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Heavy metals like Mn and Cu, though essential for normal plant growth and development, can be toxic when present in excess
in the environment. For normal plant growth maintenance of metal homeostasis is important. Excess uptake of redox active
elements causes oxidative destruction. Thus, uptake, transport and distribution within the plant must be strongly controlled.
Regulation includes precisely targeted transport from the macro-level of the tissue to the micro-level of the cell and organelles.
Membrane transport systems play very important roles in metal trafficking. This review provides a broad overview of the
long distance and cellular transport as well as detoxification and homeostasis mechanisms of Mn and Cu, which are essential
micronutrients but extremely toxic at elevated concentrations.
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Transporte e destoxificacio de manganés e cobre em plantas: Metais pesados como Mn e Cu, apesar de essenciais para o
crescimento e desenvolvimento normal das plantas, podem ser toxicos quando em excesso no ambiente. Para a manutengdo do
crescimento normal das plantas, a homeostase de metais ¢ importante. Absor¢do excessiva de elementos redutores ativos causa
destrui¢ao oxidativa. Dessa forma, absorcao, transporte e distribuicdo pela planta devem ser controlados. O controle inclui o
transporte precisamente direcionado a partir do nivel macrotecidual para o nivel micro, de células e organelas. O sistema de
transporte de membranas parece desempenhar um papel muito importante no transito de metais. Esta revisdo cobre amplamente
o transporte a longa distancia e o celular, como também mecanismos de destoxificagdo e homeostase de Mn e Cu, os quais sdo
micronutrientes essenciais, mas extremamente toxicos em elevadas concentragdes.
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INTRODUCTION

In its strict sense the term “heavy metals” includes
only elements with densities above 5 g cm™ but frequently
biologists use this term for a vast range of metals and
metalloids which are toxic to plants such as Cu, Fe, Mn,
Zn, Ni, As, etc. Heavy metals occur regionally in natural
soils. Of particular concern is, however, soil pollution
with heavy metals introduced by human activities. The
United Nations and the International Union of Biological
Sciences list threshold values of heavy metals for plants
(International Union of Biological Sciences, 1994). Among
these pollutants copper is a major contaminant which is
released into the environment by anthropogenic activities,
e.g. from bactericides, fungicides, and industrial wastes. The
regulatory limits for heavy metals in soils are set by national

legislation. In the European communities the threshold for
copper is 360 gha'l.a!l, while critical levels for Germany and
many European countries are in the range of 20-60 mgkg!. In
contrast to Cu, figures for soil concentrations of manganese
are not meaningful since the plant availability of this element
depends strongly on soil pH. The availability of Mn increases
as soil pH decreases. When the soil pH drops below 5.5, Mn
toxicity may be evident, whereas above pH 6.5 deficiencies
are more likely. At lower pH the manganous Mn?*
predominates and is more readily available to the plant. At
higher pH the manganic form Mn347* dominates and is less
plant available. Liming acid soils changes the availability of
Mn by changing soil solution pH and the form of manganese.
Soil acidification, e.g. by use ammonia-based fertilisers, can
result in manganese toxicity.
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Unlike highly toxic contaminants such as cadmium or
lead, which have no known function in plants, elements
like copper and manganese are essential nutrients necessary
for normal growth and development of plants. Both Cu
and Mn are transition metals involved in cellular redox
reactions. The fine control of cellular concentrations of
these transition metals needs to be strongly adjusted. Any
change away from the threshold level can lead to toxic or
deficiency effects. An excess of a transition element can
induce a range of negative effects including the production
of reactive oxygen species via the Fenton reaction, the
exchange of essential metal ions from the active centres
of enzymes or binding to functional groups (sulfhydryl,
phosphate or histidyl groups) (Elstner et al., 1988), causing
visible symptoms like chlorosis, necrosis and growth
inhibition (Marschner, 1995). Since transition metals are
also essential components in reaction centres of enzymes,
deficiency will also lead to stress symptoms.

The biochemical responses of higher plants to toxic
doses of heavy metals are very complex and several defence
strategies have been suggested. These include complexation
of metal ions, reduced influx of metals and enhanced
production of antioxidants that detoxify reactive oxidative
species produced in response to toxic metals (Van Assche
and Clisters, 1990; Radoti¢ et al., 2000; Schiitzendiibel and
Polle, 2002). To avoid toxic effects at high concentrations
but also deficiency, it is necessary that plants regulate the
detoxification of these metals. This can be achieved by
controlling uptake and transport, or by sequestration and
compartmentalization. The aim of this review is to provide a
short overview of uptake, distribution, transport, homeostasis
and detoxification of the redox active micronutrients copper
and manganese, which are of major concern as environmental
contaminants.

Copper: metabolic function and toxicity

Copper is required for plant nutrition only in trace amounts
and at higher concentrations can be toxic to cells. Critical
deficiency levels are in the range of 1-5 mg.kg! plant dry
mass and the threshold for toxicity is above 20-30 mg.kg!
dry mass (Marschner, 1995). Some hyperaccumulators may
accumulate up to 1000 mg Cu.kg™! in leaves (Morrison et al.,
1981). Copper is aredox-active metal with an electrochemical
potential of —260 mV. Thus, it is not surprising that copper is
an essential component of many electron carriers involved in
reactions occurring in the range from —420 mV to +800 mV.
For example Cu is present in plastocyanin (photosynthesis),
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cytochrome ¢ oxidase (respiration), laccases, superoxide
dismutase, ascorbate oxidase (antioxidative defence) and is
involved in the control of hormone metabolism (ethylene
receptor, Rodriguez et al., 1999).

Copper is normally found only in protein-bound forms
in cells, since as a free ion it may generate oxidative stress
and cause serious damage to organic molecules. This means,
the reactivity of copper that makes it so useful in redox
reaction also makes it toxic. Free copper ions readily oxidize
thiol bonds within proteins, causing a disruption of their
secondary structure. The principal mechanism of copper
toxicity involves the Fenton reaction, characterised by metal
catalysed production of hydroxyl radicals from superoxide
and hydrogen peroxide (Elstner et al., 1988; Briat and
Lebrun, 1999):

0, +Cu?** 0O, +Cu*
H,0, + Cu" O Cu?* + OH" + OH-

Thisprocess has been demonstrated inisolated chloroplasts
(Sandmann and Boger, 1980), intact algal cells (Sandmann
and Boger, 1980) and in intact roots (De Vos et al., 1993).
Reactive oxygen species destruct biological macromolecules
like proteins, lipids, DNA, and as a consequence cause cell
death by necrosis or apoptosis (programmed cell death, Dat
et al., 2000). Although the biochemical response to copper
in plants is increasingly well understood, the mechanism of
copper tolerance in plants is still unknown. Copper toxicity
activates superoxide dismutase and ascorbate peroxidase in
sunflower and bean seedlings (Cuypers et al., 1999; Garcia
et al., 1999) and in isolated chloroplasts of a microalga
(Okamoto et al., 2001). In addition, plants exposed to copper
produce phytochelatins, thiol-rich peptides, synthesized from
glutathione (GSH), which may chelate copper (Cobbett and
Goldsbrough, 2002). Tolerant plants were able to maintain
their constitutive functions by decreasing the rate of Cu-
influx, detoxification of the metal through phytochelatin
production and quenching of reactive oxygen species
(ROS) by superoxide dismutase activity (Hartley-Whitaker
et al., 2001). Copper can induce similar stress responses to
those evoked by ultraviolet radiation in Lemna gibba, i.e. it
increases the levels of ROS and induces the same flavonoides
as UV-B, supporting the theory that production of ROS is a
common signal to activate defence responses (Babu et al.,
2003).

Chuan-Ming and co-workers (2003) found that rice roots
underwent rapid cell death upon copper treatment, which
could be partially blocked by a MAPK kinase inhibitor. This
suggests that the mitogen-activated protein kinase cascade
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may function in the plant copper-induced signalling pathway
(Chuan-Ming et al., 2003).

Manganese: metabolic function and toxicity

Manganese is an essential micronutrient throughout all
stages of plant development. It is important for vital plant
functions. Mn acts as the cofactor of various enzymes
such as Mn—superoxide dismutase, Mn-catalase, pyruvate
carboxylase, and phosphoenolpyruvate carboxykinase.
Therefore, the incorporation of Mn by cells is essential,
particularly in photosynthesis, where Mn plays a critical
role as an accumulator of positive charge equivalents in a
reaction catalyzed in photosystem II (Marschner, 1995). Mn
aids the synthesis of chlorophyll and assimilation of nitrate
and activates enzymes of fat biosynthesis. It functions in the
formation of riboflavin, ascorbic acid, and carotene.

Plant species differ considerably in their normal or ade-
quate Mn leaf concentrations (30-500 mg Mn.kg ! dry mass,
Clarkson, 1988) and in their susceptibility to Mn deficiency
(Reuter et al., 1988; Marschner, 1995; Mengel and Kirkby,
2001). The critical deficiency range in fully expanded leaves
is reached when Mn concentrations drop below 10 to 20 mg
Mn.kg ! dry mass (Marschner 1995). Mn?* toxicity can be an
important factor limiting plant growth, particularly in acidic,
poorly-drained soils (Horst, 1988). On the other hand, the
critical concentration for toxicity can vary within a very wide
range, depending on plant species and genotypes within spe-
cies, and on environmental conditions, such as temperature
and Si, Ca, Mg, or Fe nutritional status (Horst, 1988; Le Bot
et al., 1990; Wang et al., 1992). Critical toxicity concentra-
tions ranging from 200 mg.kg! to 5300 mg.kg ' dry mass
have been reported by Edwards and Asher (1982). Since Mn
is involved in oxygen radical detoxification via Mn-SOD, in
Mn-deficient plants cell metabolism cannot efficiently control
excess formation of oxygen radicals and oxidative damage
occurs (Tanaka et al., 1995; Yu et al., 1998; Yu and Rengel,
1999). Intimate interactions of Mn-nutrition and antioxidant
metabolism exist since cytosolic CuZn-SOD and mitochon-
drial Mn-SOD activities increase under conditions of Mn-ex-
cess as well as Mn-starvation (Shenker et al., 2004).

Manganese has several different chemical roles in
biological systems. It is involved in scavenging of superoxide
and hydrogen peroxide:

Mn(II) + O, + 2H* OO Mn(III) + H,0,
Mn(1II) + H,0, OMn(1I) + O, + 2H*

The exact mechanism for catalytic scavenging of H,O, is,

however, not clear and thought to involve intermediate steps.

Reaction intermediates, O,~ and OH" have been observed in
vitro (Stadtman et al., 1990).

Excess Mn results in apoplastic deposition of oxidized
Mn and phenolics. There is evidence that peroxidases are
involved in this reaction (Fecht-Christoffers et al., 2003). Mn
also induces PR- and thaumatin-like proteins in the apoplast.
However, it is still unclear whether these responses belong
to the activation of protection against Mn or whether these
typical defence reactions occur relatively non-specifically
due to Mn-induced H,O,-production and injury (Horst et al.,
1999).

Intracellular detoxification

When metal ions are taken up into the cells, properties
like high reactivity or limited solubility require their che-
lation. This was demonstrated for copper in yeast, which
contains less than one “free” copper atom (Rae et al., 1999).
The metal ions are bound by chelators and chaperons. Chela-
tors contribute to metal detoxification by buffering cytosolic
metal concentrations, while chaperones specifically deliver
metal ions to organelles and metal-requiring proteins (Clem-
ens, 2001). In plants, the metal chelators include phytochelat-
ins, metallothioneins, organic acid, and amino acids.

Phytochelatins (PCs) are a group of metal-binding
peptides with the general structure (y-glu-cys) gly (n=2-
11) (Grill et al., 1985; Cobbett, 2000). PCs are synthesized
non-translationally from GSH by PC synthase (Grill et al.,
1989). PCs are induced by a range of metals and metalloids
like Cd, Zn, Cu, As (Grill et al., 1985; De Vos et al., 1992).
Glutathione has a dual role in response to metal stress, as an
antioxidant and precursor for chelators. It has been suggested
that PC production resulting in GSH depletion may itself
cause oxidative stress (Schiitzendiibel et al., 2001; De Vos et
al., 1992). PC synthesis is activated within minutes following
exposure to a variety of metals and metalloids. Cu, Ag and
As are detected in complexes with PCs (Maitani et al., 1996;
Schmoger et al., 2000). The Arabidopsis cadl-3 mutant,
which lacks expression of PC-synthase, is highly sensitive
to Cd*" and AsO,> compared to wild type plants and also
displays elevated sensitivities towards Cu, Hg and Ag (Ha et
al., 1999). Overexpression of AtPCS1, a gene encoding PC-
synthase in S. cerevisiae increased Cd, Hg and As tolerance,
whereas the effect on Cu sensitivity was small (Vatamaniuk
et al., 1999). These data show the importance of PCs for the
detoxification of a range of metals and metalloids, but also
demonstrate that they cannot be the only mechanism of metal
tolerance in plants.
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Metallothioneins (MTs) are cysteine-rich low molecular
weight proteins, which can bind metal ions in metal-thiolate
clusters (Hamer, 1986). MTs are ubiquitous among all
organisms and are grouped into several classes depending on
the arrangement of Cys residues: class-I M Ts from mammalian
cells are known to confer Cd tolerance (Fowler et al., 1987)
and play important role in Zn homeostasis. Yeast MTs, which
belong to class II, appear to bind mainly Cu. Disruption of
cup 1 caused Cu hypersensitivity and overexpression led to
Cu tolerance (Yu et al., 1994). In plants more than 50 MT-
like sequences have been found in different species (Rauser,
1999). In trees, MTs belong to the most highly expressed
gene products (unpublished data). With few exceptions (E,
from wheat and MT1 and MT2 from Arabidopsis, Lane et al.,
1987; Zhou and Goldsbrough, 1994; Murphy et al., 1997),
the roles of MTs are not well understood. Wheat E_ was
shown to form associations with metals (Lane et al., 1987,
Kawashima et al., 1992). Functional data have been obtained
from heterologous systems, e.g. the copper-sensitivity of the
S. cerevisiae cupIA strain can be suppressed by expression
of Arabidopsis MT1 and MT2 (Zhou and Goldsbrough,
1994). These data suggest a role of MT-like genes and their
products in plant metal homeostasis. Proposed functions
include detoxification of copper, cytosolic zinc buffering,
scavenging of metals during leaf senescence, or involvement
in metal secretion via leaf trichomes (Robinson et al., 1996;
Garcia-Hernandez et al., 1998; Rauser, 1999).

Carboxyl and amino groups also present potential
ligands for metal ions. Citrate, malate and oxalate have been
included in different metal tolerance processes, like transport
through the xylem and vacuolar sequestering (Rauser, 1999).
For example citric acid has been hypothesized to be a major
Cd ligand at low concentration of Cd (Wagner, 1994) and
can form complexes with Ni in Ni-hyperaccumulator plants
(Sagner et al., 1998). Malate is a very good cytosolic Zn-
chelator in Zn-tolerant plants (Mathys, 1977).

Free proline accumulation has been observed in response
to a wide range of abiotic and biotic stresses in plants. It
is considered to be one of the first metabolic responses to
stress, possibly in many cases acting as an osmolyte (Hare
and Cress, 1997). Cu tolerance was positively correlated
with free proline content in lichen chlorophyta (Backor et
al., 2003). Formation of Cu-complexes with amino acids
including proline has been studied frequently and it seems
that copper complexes with proline, histidine or nicotinamine
play important roles in xylem sap transport (Liao et al.,
2000).
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Intracellular transport, distribution and homeostasis

One important task of cell metabolism is to supply
proteins with the correct metal cofactors needed for their
activity and moreover to deliver these cofactors at the right
time and to the right site of the target protein. At the same
time possible toxic reactions of the metals need to be avoided.
It is, therefore, crucial that among the many different metals
accumulated by cells, only the correct ion is presented to the
metalloproteins (Luk et al., 2003a). Thus, when metals enter
a cell, they are delivered to one of several possible pathways,
depending on physiological needs. These routes are usually
are called “metal trafficking pathways”.

After Cu-uptake into the cell, homeostasis is maintained
by copper chaperones involved in intracellular transport
(Company and Gonzalez-Bosch, 2004). These chaperons
sequester copper in a non-reactive form and interact with
other transport proteins to deliver copper to the sites where it
is needed (Himelblau and Amasino, 2000). Two genes have
been identified in Arabidopsis thaliana (copper chaperone
and response to antagonist] (RAN1)) with high homologies
to copper-trafficking genes from yeast and humans involved
in sequestering free copper ions in the cytoplasm and
delivering it to post-Golgi vesicles (Himelblau and Amasino,
2000). Mutant analysis further showed that RAN1 was
involved in ethylene reception because suppression of RAN1
blocked ethylene responses. It was suggested that this plant
copper-delivery pathway is required to create functional
ethylene receptors (Himelblau and Amasino, 2000). Further
details of copper intracellular transport and homeostasis can
be found in the review of Polle and Schiitzendiibel (2003).

Members of the ZIP gene family, a novel metal transporter
family first identified in plants, are capable of transporting a
variety of cations, including cadmium, iron, manganese
and zinc. Information on where in the plant each of the ZIP
transporters functions and how each is controlled in response
to nutrient availability, may allow the manipulation of plant
mineral status developing plants that bioaccumulate or
exclude toxic metals (Guerinot, 2000).

The molecular basis for the transport of manganese
across membranes in plant cells is poorly understood. IRT1,
a member of the ZIP family, identified in 4. thaliana is a
broad-range metal ion transporter. It can complement a
mutant Saccharomyces cerevisiae strain defective in high-
affinity manganese uptake (smfl A) (Korshunova et al,
1999). The IRT1 protein has previously been identified as
an iron transporter, but later it was demonstrated that IRT1,
when expressed in yeast, can transport manganese as well.



TRANSPORT AND DETOXIFICATION OF MANGANESE AND COPPER IN PLANTS

This manganese uptake activity was inhibited by cadmium,
iron(Il) and zinc, suggesting that IRT1 can transport these
metals. However, IRT1 did not complement a copper uptake-
deficient yeast mutant (ctrl), implying that this transporter
is not involved in the uptake of copper into plant cells
(Korshunova et al., 1999) (figure 1).

Recently, Lopez-Millan and colleagues (2004) identified
new metal transporters in the legume Medicago truncatula
with high similarities to the ZIP family (MtZIP). Six
proteins, predicted from cDNA sequences, all contained
eight transmembrane domains and the highly conserved ZIP
signature motif which functions as metal transporter. When
MtZIPs were transformed into appropriate metal-uptake
defective yeast mutants and grown on metal-limited media,
MtZIP4 and MtZIP7 proteins restored yeast growth on Mn-
limited media, whereas another complemented growth on Zn
and Fe-limited media. In Mn-deficient plants, the transcript
levels of MtZIP3 and MtZIP4 were down-regulated. MtZIP5
expression was up-regulated under Mn-limiting conditions in
leaves, but in roots it appeared to be down-regulated under Mn-
deficient and toxicity conditions. The expression of MtZIP6
and MtZIP7 was unaffected by the metal supply. Future work
will reveal the role of these proteins in the regulation/execution
of plant metal homeostasis (Lopez-Millan et al., 2004).
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One of the transporters for manganese in cells is SMF1,
a member of the Nramp family comprised of divalent metal
transporters (Cellier et al.,, 1995). Since SMF1 seems to
be a high affinity transporter activated under manganese
starvation, under normal physiological conditions other high-
affinity transporter(s) must be operating (Luk et al., 2003a,b).
S. cerevisiae PHO84 is a well-known transporter for the
high-affinity uptake of phosphate; recently, a role for this
protein in manganese transport has been uncovered (Luk et
al., 2003a,b). Yeast cells lacking PHO84 exhibited resistance
to manganese toxicity accumulating only low Mn-levels. It
is quite possible that phosphate transporters also contribute
to manganese uptake in other organisms, particularly under
conditions of manganese toxicity. Luk and co-workers
(2003a,b) hypothesized that in yeast PHO84 can transport
phosphate in the form of MnHPO, (figure 1). Our own data
show a tight correlation between phosphor and manganese
in “black bodies” which are formed in roots of Douglas fir
under Mn-stress (Duci¢ and Polle, unpublished data).

One way to prevent the toxic effect of heavy metals is
efflux. To facilitate manganese efflux from the cell, the metal
is delivered into the Golgi apparatus and ultimately exported
from the cell via secretory pathway vesicles that carry the
metal to the cell surface (cf. figure 1). P-type ATPase, known
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Figure 1. Hypothetic view of Mn-trafficking and cellular sensing. IRT1, Nramp and PHOS84 are transporters putatively mediating Mn-up-
take. Inside the cell, ATPases pump Mn into subcellular compartments (ER = endoplasmatic reticulum, Golgi apparatus, and plastids).
Vacuolar Mn-transport is achieved by CAX2, an H"/Me?*-antiporter. In mitochondria, MTM1 functions as a Mn-chaperone delivering
Mn specifically to Mn-superoxide dismutases. MnS, a His-Kinase, acts as a Mn sensor and suppresses activation of ABC transporter ex-
pression under normal conditions by repressing MnR. For further details, see text.
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as PMR1 (transporters for both calcium and manganese)
pump manganese into the secretory pathway (Rudolph et
al., 1989; Durr et al., 1998). Yeast cells lacking the PMR1
transporter are extremely sensitive to manganese and
accumulate high concentrations of the metal, presumably in
the cytosol (Lapinskas et al., 1995).

Another way to prevent metal toxicity is compartmentali-
zation. Several transporters can potentially mediate transport
of metals and compartmentalization. These include the heavy
metal ATPases (HMAs), the Nramps, the cation diffusion fa-
cilitator (CDF) family, the ZIP family, and the cation antiport-
ers (Hall and Williams, 2003). For example, among multiple
Ca?" pumps and Ca?*/H" antiporters in Arabidopsis, ECAI1,
which pumps Ca?" and Mn?" into the endoplasmic reticulum,
is required to support plant growth under conditions of Ca%*
deficiency or Mn?* toxicity (Zhongyi et al., 2002) (figure 1).

The main storage compartment for toxic compounds
in plants is the vacuole (Vogeli-Lange and Wagner,
1990). Mutants of vacuolar ATPases exhibited manganese
sensitivity (Ramsay and Gadd, 1997). In plants and fungi,
vacuolar transporters help to remove potentially toxic
cations from the cytosol. Metal/H" antiporters are involved
in metal sequestration into the vacuole. The A. thaliana
cation exchangers, CAX1 and CAX2, can both transport
Ca?" into the vacuole. There are 11 CAX-like transporters
in Arabidopsis; however, CAX2 is the only characterized
CAX-transporter capable of vacuolar Mn?" transport
when expressed in yeast (Shigaki et al., 2003) (figure 1).
The subdomain analysis identified 3 amino acid regions
responsible for Mn?* specificity in CAX2 (Shigaki et al.,
2003). Tobacco plants overexpressing CAX2 accumulated
more Ca?*, Cd?*, and Mn?* than wild type plants and were
more tolerant to elevated Mn?" levels. Expression of CAX2
in tobacco increased Cd?" and Mn?" transport in isolated root
tonoplast vesicles (Hirschi et al., 2000).

The ABC-transporter superfamily is one of the largest
transporter families, and members can be found in bacteria,
fungi, plants and animals. The first reports on plant ABC
transporters showed that they are implicated in detoxification
processes (Martinoia et al., 2002). The recent completion
of the genomic sequencing of A. thaliana showed that
Arabidopsis contains more than 100 ABC-type proteins;
53 genes code for so-called full-size transporters. Work on
the cyanobacterium Synechocystis sp. PCC 6803 suggests
possible roles for ABC transporters in Mn?' transport
(Bartsevich and Pakrasi, 1995). Photosynthesis activity and
growthrates were restored in photosynthesis-deficient mutants
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by the addition of Mn (Bartsevich and Pakrasi, 1995, 1996).
Yamaguchi and co-workers (2002) using a DNA microarray,
screened knockout libraries of His kinases and response
regulators of Synechocystis sp. PCC 6803 to identify possible
participants in the mechanisms for maintaining cytoplasmic
Mn?* ion homeostasis. They identified a His-kinase, ManS,
which might sense the extracellular concentration of Mn2*
ions, and a response regulator, ManR, which might regulate
the expression of the mntCAB operon for the ABC-type
transporter of Mn?* ions (Yamaguchi et al., 2002). It was
suggested that ManS produces a signal that activates ManR,
which represses the expression of the mnfCAB operon during
normal Mn concentration in cell (Yamaguchi et al., 2002)
(figure 1).

The intracellular trafficking of manganese in yeast was
also highly dependent on SMF2, another member of the
Nramp family (West et al., 1992). Yeast cells devoid of
the SMF2 transporter exhibited deficiencies in invertase
glycosylation and manganese SOD2 activity indicating
cell-wide disturbance caused by inappropriate manganese
trafficking (Luk and Cullota, 2001). One protein, a member
of the mitochondrial carrier family (MCF) appeared to be
specifically involved in the delivery of Mn to Mn-SOD2
and, thus was termed MTM1 (manganese trafficking factor
for mitochondrial SOD2) (Luk et al., 2003b). MTM1 does
not globally supply the mitochondria with manganese and
does not behave like a classical membrane transporter for
manganese, but rather delivers manganese specifically to
SOD2. It was concluded that MTM1 is a Mn-chaperone (Luk
et al., 2003a) (figure 1).

Long distance transport

In higher plants the analysis of transport and sequestration
of transition metals is complex because of tissue- and
cell-specific differences and organ-specific transport.
The processes that are assumed to be influencing metal
accumulation rates in plants are mobilization and uptake from
the soil, compartmentalization and sequestration within the
root, efficiency of xylem loading and transport, distribution
between metal sinks in the aerial parts, sequestration and
storage in leaf cells (Clemens et al., 2002). At each level of
the transport within the plant, concentrations and affinities
of metal chelators as well as the presence and selectivity of
transporters may influence metal accumulation rates.

The apoplast continuum in the root epidermis and cortex
is readily permeable for solutes. In general, solutes have to be

taken up into the root symplast to cross the endodermis before
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they can enter the xylem (Tester and Leigh, 2001). Following
metal uptake into the root symplasm, three processes
determine the movement of metals from the root into the
xylem: sequestration of metals inside root cells, symplastic
transport into the stele and release into the xylem (Clemens
et al., 2002). The transport of ions into the xylem is generally
a tightly controlled process mediated by membrane transport
proteins (Gaymard et al., 1998). Xylem-unloading processes
are the first step in controlled distribution and detoxification
of metals in the shoot (Schmidke and Stephan, 1995).
Copper can also be translocated in the phloem (Schmidke
and Stephan, 1995), whereas manganese is thought to be
phloem-immobile (Loneragan, 1988).

Generally, however, copper is translocated to a very low
extent to the shoot, probably because it strongly accumulates
in the cell walls of the cortex, where its concentration sharply
decreases from the outer to the inner cell layers (Arduini et
al., 1996). Liao et al. (2000) found that transport of Cu from
the roots to the shoot was slowed down by binding of Cu to
roots and lack of Cu transport capacity in xylem. Theoretical
estimations of total Cu uptake by shoots based on whole-
plant water use and xylem Cu concentrations were much
higher than actually measured Cu accumulation in shoots.
This suggests that counter flow of Cu in the phloem back to
roots may be a significant influence on Cu allocation between
shoots and roots (Liao et al., 2000).

The traditional idea is that manganese as a divalent ion
can move freely in the xylem sap and is transported to leaves
with the transpiration stream. Re-distribution is thought
to be limited since Mn is classified as phloem immobile
(Loneragan, 1988). However, even during xylem transport
Mn may not be present as a “free” ion but -as mentioned
above- may form complexes with organic acids or phosphate
(Rauser, 1999; Luk et al., 2003a). Furthermore, the phloem
sap also contains high concentrations of Mn (Rengel,
1988). In conifers the sieve cells may participate in Mn-
deposition and transport since they contained higher Mn-
concentrations than the xylem (Duci¢ and Polle, unpublished
results). Radioactive labelling showed that Mn taken up into
leaves could be transported back to roots (Duci¢ and Polle,
unpublished data).

Significance of transport and detoxification for phytore-
mediation

Phytoremediation of sites contaminated with metals is
particularly challenging. It is one emerging cleanup technol-
ogy using plants for environmental restoration of metal-con-

taminated soil (Baker et al., 1991; Salt et al., 1998; Lasat,
2002). The success of phytoextraction, as an environmental
cleanup technology, depends on several factors including the
extent of soil contamination, metal availability for uptake into
roots (bioavailability), and plant ability to intercept, absorb,
accumulate and tolerate metals in the shoot (Ernst, 1996).
The bioavailability is strongly modulated by microorganisms
catalysing redox reactions leading to changes in metal mobil-
ity in the soil and propensity for uptake into roots (Gaur and
Adholeya, 2004). In addition, mycorrhizal roots have been
shown to affect the rate of metal uptake (Schiitzendiibel and
Polle, 2002; Vassilev et al., 2004). The characterisation of key
transporters involved in heavy metal uptake and biochemical
characterization of tolerance mechanisms are necessary steps
to understand the regulation of metal uptake. The identifica-
tion and isolation of genes involved in the homeostasis of mi-
cronutrients may open the opportunity to use biotechnology
to ameliorate plants for environmental cleanup. Trees and
crops like willow, corn and sunflower show high tolerance to
heavy metals. Furthermore, plants exude organic acids and
other compounds which may directly chelate metals or serve
as nutrients for micoorganisms, thus, indirectly affecting soil
properties and metal mobility. Given the toxicity of heavy
metals, this kind of technology evokes huge economical and
public interest. Nevertheless, it is necessary to conduct more
fundamental research to better understand the metabolic
pathways and possibilities of the plants to handle metals be-
fore efficient strategies can be derived to engineer plants for
phytoremediation purposes.
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