime and eddy length scale determines the Lagrangian and Eulerian autocorrela-
tion, respectively.

Usually these stochastic models calculate the eddy velocity as V ′
f = NGvrms , where

vrms is the root mean square (rms) of the fluid fluctuating velocity in the relevant
direction, and NG is a random number drawn from a Gaussian probability density
distribution of zero mean and unity standard deviation. Another probability density
function other than the Gaussian can also be used. If a constant eddy life is used in
the simulation, then it should be chosen such that te = 2TL, where TL is the fluid
Lagrangian integral time scale, to preserve the long-term dispersion characteristics;
random time steps should be used to produce a smooth Lagrangian autocorrelation
function (Wang & Stock 1992). Similarly, if a constant eddy length scale (le) is used,
then it should be chosen such that le = 2LE , where LE is the Eulerian integral length
scale (Graham & James 1996). For (solid) particles with finite inertia, the Lagrangian
integral time scale for the particle lies between the Lagrangian and Eulerian integral
time scales for the fluid.

Gosman & Ioannides (1983) used a k − ε method for calculating the time-mean
fluid velocity field, assumed isotropic fluctuating velocities (vrms ,i = √

2k/3), and
calculated the eddy length scale from le = C0.5

μ k1.5/ε and eddy time scale from
te = le/|V ′

f |. Hutchinson et al. (1971) used a constant te. Shuen et al. (1983) used the
same model as Gosman & Ioannides (1983) except they used te = le/(

√
2k/3). Kallio

& Reeks (1989) simulated the turbulent fluid velocity field using empirical curve fit-
tings for the time-mean x velocity V̄f,x , rms y fluctuations vrms ,y , and Lagrangian time
scale TL, all as functions of the wall coordinate y+. The particle residence time was
taken to be always equal to the eddy lifetime (tr = te ); hence they need not specify
the eddy length scale (le). The eddy time scale (te) was calculated by randomizing the
Lagrangian integral time scale TL from an exponential probability density distribu-
tion. Berlemont et al. (1990) provided another approach for stochastic Lagrangian
calculation. This method uses a correlation matrix in the random process to explicitly
specify any shape of the Lagrangian correlation function.

Kallio & Reeks’s (1989) study is important in terms of deposition calculations
because (despite its inability to capture regime 1 in Figure 1 as a result of ignoring
Brownian movement) it showed that a simple stochastic theory could predict the
general behavior of particle deposition in regimes 2 and 3 in Figure 1.

4.2. Markov Chain–Type Turbulent Random Walk Models

There are many papers on this approach particularly developed in the context of
atmospheric dispersion (Durbin 1980, Luhar & Britter 1989, Sawford 1982, Walklate
1987). Whereas for the stochastic eddy interaction models the Lagrangian velocities
are generated through independent random numbers, for the Markov chain–type
simulations the velocities are generated through dependent random numbers with
one-step memory. For a one-dimensional case, if x(t) and v f (t) are the position and
velocity, respectively, of a fluid particle or a tracer particle, then the evolution of
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(v f , x) is generally described as

dv f = a(x, v f ) dt + √
(C0ε) dξ, (12a)

d x = v f d t, (12b)

where dξ is a random velocity increment of the Wiener process with zero mean and
variance dt, C0 is a universal constant (Monin & Yaglom 1975), and ε is the mean
rate of dissipation of turbulent kinetic energy. The function a is determined by solv-
ing a Fokker-Planck equation to satisfy the well-mixed criterion (Thomson 1987),
which ensures that a globally uniform source of tracer is not unmixed by the tur-
bulent motions. For the homogeneous, isotropic, stationary case, a = −v f /TL and
C0ε = 2v2

rms /TL, and Equation 12a becomes the basic Langevin equation. It is usually
stated that dt should be less than 0.1TL, so that the effect of the size of computational
time step does not significantly affect the Lagrangian velocity correlation. Applica-
tion of this type of random walk model can be complex in strongly inhomogeneous
and anisotropic turbulent flow, in multidimensional dispersion problems, and when
particle inertia is significant.

4.3. Calculation of the Brownian Force Bi

One can adopt a molecular dynamics approach to calculate Brownian movement.
However, in the context of the discussion on the stochastic simulation of turbulence
in the previous two sections above, one could either alter the expression for the
displacement in the Markov chain process (Borgas & Sawford 1996) or add a force
(e.g., Ounis et al. 1993) in the eddy interaction model. In the Markov chain approach,
the form of Equation 12a remains the same, but Equation 12b is replaced by d x =
v f d t + √

2DBdξ ′, where dξ ′ is a random number representing white noise, and the
Brownian diffusion coefficient DB is given by Equation 3.

In the eddy interaction model, the Brownian force (per unit mass of particle) in

each direction is specified as a Gaussian white noise: Bi = (NGi/m)
√

(2k2T2
f )/(DB�t),

where �t is the computational time step, and NGi is a Gaussian random number with
zero mean.

5. EULERIAN PARTICLE TRANSPORT CALCULATIONS

All practical CFD computations for a single-phase fluid in complex geometries are
performed in the Eulerian framework. Hence, it is profitable to solve the particle
equations in the same way for easy integration with the established CFD codes for
the primary fluid. The Eulerian-Eulerian calculations are computationally efficient
(compared with stochastic Lagrangian tracking calculations) and hence are neces-
sary for engineering calculations and as a design tool. However, turbulence closure
problems have to be tackled. There are also challenges in implementing physically
correct treatment at solid boundaries, including particle rebounding. Crossing trajec-
tories, discontinuities in concentration, and polydispersed particle cloud with tempo-
ral change in size of an individual particle (e.g., due to condensation or evaporation;
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see Guha 1994, 1995, 1998a; Guha & Young 1991) further complicate the
matter.

Historically, it was Eulerian modeling that was first applied to calculate particle
deposition in the second regime (regime 2 of Figure 1). Starting with Friedlander
& Johnstone’s (1957) landmark paper, this genre of calculations, variously called stop
distance or free flight models, has been used in engineering solutions for a long
time. Although these models have contributed strongly to the development of our
understanding of deposition, they have fundamental difficulties. Whereas this class
of models tried to capture the physics of deposition by solving the particle conti-
nuity equation alone, in the past 15 or so years Eulerian computational methods of
deposition have been developed that solve both particle continuity and momentum
equations ( Johansen 1991, Guha 1997, Young & Leeming 1997). These models show
that the interaction of particle inertia and the inhomogeneity of fluid turbulent flow
field (in the boundary layer close to a solid surface) gives rise to a new mechanism
of particle transport called turbophoresis (Caporaloni et al. 1975, Reeks 1983). Tur-
bophoresis (in which particle transport is caused by gradients in fluctuating velocities)
is a separate effect and must be treated as such; it cannot be properly reproduced by
any tuning of the theoretical model for diffusion (which is driven by the gradients
in concentration). Turbophoresis is not a small correction to Fick’s law of diffusion;
Guha (1997) showed that it is the primary mechanism operative in regimes 2 and 3 of
Figure 1. Guha (1997) further demonstrated that for large particles, the momentum
equation alone can provide nearly accurate estimates of the deposition velocity; the
absence of the use of the particle momentum equation in the stop distance models is
therefore their major weakness. Theoretical treatments on particle motion in turbu-
lent flow, including kinetic approaches, are given by Reeks (1977, 1991, 1992), Rizk
& Elghobashi (1985), Simonin et al. (1993), and Zaichik (1999), among others.

5.1. Stop Distance or Free Flight Models

One of the most used Eulerian calculation methods has been the free flight or
stop distance model (e.g., Beal 1970, Davies 1966, Friedlander & Johnstone 1957,
Papavergos & Hedley 1984, Wood 1981). These models assume that particles diffuse
to within one stop distance, s, from the wall, at which point they make a free flight
to the wall. The main difference between different models of this type lies in the
prescription of the free flight velocity, vff. A simple integration of Equation 4 shows
that, in nondimensionalized form, s + = (vff/u∗)τ+. Friedlander & Johnstone (1957)
assumed vff = 0.9u∗, a value close to the fluid rms velocity in the outer layer of a
turbulent boundary layer. Their model agrees well with experiments in a vertical pipe
(in the second regime). Davies (1966) made an apparently more plausible assumption
that the free flight velocity is the same as the local rms velocity of the fluid at the point
at which the particle starts its free flight, but his calculated deposition velocities were
approximately two orders of magnitude lower than the experimental values. Liu &
Ilori (1974) improved the prediction of this model by prescribing, rather arbitrarily,
a particle diffusivity that was different from the commonly used eddy momentum
diffusivity. Beal (1970) gave another variation of the stop distance model.
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These models, although significantly contributing to the development of our
understanding, are physically not satisfactory. The stop distance models predict a
monotonic rise in stopping distance (which may exceed the buffer layer thickness of
a turbulent boundary layer for larger particles because s + ∼ τ+) and consequently
predict a monotonic increase in deposition velocity with increasing τ+. Experiments,
however, show a third regime of deposition, usually termed the particle inertia mod-
erated regime, in which the deposition velocity decreases with a further increase in
τ+ (see Figure 1). Stop distance models are not of much use here, and new theories
(e.g., Reeks & Skyrme 1976) need to be applied.

Thus, even for the apparently simple case of turbulent deposition in a fully de-
veloped pipe flow, a separate theory had to be applied for each deposition regime.
Although it is possible, with proper tuning of the models (e.g., by prescribing the free
flight velocity), to partially reproduce the experimental results for fully developed
pipe flow, the theories cannot be extrapolated to two- or three-dimensional flow sit-
uations with any great confidence because of their piecemeal nature and the required
empirical tuning. Additionally, when other effects such as thermophoresis or electro-
static interaction are present, the stop distance models would need postulations such
as that the deposition velocities due to various mechanisms calculated separately can
be simply added (linear superposition).

5.2. A Unified Advection-Diffusion Theory

Guha (1997) has established, by deriving from the fundamental Eulerian conserva-
tion equations of mass and momentum for the particles, a unified advection-diffusion
theory in which turbophoresis arises naturally. The theory includes molecular and
turbulent diffusion, thermophoresis, shear-induced lift force, electrical forces, and
gravity. It incorporates the effects of surface-roughness elements and particle inter-
ception. The framework is general, and the theory can be integrated efficiently with
established multidimensional CFD codes for single-phase flow. The theory reduces
to Fick’s law of diffusion in the limit of small particles, thus linking Fick’s law to a
broader scheme of particle transport. The prediction of deposition velocity from this
Eulerian theory is at least as accurate as those from the state-of-the-art Lagrangian
calculations, including DNS studies, but the Eulerian computation is much faster
(and the inclusion of Brownian diffusion is simple).

The new Eulerian theory uses Ramshaw’s (1979) approach to model the forces
on a particle in a flowing fluid stream, in particular how the Brownian diffusion is
modeled (see also Fernandez De La Mora & Rosner 1982). Various flow variables
(such as fluid and particle velocity, particle partial density) are decomposed into their
mean and fluctuating parts, and then the particle continuity and momentum conser-
vation equations are Reynolds averaged. The resulting equations are then simplified,
identifying and retaining the dominant terms, so that clear physical meaning could be
ascribed to each term. The equations given in Guha (1997) are general and can, for
example, be used to study particle deposition in a developing boundary layer. Here,
only the equations for fully developed, vertical flow are discussed to bring out the
essential flow physics.
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If the flux of particles in the y direction (which is perpendicular to the solid wall)
is denoted by J, then the Reynolds averaging of the particle continuity equation for
fully developed flow gives

∂J/∂y = 0,

where

J = −(DB + Dt)
∂ρ̄p

∂y
− DT ρ̄p

∂ ln T
∂y

+ ρ̄p V̄c
py, (13)

where DT is the coefficient of diffusion due to temperature gradient, and V̄c
py is the

particle convective velocity in the y direction. Any quantity with an overbar denotes
its time-mean value. DT is given by

DT = DB (1 + η/kT ). (14)

Equation 14 shows that the thermal drift has a stressphoretic component and a ther-
mophoretic component (the term containing η). The stressphoretic component arises
from the evaluation of ∇ p p , where p p is the partial pressure of a hypothetical ideal
gas consisting of the particle cloud (Ramshaw 1979).

Equation 13 is the generalized equation for particle flux. The particle convective
velocity in the y direction, V̄c

py, has to be calculated from the particle momentum
equation. The Reynolds-averaged particle momentum equations in the y and x
directions, slightly simplified and specialized for fully developed vertical flow, are

y momentum: V̄c
py

∂ V̄c
py

∂y
+ V̄c

py

τI
= −∂V ′2

py

∂y
+ FSy + FEy, (15a)

x momentum: V̄c
py

∂ V̄px

∂y
= 1

τI
(V̄fx − V̄px) + (

1 − ρ f /ρ
0
p

)
g. (15b)

In Equation 15a, V̄c
py

∂ V̄c
py

∂y is the acceleration term,
V̄c

py
τI

is the steady-state viscous drag
(simplified with the assumption V̄fy = 0), − ∂V ′2

py
∂y is the turbophoresis, FSy is the shear-

induced lift force, and FEy is the electrical force. Equation 15b represents downward
flow; for upward flow, one should replace g with –g. Note that the x momentum
(Equation 15b) involves both V̄px and V̄c

py. The y momentum (Equation 15a) is, how-
ever, almost decoupled and depends on V̄px only through the shear-induced lift force,
FSy. A study of Equations 15a and 15b also shows nicely how gravity affects the
y-momentum equation through the lift force. The left-hand side of Equation 15b in-
volves V̄c

py. As a result of this convective velocity in the y direction, the direction of the
lift force may remain unaltered whether the flow is vertically downward or upward.

In the general case, both Equations 15a and 15b must be solved simultaneously.
Calculations show that the shear-induced lift force increases the deposition rate,
particularly in the eddy diffusion-impaction regime. The effect of the lift force, FSy,
is not considered below. With these provisos, V̄c

py can be calculated from

V̄c
py

d
dy

(
V̄c

py

)
+ V̄c

py

τI
= − d

dy

(
V ′2

py

)
+ FEy. (15c)

The second term on the left-hand side of Equation 15c is the steady-state drag sim-
plified with the assumption V̄f y = 0; the full form is −(V̄f y − V̄c

py)/τI . The first term
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on the right-hand side of Equation 13 is the diffusion due to a gradient in the particle
concentration (same as Fick’s law given by Equation 2); the second term represents
the diffusion due to a temperature gradient; and the third term represents a convective
contribution arising owing to particle inertia. Equation 15c relates the particle con-
vective velocity with the gradient in turbulence intensity (turbophoresis) and other
external forces. It is chiefly the absence of this convective term in Fick’s law that
necessitated postulating stop distance or free flight models. From Equation 15c, one
can write the expression for turbophoretic velocity (Vp,turbo ) as Vp,turbo = τI [− d

dy (V ′2
py )].

Importantly, the turbophoretic term depends on the particle rms velocity which may
be different from the fluid rms velocity if the particle inertia is large (see Equation 17).
When the particles are very small, they effectively follow the fluid eddies, and the
two rms velocities are essentially the same. In this limit, τI → 0, the expression for
turbophoretic velocity then shows that Vp,turbo → 0. Turbophoresis is thus negli-
gible for small particles even if there exists a gradient in fluid turbulence intensity.
Fick’s law is, therefore, an adequate description for the deposition of small particles.
As τI increases, the turbophoretic term assumes dominance, thereby increasing the
deposition rate by a few orders of magnitude. However, as τI increases, the particles
are less able to follow fluid fluctuations, and the particle rms velocity becomes pro-
gressively smaller as compared with the fluid rms velocity. This is one of the factors
responsible for the eventual decrease in deposition velocity with increasing particle
size when τI is very large. The turbophoretic velocity vanishes (Vp,turbo = 0), for all
particles irrespective of the particle inertia, when the flow is either not turbulent or
when the turbulence is homogenous [∂/∂y(V ′2

fy ) = 0]. However, even in laminar flow,
Equations 13 and 15 apply and can predict all such effects like Brownian diffusion,
thermophoresis, and convective slip velocity due to streamline curvature and external
body forces such as gravity or electrical interactions.

For not too large particles, the steady-state drag term (second term on the left-
hand side of Equation 15c) almost balances the turbulence term (right-hand side),
and the acceleration term (first term on left-hand side) is negligible. The accelera-
tion term assumes importance for large particles and should not be neglected: It is
the chief reason why the deposition velocity eventually decreases in the third regime
(see Figure 1). Neglecting the acceleration term would predict a constant deposition
velocity at large τ+. [Interestingly, such constancy in deposition velocity is character-
istic of some of the previous calculations; even Fan & Ahmadi’s (1993) Lagrangian
calculations show this behavior.]

The unified advection-diffusion theory is logical in finding the combined effects
of different particle transport mechanisms, as the appropriate forces are added in
the momentum equation, and the combined velocity or flux is calculated directly
by solving the continuity and momentum equations. This should be superior to
the often-used linear addition of respective velocities, each calculated separately, to
determine the combined mass flux.

Fluid and particle root-mean-square velocities. Equations 13–15 would work
well if one could find an accurate expression for the particle rms velocity as a func-
tion of the wall coordinate. The variation of fluid rms velocity as a function of wall
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coordinate can be determined from measurements (Bremhorst & Walker 1973,
Finnicum & Hanratty 1985, Kreplin & Eckelmann 1979, Laufer 1954), near-wall
modeling work (Chapman & Kuhn 1986), and DNS (Kim et al. 1987). Kallio &
Reeks (1989) have given an empirical curve fit for the region 0 < y+ < 200 (this
equation is quoted below after correcting errors in the original paper):√

(V ′+
f y )2 = 0.005y+2/(1 + 0.002923y+2.128). (16)

Accurate prediction of fluid rms velocity is important. Other equations with piecewise
continuous (and differentiable) curve fits can be used, if deemed appropriate.

It is possible to relate the particle mean square velocity to the fluid mean square
velocity through a parameter 	, which is defined as the ratio of the two:

	 = V ′2
py /V ′2

f y . (17)

It is difficult to devise a simple but accurate mathematical model for 	, particularly
in an inhomogeneous turbulence field. In reality, there should be a memory effect by
which the migrating particles tend to retain the turbulence levels of earlier instants.
Shin & Lee (2001) give a theoretical constitutive relation for the particle Reynolds
normal stress in the presence of a memory effect.

In a practical Eulerian-type calculation, estimates of 	 may have to be made
from local turbulence properties. This may not be very accurate, especially because
the gradient of fluid turbulence near the wall is very high. In defense of such a
simple calculation scheme, however, one may cite that the (not unsuccessful) mixing
length theories of fluid turbulence employ similar assumptions. Simple theories of
homogeneous, isotropic turbulence (Reeks 1977) predict that, for the particles to be
in local equilibrium with the fluid turbulence,

	 = TL/(τI + TL), (18)

where TL is the Lagrangian time scale of fluid turbulence. Binder & Hanratty (1991)
and Vames & Hanratty (1988) report some measurements in this area. Binder &
Hanratty (1991) provide the following experimental correlation for 	 (their equation
18):

	 = 1
1 + 0.7(τI /TL)

. (19)

	 varies with the wall coordinate because TL varies. For very small particles τI → 0,
and consequently 	 → 1. In other words, very small particles essentially follow fluid
turbulence. For large particles, τI → ∞ and 	 → 0. Although 	 → 0, Equation 18
or 19 shows that the product τ+	, however, remains finite in this limit and becomes
independent of τ+. This is why neglect of the acceleration term in Equations 15
would predict a constant deposition velocity when τ+ is very large.

It is instructive to plot and study the detailed variations of V ′2
fy and V ′2

py with τ+ for
various values of τI /TL because of the importance of such variations in understanding
the nature of turbophoresis.

Turbulent diffusivity and eddy viscosity. Theories show that the Schmidt number
in homogenous isotropic turbulence in gases is close to 1; i.e., Dt ≈ ε (Pismen & Nir
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1978, Reeks 1977). DNS by Brooke et al. (1994) showed that the Schmidt number
varied across a pipe from 0.6 to 1.4. In the past, sometimes efforts have been made to
stick to Fick’s law and (nonphysically) alter the value of particle diffusivity (e.g., Liu
& Ilori 1974) to obtain agreement between theoretical and experimental deposition
rates. In contrast, the numerical illustrations below show that the particle diffusivity
can be approximated by the same value as in homogeneous isotropic turbulence
(if a better model is not available) but that a convective particle drift arises in an
inhomogenous field by quite a different physical effect—turbophoresis. It is Fick’s
law itself that needs to be augmented in inhomogenous turbulent flow and when
other effects such as body forces are present (Equation 13).

Davies (1966) and Granville (1990), among others, give expressions for the eddy
momentum diffusivity ε.

Effects of interception and surface roughness. Guha (1997) gives details on how
to account for surface roughness. It is assumed that, on a rough surface, the virtual
origin of the velocity profile is shifted by a distance e away from the wall (Grass
1971), where e = f (ks ), ks being the effective roughness height. The particles are
assumed to be captured when they reach the level of effective roughness height,
i.e., at a distance b above the origin of the velocity profile, where b = ks − e =
ks − f (ks ). Grass’s (1971) data are sparse, and more measurements (or DNS results)
are needed to accurately determine the exact form of f (ks); when such an expression is
available, it can easily be used with the unified advection-diffusion deposition theory.
For numerical illustrations, a simple linear relation, e = 0.55 ks , proposed by Wood
(1981) is therefore used.

Finally, the effect of interception is accounted for by assuming that a particle is
captured when its center is at a distance r away from the effective roughness height,
where r is the radius of the particle. The lower limit of the integration domain is
taken as y+ = y+

0 = y0u∗/ν, where y0 is given by

y0 = b + r. (20)

Solution procedure and boundary conditions. If the lift force is included in the
study, Equations 13, 15a, and 15b are to be solved simultaneously to determine ρ̄p , V̄px,
and V̄py. The equations are best solved by a time-marching technique. For a simple
analysis, Equations 13 and 15c are solved for ρ̄p and V̄py. Equation 15 is nonlinear; it is
thus robustly solved by a time-marching technique by introducing a time-derivative
term in the equation and then marching forward in time until convergence is obtained,
at which point the time-derivative term vanishes, and thus the solution obtained is
that of the original equation. If the nonlinear acceleration term is neglected, then
a simpler numerical solution of Equation 15c is possible, but the computed values
of the deposition velocity will have limitations, as explained above in the discussion
following Equation 15c. For fully developed flow, the numerical solution proce-
dure for the continuity equation involving only the y direction is straightforward;
recognizing Equation 13 gives d

dy {−(DB + Dt)
d ρ̄p
dy − DT ρ̄p

d ln T
dy + ρ̄p V̄c

py} = 0: One
writes the equation in discretized finite-difference form at each grid point, and then
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Gaussian or Gauss-Jordan elimination may be used to solve values of ρ̄p at each grid
point.

Equation 15c is a first-order differential equation. It can be written in finite-
difference form and integrated with one boundary condition. (V̄c

py = 0 at the channel
centerline or at a sufficient distance away from the wall at which the gradient in
turbulence intensity is negligibly small. In a boundary layer type calculation, one could
specify the laminar slip velocity at the edge of the boundary layer.) Equation 15c does
not depend on particle concentration; hence it can be solved first on its own, and the
computed values of V̄c

py(y) can then be used to solve the particle continuity equation.
Equation 13 shows that ρ̄p needs two boundary conditions. These are provided by
specifying values of ρ̄p at the channel centerline (or at a sufficient distance away from
the wall) and at the lower boundary y0 (given by Equation 20).

It is sometimes assumed in mass transfer calculations that the concentration at
the lower boundary is zero (ρ̄p = 0, at y = y0). Rigorous derivations based on
kinetic theory show that this boundary condition is strictly not true even in the pure
diffusion limit of very small particles. In the pure inertial limit of large particles,
a more appropriate condition at the lower boundary is ∂ρp/∂y = 0. It is found,
however, that, in the inertial limit, the effects of such boundary conditions on the
magnitude of the calculated deposition velocity are negligible, but the concentration
profile close to the wall does depend on the particular boundary condition employed.
Moreover, one may need to consider the rebounding of particles from the solid wall
and the resuspension of previously deposited particles. For a proper formulation of
the boundary condition for the particle concentration at the wall, one would have
to resort to kinetic theory. Finding an appropriate boundary condition is one of the
challenges of Eulerian modeling.

The particle concentration changes rapidly with distance close to the surface. One
therefore needs a nonuniform computational grid to solve the particle continuity
equation. The first two grids perpendicular to the solid surface should be taken very
close to each other; the grid spacings toward the free stream can then vary according
to a suitable geometric progression.

6. EFFECTS OF VARIOUS PARTICLE TRANSPORT
MECHANISMS ON OVERALL DEPOSITION RATE

Most experiments and theoretical treatments on particle deposition explore the fully
developed vertical flow. Without streamline curvature in time-mean motion (thus
eliminating inertial impaction) and with gravitational settling playing a minor role,
the effects of molecular and turbulent processes on deposition can be studied more
effectively in this configuration. However, Guha’s (1997) particle equations automat-
ically describe inertial impaction and gravitational settling when they are present.
McCoy & Hanratty’s (1977) compiled experimental data show considerable scatter;
here only Liu & Agarwal’s (1974) data are plotted as this is generally accepted as
one of the most dependable data sets and to keep the discussion focused. The exper-
iments were conducted in a glass pipe of internal diameter (D) 1.27 cm; monodis-
persed, spherical droplets of uranine-tagged olive oil were used (thus the deposition
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Molecular +
turbulent diffusion

Diffusion +
interception

Turbophoresis

Turbophoresis + acceleration

All mechanisms

Solution of Equation 13
retaining all terms

Pure diffusion: solution of Fick’s law,
Equation 2, with lower boundary at wall
(y0

+=0)

Pure diffusion: solution of Fick’s law,
Equation 2, with interception (y0

+=r+)

Pure inertial deposition:
solution of Equation 13 retaining only
the third term in the RHS

Experiments by Liu & Agarwal (1974)
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Figure 2
Computed deposition rate versus relaxation time (effects of pure diffusion, pure inertia, and
interception): (red line) solution of Equation 13 retaining all terms; (orange line) pure diffusion,
solution of Fick’s law (Equation 2) with lower boundary at wall (y+

0 = 0); (dark blue dashed line)
pure diffusion, solution of Fick’s law (Equation 2) with interception (y+

0 = r+); and (light blue
line) pure inertial deposition, solution of Equation 13 retaining only the third term on the
right-hand side (i.e., the convective flux term alone). Blue dots denote experiments by Liu &
Agarwal (1974). For all computed curves, k+

s = 0, �T = 0, and ξ = 0.

can be modeled without rebound); the pipe Reynolds number (ReD) was 10,000;
and ρ0

p/ρ f = 770. By combining u∗ calculated from Blasius’s formula, Guha (1997)
has shown that (DB/ν)2/3τ+1/3 = f (ReD, D, ρ0

p/ρ, fluid properties) = ψ . Thus for
different values of ψ , different curves of V+

dep versus τ+ are obtained.
Figure 2 shows the relative importance of pure diffusion and pure inertial effects

in the equation for mass flux (Equation 13). To isolate the effects of fluid turbulence,
the flow considered is isothermal (no thermal diffusion), and all body forces (such
as electrical forces) are absent. The pure diffusion case is calculated by assuming
that the turbulence is homogeneous. The source term on the right-hand side of
Equation 15c is zero; consequently, the convective velocity, V̄c

py, is zero. Under these
circumstances, Equation 13 becomes identical to Equation 2—Fick’s law of diffusion.
The deposition velocity monotonically decreases with increasing relaxation time.
This case was calculated by taking the lower boundary at y+ = 0. The behavior
of the deposition velocity, however, changes if one includes the effects of interception.
The lower boundary is now given by Equation 20. As the lower boundary is shifted,
the effective resistance against mass transfer decreases. For large relaxation times,
this effect can more than offset the effect of the lower Brownian diffusion coefficient,
DB. For large relaxation times, the calculated deposition velocity therefore increases
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substantially with increasing relaxation time owing to interception, even when the
convective velocity, V̄c

py, is neglected. (The interception effect shown in Figure 2 is
the minimum because it is shown for ks = 0, i.e., b = 0 in Equation 20.)

For calculating pure inertial effects, only the third term on the right-hand side
of Equation 13 is retained. Figure 2 shows that the convective velocity goes to zero
for very small particles. Its effect on the deposition velocity has become comparable
to that of pure diffusion around τ+ ∼ 0.2. It then rises steeply by several orders of
magnitude as τ+ increases. The total deposition is calculated by retaining all terms in
Equation 13. It merges with the pure diffusion case for very small particles and with
the pure inertial case for large particles. One can clearly see the relative importance
of diffusion, inertia, and interception in Figure 2.

Figure 3 shows the variation in deposition velocity with relaxation time for four
different roughness parameters. The calculations show that the presence of a small
amount of surface roughness even in the hydraulically smooth regime significantly
enhances deposition, especially that of small particles. Given that the deposition
velocity varies by more than four orders of magnitude in the range of investigation,
it is remarkable that a simple, universal equation (Equation 13) agrees so well with
measurements.

Figure 4 shows the effects of temperature gradient on the deposition velocity.
(Equation 14 shows that the thermal drift has a stressphoretic and a thermophoretic
component.) Even a small temperature difference (e.g., �T = 5 K) has a significant
effect on the deposition velocity, particularly for small particles. Considering that a
modern gas turbine blade may be cooled by several hundred degrees Kelvin com-
pared to the gas temperature, it is expected that thermophoresis plays an important

ks
+ = 0

ks
+ = 0.5

ks
+ = 1.5

ks
+ = 5

log10 (ττ+)

Small particles Large particles

–2 –1 0 1 2 3
–6

–5
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–3

–2

–1

0

Increasing
roughness

lo
g

10
 (V

d
ep

)
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Figure 3
The effects of surface
roughness on the
predicted deposition rate.
Equations 13 and 15c are
solved for isothermal flow
(no diffusion due to
temperature gradient) for
four values of the effective
height of roughness
elements k+

s . Blue dots
denote experiments by
Liu & Agarwal (1974). For
all computed curves,
�T = 0, ξ = 0, and there
is no lift force.
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Figure 4
Effects of thermal diffusion
on the predicted deposition
rate. Equations 13 and 15c
are solved for four values of
�T, where �T is the
temperature difference
between the upper
boundary of the calculation
domain (y+ = 200) and the
pipe wall (the wall is
cooled). Blue dots denote
experiments by Liu &
Agarwal (1974). For all
computed curves,
k+

s = 0, ξ = 0, and there is
no lift force.

role there. For 1 < τ+ < 10, there is an interaction between thermophoresis and
turbophoresis.

Figure 5 shows that the electrical force due to mirror charging also has a significant
effect on the deposition velocity. A parametric study on the amount of charge on each
particle was conducted by specifying various values ξ (see Section 3.6). Interestingly,
the most significant enhancement in deposition velocity takes place approximately
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Figure 5
Effects of electrostatic
charges (mirror charging)
on the predicted deposition
rate. Equations 13 and 15c
are solved for four values of
the parameter ξ , where ξ

denotes the amount of
electrical charge on each
particle. Blue dots denote
experiments by Liu &
Agarwal (1974). For all
computed curves,
k+

s = 0, �T = 0, and there
is no lift force.
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around τ+ ∼ 0.3, at which the unassisted deposition curve begins to rise in Figure 2.
Of course, the effects of the electrostatic forces are more prominent in the presence
of an external electric field.

The particle transport given by Equation 13 has a diffusive and a convective
part. The particles are transported by these two mechanisms. (The old free flight
is effectively calculated by the present model of turbophoresis.) Very small particles
complete the last part of their journey to the wall mainly by Brownian diffusion,
and very large particles reach the wall mainly by the convective velocity imparted by
turbophoresis. For intermediate-sized particles, a combination of both mechanisms
is responsible.

In the region close to the wall (e.g., y+ < 20), ∂J/∂y = 0 for fully developed
flow; the total particle flux (convective plus diffusive) remains constant (i.e., whatever
particle flux enters into this region must reach the wall surface to satisfy continuity
and to attain a steady state). Large particles may acquire sufficient V̄c

py to enable them
to coast to the surface—in this case, ρ̄p would remain approximately constant close
to the wall. The convective velocity may not be sufficient for small particles to coast
all the way to the surface; to keep the total particle flux constant to satisfy continuity,
the convective flux in this case may need to be supplemented by a large diffusive flux,
which is achieved by the appropriate development of a particle density profile close to
the wall. If the predicted value of V̄c

py close to wall is inaccurate or the wall boundary
condition for ρ̄p is improper, then to keep J invariant close to the wall, the predicted
concentration profile close to the wall would not be accurate.

7. DEPOSITION IN THE RESPIRATORY TRACT

An adult human breathes in 10,000 to 20,000 liters of air per day. The air brings
with it a large quantity of particulate matter—micro-organisms, dusts, smokes, al-
lergens, and other toxic or nontoxic aerosols—that may get deposited during the
inhalation and exhalation process. The term total deposition refers to the collection
of particles in the whole respiratory tract, and regional deposition is that in a specified
region. The deposited particles may cause various effects, including many diseases.
Sometimes particles of a known amount and size may also be deliberately introduced
through the respiratory tract for therapeutic use (drug delivery), or for measurements
of prophylactic and therapeutic effects of inhaled substances and pulmonary function,
for example. The lung has a very large surface area; thus it is suitable for the delivery
of drugs for both topical (minimizing side effects) and systemic (utilizing rapid access
to the blood stream) purposes. For all these reasons, experimental determination and
theoretical prediction of total and regional depositions are necessary. Consequently
a large body of literature has grown on this subject. In this section, I present a syn-
opsis of the principal ideas and the physical processes involved in respiratory tract
deposition.

The flow in the upper part of the respiratory tract may be turbulent, whereas that
in the lower tract is laminar. For the types of bifurcating airways, the critical Reynolds
number above which flow becomes turbulent is lower than it is in a straight pipe. If the
volume flow rate increases (e.g., during exercise), turbulent flow persists lower down
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the tract than that during normal breathing. Turbulent flow increases deposition. In
general, inertial impaction is significant in upper airways in which velocities are high;
gravitational settling and Brownian diffusion are significant in lower airways in which
residence times are longer. Typically, only a small proportion of the residual air in the
alveolar region is actively replaced, leaving molecular diffusion to achieve a second
stage of ventilation of the relatively stagnant residual air deep in the lung.

The deposition pattern of inhaled particles is strongly determined by the size
of particles. The size range of natural and manmade particles can be large: For ex-
ample, occupational dusts may be 0.001–1000 μm, pollen particles are 20–60 μm,
consumer aerosol products are 2–6 μm, most cigarette smoke particles are 0.2–
0.6 μm, and viruses and proteins may be in the range 0.001–0.05 μm. Part of the
previously deposited particles may be removed by various clearance mechanisms,
such as solubilization and absorption, coughing, sneezing, mucociliary transport, and
alveolar clearance mechanisms involving pulmonary macrophages and other mecha-
nisms (Brain & Valberg 1979). For a simple description, Heyder et al. (1986) presents
deposition data in three regions: extrathoracic (nasal plus laryngeal), tracheobronchial
(upper plus lower), and alveolar.

Deposition depends on the characteristics of the particles (size, shape, density,
charge), morphology of the respiratory tract, and the breathing pattern (which de-
termines the volumetric flow rate and the mean residence time of a particle). Heyder
et al. (1986) and Stahlhofen (1980), among others, have given detailed experimental
data. Figure 6 shows a typical plot of fractional deposition in the three regions as a
function of particle diameter (of unit density 1 g cm−3); the main interest here is to
explain the qualitative physics.
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Figure 6
A typical regional deposition behavior in the human respiratory tract (as fractions of the total
inhaled quantity). For particle sizes approximately less than 0.3 μm, the total deposition curve
is almost superposed with the alveolar deposition curve. The alveolar deposition curve is
divided into three segments A, B, and C to provide physical explanations regarding such
variations. Data taken from Heyder et al. 1986.
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Figure 7
Three important mechanisms of deposition in the human respiratory tract.

There are three main mechanisms of deposition in the respiratory tract: inertial
impaction, gravitational settling, and diffusion (schematically shown in Figure 7).
Deposition due to both inertial impaction and gravitational settling increases with
particle diameter, density of particulate material, flow rate, and duration of inspiration.
Deposition due to Brownian diffusion decreases with particle diameter, increases with
duration of inspiration, and does not depend on the density of particulate material or
the flow rate.

The passages of the extrathoracic or nasopharyngeal section (from nostrils to
larynx) are complex, with sharp bends, nasal hairs, and narrow cross sections (which
results in high velocity), and the air flow is usually turbulent. Thus inertial impaction
is the dominant mechanism. As a result of the relaxation time increasing with particle
size, the deposition due to inertial impaction also increases with particle size. Figure 6
shows this qualitative behavior in the nasal region. For (unit density) particle diameter
in the range 1–10 μm, the majority of particles are deposited in the nasal passage; for
a particle diameter greater than 10 μm, virtually all particles are removed from the
flow by deposition in the nasal region.

Figure 6 shows that the deposition curves for both the laryngeal and bronchial
regions exhibit the existence of a maxima. The collection efficiency of these regions,
in fact, continuously improves with increasing particle diameter. However, the de-
position in these regions as a fraction of the total inhaled quantity decreases above
certain particle sizes because a greatly reduced number of those particles arrives at
the inlet of these regions as a result of increased removal in the previous upstream
regions.

The deposition curve in the alveolar region shows three segments (Figure 6). In
segment A, the particles are so small that Brownian diffusion dominates; the Brownian
diffusion coefficient decreases with increasing particle diameter; hence the deposition
decreases with increasing particle size. In segment B, gravitational settling has become
the dominant mechanism; hence the deposition increases with increasing particle size.
However, after a certain particle size (i.e., in segment C), the fractional deposition
decreases as a result of the increased removal of particles (owing to inertial impaction
and gravitational settling) in the previous upstream regions of the respiratory tract.

Figure 6 depicts the fundamental processes for nasal breathing. Experimental data
for oral breathing are given by, for example, Heyder et al. (1986). Total deposition
is higher for nasal breathing as compared to oral breathing, since the nasal passages
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are very effective collectors, particularly of large particles. However, the laryngeal,
bronchial, and alveolar depositions are lower for nasal breathing.

Theories (e.g., Beeckmans 1965, Landahl 1963, Taulbee & Yu 1975) and semiem-
pirical methods (e.g., Heyder et al. 1986, Int. Comm. Respir. Prot. 1994) have been
developed for the prediction of deposition in the respiratory tract. In recent years the
application of CFD has opened up the possibility of achieving theoretical solutions
for realistic, complex flow passages. Mostly, commercially available CFD software
packages have been used for the numerical simulation of the air flow field in the na-
sopharyngeal or tracheobronchial tree. Particle deposition is then calculated mostly
by nonstochastic Lagrangian particle tracking (thus excluding any effect of fluid tur-
bulence on particle motion) and occasionally by Eulerian modeling (but excluding
turbophoresis). It will be interesting to study any effects of turbophoresis on the depo-
sition in the upper airways. There is no doubt that computational studies of deposition
in the respiratory tract will grow vigorously in the future. Once validated by experi-
ments, the CFD tools have the potential to significantly enhance our understanding
for cases in which direct measurements would be difficult.

8. DEPOSITION IN GAS AND STEAM TURBINES

Both gas and steam turbine blades experience the high-speed flow of a gas or a vapor
through highly curved, complex three-dimensional flow passages. Any suspended
solid particles or liquid droplets therefore can move and get deposited by inertial
impaction (owing to streamline curvature) and by molecular and turbulent transport
processes as explained above. In cooled gas turbines, in which the blade may be 300–
400 K cooler than the gas, the thermal gradient also strongly influences the motion of
particles [in the appropriate size range (Figure 4)]. The flow through turbine blades
therefore provides a good opportunity to test theoretical predictions. The flow field
in the primary gas (or vapor) is determined by Eulerian flow solvers (e.g., Denton
& Dawes 1999, Mei & Guha 2005); therefore, it is most profitable to integrate the
unified Eulerian advection-diffusion model of deposition explained in Section 5.2
with any available single-phase flow solver. The particle equations given by Guha
(1997) can be used for developing boundary layers.

In low-pressure steam turbines, droplets form owing to homogeneous nucleation
and then grow rapidly (Guha 1995, 1998b; Guha & Young 1994; Gyarmathy 1962).
Experiments show that the water in turbines exists in two quite different forms.
Usually more than 90% of the mass is concentrated in the fog, which consists of a
very large number of very fine droplets (diameter 0.05–2.0 μm). The rest is in the form
of coarse droplets that are much larger (diameter 20–200 μm). Coarse water is formed
as a small proportion of the fog (typically 2%–4% per blade row) is deposited on the
blade surface (Crane 1973, Parker & Ryley 1969/1970, Young & Yau 1988). The
deposited water is drawn toward the trailing edge by the steam flow (or centrifuged
toward the casing on moving blades), at which it is re-entrained in the form of large
droplets. Impingement of the large droplets causes blade erosion.

Menguturk & Sverdrup (1982) have computed deposition on gas turbine blades.
Deposition causes erosion and corrosion. The turbines, situated downstream of the
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Material deposit
on vane

Figure 8
Deposition of
volcanic-ash material in
high-pressure gas turbine
vanes. Figure taken from
Dunn et al. 1994.

combustion chamber, face the flow of combustion products through them, resulting
in the deposition of particulate material. Prediction (and control) of deposition may
be even more important in future turbines working with alternative fuels, for example,
in directly coal-fired turbines. Wenglarz & Fox (1990) studied deposition from coal-
water fuels, Ragland et al. (1995) described ash deposition in a wood-fired gas turbine,
and Dunn et al. (1994) described experiments on the operation of gas turbines in
volcanic-ash clouds. Figure 8 shows an example of the severe degradation of the
flow path that may result from deposition; not only are the aerodynamics and the
gas turbine operation as a whole seriously affected as a result of such a large amount
of deposition, but the deposited (and melted) material also blocks the cooling holes
of the turbine blades. An aircraft engine may experience such heavily particle-laden
flows owing to explosive volcanic eruptions, sand storm, and military conflicts, for
example. In a detailed study, Campbell (1990) reported that, in 17 years prior to the
study, there were numerous aircraft encounters with volcanic ash, 24 of which were
major incidents in which significant damage to the airplane or engines had occurred
[approximately 500 (explosive-type) volcanoes are active worldwide].

9. CONCLUDING COMMENTS

The above sections discuss theories of deposition with two example applications;
similar principles are valid for fluid-particle flows encountered in other fields. Appli-
cations of CFD will dominate future research and engineering calculations of depo-
sition, as there is scope for careful experiments for the development and validation
of theoretical predictions. In the past, Lagrangian tracking methods have commonly
been applied for the calculation of deposition in complex geometries. The recently
developed unified advection-diffusion method (Section 5.2) now offers the prospect
of a Eulerian solution in similar situations. Both Lagrangian and Eulerian methods
have their strengths and challenges, and each can help in the further refinement of
the other.
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Errata

An online log of corrections to Annual Review of Fluid Mechanics articles may be
found at http://fluid.annualreviews.org/errata.shtml
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