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TRANSPORT-EQUILIBRIUM SCHEMES FOR COMPUTING

CONTACT DISCONTINUITIES IN TRAFFIC FLOW MODELING∗

CHRISTOPHE CHALONS† AND PAOLA GOATIN‡

Abstract. We present a very efficient numerical strategy for computing contact discontinuities
in traffic flow modeling. We consider the Aw-Rascle model, and the objective is to remove spurious
oscillations generated for instance by the Godunov method near contact discontinuities. The method
is mixed and based on both a random sampling strategy and the Godunov method. To prove the
validity of the method, we show that it enjoys important stability properties and propose numerical
tests. The convergence of the algorithm is demonstrated numerically.
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1. Introduction

Mathematical and numerical models for traffic dynamics can be developed under
different approaches. We can distinguish between microscopic (particle-based), meso-
scopic (gas-kinetic) and macroscopic (fluid-dynamic) models. Here, we are interested
in continuum models, which are based on conservation (or balance) equations. First-
order models consist of one equation, describing the conservation of mass (i.e. the
number of cars). The prototype of these models is due to Lighthill-Whitham [17] and
Richards [20] (LWR). If another conservation equation is added, we obtain a so-called
second-order model. A first prototype was proposed by Payne [19] and Whitham [24].
This kind of models mimics the isentropic Euler equations of fluid mechanics, requir-
ing conservation of mass and momentum. However, traffic flow does not behave as
usual fluids, and the Payne-Whitham model shows some peculiarites, as pointed out
by Daganzo [12]. In order to correct these drawbacks, Aw and Rascle [3] proposed
another model, in which they replace the space derivative of the “pressure” in the mo-
mentum equation by the convective derivative ∂t +v∂x, where v stands for the (mean)
car velocity. More precisely, the model consists of a 2×2 system of conservation laws
for the car density ρ and the “momentum” y which reads as follows:

{

∂tρ+∂x (ρv)=0,
∂ty+∂x (yv)=0,

x∈R, t>0. (1.1)

The conservative variable y is defined by

y =ρw, w=v+p(ρ). (1.2)

Here p is a “pressure” term (as in gas dynamics) which takes into account drivers’
reactions to the state of traffic in front of them. In this way, if we suitably choose
the domain in the phase space, the model satisfies the following basic properties: no
information travels faster than cars, and density and velocity remain non-negative
and bounded.
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The velocity v is linked to the conservative unknown u=(ρ,y) by (1.2) and a
closure relation for p. Following [3], the function p has to be chosen as a smooth and
strictly increasing function such that ρp(ρ) is strictly convex. For instance, we will
take (without any restriction) the following definition for the numerical experiments
of this paper:

p(ρ)=vref ln
( ρ

R

)

, (1.3)

where R is the maximal car density allowed by the road, and vref is a given reference
velocity. Introducing now three parameters vM and wm,wM for the thresholds of v
and w respectively, we define the following invariant region for (1.1):

Ω=
{

(ρ,y)∈R
2 with ρ∈

[

0,R
]

, v∈
[

0,vM

]

, w∈
[

wm,wM

]}

. (1.4)

We observe that (1.1) can also be written in condensed form as

∂tu+∂xf(u)=0, u∈Ω, (1.5)

where the flux function f finds a clear definition from previous developments.
As detailed in Section 2, the system under consideration is strictly hyperbolic for

ρ>0, with a genuinely nonlinear and a linearly degenerate characteristic field. The
latter is associated with the faster eigenvalue which is equal to v and then develops
discontinuous waves, the so-called contact discontinuities, for which the speed of prop-
agation is continuous and given by v. In this paper, we will focus on the numerical
approximation of these contact discontinuities.

In the past decade, the numerical approximation of contact discontinuities re-
ceived much attention in the context of compressible multicomponent (or multifluid)
flows. Indeed, when the flow is made of several species, it is observed that classical
conservative schemes (like Godunov’s scheme) generate important nonphysical oscil-
lations near the material fronts, eventually leading to numerical solutions that are not
precise (at least for realistic meshes). The same pathologies also exist for single fluid
computations, and they appear for system (1.1). Several cures have been proposed
in the literature, see for instance [15, 16, 1, 21, 13, 2, 4] and the references therein.
Roughly speaking, the common idea is to retain a classical conservative scheme far
from the material interfaces and to introduce a non-conservative modification in the
regions where the problem occurs, in order to preserve constant pressure and veloc-
ity. Note however that the threshold technique often attached to the local treatment
prevents the methods from strictly preserving isolated contact discontinuities. The
resulting non-conservative schemes give good results and seem to be numerically con-
vergent. Note also that these strategies are usually designed for models involving at
least two fluids and two pressure laws. As a consequence, it seems difficult to apply
them to our “single fluid” system (1.1). We mention, however, that in [7] the authors
will propose a mixed Lagrangian/Eulerian approach that applies also for closure re-
lations involving a single pressure law.

Based on a recent work [5] (see also [6]) by the first author, we present in this
paper an algorithm whose objective is to remove the spurious oscillations generated
by the Godunov scheme (for instance) near the contact discontinuities seperately of
system (1.1). The method proposes to treat contact discontinuities using a random
sampling strategy, and to retain the Godunov scheme for the other waves. As ex-
pected, the whole algorithm is non-conservative but numerical experiments give very
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good numerical solutions with sharp (without numerical diffusion) contact discontinu-
ities and very small conservation errors, and show numerical convergence. Moreover,
we are able to prove that the method enjoys important stability properties like strong
consistency and a maximum principle for the two Riemann invariants of system (1.1),
see theorems 3.1 and 3.2 in Section 3.3. Note also that our algorithm is free of thresh-
old techniques. As a consequence of all these properties, contact discontinuities are
always computed without oscillations.

To conclude this section, we recall that another second-order model has been
proposed by Colombo [10]. This model has a genuinely nonlinear and a linearly
degenerate field. Thus, the same difficulties related to the numerical contact disconti-
nuities are expected to occur. Moreover, both models [10, 3] have been coupled with
the LWR equation, giving rise to traffic flow models with phase transitions [11, 14].
The techniques presented in this paper can easily be adapted and used in these cases.
In particular, for models with phase transitions, an efficient numerical scheme has
been proposed by the authors in [8]. It can be combined with the present scheme in
order to better approximate contact discontinuities.

2. Basic properties of the Aw-Rascle model

In this section, we briefly recall the basic features of the model under considera-
tion and we refer the reader to [3] (see also [14]) for more details, knowing that the
properties here stated follow from usual considerations. The basic information on the
Aw-Rascle system is collected in the following table:

r1(ρ,v)=

[

1
−p′(ρ)

]

, r2(ρ,v)=

[

1
0

]

,

λ1(ρ,v)=v−ρp′(ρ), λ2(ρ,v)=v ,
∇λ1 ·r1 =−2p′(ρ)−ρp′′(ρ), ∇λ2 ·r2 =0,
L1(ρ;ρo,vo)=vo +p(ρo)−p(ρ), L2(ρ;ρo,vo)=vo ,
w1 =v+p(ρ), w2 =v ,

(2.1)

where ri is the i-th right eigenvector, λi the corresponding eigenvalue and Li is the
i-th Lax curve. We note that shock and rarefaction curves coincide, hence the sys-
tem belongs to the Temple class [23]. The Riemann invariants associated with each
eigenvalue λ1 and λ2 are w1 =v+p(ρ) and w2 =v respectively. In addition, it is easily
seen that the first characteristic field is genuinely nonlinear, and the second is linearly
degenerate. Therefore, depending on the initial data, the self-similar solution to the
general Riemann problem







∂tu+∂xf(u)=0,

u(x,0)=

{

ul if x<0,
ur if x>0,

(2.2)

will consist of one Lax wave (shock or rarefaction) moving with negative and/or
positive speeds, and a contact discontinuity always moving with positive speed v. For
a more detailed description of the Riemann solver see again [3]. Using the Riemann
coordinates and the property that w1 (respectively w2) is constant across the waves of
the first (respectively second) family, the intermediate state u⋆(ul,ur) in the Riemann
solution is easily computed:

{

w⋆
1 =wl

1 =vl +p(ρl),
w⋆

2 =wr
2 =vr,

=⇒







ρ⋆ =ρl exp

(

vl−vr

vref

)

,

y⋆ =ρ⋆(vr +p(ρ⋆)).
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Of course, we note that v⋆ :=v(u⋆(ul,ur))=vr. We will use the above cheap compu-
tation in our algorithm. In contrast, we will not compute directly rarefaction waves.

It is also important for the forthcoming developments to notice that the solution
to (2.2) obeys a maximum principle for the two Riemann invariants. In other words,
if (x,t)→ur(

x
t ;ul,ur) denotes the self-similar solution of (2.2), we have







inf{vl +p(ρl),vr +p(ρr)}≤ (v+p)
(

ur

(x

t
;ul,ur

))

≤ sup{vl +p(ρl),vr +p(ρr)},

inf{vl,vr}≤v
(

ur

(x

t
;ul,ur

))

≤ sup{vl,vr}.

3. Numerical approximation

We first briefly recall the Godunov scheme applied to system (1.1), showing that
it introduces nonphysical oscillations near contact discontinuities, which can signif-
icantly affect the whole approximate solution. To overcome this problem, we will
introduce a new method in which we evolve separately the contact discontinuities and
the shock or rarefaction waves.

Let ∆x and ∆t be two constant increments for space and time discretizations, and
let ν =∆t/∆x. We then define the mesh interfaces xj+1/2 = j∆x and the cell centers
xj =(j +1/2)∆x for j∈Z, the intermediate times tn =n∆t for n∈N, and at each time
tn we denote un

j an approximate mean value of the solution of (1.5) on the interval
Cj =[xj−1/2,xj+1/2), j∈Z. In other words, a piecewise constant approximation x→
uν(x,tn) of the solution u is given by

uν(x,tn)=un
j for all x∈Cj , j∈Z, n∈N.

When n=0, we set

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, for all j∈Z, (3.1)

where u0∈Ω is a given initial data.
Assuming as given a sequence (un

j )j∈Z at time tn, we concentrate now on the

computation of an approximate solution at the next time level tn+1.

3.1. The Godunov scheme. As is well-known, the Godunov scheme writes
as follows

un+1
j =un

j −
∆t

∆x
(fn

j+1/2− fn
j−1/2) for all j ∈ Z, (3.2)

where the numerical fluxes are such that

fn
j+1/2 = f(ur(0

−;un
j ,un

j+1)) for all j ∈ Z. (3.3)

Let v be the solution for times t∈ [0,∆t] of (1.1) with piecewise constant initial
data u0(x)=uν(x,tn). Under the usual CFL restriction

∆t

∆x
max

u

{|λi(u)|, i=1,2}≤
1

2
(3.4)

for all the u under consideration, v is obtained by gluing together the solutions of the
Riemann problems set at each interface. More precisely

v(x,t)=ur

(

x−xj+1/2

t
;un

j ,un
j+1

)

for all (x,t) ∈ [xj ,xj+1]× [0,∆t]. (3.5)
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See Fig. 3.1 for an illustration. Green’s formula tells us that (3.2) is equivalent to
averaging the function x→v(x,∆t) on the interval [xj−1/2,xj+1/2]:

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v(x,∆t)dx, j∈Z. (3.6)

An equivalent way to recover (3.2) consists in setting

un+1
j =

1

2
(un+1

j+1/2,L +un+1
j−1/2,R), (3.7)

where

un+1
j+1/2,L =

2

∆x

∫ xj+1/2

xj

ur

(

x−xj+1/2

∆t
;un

j ,un
j+1

)

dx=un
j −

2∆t

∆x
(fn

j+1/2− f(un
j ))

(3.8)
and

un+1
j+1/2,R =

2

∆x

∫ xj+1

xj+1/2

ur

(

x−xj+1/2

∆t
;un

j ,un
j+1

)

dx=un
j+1−

2∆t

∆x
(f(un

j+1)− fn
j+1/2)

(3.9)

denote the averages of the Riemann solution x→ur

(

x−xj+1/2

∆t ;un
j ,un

j+1

)

on the half-

cells [xj ,xj+1/2] and [xj+1/2,xj+1]. This point of view will be useful in the following.

3.2. Failure of Godunov scheme in properly capturing contact discon-

tinuities. Let us consider the Riemann problem (2.2) with ul =(ρl,yl) and
ur =(ρr,yr) such that ρl >0, ρr >0, ρl 6=ρr but vl =vr. In this case, the solution
simply consists in a contact discontinuity propagating at speed v0 :=vl =vr:

u(x,t)=

{

ul if x<v0t,
ur if x>v0t.

From now on, we assume v0 >0.
What happens in the first time step?

From (3.1) we have that

u0
j =

{

ul if j≤0,
ur if j >0.

Due to the CFL restriction (3.4) and the property v0 >0, only the cell C1 may be
affected by update formula (3.6) in the first time step. In other words,

u1
j =u0

j for all j 6=1.

For j =1, (3.6) is equivalent to

ρ1
1 =ρ and y1

1 =y,

where we have used the notation

α=
1

∆x

∫ ∆x

0

α(x,∆t)dx.
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We observe that

y =
1

∆x

∫ ∆x

0

y(x,∆t)dx=
1

∆x

∫ ∆x

0

(ρv+ρp(ρ))(x,∆t)dx.

Since the velocity remains constant across a contact discontinuity, we have

y =v0
1

∆x

∫ ∆x

0

ρ(x,∆t)dx+
1

∆x

∫ ∆x

0

(ρp(ρ))(x,∆t)dx=v0ρ+ρp(ρ).

On the contrary, if we calculate v1
1 from ρ and y, we get

v1
1 =

y

ρ
−p(ρ)=v0 +

ρp(ρ)−ρp(ρ)

ρ
.

We observe that the function ρ→ρp(ρ) is convex. By Jensen’s inequality, we deduce
ρp(ρ)≥ρp(ρ) and then

v1
1 ≥v0,

with strict inequality generally speaking. Thus, after the first time iteration, the
velocity no longer equals v0 everywhere. We conclude that the Godunov method is
not able to both keep the velocity profile constant and to capture properly contact
discontinuities. In Section 4, we will show that the non-physical values created by
the Godunov method around contact discontinuities may significantly damage the
numerical solution. Our goal is to design a suitable algorithm to remove these spurious
values.

Remark 3.1.

(i) The failure we have just underscored is due to the fact that the Godunov
method does not obey a maximum principle for the velocity v. The algorithm we
propose in the next section verifies the maximum principle for the Riemann invariants
v and v+p(ρ), see Theorem 3.2.

(ii) It is important to notice that if we now consider an isolated 1-wave between ul

and ur, the Godunov method actually keeps constant the Riemann invariant v+p(ρ).
If we set C0 :=vl +p(ρl)=vr +p(ρr), we have indeed

(v+p(ρ))11 =
(y

ρ

)1

1
=

y

ρ
=

ρ(v+p(ρ))

ρ
=C0

ρ

ρ
=C0.

This property is very interesting and means in particular that all the points in a
numerical 1-wave profile associated with Godunov’s method belong to the same 1-
wave curve for all the possible choices of p(ρ). This property is also satisfied by our
new method (see Theorem 3.1 (iii) and Theorem 3.2).

3.3. A transport-equilibrium scheme. We propose now an algorithm that
allows to avoid the spurious oscillations generated near the contact discontinuities by
the classical Godunov method. The basic idea is to treat in a different way contact
discontinuities on one side and other waves (shock and rarefaction waves) on the other
side. We will keep on using the Godunov method for shocks and rarefactions (since it
works well and is conservative), and we will propose a particular treatment for contact
discontinuities which make use of a (Glimm) random sampling strategy.



C. CHALONS AND P. GOATIN 539

xj−5/2 xj−3/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2
xj−2 xj−1 xj xj+1 xj+2

un
j−2 un

j−1 un
j un

j+1 un
j+2

vn
j−2 vn

j−1 vn
j vn

j+1 vn
j+2

u⋆(un
j−3,u

n
j−2) u⋆(un

j−2,u
n
j−1) u⋆(un

j−1,u
n
j ) u⋆(un

j ,un
j+1) u⋆(un

j+1,u
n
j+2)

Fig. 3.1. Illustration of the notations used in the paper.

xj−1/2 xj+1/2

xj−1 xj xj+1

un
j−1 un

j un
j+1

vn
j vn

j+1

u⋆(un
j−1,u

n
j ) u⋆(un

j ,un
j+1)

Fig. 3.2. Restriction on the interval (xj−1,xj+1).

We set

g(ul,ur)= f(ur(0
−;ul,ur)),

so that the numerical flux of the Godunov method writes fn
j+1/2 =g(un

j ,un
j+1) for

all j ∈ Z. Recall that u⋆(ul,ur) is the intermediate state in the Riemann solution
ur(.;u

l,ur) (between the 1-wave and the 2-contact discontinuity), so that ul and
u⋆(ul,ur) are connected by a 1-wave and u⋆(ul,ur) and ur are connected by a 2-
contact discontinuity. Of course, we have u⋆(ul,ur)=ur (respectively u⋆(ul,ur)=ul)
if ul and ur are connected by a 1-wave (respectively a 2-contact discontinuity), and
we set u⋆(u,u)=u for all u. See Fig. 3.1.

The method is composed of two steps. On each interval [xj ,xj+1], j ∈ Z, the
first step takes into account only the contact discontinuity in the Riemann solution
ur(.;u

n
j ,un

j+1), while the second step focuses on the 1-wave. Our procedure may be
viewed as a waves-splitting strategy, performed locally around each interface xj+1/2

where a Riemann problem is set.
Assuming as given un

j−1, un
j and un

j+1, we show now how to define un+1
j . Note

that, under the CFL condition (3.4), it is sufficient to focus on the interval [xj−1,xj+1],
since the Riemann problems set at other interfaces are not expected to influence the
definition of un+1

j . See below Fig. 3.2.

Step 1: Propagation of contact discontinuities (tn → tn+1/2).
In this step, we focus on the dynamics of contact discontinuities. We proceed as
follows. The Riemann problems at interfaces xj−1/2 and xj+1/2 generally develop a
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xj−1/2 xj+1/2

xj−1 xj xj+1

un
j−1 un

j un
j+1

vn
j vn

j+1

u⋆(un
j−1,u

n
j ) u⋆(un

j ,un
j+1)

Fig. 3.3. Function ṽ.

1-wave and a 2-contact discontinuity, the latter propagating at speed vn
j and vn

j+1

respectively (see again Fig. 3.2). These velocities being nonnegative, the contact
discontinuities only affect [xj−1/2,xj) and [xj+1/2,xj+1], but not [xj−1,xj−1/2) and
[xj ,xj+1/2). This means that the Riemann solutions ur(.;u

n
j−1,u

n
j ) and ur(.;u

n
j ,un

j+1)
could be replaced in this step with the following function

ṽ(x,t)=























un
j−1 if x∈ [xj−1,xj−1/2)

u⋆(un
j−1,u

n
j ) if x∈ [xj−1/2,xj−1/2 +vn

j (t− tn))
un

j if x∈ [xj−1/2 +vn
j (t− tn),xj+1/2)

u⋆(un
j ,un

j+1) if x∈ [xj+1/2,xj+1/2 +vn
j+1(t− tn))

un
j+1 if x∈ [xj+1/2 +vn

j+1(t− tn),xj+1]

on the whole interval (xj−1,xj+1), see Fig. 3.3. Of course, this function has to be
considered as a substitute of function v in (3.5), where only contact discontinuities
have been kept.

In order to properly capture contact discontinuities, we propose to de-
fine ṽ(x,tn+1/2) as a piecewise constant function on each interval [xj−1,xj−1/2),
[xj−1/2,xj+1/2) and [xj+1/2,xj+1] (as ṽ(x,tn) is) by means of Glimm’s random sam-
pling strategy. More precisely, we pick randomly on the cell [xj−1,xj+1] a value
between un

j−1, u⋆(un
j−1,u

n
j ), un

j , u⋆(un
j ,un

j+1) and un
j+1 in agreement with their de-

gree of presence in the corresponding interval, or equivalently in agreement with the
definition of the function x→ ṽ(x,tn +∆t). Given a well distributed random sequence
(an) within interval (0,1), this amounts to setting:

ṽ(x,tn+1/2)=











un
j−1 if x∈ [xj−1,xj−1/2),

u
n+1/2
j if x∈ [xj−1/2,xj+1/2),

u
n+1/2
j+1,L if x∈ [xj+1/2,xj+1],

with

u
n+1/2
j =

{

u⋆(un
j−1,u

n
j ) if an+1∈ (0, ∆t

∆xvn
j ),

un
j if an+1∈ [ ∆t

∆xvn
j ,1),

(3.10)

and

u
n+1/2
j+1,L =

{

u⋆(un
j ,un

j+1) if an+1∈ (0, 2∆t
∆x vn

j ),

un
j+1 if an+1∈ [2∆t

∆x vn
j ,1).

(3.11)
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xj−1/2 xj+1/2

xj−1 xj xj+1

un
j−1 u

n+1/2
j u

n+1/2
j+1,L

Fig. 3.4. Function ṽ(x,tn+1/2).

See Fig. 3.4. In practice, we will consider the well-known van der Corput random
sequence (an) defined by

an =

m
∑

k=0

ik2−(k+1),

where n=
∑m

k=0 ik2k, ik ∈{0,1} denotes the binary expansion of the integers n=
1,2,... (see for instance Collela [9]).

Remark 3.2. It is worth noticing that if both un
j−1 and un

j on one hand and un
j , and

un
j+1 on the other hand can be connected by a 1-wave, then u⋆(un

j−1,u
n
j )=un

j and

u⋆(un
j ,un

j+1)=un
j+1 and as an immediate consequence of (3.10)-(3.11), ṽ(x,tn+1/2)=

ṽ(x,tn). So the first step is transparent when no contact discontinuity is present.

Step 2: Account for the dynamics of shock and rarefaction waves (tn+1/2→ tn+1).
Let us now concentrate on the parts of the solution located on the left and on the
right of the contact discontinuities.

Let us first consider the Riemann problem set at the interface xj+1/2 for which
only the part of the solution located on the left of the contact discontinuity may
enter the cell Cj =[xj−1/2,xj+1/2). See Fig. 3.2. We propose to take it into account

by simply averaging ur(.;u
n+1/2
j ,u

n+1/2
j+1,L ) on (xj ,xj+1/2) as in (3.8). Note that the

restrictions to [xj ,xj+1/2) of ur(.;u
n+1/2
j ,u

n+1/2
j+1,L ) and ur(.;u

n+1/2
j ,un

j+1) are the same

since u
n+1/2
j+1,L and un

j+1 are either equal or separated by a contact discontinuity. Then
we set

un+1
j+1/2,L =

2

∆x

∫ xj+1/2

xj

ur

(

x−xj+1/2

∆t
;u

n+1/2
j ,un

j+1

)

dx

=u
n+1/2
j −

2∆t

∆x
(g(u

n+1/2
j ,un

j+1)− f(u
n+1/2
j )). (3.12)

Let us now focus on the Riemann problem set at the interface xj−1/2 for which
both parts of the solution located on the left and on the right of the contact disconti-
nuity may enter the cell Cj depending on the sense of propagation of the 1-wave (see
again Fig. 3.2). There are two possibilities:

• u
n+1/2
j =un

j . This corresponds to the situation where the random sampling
“decided” that the (possibly present) contact discontinuity of ur(.;u

n
j−1,u

n
j )

has not yet entered the cell Cj . Then we only have to account for:
– the right part of the contact discontinuity in ur(.;u

n
j−1,u

n
j ) (i.e. un

j =

u
n+1/2
j ) if a contact discontinuity is actually present in ur(.;u

n
j−1,u

n
j ),

that is if u⋆(un
j−1,u

n
j ) 6=un

j . This is simply done by replacing un
j−1 and

un
j with u

n+1/2
j =un

j in ur(.;u
n
j−1,u

n
j );
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– the part of the solution ur(.;u
n
j−1,u

n
j ) entering Cj if no contact discon-

tinuity is present in ur(.;u
n
j−1,u

n
j ), that is if u⋆(un

j−1,u
n
j )=un

j .

• u
n+1/2
j =u⋆(un

j−1,u
n
j ) 6=un

j . This corresponds to the situation where the ran-
dom sampling decided to make the contact discontinuity of ur(.;u

n
j−1,u

n
j )

enter the cell Cj . Then we also have to account for the part of the solution
ur(.;u

n
j−1,u

n
j ) located on the left of the contact discontinuity and entering

the cell Cj , equivalently the part of the solution ur(.;u
n
j−1,u

n+1/2
j ) entering

the cell Cj .

Thus, since the condition u⋆(un
j−1,u

n
j ) 6=un

j is equivalent to u⋆(un
j−1,u

n+1/2
j ) 6=

u
n+1/2
j when u

n+1/2
j =un

j , and by averaging on [xj−1/2,xj) as in (3.9), we are led to
set

un+1
j−1/2,R =

2

∆x

∫ xj

xj−1/2

ur

(

x−xj−1/2

∆t
;un

j−1,u
n+1/2
j

)

dx

=u
n+1/2
j −

2∆t

∆x

(

f(u
n+1/2
j )−g(un

j−1,u
n+1/2
j )

)

if u⋆(un
j−1,u

n+1/2
j )=u

n+1/2
j ,

un+1
j−1/2,R =

2

∆x

∫ xj

xj−1/2

ur

(

x−xj−1/2

∆t
;u

n+1/2
j ,u

n+1/2
j

)

dx=u
n+1/2
j

otherwise. (3.13)

By (3.7), we get the following update formula:

un+1
j =

1

2
(un+1

j+1/2,L +un+1
j−1/2,R)=u

n+1/2
j −

∆t

∆x
(g

n+1/2,L
j+1/2 −g

n+1/2,R
j−1/2 ) for all j ∈ Z,

(3.14)

where the left and right numerical flux functions g
n+1/2,L
j+1/2 and g

n+1/2,R
j−1/2 are defined

according to

g
n+1/2,L
j+1/2 = g(u

n+1/2
j ,un

j+1),

and

g
n+1/2,R
j−1/2 =

{

g(un
j−1,u

n+1/2
j ) if u⋆(un

j−1,u
n+1/2
j )=u

n+1/2
j ,

f(u
n+1/2
j ) otherwise.

(3.15)

The description of the method is now completed. Stability properties enjoyed by this
algorithm are proposed below.

Remark 3.3. Putting the first and the second step together, we note that the
definition of un+1

j only depends on un
j−1, un

j and un
j+1.

Remark 3.4. For numerical reasons, the test u⋆(un
j ,u

n+1/2
j+1 )=u

n+1/2
j+1 in (3.15) is

replaced with |u⋆(un
j ,u

n+1/2
j+1 )−u

n+1/2
j+1 |≤ ǫ, with for instance ǫ=10−12.

Theorem 3.1. (Consistency). Under the CFL restriction (3.4), the scheme defined
by (3.10)-(3.14)-(3.15) is consistent with (1.5) in the following sense:

(i) Constant state: Assume that u :=un
j−1 =un

j =un
j+1. Then un+1

j =u.

(ii) Isolated contact discontinuity: Let ul and ur be two distinct constant states

that can be connected by a contact discontinuity. We set v :=vl =vr. Assume that
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u0
j =ul if j≤0 and u0

j =ur if j >0. Then the scheme (3.10)-(3.14)-(3.15) is equiva-
lent to Glimm’s random choice scheme and converges to the solution of (2.2) given by
u(x,t)=ul if x<vt and u(x,t)=ur otherwise. In particular, we have un

j ∈{ul,ur}
∀ j ∈Z and ∀n ∈N so that the velocity profile remains constant: vn

j =v ∀ j ∈Z and
∀n ∈N.

(iii) Isolated 1-wave: Let us assume that un
j−1 and un

j can be connected by a

1-wave (u⋆(un
j−1,u

n
j )=un

j ). Then the definition un+1
j of our scheme (3.10)-(3.14)-

(3.15) coincides with the definition of the Godunov scheme, that is, un+1
j is given by

(3.2).

Proof.
(i) Let us assume that un

l =u for l= j−1,j,j +1. Then, u⋆(un
j−1,u

n
j )=u⋆(u,u)=

u and, by formula (3.10), we necessarily have u
n+1/2
j =u. Recall now the consistency

property g(u,u)= f(u) of the Godunov flux function. Invoking definition (3.15), we
thus have

g
n+1/2,L
j+1/2 =g(u,u)= f(u) and g

n+1/2,R
j+1/2 =g(u,u)= f(u).

Then, formula (3.14) proves that un+1
j =u.

(ii) Let us set u0
j =ul if j≤0 and u0

j =ur if j >0. Since ul and ur are assumed to

be connected by a contact discontinuity, we have in particular u⋆(ul,ur)=ul (while

of course u⋆(ul,ul)=ul and u⋆(ur,ur)=ur) so that the definition of u
n+1/2
j in (3.10)

coincides with the definition provided by the Glimm scheme. To prove our result,

we thus have to show that un+1
j =u

n+1/2
j . The two situations of interest are first

u
n+1/2
k =ul for k≤ j and u

n+1/2
k =ur otherwise, and second u

n+1/2
k =ul for k <j and

u
n+1/2
k =ur otherwise.

In the first situation, we necessarily have un
j−1 =ul (respectively un

j+1 =ur), since

otherwise we would have un
j−1 =un

j =ur and then u
n+1/2
j =ur (respectively un

j =

un
j+1 =ul and then u

n+1/2
j+1 =ul). Then we have g

n+1/2,L
j+1/2 =g(ul,ur)= f(ul), because

the contact discontinuity propagates to the right-hand side. Moreover, g
n+1/2,R
j−1/2 =

g(ul,ul)= f(ul), so that un+1
j =u

n+1/2
j by (3.14).

In the second situation, we note that un
j+1 =ur, since otherwise we would have

un
j =un

j+1 =ul and then u
n+1/2
j =ul. Hence g

n+1/2,L
j+1/2 =g(ur,ur)= f(ur). As far as

g
n+1/2,R
j−1/2 is concerned, either

• un
j−1 =ul and then u⋆(un

j−1,u
n+1/2
j )=u⋆(ul,ur)=ul 6=ur, which means

g
n+1/2,R
j−1/2 = f(ur) by (3.15), or

• un
j−1 =ur and then u⋆(un

j−1,u
n+1/2
j )=u⋆(ur,ur)=ur, which means again

g
n+1/2,R
j−1/2 = f(ur) by (3.15).

The two fluxes g
n+1/2,L
j+1/2 and g

n+1/2,R
j−1/2 then coincide and equality un+1

j =u
n+1/2
j

follows.
We have thus proved that the second step of the algorithm is transparent, which

means that the method reduces to the first step and it is equivalent to Glimm’s
random choice scheme. It is proved in [18] (see also [22]) that the solution u(x,t)=ul

for x<vt and u(x,t)=ur for x>vt converges if the random sequence (an) is well
distributed.
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(iii) If un
j−1 and un

j can be connected by a 1-wave, we have u⋆(un
j−1,u

n
j )=un

j and

then u
n+1/2
j =un

j . Hence, by definition (3.15), we have g
n+1/2,L
j+1/2 =g(un

j ,un
j+1)= fn

j+1/2

and g
n+1/2,R
j−1/2 =g(un

j−1,u
n
j )= fn

j−1/2. Then the definition of un+1
j given by our scheme

(3.10)-(3.14)-(3.15) coincides with the one of the Godunov scheme, that is, un+1
j is

given by (3.2). This completes the proof of the theorem.

Theorem 3.2. (Maximum principle). Under the CFL restriction (3.4), the scheme
defined by (3.10)-(3.14)-(3.15) satisfies the following maximum principle for all j ∈Z

and all n ∈N:







inf
j∈Z

v0
j ≤vn

j ≤ sup
j∈Z

v0
j ,

inf
j∈Z

(v0
j +p(ρ0

j ))≤vn
j +p(ρn

j )≤ sup
j∈Z

(v0
j +p(ρ0

j )) .

Proof. The maximum principle is not affected by the first step since for all j∈Z,

u
n+1/2
j is defined by picking up randomly a value between u⋆(un

j−1,u
n
j ) and un

j . Since
in each Riemann solution one has v+p(ρ)=const and v =const along the first wave
and the second wave respectively, we obtain

inf{vn
j−1 +p(ρn

j−1),v
n
j +p(ρn

j )}≤v
n+1/2
j +p(ρ

n+1/2
j )≤ sup{vn

j−1 +p(ρn
j−1),v

n
j +p(ρn

j )}

and

v
n+1/2
j =vn

j .

Concerning the second step, new values are introduced in cells Cj by taking averages
of (parts of) Riemann solutions which contain only waves of the first family, namely,

ur(.;u
n+1/2
j ,un

j+1) on [xj ,xj+1/2), and ur(.;u
n
j−1,u

n+1/2
j ) or ur(.;u

n+1/2
j ,u

n+1/2
j ) on

[xj−1/2,xj). Since again v+p(ρ)=const=C along these waves, and therefore y =

ρC, we get yn+1
j =ρn+1

j C
n+1/2
j =ρn+1

j (v
n+1/2
j +p(ρ

n+1/2
j )), so that vn+1

j +p(ρn+1
j )=

C
n+1/2
j =v

n+1/2
j +p(ρ

n+1/2
j ). The maximum principle thus holds for v+p(ρ).

We now calculate the velocity vn+1
j using formula

vn+1
j =

yn+1
j

ρn+1
j

−p(ρn+1
j )=C

n+1/2
j −p(ρn+1

j ).

Let us denote by ρ− (respectively ρ+) the minimum (respectively maximum) value
of ρ among all the states involved in the averaging procedure of the second step and
by v− (respectively v+) the corresponding velocity. Since the function p is monotone
(increasing), we get

inf{vn
j−1,v

n+1/2
j =vn

j ,vn
j+1}≤v+≤vn+1

j ≤v−≤ sup{vn
j−1,v

n+1/2
j =vn

j ,vn
j+1},

so the maximum principle also holds for v.

Remark 3.5. The present algorithm is consistent with (1.5) in the sense of Theorem
3.1 and obeys a maximum principle for both Riemann invariants v+p(ρ) and v. By the
latter property, contact discontinuities are properly computed (without oscillations),
as is clearly shown in the next section. The counterpart is that our method no longer
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conserves the density and the momentum, even if the conservation errors are very
small (see again the next section). Instead of averaging ρ and y as in the usual
Godunov method, a way to properly capture the contact discontinuities while still
conserving ρ would be to average the density ρ and the velocity v. However, the
difficulty would be to obtain a simple form of the corresponding update formula,
since v is not a conservative variable for general pressure laws, as well as a maximum
principle on v+p(ρ).

Remark 3.6. (Computational cost). According to (3.14), the definition of un+1
j

relies on the computation of the time-intermediate value u
n+1/2
j and two numerical

fluxes g
n+1/2,L
j+1/2 and g

n+1/2,R
j−1/2 . The computation of u

n+1/2
j is generally associated

with the computation of u⋆(un
j−1,u

n
j ) by (3.10), while the computation of g

n+1/2,L
j+1/2

and g
n+1/2,R
j−1/2 corresponds in general to the computation of two Godunov fluxes by

(3.15), namely g(u
n+1/2
j ,un

j+1) and g(un
j−1,u

n+1/2
j ). It is clear that the computation

of u⋆(un
j−1,u

n
j ) is part of the computation of the Godunov flux g(u

n+1/2
j ,un

j+1). Hence

the definition of un+1
j is eventually associated with the computation of two Godunov

fluxes instead of one as in the usual Godunov method (since it is conservative). This
additional cost is usual when trying to properly compute contact discontinuities, see
[2] for instance. However, the computation of a Godunov flux is not expensive for the
system under consideration in this paper (see Section 2).

4. Numerical experiments

Let us first recall that in this section, p is given definition (1.3). We will take R=1
and vref =1.4427. In order to test the proposed scheme, we consider three Riemann
problems leading to three solutions of interest: an isolated contact discontinuity (Test
1), a shock wave followed by a contact discontinuity (Test 2) and a sonic rarefaction
wave followed by a contact discontinuity (Test 3). In each case, the method is first
evaluated by means of a qualitative comparison with the exact solution: the ρ, v
and v+p(ρ) profiles are shown on figures 5.1, 5.2 and 5.3. For several mesh sizes,
a quantitative evaluation through the L1-norm (of the difference between the exact
and numerical solutions) is then made, as well as a measure of the conservation errors
on both ρ and y. They are given on tables 5.1, 5.2, 5.3: Eρ

cons and Ey
cons denote the

conservation errors on ρ and y, and Eρ
L1 and Ev

L1 denote the L1-errors on ρ and v. The
L1-norm errors are computed in a very classical way. For the sake of completeness,
we now give the precise meaning of Eρ

cons and Ey
cons in our computations (and we

refer the reader to [2, 5, 6],for instance, for more details on these formulas): denoting
by [x0,x1]= [−0.25,0.75] the computational domain of our simulations and by Tf the
corresponding final time, we first set for all n≥0

Eu(tn)=

(

Eρ(tn)
Ey(tn)

)

=

∫ x1

x0

uν(x,tn)dx−

∫ x1

x0

uν(x,0)dx +

∫ tn

0

f(uν(x1,s))ds−

∫ tn

0

f(uν(x0,s))ds

∫ x1

x0

uν(x,tn)dx

where the ratio is to be understood component by component, and then
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Eu

cons =

(

Eρ
cons

Ey
cons

)

=
1

Tf

N
∑

n=0

∆t|Eu(tn)| with N =Tf/∆t.

Note that since uν is piecewise constant, these quantities are easy to evaluate. Note
also that Eu

cons corresponds to the sum of the absolute value of the relative con-
servation errors made at each intermediate time tn. In other words, the possible
compensation effects are not taken into account here.

Initial states are chosen as follows:
Test 1

ul: ρl =0.9 vl =1.
ur: ρr =0.1 vr =1.

Test 2

ul: ρl =0.1 vl =1.8
ur: ρr =0.2 vr =1.6

Test 3

ul: ρl =0.5 vl =1.2
ur: ρr =0.1 vr =1.6

The qualitative results are presented on a mesh made of 100 points per unit
interval.

We observe as predicted above that the classical Godunov method develops spuri-
ous oscillations near the contact discontinuity that strongly affect the whole numerical
solution. 1 In contrast, our algorithm removes them and provides numerical solutions
in full agreement with exact ones, and with sharp contact discontinuities. The con-
servation errors and the L1-errors tend to zero with the mesh size, which proves
numerically the convergence of the method. Moreover, we see that the L1-errors be-
tween the numerical and exact solutions are actually lower for our scheme than for
the Godunov method.

5. Conclusion

We have presented an algorithm whose objective is to remove the spurious oscilla-
tions generated by the Godunov scheme near contact discontinuities in the Aw-Rascle
model for traffic flow. The method proposes to treat separately the contact disconti-
nuities using a random sampling strategy, and to retain the Godunov scheme for the
other waves. The whole algorithm is not strictly conservative but numerical experi-
ments give very good numerical solutions with sharp (i.e. without numerical diffusion
nor oscillations) contact discontinuities and small conservation errors, and show the
numerical convergence. Moreover, we are able to prove that the method enjoys im-
portant stability properties like strong consistency and the maximum principle for the
Riemann invariants of the system.

The resulting scheme remains dependent on the Riemann solver being exact. Even
though it is very cheap in the present context, it would be interesting to observe how
our scheme behaves when the exact Riemann solver is replaced by an approximate
Riemann solver.

Another important topic would be the extension of the presented approach to
higher-order schemes.

1We also observe that the spurious oscillations are mainly located behind the contact discon-
tinuity. The reason which can explain this fact is probably that, in any given Riemann problem,
the wave which propagates with the largest velocity is precisely the contact discontinuity (the other
waves are then located behind the contact discontinuity).
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Fig. 5.1. Test 1: ρ (Left), v (Right) and v+p(ρ) (Bottom) at time t=0.2.
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Fig. 5.2. Test 2: ρ (Left), v (Right) and v+p(ρ) (Bottom) at time t=0.2.



C. CHALONS AND P. GOATIN 549

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2  0  0.2  0.4  0.6

exact
Godunov

our scheme

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

-0.2  0  0.2  0.4  0.6

exact
Godunov

our scheme

-1.5

-1

-0.5

 0

-0.2  0  0.2  0.4  0.6

exact
Godunov

our scheme

Fig. 5.3. Test 3: ρ (Left), v (Right) and v+p(ρ) (Bottom) at time t=0.25.
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# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0. 0. 8.39e−2 8.68e−2

500 0. 0. 4.26e−2 3.83e−2

1000 0. 0. 3.06e−2 2.66e−2

2000 0. 0. 2.18e−2 1.85e−2

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 1.52% 7.74% 8.e−3 0.
500 0.32% 1.83% 1.6e−3 0.
1000 0.16% 0.94% 8.e−4 0.
2000 0.08% 0.47% 4.e−4 0.

Table 5.1. Test 1: Godunov scheme (top) and our scheme (bottom).

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0. 0. 3.2e−3 6.55e−3

500 0. 0. 1.47e−3 2.76e−3

1000 0. 0. 1.03e−3 1.78e−3

2000 0. 0. 7.3e−4 1.22e−3

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0.35% 0.14% 1.02e−3 2.3e−3

500 0.07% 0.03% 2.19e−4 6.47e−4

1000 0.04% 0.02% 1.09e−4 3.26e−4

2000 0.03% 0.01% 9.72e−5 1.63e−4

Table 5.2. Test 2: Godunov scheme (top) and our scheme (bottom).

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0. 0. 2.12e−2 3.8e−2

500 0. 0. 9.82e−3 1.68e−2

1000 0. 0. 6.98e−3 1.17e−2

2000 0. 0. 4.94e−3 8.22e−3

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0.81% 6.04% 3.82e−3 3.36e−3

500 0.17% 1.14% 9.41e−4 1.25e−3

1000 0.08% 0.57% 5.17e−4 7.78e−4

2000 0.04% 0.28% 2.84e−4 4.72e−4

Table 5.3. Test 3: Godunov scheme (top) and our scheme (bottom).
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