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We propose models which are direct extensions to dynamical domains of van Kampen's 

approach to van der Waals fluids, and are suited for studying transport phenomena near crit

ical points. Models are described by hydrodynamic equation for hard sphere fluids where 

long· range interactions are added as semi-macroscopic forces acting among mass elements of 

the fluids, and are in principle capable of rigorous treatment of critical anomalies. Here we 

used the models to obtain the lowest order corrections of critical fluctuations to transport 

coefficients. Denoting the force range by 1 and the reduced temperature distance from the 

critical point by E, we found the following lowest order corrections: (a) for one-component 

fluids, shear viscosity 'l},,-,1-1IEI-i/2, bulk viscosity (,,-,1-1IEI-5/2, thermal conductivity A",l-1IEI-1I2, 

and (b) for binary solutions near critical solution points, diffusion constant D",l-1IEli/2, 'l}'" 

constant+l- i IEli/2, (",l-1IEI-312, A",l-1IEI-i/2, and thermal diffusion constant DT",l-1IEI-1I2. 

§ 1. Introduction 

In recent years we have seen substantial progress towards our understanding 

of anomalous transport phenomena near the critical point. i
) Among others, ex

tensions of the Widom-Kadanoff scaling law idea to dynamical domains 2
) have 

been particularly fruitful. There have been some attempts to examine this 

dynamical scaling hypothesis on the basis of the mode-mode coupling approach 

to transport coefficients i ),3) and its generalizations. 4
),5) We have been able to show 

that in some cases dynamics of critical fluctuations is governed by equal-time. 

correlations of certain long wave length fluctuations where the dynamical scaling 

holds, and in some other cases rapid random motions associated with short wave 

length fluctuations affect the dynamics of critical fluctuations where the dynamical 

scaling does not necessarily holds. 4
) Our understanding of the latter cases is far 

from being satisfactory although some useful relations among transport coefficients 

have been obtained,3) and puzzling experimental results are appearing. i
) 

A purpose of the present paper is to propose models which will be useful 

in the study of anomalous transport phenomena where the dynamical scaling does 

not work. In particular, we consider liquid-gas transition in one-component fluids 

and de mixing of binary solutions. Our models are essentially van der Waals 

fluids. The van der Waals fluids have been used previously for similar purposes. 

Zwanzig and the coworkers6) developed a mode-mode coupling approach to trans

port coefficients of the model van der Waals fluids of van Kampen.7) Their ap

proach, however, is more phenomenological than what is required in the model 
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Transport Coefficients of van der Waals Fluids 1191 

of van Kampen. De Sobrin08
) recently treated a hard sphere gas interacting with 

long range attractive forces, and obtained anomalous transport coefficients near 

the critical point. His treatment appears to be rather complicated, and it is not 

easy to assess his results in view of various approximations introduced. 

In the present paper we adopt a viewpoint similar to those of the above-men

tioned authors. We generalize van Kampen's treatment of van der Waals fluids 

to dynamical domains, however, with less phenomenological assumptions than 

Zwanzig and the coworkers, and propose precise models (~2). Then we consider 

anomalous transport coefficients for these models (§ 4), thereby avoiding the 

complications of de Sobrino's treatment. 

§ 2. Van der Waals fluids 

a. One-component fluids 

We consider an assembly of N particles of mass m whose inter-particle 

potential consists of a hard sphere interaction of range 0 and an attractive part 

- w (r) with the force range l which is assumed to be very large compared to 

0: [>:;>0. Near the critical point where the number density of partieles is nearly 

1/2n03
,8) we have three lengths characterizing the problem: 0, l, and the cor

relation range of critical fluctuations ~ where obviously ~?::J*) Thus, as long 

as we are concerned with phenomena occurring over the distances which are 

sufficiently large compared to 0 but are small compared to l, and over the time 

intervals which are sufficiently long compared to the microscopic time 01 V kBT 1m 

of the hard sphere fluid but are short compared to II vkBTlm, the dynamical 

behavior of the system is well described by the following hydrodynamic equations 

of a hard sphere fluid in which the long-ranged potential - w (r) is added as a 

force acting among mass elements of the fluid, which in fact is a directexten

sion to noncequilibrium domain of van Kampen's treatment of equilibriumphe

nomena:7
) 

~~ + V· (pv) = 0 , 

p(ov +v. Vv) = - VPh + ~{r;h (ov + VVj)} 
ot . orj orj 

+ V {(r:.h -J-r;h) V· v} + p (r)~ (" 'l!!J/'_=E')p (r')dr', 
3 Or j m 2 

(2 ·la) 

(2·1b) 

(2·1c) 

*) Since we do not consider non-local transport properties in this paper, the length characterizing 

spatial inhomogeneity of the macroscopic state is left out. 
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1192 K. Kawasaki 

where we have used the following notations: p-local mass density, v-local velocity, 

Ph-local pressure, Sh-Iocal entropy per unit mass, 1lh-Iocal shear viscosity, (h-Iocal 

bulk viscosity, lh-Iocal thermal conductivity, l?n-the Boltzmann constant, and T

alsolute temperature. The subscripts h imply that these quantities refer to the' 

hard sphere fluid, and the Einstein convention has been used for the summations 

over the indices i,j=x, y, z. 

The hydrodynamic equations (2 ·1) are themselves approximate equations to 

describe the time evolution of the system. Nevertheless, by choosing the ratio 

II (J arbitrarily large we can' make (2· 1) precise over arbitrarily large regions 

of space and time. Thus hereafter we shall' regard (2,1) as a semi-macroscopic 

model of our van der Waals fluid, and study its transport properties. It is rea

sonable to expect that, if necessary, the model can be justified for the system 

under consideration. In this sense our approach differs from earlier more phe

nomenological approaches. 1
),6),9) 

Although Eqs. (2 ·1) are valid even if the hard sphere potential is replaced 

by other short-range repulsive potentials after suitably redefining quantities with 

subscripts h, the present choice of hard sphere potential brings in certain snll

plifications. Also, as is well known, w (r) must satisfy the condition that 

Wo= ~ w(r)dr .' (2·2) 

remains finite for arbitrarily large l in order to obtain a sensible van del' Waals 

limiL For instance, we may take the following Yukawa type potential: 

Wo e-r/~ 
w(r) =-~--- ~~-. 

4nf2 r 
(2-3) 

We further note that our model includes the case ~>l, and thus, in principle, 

is capable of dealing with the truly asymptotic critical region. 

Let us rewrite Eqs. (2 ·1)' by taking p, T and v as independent variables_ 

For hard sphere fluids pressure and entropy have the following forms: 

Ph= kBTJI(p) , (2-4) 

Sh=Sf (p) +~: In T, (2-5) 

where JI(p) is some function of p and Sf(P) is the configurational contribution 

to the entropy and 3kn ln T 12m comes from kinetic energy_ Use of Maxwell's 

relation (8PhI8T)p = - p2 (8Sh I8p)T yields 

knJI(p) = -p2dSf (p)ldp _ (2-6) 

Then In (2-Ib) we have 

Vph=knJI(p) VT+knTJI' (p) Vp (2 -6') 

~nd th~ L h- s, of (2 -Ic) becomes, usin~ the continuity equation (2 -Ia) ~ 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

1
/5

/1
1
9
0
/1

8
1
8
8
0
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Transport Coefficients of van der Waals Fluids 1193 

(2·7) 

where primes indicate derivatives with respect to p. Since A'l) Ijh and (h are 

definite functions of p and T, we obtain a closed set of equations describing the 

time evolution of p, v and T. 

b. Binary solutions 

The system considered IS similar to the one considered by Deutch <:J,nd 

Zwanzig,6) namely an assembly of NA particles of the species A and .NB particles 

of the species B with the same mass m, where the inter~particle interactions have, 

besides the common hard sphere interaction of range (J, long-ranged attractive 

parts which depend on the kinds of interacting particles and are denoted by 

-wAA(r), -wAB(r), and -wBB(r) in obvious notation. The semi-macroscopic 

hydrodynamic equations that correspond to (2 ·1) then read 

~~ + V· (pv) = 0 , (2·8a) 

p (~~ + v . V c) = - V . i , (2·8b) 

1 8 ~ + -p(r)- [WBA (r- r')c(r')+ wBB(r-r') (l-c(r'» ] p (r') dr' 
m 2 Br 

+-l-p(r)c(r)~ ([wAB(r-r') -wBB(r-r') +2w(r-r')c(r')Jp(r')dr', 
m 2 8r J 

(2·8c) 

T(8Sh + . VS ) - 8Vi (8Vi + 8vj) + (1' 2 ) (V )2 P - V· h-Ijh- - - '-:.h--Ijh ·V 

8t 8rj 8rj 8ri 3 

+ V· (AhVT- (3h
T i) - i· V Ilk + ~P (r)v (r) . ~ ([WBA (r - r')c(r') 

ak m 8r J 

+ wBB(r- r') (1- c (r'» ] p (r') dr', + ~[p (r) c(r) v (r') + i (r)] 
. . m 

x /; ~ [wAB(r- r') - WBB(r - r') + 2w (r- r')c(r') ] p (r') dr', 

i= -akVllk-(3'I,VT, 

(2· 8d) 

(2·8e) 

where, wntmg PA, PB. and VA, VB for the mass densities and velocities of com

ponents A and B respectively, 

P = PA+ PB, (total mass density) 

C = PAj p, (relative concentration) 

(2· 9a) 

(2·9b) 
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1194 K. Kawasaki 

V=CVA+ (I-c)vB' (average velocity) 

i=pc(I-c)(v~--vB)' (diffusion current) 

w(r) =t[WAA (r) +-wBB(r) - 2wAB(r)]' 

(2·9c) 

(2·9d) 

(2· ge) 

fJ.h (Ph, C, 1') is the, chemical potential, and ah and {3h are the kinetic coefficients 

related to the diffusion constant Dh and the thermal diffusion ratio khT by 

Dh = ~l~ (0 JLIL) , } 
P oc T,Ph 

pkltDhIT=ah(oJthloT)c,Ph + {3h' 

The subscripts h refer to hard sphere fluids as before. 

(2 '10)*) 

In the van der Waals limit it is readily seen that the extra Helmholz free 

energy LlF which depends upon the concentration c and involves attractive forces 

is written as 

LlF=NkBT[c In c+ (l-c)ln c] 

- 2~2P2[woAAC2 + w/B (1- cY+ 2woABc(I-c)], 

whereN=NA +NB and 

(2 ·11) 

(2·12) 

The first term of (2 -II) is the extra free energy of the hard sphere fluid mixture. 

The chemical potential fJ. is obtained from (2·11) and is 

_[O(LlFINm)] _ p (AB BB 2 ) fJ. - - fJ.h - --- Wo - Wo + cwo , 
oc p,T m 2 

(2,13) 

where fJ.h IS the chemical potential of the hard sphere fluid mixture given by 

fJ.h= kBT In ~-. 
m I-c 

The pressure is also obtained from (2 ·11) and IS 

2 

P= Ph-~[WoAAC2+ woBB (I-c)2+ 2woABc(I-c)], 
2m 

(2,14) 

(2 -15) 

where Ph is the same as that for one component fluid given by (2· 4) and thus 

does not depend on c. 

The entropy is found from the formula S = - [0 (F I Nm) loT) ]p, c, and is 

S= Sf(P) + ?~p-ln 1'- kB [c In c+ (l-c)ln(I- c)] 
2m m . 

(2·16) 

*) See L. D. Landau and E. l\!I. Lifshitz? Fluid Mechanics (Pergamon Press, 1959), Chapter VI. 
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Transport· C oe fficients of van der . Waals Fluids 1195 

§ 3. Equations of motion near the critical point 

a. One-component fluids 

Equations (2 ·1) can be put into the following form with the use of (2·6') 

and (2·7), and separating out the terms linear in the deviations from equilibrium 

to the 1. h. s.; 

apl +PoV'v=Ko, 
at 

- :0 ( (hO + -~-'ljhO) V (V· v) - :r ~ w (,;_~l_Pl (r') dr' = K , 

3kB a~_poToS;oV'v_AhoP2Tl=Kl' 
2m at Po 

(3 ·la) 

'(3 'lb) 

(3 ·le) 

where subscripts ° and 1 refer to equilibrium values and derivations from them, 

respectively, and K o, K and Kl are non-linear in these deviations. 

Since we shall use a linearized set of hydro dynamical equations of (3 ·1) 

in § 4, we consider its properties near the critical point in the van der Waals 

limit l~oo. If we introduce Fourier transforms by 

Pk= ~ Pl(r)exp(ik'r), etc., 

we find for (3'lb) with K=O, using (2·4), 

aVk _ 'k 1 (aPh) T -'k [1 (aPh) - 1 ] -- z - -- k Z - - -w", Pl~ 

at Po aT va Po ap TO m2 

+~tJ~!.k2Vk+~( (ho+~'ljho)k(k'v",) =0. 
Po Po . 3 

(3·2) 

In the van der Waals limit the pressure p is given by 

_ p2 
P-Ph-

2m2
w o. (3· 3) 

Thus the quantity 111 the square bracket of (3·2) IS written as 

(3· 4) 

with 

We also have 
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1196 K_ Kawasaki 

(3- 5) 

By the use of Maxwell's relation one can easily demonstrate that entropy 

In the van der Waals limit is id~nticalto Sh- Thus the specific heat at constant 

volume is Cv = 3kB /2m_ 

We thus· obtain the linearized hydrodynamic equations for very large l, 

(3 -6a) 

8~k - ik ;0 (~~) voTk - ik[to(~~);o + VI. ]p,. 

+ ~'YL1~k2vk + ~ (ChO + -3!~'lJhO)k (k -VI.) = 0 , 
Po Po 

(3-6b) 

C vo 8Tk_+ Po To (8S) ik-Vh +1!J.~k2Th =0_ 
8t 8p TO Po 

(3 -6c) 

The effects of w (r) in (3 -6) appear in two places: w (r) affects (8p/8p)TO and 

add a term VI. in (3 -6b) _ The only anomalous quantity in (3 -6) is the inverse 

isothermal compressibility Po(8p/8p)TO which vanishes at the critical point_ The 

van del' Waals critical point (Pc, Tc) is given implicitly as a solution of the 

equation*) 

and (3- 7) 

In particular, Pc IS determined by*) 

II' (Pc) = PcIl" (Pc) - (3-8) 

The time evolution of (3 -6) is best described by introducing the Laplace 

transforms of the variables,l°),ll) 

ro 

PI. (s) =) dte-stpIJt) , etc_ (3-9) 

o 

Laplace· transforming (3 -6) then yields the following relationships connecting 

Ph (s), Vk (s) and Tk (s) with the initial values Ph (0), .Vh (0) and. Th (0): 

*) Van Kampen7) chooses lI(p) =p/(m-pa) where a is four times the hard sphere volume, and 

then we have 

pc=m/3a 

and 
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Transport Coefficients of van der Waals Fluids 

+ ikp (s+ p8~;p)v,£L(0) - p(~!f) p T" (O)}, 

fhL(S) = 1 {ik[~(fJP) +Vk] (s+-~-P)pk(O) 
D (k, s) P fJ P T pC y 

+s (S+~k2)VkL(0) +ik~(_~l~) STk(O)}, 
pCy p fJT p 

and we have omitted subscripts 0 to denote equilibrium values. 

Tk(S) = 1 {k2L(fJS) [(fJP) +PVk]Pk(O) 
D(k, s) C y fJp T fJp T 

1197 

(3 . lOa) 

(3 . lOb) 

- iks ~: (~!) T VkL(O) + [s(s+ k
2
8) + k2 ((~~) T + PVk) JTk (O)}, (3·10c) 

(3 '10d) 

where 

(3 ·10e)*) 

(3 '10f) 

and Vk Land Vk T denote longitudinal and transverse components of velocity, re

spectively, and we have used that 

(3 ·11) 

D (k, s) can be rewritten as 

D(k, s) =i+ (a+8)Ps2+ (u,}P+a8k4)s+auk2k4/rk (3 '12)*) 

with 

Uk~j (~)s +-~~:, (3,13) 

rk~ [(~~) s + PVk]/[ (~~) T + PVkl 

*) For very small k this corresponds to the l.h.s. of Eq. (1' 5) of Mountain, reference 11), if 

we note that· (j=b, UlG~C~ and rk~r in his notation. 
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1198 K.' Kawasaki 

For k = 0 where V'c = 0, Uk and r1.; reduce to the adiabatic sound speed and 

. to Cp/Cv , respectively, Cp being the specific heat with constant pressure. Then, 

as in reference 11), for small k the equation D(k, s) =0 has three solutions Sk+, 

Sk - and S1.;°, 

(3,14) 

with 

Sk ± = ± iU1.;k- ~[f) + ~- (1- ~)Jk2 , 
2 pCv ric 

(3 ·15a) 

Sko= -Ah k
2/(pCV r1.;)· (3 . 15b) 

Even for small k we have kept k in rk and Uk which arises from VA; because due 

to large l these quantities depend sensitively on k even for small k?:;l/l. In 

fact, for the choice of w (r) given by (2·3) we have Wk = wo/ (1 + Pl 2) and 

Vk = (wo/m2) l2k2/ (1 + l2k2) ,and thus we obtain 

U k
2

=o: u0
2 
[1 + (1+ ~~:2) l2k

2J/ (1+l2k
2
), (3,16) 

(3,17) 

with 

where . ~ IS the correlation range .of critical fluctuations. For lk<,l, (3· 17) 

becomes 

(3·19) 

Incidentally we also have7
) 

2 _ 'kBTVp ~m2kBTV 1 k2+l-2 

<IPkl >- (8p/8p)T+pVk =--~-1+ (l/~Y P+l-2(l/~Y/{I+ (l/~Y}' (3·20) 

For kl<,l, 

Also it can be shown that 

~ =l/ v'fET , (3·22) 

where E = T /Tc -1, the reduced temperature distance from the critical point. 

b. Binary solutions 

The linearized Fourier transformed hydrodynamic equations that correspond 

to (3· 6) are 
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where 

Transport Coefficients of van der vVaals Fluids 

aPk·k 0 --z ·PVk= 
at ' 

P T [(aSh) aTk + (aSh) apk + (aSh) fjc k ] 
aT C,p at ap c,T at ac p,T at 

+ [;, + (3h
2T 

+0 T(a/Lh) ]PT +po T(a/Lh) c.=o h I-lh ~T k I-lh ~ k , 
ah u c uC T 

Xk- 2CWk AB + (1- 2c) WkBB + 2C2Wk , 

Yk-WkBA_WkBB+ 2CWk, 

and ,have omitted subscripts O. 

1199 

(3·23a) 

(3·23b) 

(3·23c) 

(3·23d) 

(3· 24a) 

(3·24b) 

Using (2 ·15) and (2 ·16) we can eliminate the subscripts h from Ph and 

Sh, but not from /ih in (3·23): Sh = Sand 

(3·25) 

( ap )' _ (aPh ) 

aT C,p - aT p. 

Thus In (3· 23d) we may replace Sh by Sand (3· 23c) is rewritten as 

aVk ik{[lap) P ] (ap ) . [(OP) p2 ]} --- f--- +-2XO,k Pk+ -~ T k + - +-2Yo,k Ck 
at p \ap T,c m aT p ac T,p m 

(3·23c') 

where 

XO,k=Xo-Xk, YO,k=YO-Yl~. (3· 26) 

Laplace transforming of (3·23) leads to a set of equations that correspond 

to (3 ·10), but it is far more complicated and the full expression win not be 

given here. First fh T (s) is the same as (3 ·10d): 
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1200 K. Kawasaki 

~T()_ VkT(O) 
Vk S - , 

S+ (r;k/p)k
2 

(3·27a) 

and for Tk (0) = Vk L(O) = Pk (0) = 0, we obtain 

C k (s) =E(l,--~y [ S2 + k
2 

( sO + (~~) T,e + -c~2 XO,l.) ] 

- + ik~-'!'~ (~S) (1P_) ~ c,. (0) 
pCv ap T,e aT p,e) 

(3·27b) 

with 0 defined by (3 ·10£) a,nd 

E(k, S)={S2+ k2[SO+ (QP), +--~XO'kJ} {s2+~~-~[Ah+T(ah(~l!-h) . +f3h) 
_ ap T,e m pCv aT p,e 

+~T_(aS) [(~P) +~YO'kJ(ah(~h) .+f3h)k4s 
pCv ap T,e ac p,T m aT p,c 

_L(aS_) (_~P,) (s+p~/~(al1~) )k2s. 
C v ap c,T\aT c,p p ac p,T 

The equation E (k, s) = 0 gives four roots for s of the form, 

Sk± = ± iukk - YkP, 

S 
0= _ -I' 0k2 

k Jk, 

1 -I' lk 2 Sk =-JI •. 

(3·28) 

_ (3·29a) 

(3·29b) 

(3·29c) 

SI. ± corresponds to sound wave modes, and Sko and SI/ correspond to coupled 

heat transport and diffusion modes. The k-dependences in Uk, Yk, ik ° and ik 1 

come from XO,l. and Yo,,.. Now, since we can write E(k, s)= (S-Sk +) (S-Sk-) 
X (s - Sk 0) (s - Sk 1), comparison of this expression with (3·28) yields 

Uk
2
= (?P) +-~'XO,k' . a p S,e . m 2 

(3· 30) 

(3·31) 

and 

U//fk ° ik 1 =~~~Ah (a 1111:..) [(~P) + --.~ Xo, kJ, 
p Cv ac p,T ap T,e m 

(3·32) 
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Transport Coefficients of van der vVaals Fluids 1201 

where C v and C p are the specific heats at constant volume and pressure, re

spectively. 

Let us now locate the critical solution point. Using (2·13)" (2,14) and 

(2· 15) we find 

(a f-Llac )p, T = (a f-Llac) p, '1' - (a f-Llap )c, T (ap lac) p, T 

=_k~T -~(i~=--~)- ~ (wo- :;2). (3·33) 

The critical solution point is given by setting (af-Llac)p,T=O, which is the same 

as that of Deutch and Zwanzig6
) except for the presence of the extra term in

volving Y02 which arises from the difference between (af-Llac)p.T and (af-Llac)p,T, 

and is of the second order in the differepces of the potentials W
AA, W

BB and W
AB. 

If we exclude the improbable possibility of fk 0 and fk 1 becoming 'infinite, it 

is thus seen that Uk, gk, fk 0 and fl£ 1 all remain finite at the critical solution point 

in the van der Waals limit. In contrast to the case of one-component fluids, 

the critical concentration fluctuations do not affect hydrodynamic equations in 

the van der Waals limit. 

The correlation of local concentration fluctuations is obtained by generalizing 

the relation 

<11c') ~ Y~":n'£(a /l/~~);: ,: = V;;n-L (i~ ~5 - ",k;r ( W 0 
- f'f) l~' (3·34) 

(Llc=~ [c(r) -<c(r)Jdr) 

111 the form 

<I CkI 2)= Vm 1{ ___ l~ __ }P_('wk-)!~~)}' 
, P c(1-c) kBTm 2Xk 

(3·35) 

If we omit the term Yk
2 for simplicity, this reduces to that of Deutch and 

Zwanzig,G) 

<hl,)=V;1 b-(il-':c)-I:~l-
If we take (2·3) for w (r), this further reduces for k<l-l to 

< Ie k 12)' V~liI (_1!l) 2 ____ ~ ___ , 
2wol2 P k 2 + ~-2 

where the correlation range of critical fluctuations ~ IS 

~=lIJIEf 

with 

E=TITc -1, 

Tc = 2pwoc (1- c) IkBm. (critical solution temperature) 

(3·35') 

(3·36) 

(3· 37) 

(3·38) 

(3·39) 
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1202 K. Kawasah 

§ 4. Anomalous transport coefficients 

Here we are concerned with transport phenomena occurring over distances 

sufficiently large compared with l and ~, and over time interval which is suf

ficiently long compared with l/ 'lkBT/m and the characteristic times of critical 

fluctuations. Such transport phenomena can be described by local hydrodynamic 

equations which are obtained by averaging semi-macroscopic non-local hydrody

namic equations (2 ·1) and. (2·8) over macroscopically large space-time regions 

we are concerned with. Equivalently, the transport coefficients entering the'local 

hydrodynamic equation can be obtained from the correlation function expressions 

for them of the form )';<1(0) l(t) )dt. The flux {then consists of a part lL that 

involves long-range attractive potential and a remaining part Is that does not. 

Contributions to the transport coefficient that involve Is are determined by the 

dynamics that occur over distances of or-der 0 and persist for the time intervals 

of order 0/ vlkBT/m, and are not affected by long-rangE( attraction for very large 

ratios of l/o. Hence here we are only concerned with the contributions from 

l L. lL can be expressed in terms of local density variables that enter semi

macroscopic hydrodynamic equations (2 ·1) and (2·8). The time evolution of 

these density variables can then be described by the semi~macroscopic hydrody

namics. In this respect our calculation has much similarity to earlier phenome

nological calculations. 1
),6),9) However, we consider the long range attraction 

explicitly also in the time evolution of fluxes. For large l" fluctuations are small 

decreasing, say, as some inverse powers of l. 

Here we are considering leading contributions to anomalous transport coef

ficients for large l, which are also expressed as some mean square fluctuations. 

For this purpose we may use semi-macroscopic hydrodynamic equations in the 

van der Waals limit of § 3 to study the time evolution of fluxes. 

a. One-component fluids 

i) Shear viscosity 

Anomalous part of the shear viscosity is6
) 

ct) 

Ija = k;~-V } dt< JLJJY (t) JLJJY (0» . 

o 

with 

(4·1) 

(4·2) 

For the time evolution of J L
JJ" , we here usc the linearized hydrodynamic 

equations of § 3. Non-linear corrections, vvhich cannot be ignored a jyriori even 

in the van der Waals limit, will be estimated later in § 5. Since (4· 2) co~tains 

only the mass density, we set V,~ L(O) = T/~ (0) = 0 in (3 . lOa) , where we assume. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

1
/5

/1
1
9
0
/1

8
1
8
8
0
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Transport Coefficients of van der Waals Fluids 1203 

that equal-time correlations of Pk with Vk and Tk are not so important as to 

affect the result seriously. Then, for small k we can show that*) 

(4·3) 

That IS, 

Pk(t) = ~(I-~)exp( -tSkO) +~-(exp( -tSl~+) +exp(-tsk-»}Pk(O). 
l rk 2rk . 

(4·4) 

According to (3 ·17) and (3·18), rk> 1 for sufficiently large 1 as well as near 

the critical point, and only the first term of· (4: 4) is important. After substituting 

Pk(t) into JLXY(t) , we find'(4·1) that involves equal-time correlation of four p's, 

which can be replaced by the product of two <lpkI 2> if we ignore higher order 

contributions in l-l. Thus, with the use of (3·15b), (3·17) and (3·20), we 

obtain 

(4· 5) 

Near the critical point where l<.$ but the mean field theory is still valid, this 

reduces to 

3 CvkBTm2uo2 1 1 
'lJ = .-----~- -- ---.. 

a, 27 X 5n2 
WoAh 1 .vIE'!' 

(4·6) 

where (3· 22) has been used. The same temperature dependence has been pre

dicted by Fixman for real fluids. 9
) However, he estimates the magnitude of this 

anomalous term to be very small for CO2> Mountain and Zwanzig6
) obtained' 

'lJa which stays finite at E = o. The difference arises from the fact that in our 

treatment rk=O diverges as 1/1 E I in the van der Waals limit. 

ii) Bulk viscosity 

Anomalous part of the bulk viscosity (a, now becomes6
) 

00 

(a= kBfv ~ dt<JLV(t) JLV(O) > (4·7) 

o 

with 

(4·8) 

A calculation which is quite similar to that for 'lJa leads to 

*) This can be done very easily by first setting pk(S)/Pk(O)=Ao/(S-SkO) +A+/(S-Sk+) +A_/(s 

-Sk-) and determining A's by Aa=lims~ska{(s-Ska)Pk(S)/Pk(O)}, (a=O, +, -)" 
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1204 K. Kawasaki 

( =_I~CvkBTm2uo2 1___ 1 (d [1±-~~pwo/m2uo)x2y(l+x2/3Y 
a 4n2 WoAh 1 1 + (l/~Y) X[X2 + (l/~)2/ {I + (l/~)2} J3 . 

o 

(4·9) 

This reduces, for ~>l, to 

(a =_3_ CVkB~r!/uo2 1_~1_. 
26 n . wol'h I /E/

5
/

2 
(4,10) 

The anomaly obtained is stronger than those of Mountain and Zwanzig6
) and of 

'deSobrino. 8
) 

iii) Thermal conductivity 

Anomalous part of the thermal conductivity l\a is now written asB
) 

CD 

Aa=3vl~i~2 ~ dt<QL(t) "QL(O) , (4·11) 

o 

(4·12) 

where jk is the Fourier component of mass current density. QL(t) is obtained 

by using linearized semi-macroscopic hydrodynamic equations of § 3. Then, only 

the'transverse component of jk contributes to (4·11)6) and we find 

A -- p-~-"!!.g~,! 1_ l' (dx~--~---------- -~--------- .. -
a ~ 3n2m 2 1 1 + (l/~)2 J 1 + x 2 x

2 + (l/~YI {I + (l/~Y} 
o 

, 1 
X '. . 

Ijh + CAhwoplCvm2uo2) (ll ~y (1 + [1 + (~/lYx2])/(1 + [1 + (p w olm2uo
2)] x 2

) 

Near the criticat point ~>l, this reduces to 

Aa ~ p
2w

okB_ J_ ---2-==- . 
6nm

2
ljh 1 .J / E / 

The temperature dependence agrees with that of Fixman's result.
g

) 

b. Binary solution 

i) Diffusion constant 

The diffusion constant D is expressed in the well-known way: 

D= P'<~c'> ~ <fX(t)fX(O»dt 
o 

with 

(4·13) 

(4· 14) 

(4 ·15) 

(4,16) 
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Transport Coefficients of van der -VVaals Fluids 1205 

In order to express IX in terms of hydrodynamic variables of §§ 2 and 3, let us 

express a quantity 

III molecular variables where ~' is the sum over k that satisfy /k/ <: .. ko, !?'o, being 

determined below. By the definitions of v and c, we have, 

Vk= ~ Vj exp(ik·rj), 
j 

Ck =_m ~ [(I-c)f/-cf/]exp(ik· rj), 
p j 

} (4 ·17) 

where f/ = 1 or 0 according to the species of j is A or By respectively, and 

similarly for fl. Then it is easy to show that 

J ~' Vk
x 

C-k =!!!- I: v/[ (1- C)hA - cf?J J (rj - r~), 
V k P jl ' 

(4 ·18) 

where 

J(r)=~ I:' exp(ik·r). 
V If, 

We now choose ko sufficiently large so that J (r) vanishes whenever r exceeds 

the hard sphere radius. *) Thus 'only the terms j = l remain in (4·18) and we 

obtain 

(4·18) =4(0)!!! ~ v/[(I-c)f/-cf/] 
p j 

=~(O)m{ (I-c) ~ v/-c:E v/}. (4·19) 
P jEA jEB 

This quantity equals, on the average, (J(O)jp)mNc(1-c) [VAX-VBxl Thus by 

comparison with (2· 9d), we find on the average 

The ma1l1 contribution to D then arises from small k in (4· 20) and the 

subsequent calculation proceeds in the same way as before. Vk x is divided into 

the transverse and longitudinal components Vk TX and V,£ LX, respectively. Vk Lx 

consists of a part that obeys heat transport equation and another part that obeys 

sound wave equation. The former part and Vk'1':;; that obeys the Navier-Stokes 

equation give main ,contributions to D. Thus, apart from a finite multiplicative 

*) Alternatively, and in a more general way, instead of having 2Jlk we may insert an appro

priate form factor g(k) which satisfies the properties required here and g(O) ~O without changing 

the final result. 
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1206 K. Kawasaki 

factor we may consider only the contribution anSl11_g from v~ TX. In this way 

we find near the critical solution point, 

~ 1 1 
= const X - = const X -- --=----= 

l2 l .J I E I ' 
(4·21) 

where (3·36) has been used, and const does not contain land E. 

Since by (3·34)p2<L1c2)/V=const X lEI-I, we find 

D = const X .J I E I . 
- l 

(4· 22) 

The processes that contribute to D is the same as those considered by 

Swift.3) However, here Yjlt and Dh are known to contain no anomaly at Te. 

Comparing (4 ·14) and (4·21) the concentration conductivity L and the thermal 

conductivity behave in the same way as l-ll E 1-1
/

2
, which is precisely what Swift 

assumed and is in agreement with recent experiments/2
) although the value of 

the exponent of E itself is different. 

ii) Shear viscosity 

The calculation of shear viscosity is rather similar to that for one-component 

fluids, where instead of Pk we have Ck which obeys the diffusion equation with 

the finite diffusion constant D h , and we have 

Yja = const X ~-1 = const X l-.JJET . 
- l 

(4· 23)*) 

The different temperature dependence is due to the fact that Dh which corresponds 

to AIJ pC p/"'J I E I remains finite at Te. Thus the shear viscosity remains finite at 

Te for this model in the approximation studied. 

iii) Bulk viscosity 

The calculation of bulk viscosity also parallels that for one-component fluids 

and the result is 

(a = const X ~-1 (~/l)4 = const xl-I E 1-3
/

2 

l 

which is less singular than that of Deutch and Zwanzig. 6
) 

iv) Thermal conducti-vity 

The anomalous part Aa can be expressed as 

(4· 24) 

*) Full expression for "fj contains a term which remains finite at Tc. This is in contrast to D, 

(4·22), which actually vanishes at Tc. 
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Transport Coefficients of van der Waals Fluids 1207 

ex> 

Aa= 3vlBT2 ~ dt<QL(t) ·QL(O) > , (4·25) 

o 

where QL is the part of heat flux that contains long-range attractive potential, 

and, if we ignore the total density fluctuation, is written as 

QL= -~ :E(Yo+ Y k ) ·j-kCk-~ ~ Wk·LkCk, 
2V k V k 

(4·26) 

where Y and Ware the second rank tensors defined by 

(4·27) 

with 1 the unit dyadic, and Yl~ and Wk are given by (3·24b) and the Fourier 

'transform of (2· ge), respectively. 

The subsequent calculation is the same as before where Ll~ can be expressed 

in terms of Ck' and VI;;' as in (4·20), and we find that 

Aa = const X ~ / l2 = const X ~) . 
l v I E I 

v) Thermal diffusion constant 

Anomalous part of thermal diffusion constant DaT is expressed as 

ex> 

DaT=3kB~V ~ dt<I(t) ·QL(O» , ' 
o 

(4·28) 

(4· 29) 

where I and QL are given by (4·20) and (4·26), respectively, and by the same 

calculation as before we find 

D T 'E:/l2 1 1 
a = const X "'- = const X l JIEI· (4· 30) 

§ 5. Discussion 

In the prece~ding sections we have considered the lowest order corrections 

of c:ritical fluctuations to the transport coefficients when the range of attractive 

potential is very large. The anomalous parts are of the general form l-lf( E). 

This can be readily understood. The lowest order fluctuation corrections to 

equilibrium quantities are of the general form l-3y (E) .13) The time integrals of 

the correlation function expressions produce factors like eF( E), and thus the 

fluctuation corrections to transport coefficients are Z-3~2Y(E) =l-l(t;/ZYY(E)F(E) 

=l-lf(E) because of (3·22) and (3·37). This vanishes as l~oo for fixed E, 

which is natural if we note that transport coefficients are mean square fluctua

tions in a sense. 

The various anomalous contributions to transport coefficients obtained here 
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1208 K. Kawasaki 

cannot be compared with experiments directly because of the rather special 

models adopted here. *) In order to discuss asymptotic behaviors in the truly 

critical regions, the study of higher order terms including nonlinear terms in 

the semi-macroscopic hydrodynamic equations of § 2 is indispensable, which is a 

difficult task and will be discussed briefly in the following. 

We now estimate the effects of includin:g nonlinear terms in the full hydro

dynamic equations of § 2 which are written in the matrix form as 

(5·1) 

where Ak is a column matrix composed of Fourier transformed hydrodynamic 

variables and C is also a column matrix that represents nonlinear coupling among 

A's. We write this symbolically as 

t 

:tA= -MA+ ~ gnAn or A(t) =e-Mt [ A(O) + ~ \ dseMSgnAn(s) l (5· 2) 

o 

Iteration of this yields A (t) in terms of A (0). 

Now, anomalous part of a transport coefficient @=const X fr;<J1 (t)J2 (0»dt 

has a flux of the general form 14
) 

J - 1 '" jafiA aAfi 
i - - L...J ik k -1£ • 

V k 
(i= 1,2) (5·3) 

In Aka (t) A~ k (t) we substitute solutions of (5·2) obtained by iteration. We 

then find that @ can be written symbolically as 

(5· 4) 

where n's >2 and g and M represent Fourier transforms of elements of M and 

g's, and g at least contains a factor k'sand each ~ represents a sum over a 

wave vector. In order to find an upper bound to the magnitude of (5· 4), we 

take M to be- of the order of (l/~)ak2 where a = 2 for one component fluids 

and a =0 for binary solutions, and take A's to be critical variables such as .Pk 

and Ck. For large l, then, the average in (5·4) can be replaced by the sums 

of products of pair correlations <IAkI2)"-"1/ (l/~Y since main contributions to 

(5·4) arise from k'S,,-,,~-l. This produces 1 + (1/2) (L:;n - i - j) Kronecker's 

deltas that restrict sums over wave vectors where' ~n=nl + n2 + ... + ni+ n/ + n/ 

+ ... +n/. Then, each term in (5·4) becomes, noting ~/l= IEI-1
/

2
, 

--------

*) If there is a system well described by the present model, our results will well represent 

initial behaviors of l times ~nomalous transport coefficients as the critical point is approached. Our 

results correspond to the RPA calculations of specific heat which behave as l-3jEj-1/2 and do not 

give the correct critical exponent. 
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Transport Coefficients of van der Waals Fluids 1209 

(5· 5) 

where d is the dimensionality of space. From this result we see that the terms 

with ni, n/>2 can be ignored, and the effects of nonlinear term~ are unimportant 

for I E I >l-(cl/2-1)/(1-cl/Ha/2). The expansion parameter l-(cl/2-1) IE 1-(1-cl/Ha/2) for the 

cases ni = n/ = 2 is much. larger than that for the equilibrium quantities, l-dl E 1-1
/

2
, 

for d = 3.13
) However, it is quite possible that we have grossly overestimated 

the non-linear effects, and the actual expansion parameter can be much smaller. 

The errors introduced by using the pair approximation for <An> and for 

using classical values of critical exponents can be estimated as in equilibrium 

properties/3
) and are characterized by the equilibrium expansion parameter men

tioned above, and we thus see that all the correction terms to the results of· 

the preceding sections vanish much faster as l->oo with fixed E. 

In the present paper we have considered the lowest order corrections to 

transport coefficients due to critical fluctuations when l is large, but our model 

itself is not limited to the lowest order corrections, and it is hoped that the 

model will be useful in the study of transport properties in the ,truly critical 

regions also, 

Acknowledgement 

The author would like to thank Dr. L. de Sobrino for sending a pre print of 

his work prior to publication which stimulated the author into the present in

vestigation. 

References 

1)L. P. Kadanoff, Proceedings of the International Conference on Statistical Mc:chanics, Kyoto, 

1968-J. Phys. Soc. Japan 26 SuppI. (1969), and the'references cited therein. 

2) R. A. Ferrell et aI., to be published in Ann. of Phys. 

B. 1. Halperin and P. C. Hohenberg,to be published in Phys. Rev. 

3) L. P. Kadanoff and J. Swift, Phys. Rev. 166 (1968), 89, and to be published III Ann. of 

Phys. 

J. Swift, to be published in Phys. Rev. 

G; Laramore and L. P. Kadanoff, to be published. 

4) K. Kawasaki, Prog. Theor. Phys. 39 (1968), 1133; 40 (1968), 11, 706.' 

5) H. Mori and H. Okamoto, Prog. Theor. Phys. 40 (1968), 1287. 

6) J. M. Deutch and R. W. Zwanzig, J. Chern. Phys. 46 (1967), 1612. 

R. D. Mountain and R. W. Zwanzig, J. Chern. Phys. 48 (1968), 1451. 

7) N. G. van Kampen, Phys. Rev. 135 (1964), A362. 

8) L. de Sobrino, to be published in Can. J. Phys. 

9) M. Fixman, J. Chern. Phys. 47 (1967), 280ft 

10) L. P. Kadanoff and P. C. Martin, Ann. of Phys. 24 (1963), 419. 

11) R. D. Mountain, J. Research of N. B. Std. 69A (1965), 523; Rev. Mod. Phys. 38 (1966), 

205. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

1
/5

/1
1
9
0
/1

8
1
8
8
0
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1210 K. KawasaJd 

12) B. Chu, F. J. Schones and W. P. Kao, Phys. Rev. Letters 21 (1968),6 and to be published. 

S. H. Chen and N. Polonsky, Proceedings of the International Conference on Statistical 

Mechanics, Kyoto, 1968-J. Phys. Soc. Japan 26 Suppl. (1969). 

P. Berge· and V. Volochine, Phys. Letters 26A (1968), 267. 

13) V. G. Yaks, A. 1. Larkin and S. A. Pikin, Soviet Phys.-JETP 26 (1968), 188. 

14) K. Kawasaki, Phys. I~ev.' 150 (1966), 291. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

1
/5

/1
1
9
0
/1

8
1
8
8
0
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


