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Using the semiclassical quantum Boltzmann equation (QBE), we numerically calculate the dc transport
properties of bilayer graphene near charge neutrality. We find, in contrast to prior discussions, that phonon
scattering is crucial even at temperatures below 40 K. Nonetheless, electron-electron scattering still
dominates over phonon collisions allowing a hydrodynamic approach. We introduce a simple two-fluid
hydrodynamic model of electrons and holes interacting via Coulomb drag and compare our results to the
full QBE calculation. We show that the two-fluid model produces quantitatively accurate results for
conductivity, thermopower, and thermal conductivity.
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Graphene has attracted an enormous amount of attention
in the last decade [1]. While its transport properties have
been extensively studied [2], other related materials are
only beginning to be examined. Advances in nanotechnol-
ogy have recently allowed electrical measurements on
suspended bilayer graphene (BLG) samples [3–11].
Motivated by these advances, we theoretically examine
the dc transport properties of BLG using a quantum
Boltzmann equation (QBE) approach. Solving the QBE
is a numerically daunting task. We show that in many cases
a far simpler two-fluid model, which we introduce in this
Letter, accurately describes the QBE results.
Measurement of the electrical conductivity in BLG

has been reported in Ref. [3] and we show that our
QBE results agree with the experimental data over a wide
range of parameters. We focus our calculation on the
regime explored in that experiment, i.e., close to charge
neutrality and at temperatures T ∼ 10 K–40 K (using the
common Bernal stacked BLG with no out of plane field).
We show that in this regime, surprisingly, the effect of
phonon scattering plays an essential role (with the effect of
finite sample size playing a minor role). We then use the
QBE to make predictions for the thermopower and thermal
conductivity that can be verified in future experiments. As
in the case of monolayer graphene [12,13], we expect that
electrons in BLG will have high mobility and scattering of
electrons among themselves will be the dominant scattering
mechanism. We thus expect that the QBE will reduce to
some form of hydrodynamics [14–20]. Indeed we show
that our transport results can be quantitatively understood
with an extremely simple two-fluid hydrodynamic model
[21–24]. This simplification allows intuitive understanding
of the physics that is not otherwise possible.
In this Letter we begin by briefly discussing our

QBE method, which we elaborate in detail in a companion

paper [25]. This approach is similar to previous work on the
conductivity of monolayer graphene [26,27], two coupled
monolayers [28], and BLG [29,30]. Compared to Ref. [29],
which studies the case of clean BLG, we calculate the
conductivity away from charge neutrality (CN), which
requires including additional scattering mechanisms. The
paper [30] does study the conductivity of BLG away from
CN by including the effect of disorder; however we aim to
provide a more quantitative analysis allowing for compari-
son with experimental data. We compare our results for the
electrical conductivity to the experimental results from
Ref. [3] in order to extract the value of the only free
parameter of the theory: the phonon scattering rate. The
value we determine for the phonon deformation potential
lies within the range reported by previous authors. We then
use this value to calculate the thermal conductivity and the
thermoelectric coefficient. Finally, we introduce the two-
fluid model and show that it agrees quantitatively with the
more detailed QBE numerics.
QBE.—At low energies, bilayer graphene can be

described in a two-band model with a quadratic dispersion
ϵλðkÞ ¼ λjkj2=2m where λ ¼ þð−Þ for electrons in the
conduction (valence) band [25,31], m ¼ 0.033me is the
effective mass [32], and k is the two-dimensional momen-
tum. There are two valleys (K and K0) and two spin states in
each valley, thus giving Nf ¼ 4 flavors. We neglect addi-
tional effects at low temperatures such as trigonal warping
[33] and opening of an interaction induced gap [34],
restricting the applicability of our approach to T ≳ 10 K [3].
The QBE is a semiclassical approach which is valid

when the de Broglie wavelength is much shorter than the
scattering lengths. This is equivalent to the condition
αx ≡ βτ−1x ≪ 1, where τx stands for the scattering time
due to any of the scattering mechanisms in the problem, and
β is the inverse temperature.
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In equilibrium the occupancy of a k state is given by the
usual Fermi factor. The QBE determines the change in
occupancy of the k states due to small perturbations such as
an external electric field E or temperature gradient ∇T.
Formally the QBE is derived from the Kadanoff-Baym
equations for the evolution of Green’s functions using a
Born collision integral to describe scattering. Once
Boltzmann equations are formally derived, the solution
is obtained by expanding the k space occupation function
fðkÞ in a set of basis functions, which then reduces the
QBE to a set of linear equations which can be numerically
solved. The size of the basis set is then expanded to
convergence [27–29,35]. This method of solution for the
Boltzmann equation is well known in the plasma physics
community and goes by the name Spitzer-Härm method
[36]. Details of both the derivation of the QBE, and the
method of solution are presented in detail in Ref. [25] and
the Supplemental Material [37].
We calculate the electrical current J and the heat current,

which is defined as Q ¼ JE − ðμ=eÞJ, where JE is the
energy current and e < 0 is the electron charge. From this
we can determine the electrical conductivity σ, the thermal
conductivity K and the thermoelectric coefficient Θ by

�
J

Q

�
¼

�
σ Θ
TΘ K

��
E

−∇T

�
: ð1Þ

The open circuit thermal conductivity [38] which is usually
measured in experiments is given by κ ¼ K − TΘσ−1Θ.
Coulomb and phonon scattering.—We first consider

Coulomb (electron-electron, electron-hole) scattering,
which we expect to be dominant. We use the form of
the screened Coulomb potential valid in the experimentally
relevant regime βμ ≲ 1. In the experimental data [3], to a
good approximation the conductivity only depends on the
dimensionless combination βμ. (see Fig. 1 [39]). If only
Coulomb interactions are included then βμ is the only
dimensionless parameter of the problem (the electromag-
netic fine-structure constant cancels out when the screened
potential is used [37]). However, away from CN, the so-
called momentum mode (i.e., a simple Galilean boost),
where electrons and holes move in the same direction,
carries electrical current, and is not relaxed by Coulomb
scattering since it conserves momentum. Thus, to obtain a
finite conductivity, another scattering mechanism that
relaxes momentum must be considered. We identify three
possible such mechanisms: impurity scattering, scattering
off the boundary of the finite-size sample, and phonons. In
the former two cases, the relevant dimensionless scattering
parameter αx depends on temperature [40]. Therefore, if
either of these scattering mechanisms were most important
(after Coulomb scattering) the curves for different temper-
atures would not collapse when plotted as a function of βμ,
and this does not agree with the experimental data. We thus
disregard these two scattering mechanisms. The situation,

however, is different for phonon scattering. The experiment
is at temperatures above the Bloch-Grüneisen temperature
and hence the longitudinal acoustic phonons have a
scattering time [41,42]

τ−1ph ¼ D2mkBT
2ρc2

; ð2Þ

where c is the speed of sound in graphene, D is the
deformation potential, and ρ is the mass density of BLG.
The relevant dimensionless parameter αph ¼ βτ−1ph is then
independent of temperature and should result in the
conductivity being a function of βμ only, in close agree-
ment with experiment [3]. We emphasize the surprising
result that even at these comparatively low temperatures of
12–40 K, phonons provide the primary momentum relax-
ation mechanism.
Electrical conductivity.—In the absence of a magnetic

field the conductivity σij ¼ ðNfe2=2ℏÞσ̃δij depends on the
dimensionless numbers βμ and αph. The thermal density of
electrons (holes) for the free Fermi gas is given by neðhÞ ¼
½Nfm=ð2πβÞ� lnð1þ e�βμÞ and as we increase jβμj there
are more charge carriers. However the total number density
of electrons plus holes only increases by 17% between
jβμj ¼ 0 and 1 (at fixed T), and therefore this effect alone is
too small to account for the electrical conductivity more
than doubling in this range. To understand this we realize
that the primary scattering is electron-hole collisions [3]
and therefore the conductivity at large chemical potential is
large both because we have many electrons to carry the
charge and also because there are not many holes to scatter
from. A nonzero αph makes the conductivity finite and, as
mentioned above, the curves for different temperatures

FIG. 1. Electrical conductivity σðβμÞ for different values of the
temperature. From the experimental data, we fit the value
αph ¼ 0.05. The experimental data are from Ref. [3]. The black
solid curve is the result of the QBE calculation. The black dashed
curve shows the result from the two-fluid model and shows good
agreement with the full QBE calculation.
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approximately collapse when plotted as a function of βμ.
We treat the deformation potential D as a fit parameter
being that various different approaches have given different
estimates of this quantity [43–47]. Our best fit value αph ¼
0.05 corresponds to D ≈ 27 eV, which is consistent with
prior expectation that it lies in the range 10–30 eV.
Including the effect of finite size (boundary scattering)
reduces the phonon scattering required to match the experi-
ment. Taking account of the fact that the typical size of
the system is around 3 μm, and there will be additional
momentum-relaxing scattering off the boundary of the
sample, the best fit D may be reduced by around 30%.
In Fig. 1 we show σ as a function of βμ. We show both

the result of QBE calculation using the above discussed fit
value of D as well as the experimental data from Ref. [3].
Exactly at CN, we can compare our prediction for the

magnitude of σ to prior calculations by Ref. [29]. Our work
differs in three respects from Ref. [29]. First, they take the
screening wave vector qTF to be constant, second they do
not make the approximation qTF ≫ q in the screened
potential, and third they have not included all the necessary
matrix elements for BLG. In order to compare our work,
we ignore the momentum-relaxing scattering mechanisms
since Ref. [29] does not include those and the conductivity
is well defined without them at CN. Reference [29] finds
σCN ¼ ðe2=hÞð27.4þ 0.353

ffiffiffiffiffiffiffiffiffiffi
T½K�p Þ, which has a large

constant piece and a smaller piece that depends on temper-
ature. On the other hand, from dimensional analysis, in a
clean system our result at CN does not depend on temper-
ature. This discrepancy arises from making the approxi-
mation qTF ≫ q. However, in an experimental setting, the
contributions arising from momentum-relaxing scattering
will be the most significant for the temperature dependence,
justifying our approximation.
Comparison of our results for the magnitude of σ at CN

to experiment is more difficult because different samples
give different precise values of conductivity—differing
from each other by factors of up to about 4. Our prediction
lies acceptably in the middle of the experimental range.
We can also compare our results to those in Ref. [30],

which analyzes the QBE for BLG. We note that Ref. [30]
includes only the direct terms in the collision integral;
however the effect of the exchange terms is small, justifying
the approach of the former paper. A further difference
between our work and Ref. [30] is that we use the full
momentum-dependent screening wave vector. Overall, we
find qualitative agreement with that work.
Thermal properties.—Including only Coulomb scatter-

ing, the thermal conductivity K diverges since the momen-
tum mode carries thermal current and cannot be relaxed by
Coulomb interactions. Phonons again regulate this diver-
gence. One might expect that the thermal conductivity
increases with increasing jβμj since the total heat transport
carrier density ne þ nh increases. However, we note
that K actually decreases with increasing jβμj which is

counterintuitive. In the limit of weak phonon scattering
we will see below that K ∼ 1=ðne þ nhÞ. The open circuit
thermal conductivity κij ¼ ðNfk2BT=2ℏÞκ̃δij, plotted in
Fig. 2 (top), decreases faster than K away from CN since
the momentum mode carries electric current and hence
does not contribute to κ. The thermoelectric coefficient
Θij ¼ ðNfekBT=2ℏÞΘ̃δij plotted in Fig. 2 (bottom) van-
ishes at CN and increases as we increase βμ, as the
momentum mode now carries both heat and charge.
Two-fluid model.—Since Coulomb scattering is domi-

nant we expect a hydrodynamic description will be
appropriate. Further, since the scattering between electrons
and holes is suppressed due to both matrix element effects
and energy-momentum conservation constraints [25], we
believe treating the electron fluid and the hole fluids as
weakly interacting with each other will be accurate. In this
limit, due to the strong scattering within each species, each
of the two fluids should have a well-defined temperature,
chemical potential, and velocity. We thus introduce a two-
fluid model [21–24], which shows excellent agreement
with our detailed numerical calculation [48]. The evolution
of the mean fluid velocities of electrons (holes) ue (uh) can
then be derived explicitly from the QBE (see Supplemental
Material [37] for detailed derivation) giving [49]

m _ue ¼ −
m
τeh

ðue − uhÞ − m
τph

ue þ eE − ΛekB∇T

m _uh ¼ −
m
τhe

ðuh − ueÞ − m
τph

uh − eE − ΛhkB∇T: ð3Þ

FIG. 2. Top: The dimensionless open-circuit thermal conduc-
tivity κ̃ ¼ ðNfk2BT=2ℏÞ−1κ calculated using the QBE (solid
line) and two-fluid approximation (dashed line). Bottom: The
dimensionless thermoelectric coefficient is defined as Θ̃ ¼
ðNfekBT=2ℏÞ−1Θ calculated using the QBE (solid line) and
two-fluid approximation (dashed line). The two curves show near
perfect overlap. Both figures use αph ¼ 0.05.
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Here τeh ¼ τ0ðne þ nhÞ=nh is the scattering time for
electrons to scatter off holes and neτeh ¼ nhτhe guarantees
momentum conservation. By evaluating the Coulomb
collision integral we extract the value βτ−10 ¼ 0.15 (see
Supplemental Material [37]). Here, ΛeðΛhÞ is the entropy
per electron (hole) of the free Fermi gas characterized by
βμ. An explicit expression for these quantities is given in
the Supplemental Material [37].
We are interested in dc transport so we may set the left of

these two equations to zero, and solve for the velocities
ue;h. The electric current is then J ¼ eðneue − nhuhÞ and
the thermal current is JE ¼ kBTðΛeneue þ ΛhnhuhÞ. The
advantage of the two-fluid model is its simplicity which
allows us to obtain analytic expressions (see Supplemental
Material [37]) for transport coefficients. In the limit τph≫τ0
the expressions simplify even more giving, for example,
K̃ ¼ ð2π2mkBT=9Þα−1ph =ðne þ nhÞ. In Figs. 1 and 2 we
compare the results from the QBE and the two-fluid model.
For the electrical conductivity and the thermopower the
agreement is extremely good, whereas for the thermal
conductivity we note a slight quantitative disagreement.
This can be traced back to the fact that the two-fluid model
only includes the first momentum moment of the QBE. In
order to account for the thermal current more accurately, the
second momentum moment would have to be included as
well. Although we only compare the two-fluid model and
the QBE results for the experimentally relevant value of
αph, we show in the companion paper [25] that the agree-
ment continues to hold well for a range of αph.
Since heat is carried by the momentum mode, the

Coulomb drag between electrons and holes will not
affect it, and the thermal conductivity will mainly be
limited by the phonon scattering. The electrical conduc-
tivity, on the other hand, will be limited by both phonon
scattering and the Coulomb drag between electrons and
holes. Therefore, the electrical conductivity is sup-
pressed compared to the thermal conductivity, leading
to a large Lorenz number L≡ κ=ðσTÞ. At charge neutral-
ity we find L ≈ 25ðkB=eÞ2 which is much larger than the
value of π2=3ðkB=eÞ2 predicted by the Wiedemann-Franz
law. The violation of the Wiedemann-Franz law for BLG
has been previously pointed out by Ref. [30] and has
been experimentally observed for monolayer graphene
in Ref. [50].
Conclusion.—In this Letter we have calculated the

transport properties of bilayer graphene. Our results for
the electrical conductivity match the experimental results in
Ref. [3]. From the experimental data we deduce that even at
low temperatures, the scattering off phonons is crucial.
Nonetheless, the dominant scattering mechanism is
between charge carriers of the same species, which justifies
a two fluid approach which shows excellent agreement
with the detailed numerical results of the QBE and provides
a simple way of calculating the transport properties

analytically. One can adapt our two fluid model to different
experimental setups with slight modifications [25].
It would be interesting to test the predictions for the

thermopower and thermal conductivity in upcoming experi-
ments. Our formalism can be expanded to address a variety
of other quantities of interest, including finite frequency
effects, spin transport, and Hall viscosity.
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