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Abstract

We combine the techniques of almost invariant sets (using tree structured
box elimination and graph partitioning algorithms) with invariant manifold
and lobe dynamics techniques. The result is a new computational technique for
computing key dynamical features, including almost invariant sets, resonance
regions as well as transport rates and bottlenecks between regions in dynamical
systems. This methodology can be applied to a variety of multibody problems,
including those in molecular modeling, chemical reaction rates and dynamical
astronomy. In this paper we focus on problems in dynamical astronomy to illus-
trate the power of the combination of these different numerical tools and their
applicability. In particular, we compute transport rates between two resonance
regions for the three body system consisting of the Sun, Jupiter and a third
body (such as an asteroid). These resonance regions are appropriate for certain
comets and asteroids.
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1 Introduction

The mathematical description of transport phenomena applies to a wide range
of physical systems across many scales (Meiss [1992]; Wiggins [1992]; Rom-Kedar
[1999]). The recent and surprisingly effective application of methods combining dy-
namical systems ideas with those from chemistry to the transport of Mars impact
ejecta underlines this point (Jaffé, Ross, Lo et al. [2002]). In this paper, we de-
velop computational methods to study transport based on the relationship between
statistics and geometry in a nonlinear dynamical system with mixed regular and
chaotic motion. Our focus is the transport of material throughout the solar system.
However, these methods are fundamental and broad-based; they may be applied to
diverse areas of study, including fluid mixing (Rom-Kedar, Leonard, and Wiggins
[1990]; Malhotra and Wiggins [1998]; Poje and Haller [1999]; Coulliette and Wig-
gins [2001]; Lekien, Coulliette, and Marsden [2003]), N -body problems in physical
chemistry (Jaffé, Farrelly, and Uzer [2000]; Lekien and Marsden [2004]) as well as
other problems in dynamical astronomy. For example, the recent discovery of several
binary pairs in the asteroid and Kuiper belts has stimulated interest in computing
the formation and dissociation rates of such binary pairs (see, for instance Goldre-
ich, Lithwick, and Sari [2002]; Scheeres [2002]; Scheeres, Durda, and Geissler [2002];
Veillet, Parker, Griffin, Marsden et al. [2002]).

Dynamical Processes in the Solar System. Our understanding of the solar
system has changed dramatically in the past several decades with the realization
that the orbits of the planets and some minor bodies are chaotic. In the case of
planets, this chaos is of a sufficiently weak nature that their motion appears quite
regular on relatively short time scales (Laskar [1989]). In contrast, small bodies such
as asteroids, comets, and Kuiper-belt objects can exhibit strongly chaotic motion
through their interactions with the planets and the Sun, exhibiting Lyapunov times
of only a few decades (Torbett and Smoluchowski [1990]; Tancredi [1995]).
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The ability to predict the behavior of populations of these small but numerous
objects is essential for understanding key transport phenomena in dynamical as-
tronomy, such as the evolution of short period comets (Torbett and Smoluchowski
[1990]), scattered Kuiper-belt objects (Malhotra, Duncan, and Levison [2000]), and
the intermediaries between these two populations (Tiscareno and Malhotra [2003]).
Furthermore, an understanding of how small bodies behave in n-body fields will aid
in the gravitationally assisted transport of spacecraft using very little fuel (Koon,
Lo, Marsden, and Ross [2000, 2001a, 2002]; Gómez et al. [2001]; Dellnitz, Junge,
Lo, and Thiere [2001]; Ross, Koon, Lo and Marsden [2003]; Yamato and Spencer
[2003]). This understanding also contributes to other fields such as astrobiology, for
example, where comet impact rates are key for determining the delivery of water
to the Earth (Morbidelli et al. [2000]) and ejecta exchange rates are important for
investigating the transportation of microbes between Mars and Earth (Gladman et
al. [1996]; Mileikowsky et al. [2000]).

The recent discovery of several extrasolar planetary systems has stimulated in-
terest in the morphological and dynamical features that may be present in generic
planetary systems (Konacki, Torres, Jha, and Sasselov [2003]). Some quantities of
interest are the following: likely distributions of objects in the presence of dynamical
sculpting due to planets and moons (e.g., generic circumstellar belts and circumsolar
rings); rates of small body collision with a planet; and rates of capture and escape
from one orbital resonance with a planet to another.

Short Period Comets. In order to develop a theory of chaotic transport that
is computationally tractable, we will consider a physically relevant example from
dynamical astronomy: the motion of (short period) comets in the gravitational
field of the Sun and Jupiter. Our model, the planar circular restricted three-body
problem (PCR3BP), will be described in a later Section.

The Role of the Planar Circular Restricted Three-Body Problem. The
PCR3BP has long been considered an appropriate “baseline” model for providing
a reasonable explanation for much of the dynamical behavior found in the large
scale numerical experiments of solar system dynamics (Levison and Duncan [1993];
Malhotra, Duncan, and Levison [2000]). Malhotra’s work in Malhotra [1996] pro-
vides a good recent example. Motivated by numerical studies of the stability of
low-eccentricity and low-inclination orbits of small bodies in the trans-Neptunian
Kuiper belt, Malhotra [1996] used the PCR3BP to describe the basic phase space
structure in the neighborhood of Neptune’s exterior mean motion resonances. The
advantage of this simple model is that it allows the direct visualization, in two-
dimensional surfaces-of-section, of a global mixed phase space structure of stable
and chaotic zones. Much can be learned about populations of minor bodies from
a semi-analytical study of the PCR3BP, i.e., careful numerics guided by dynamical
systems theory.
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Need for Modification of Current Transport Calculations

Several subjects make use of dynamical transport calculations. We indicate some of
the reasons one would like to improve current techniques.

Chemistry. The transport of ensembles of points in phase space has been im-
portant for the theoretical determination of chemical reaction rates. One method,
transition state theory (TST), has been a ubiquitous workhorse in the computa-
tional chemistry literature (Uzer, Jaffé, Palacián, Yanguas, and Wiggins [2002]).
It is based on the identification of a transition state (TS) between large realms of
phase space which correspond to either “reactants” or “products.” If one assumes
the phase space in each realm is structureless (Marston and De Leon [1989]), then
the chemical reaction rate for the reaction under study can be estimated from the
flux through the TS. However, rates given by TST can be off of the true rate by
orders of magnitude (De Leon [1992]). Modifications of transition state theory are
necessary to calculate statistical quantities of interest (Hammes-Schiffer and Tully
[1995]; Hammes-Schiffer [2002]; Agarwal et al. [2002]).

Dynamical Astronomy. In principle, the computation of rates of mass transport
can be accomplished by numerical simulations in which the orbits of vast numbers of
test particles are propagated in time including as many gravitational interactions as
desirable. Many investigators have used this approach successfully (cf. Levison and
Duncan [1993]). However, such calculations are computationally demanding and it
may be difficult to extract from them information about key dynamical mechanisms
since the outcomes may depend sensitively on the initial conditions used for the
simulation or may even be misleading. To obtain general features of planetary
system evolution and morphology, which is a major goal of dynamical astronomy,
other approaches may be necessary.

Current Methods for the Study of Transport in the PCR3BP

Many of the important transport questions involve motion between different regions
of the phase space. There have been a variety of approaches to deal with this
question from various points of view. We recall some of them in this subsection.

Analytical Methods: Single Resonance Theory and Resonance Overlap

Criterion. One approach is to develop simple analytical models which provide
answers to basic phase space transport questions. Much progress has been made in
this area, but most of the work has focused on the study of the local dynamics around
a single resonance, using a one-degree-of-freedom pendulum-like Hamiltonian with
slowly varying parameters. Transport questions regarding capture into, and passage
through resonance, have been addressed this way (Henrard [1982]; Neishtadt [1996];
Neishtadt, Sidorenko, and Treschev [1997]).

An important result regarding the interaction between resonances was obtained
by Wisdom [1980], where the method of Chirikov [1979] was applied to the PCR3BP
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to determine a resonance overlap criterion for the onset of chaotic behavior for small
mass parameter (ǫ). These analytical methods are still used today (see Murray and
Holman [2001] and references therein).

Toward a Global Picture of the Phase Space. In Koon, Lo, Marsden, and
Ross [2000], dynamical systems techniques were applied to the problem of hetero-
clinic connections and interior-exterior transitions in the PCR3BP, laying the foun-
dation for tube dynamics. In the point of view developed in Koon, Lo, Marsden, and
Ross [2000], the invariant manifold structures associated to L1 and L2, the (Conley-
McGehee) phase space tubes (Conley [1968]; McGehee [1969]) play a key role. These
tubes provide fundamental tools that can aid in understanding transport throughout
the phase space, e.g., transport between the inside and outside of a planet’s orbit,
as seen in the comet P/Oterma (Carusi, Kresák, Pozzi, and Valsecchi [1985]), and
chaotic trajectories leading to planetary impact, as in comet D/Shoemaker–Levy 9
(Benner and McKinnon [1995]).

The main new technical result in Koon, Lo, Marsden, and Ross [2000] is the
numerical demonstration of the existence of a heteroclinic connection between pairs
of periodic orbits, one around the libration point L1 and the other around L2, with
the two periodic orbits having the same energy. This result is applied to the interior-
exterior transition problem, providing insight into the “resonance hopping” of some
short period comets (cf. Tancredi, Lindgren, and Rickman [1990]; Valsecchi [1992];
Belbruno and Marsden [1997]; Koon, Lo, Marsden, and Ross [2001]). Furthermore,
an explicit numerical construction of interesting orbits with prescribed itineraries is
developed, based on ideas from a proof of global motion in the PCR3BP.

For particles in the PCR3BP with energy slightly greater than that of L2, the
interior, exterior and planetary realms are connected by bottlenecks about L1 and
L2 (see Figure 2.1(c) in the next section). Particles can pass between realms only
through these bottlenecks by being inside phase space tubes, regions bounded by
pieces of the stable and unstable invariant manifolds of periodic orbits around L1

and L2. We can determine the flux between realms by monitoring the flux through
these tubes.

Mars Escape Rates. Building on the ideas described in the preceding paragraph,
the rate of escape of particles temporarily captured by Mars was computed in Jaffé,
Ross, Lo et al. [2002]; Ross [2003]. That paper uses a statistical assumption that is
common in transition state theory in chemistry, and which is appropriate for this
problem. Theory and direct Monte Carlo simulations are shown to agree to within
1%, which showed the promise of a dynamical systems approach for the computation
of interesting transport rates in dynamical astronomy.

The work of Rom-Kedar and Wiggins [1990], contains an investigation of the
transport in the two-dimensional phase space of Cr diffeomorphisms (r ≥ 1) of two-
manifolds between regions of the phase space bounded by pieces of the stable and
unstable manifolds of hyperbolic points. The transport mechanism is associated with
the dynamics of homoclinic and heteroclinic tangles, and the study of this dynamics
leads to a general formulation of the transport rates in terms of distributions of
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small phase space regions called “lobes.” By following the evolution of these lobes,
lobe dynamics supplies a method for theoretically computing short and long term
transport rates. However, computational issues have limited its applications (Rom-
Kedar and Wiggins [1990, 1991]; Meiss [1992]). Important contributions to this
effort were made by Lichtenberg and Lieberman [1983]; MacKay, Meiss, and Percival
[1984, 1987]; Meiss [1992]; Meiss and Ott [1986].

The manifolds computed in such problems are typically complicated because of
the nature of homoclinic and heteroclinic tangles. Furthermore, the length of these
complicated curves grows quickly with the size of the time window of interest. The
number of points needed to describe long segments of manifolds can be prohibitively
large if naive computational methods are used. One also needs to take into account
the fine structure of the lobes and manifolds, and in particular the effect of re-
entrainment of the lobes, i.e., the implications of the lobes leaving and re-entering
the specified regions on the transport rate. We show later on that this effect is in
fact, important in the three-body problem and cannot be ignored.

Recent efforts made to incorporate lobe dynamics into geophysical, fluid, and
chemical transport calculations have brought new techniques to compute invariant
manifolds (see Coulliette and Wiggins [2001]; Lekien and Marsden [2004]; Lekien and
Coulliette [2004]; Lekien, Coulliette, and Marsden [2003]). Using those techniques,
one is able to compute very long segments of stable and unstable manifolds with
high accuracy by conditioning the manifolds adaptively, for instance, by inserting
more points along the manifold where the curvature is high (see Hobson [1993];
Lekien [2003]). As a result, the length and shape of the manifold is not an obstacle
anymore and many more iterates of lobes than hitherto possible can be generated
accurately. Using this approach, one keeps track of all the points throughout the
computation, with the drawback that the resulting algorithms often require a great
deal of memory. A related set of studies (You, Kostelich, and Yorke [1991]; Kostelich,
Yorke, and You [1996]) describes a method for restricting the invariant manifold
computation to specific regions of interest, thereby using significantly less memory,
while rigorously guaranteeing that the computed manifold lies no further than a
specified tolerance from the “true” manifold.

Set Oriented Approach to Transport

In contrast to the geometric approach to the analysis of transport phenomena as
described in the preceding paragraphs, the set oriented approach focuses on a global
description of the dynamics on a coarse level. To this end one considers a transfer
operator associated to the underlying map. Roughly speaking, this operator de-
scribes how some initial distribution evolves under the dynamics. Via a partition
of some interesting invariant part in phase space this operator can be discretized,
yielding a stochastic matrix or, equivalently, a directed weighted graph, which may
be viewed as a coarse-grain model of the global dynamics.

Transport rates between subsets of phase space can easily be computed using
this matrix of transition probabilities. When these subsets are given as unions of
partition elements, the computed rates are exact. However, in general the accuracy
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of the computed quantities is determined by the size of the partition elements.
In addition to computing transport rates it is also possible to obtain insight

about what “important” or interesting regions in phase space might be. The idea
is that the transfer operator encodes a macroscopic description of the dynamics.
One way to reveal this information is to consider the corresponding graph, to which
standard algorithms from graph theory can directly be applied for a further analysis.
For example, we use algorithms for graph partitioning (see e.g. software-libraries
such as chaco (Hendrickson and Leland [1995]), jostle (Walshaw [2000]), metis

(Karypis and Kumar [1999]), scotch (Pellegrini [1996]) or party (Monien, Preis
and Diekmann [2000])) to find regions that are determined by (i) a high transport
rate within the region and (ii) a small transport rate to other regions. In terms of
dynamical systems, these sets are referred to as almost invariant sets (Dellnitz and
Junge [1999]). In particular, we use the Party library with extensions, which are
explicitly developed for the analysis of almost invariant sets in dynamical systems
(Dellnitz and Preis [2003]). A key observation of this paper is that regions that we
compute by this approach are actually those bounded by certain invariant manifolds.

What is Achieved in this Paper

The main results of this paper are

• Further development of the basic theory and application of computational
techniques for transport. In particular, a comparison as well as a synthesis
of tools from lobe dynamics and set oriented methods is presented. Error
estimates are provided, which show, in particular, the convergence of the set-
oriented methods.

• In regimes where the comparison makes sense, it is shown that the agreement
is very good on a sample problem. Based on the initial information provided
by the combination of the two methods, the set oriented methods are able to
carry out many more iterates than heretofore possible.

• As a concrete nontrivial example illustrating the methods, the transport rate
from an interesting resonant region R1 to a surrounding region R2 in the Sun-
Jupiter system, exterior to the orbit of Jupiter and at a particular energy
value, are computed. It is computed that the probability (in the sense of the
fractional area) that a transition from R1 to R2 occurs is about 28% in a
period of about 1817 Earth years.

• The methods of this paper lay the foundation for many other computations
of astrodynamical interest. In particular, in Dellnitz, Junge, Lo, et. al. [2005]
we study the transport rate of asteroids from the Hilda region to a region
defined by crossers of Mars’ orbit as well as a remarkable relation between
almost invariant sets associated with the Sun-Jupiter three body system and
the orbits of all the planets interior to Jupiter.
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2 Description of the PCR3BP Global Dynamics

Problem Description. The PCR3BP is a particular case of the general gravi-
tational problem of three masses m1,m2,m3 defined by the following restrictions:
(a) the motion of all three bodies takes place in a common plane; (b) the masses
m1 and m2 move on circular orbits about their common center of mass; and (c) the
third body, m3, has zero mass; therefore it does not influence the motion of m1 and
m2. In the context of this paper, m1 represents the Sun and m2 represents a planet,
and we are concerned with the motion of the third body, the test particle m3. The
system is made nondimensional by the following choice of units: the unit of mass is
taken to be m1 + m2; the unit of length is chosen to be aP the constant separation
between m1 and m2 (i.e., the mean separation of the Sun and planet); the unit of
time is chosen such that the orbital period of m1 and m2 about their center of mass
is 2π. Then the universal constant of gravitation, G = 1, and the masses of the Sun
and planet are 1 − ǫ and ǫ, where ǫ = m2/(m1 + m2).

Equations of Motion. Choosing a rotating coordinate system so that the origin
is at the center of mass, the Sun and planet are on the x-axis at the points (−ǫ, 0)
and (1 − ǫ, 0) respectively. Let (x, y) be the position of the particle in the plane,
then the equations of motion for the particle in this rotating frame are:

ẍ − 2ẏ = −Ūx ÿ + 2ẋ = −Ūy, (2.1)

where

Ū = −
x2 + y2

2
−

1 − ǫ

rS

−
ǫ

rP

−
ǫ(1 − ǫ)

2
.

Here, the subscripts of Ū denote partial differentiation in the respective variable,
and rS , rP are the distances from the particle to the Sun and planet respectively.
See Szebehely [1967] for more details on the derivation of this equation and Koon,
Marsden, Ross, Lo, and Scheeres [2004] for its derivation using Lagrangian mechan-
ics .

Energy Manifolds. Equations (2.1) are autonomous and are in Euler–Lagrange
form (and thus, using the Legendre transformation, can be put into Hamiltonian
form as well). They have an energy integral

E =
1

2
(ẋ2 + ẏ2) + Ū(x, y), (2.2)

which is related to the Jacobi constant C by C = −2E. The motion of the test
particle takes place on a 3-dimensional energy manifold (defined by a particular
value of E) embedded in the 4-dimensional phase space, (x, y, ẋ, ẏ).

The value of the energy is an indicator of the type of global dynamics possible for
a particle in the PCR3BP, which can be broken down into five cases (see Figure 2.1).
In case 1, shown in Figure 2.1(a), the particle is trapped either exterior or interior
to the planet’s orbit, or around the planet itself (labeled the exterior, interior, and
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S P

(a) Case 1 : E<E
1

S P

(b) Case 2 : E
1
<E<E

2

S P

(d) Case 4 : E
3
<E<E

4
=E

5

S P

(c) Case 3 : E
2
<E<E

3

Figure 2.1: There are five cases of allowable motion. The Sun and planet, denoted S and

P , respectively, are fixed in this rotating frame. (a) In case 1, the particle is trapped either exterior

or interior to the planet’s orbit, or around the planet itself. It is energetically prohibited from

crossing the forbidden realm, shown in gray. (b)-(d) As the energy E of the particle increases, the

bottlenecks connecting the realms open. In case 5, not shown, the entire configuration space is

energetically accessible.

planetary realms, respectively). For energy values greater than that of L2 (case 3),
there is a bottleneck around L1 and L2, permitting particles to move between the
three realms.

This paper considers case 1 to illustrate the techniques. It uses the Poincaré
surface-of-section (s-o-s) defined by y = 0, ẏ > 0, and the coordinates (x, ẋ) on that
section. The geometric interpretation is straightforward: we plot the x coordinate
and velocity of the test particle at every conjunction with the planet. As a further
restriction, we consider only the motion of test particles in the exterior realm (strictly
speaking, with mean motion smaller than the planet’s). For orbits exterior to the
planet’s, the s-o-s is crossed every time the test particle is aligned with the Sun and
planet and is on the opposite side of the Sun from the planet, along the portion of
the x-axis with x < −1, as shown in Figure 2.2(a). Thus, the s-o-s becomes

y = 0, ẏ > 0, x < −1. (2.3)

In the s-o-s so defined, periodic orbits of the test particle appear as a finite set of
points. The successive crossings of the surface by a quasiperiodic orbit live on a set
of closed smooth curves, such as the cross-section of a KAM torus. Chaotic orbits
appear to approximately fill a two-dimensional area.

In general, by taking a grid of points on this s-o-s and integrating them for-
ward for several iterates, one observes a mixed phase space structure of KAM tori
embedded within a “chaotic sea”, as in the Figure 2.2(b).

3 Computing Transport

As laid out in the previous Section, our task is to compute the transport between
regions in phase space. More precisely, we consider a volume- and orientation-
preserving map f : M → M (e.g., the Poincaré map in the PCR3BP as described
in the previous Section) on some compact set M ⊂ R

d with volume–measure µ and
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Exterior Realm

Particle

Poincare Section

Planetary
Realm

Interior

Realm

Forbidden Realm

(a) (b)

Figure 2.2: A Poincaré section of the flow in the restricted three-body problem. (a)

The location of the Poincaré surface-of-section (s-o-s) we will use in this paper is shown in the

configuration space for a case 1 energy, as in Figure 2.1(a). (b) The mixed phase space structure

of the PCR3BP is shown on this s-o-s. KAM tori and the chaotic sea are visible. Note that the

Poincaré map of this s-o-s is area preserving.

ask for a suitable (i.e. depending on the application in mind) partition of M into
compact regions of interest Ri, i = 1, . . . , NR, such that

M =

NR⋃

i=1

Ri and µ(Ri ∩ Rj) = 0 for i 6= j. (3.1)

Furthermore, we are interested in the following questions concerning the transport
between the regions Ri (see Wiggins [1992]): “In order to keep track of the initial
condition of a point as it moves throughout the regions we say that initially (i.e., at
t = 0) region Ri is uniformly covered with species Si. Thus, the species type of a
point indicates the region in which it was located initially. Then we can generally
state the transport problem as follows.

Describe the distribution of species Si, i = 1, . . . , NR, throughout the regions Rj,
j = 1, . . . , NR, for any time t = n > 0.”

The quantity we want to compute is Ti,j(n) ≡ the total amount of species Si

contained in region Rj immediately after the n-th iterate.
The flux αi,j(n) of species Si into region Rj on the n-th iterate is the change in

the amount of species Si in Rj on iteration n; namely, αi,j(n) = Ti,j(n)−Ti,j(n−1).
Since f is area-preserving, the flux is equal to the amount of species Si entering
region Rj at iteration n minus the amount of species Si leaving Rj at iteration n.

Our goal is to determine Ti,j(n), i, j = 1, . . . , NR for all n. Note, that Ti,i(0) =
µ(Ri), and Ti,j(0) = 0 for i 6= j. In the following we briefly describe the theoretical
background behind the two computational approaches to the transport problem that
we are going to compare in §4.

3.1 Lobe Dynamics
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Following Rom-Kedar and Wiggins [1990], lobe dynamics theory states that the
two-dimensional phase space M of the Poincaré map f can be divided as outlined
above (see Eq. (3.1)), as illustrated in Figure 3.1(a). A region is a connected subset
of M with boundaries consisting of parts of the boundary of M (which may be
at infinity) and/or segments of stable and unstable manifolds of hyperbolic fixed
points, pi, i = 1, ..., N. Moreover, the transport between regions of phase space
can be completely described by the dynamical evolution of small regions of phase
space, “lobes” enclosed by segments of the stable and unstable manifolds, as shown
schematically in Figure 3.1(b), and defined below.

R1

B12 = U [p2 ,q2] U S [p1 ,q2]

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

R1

R2

q0

pi
pj

f -1(q0)
q1

L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))

(a) (b)

Figure 3.1: Transport between regions of the phase space M of a Poincaré map f . (a)

The segment S[p1, q2] of the stable manifold W s(p1) from p1 to q2 and the segment U [p2, q2] of the

unstable manifold W u(p2) from p2 to q2 intersect in the pip q2. Therefore, the boundary B12 can

be defined as B12 = U [p2, q2]
S

S[p1, q2]. The region on one side of the boundary may be labeled

R1 and the other side labeled R2. (b) q1 is the only pip between the two pips q0 and f−1(q0) in

W u(pi)
T

W s(pj), thus S[f−1(q0), q0]
S

U [f−1(q0), q0] forms the boundary of precisely two lobes;

one in R1, labeled L1,2(1), and the other in R2, labeled L2,1(1). Under one iteration of f , the only

points that can move from R1 into R2 by crossing the boundary B are those in L1,2(1). Similarly,

under one iteration of f the only points that can move from R2 into R1 by crossing B are those in

L2,1(1).

Boundaries, Regions, Pips, Lobes, and Turnstiles Defined. To define a
boundary between regions, one first defines a primary intersection point, or pip. A
point qk is called a pip if S[pi, qk] intersects U [pj , qk] only at the point qk, where
U [pj , qk] is a segment of the unstable manifold W u(pj) joining the unstable fixed
point pj to qk and similarly S[pi, qk] is a segment of the stable manifold W s(pi) of the
unstable fixed point pi joining pi to qk. The union of segments of the unstable and
stable manifolds naturally form partial barriers, or boundaries U [pj , qk] ∪ S[pi, qk],
between regions of interest Ri, i = 1, ..., NR, in M = ∪Ri. In Figure 3.1(a) several
pips are shown as well as the boundary B12. Note that we could have pi = pj , as
will be the case studied in this paper.

Consider Figure 3.1(b). Let q0, q1 ∈ W u(pi) ∩W s(pj) be two adjacent pips, i.e.,
there are no other pips on U [q0, q1] and S[q0, q1], the segments of W u(pi) and W s(pj)
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connecting q0 and q1. We refer to the region interior to U [q0, q1]∪S[q0, q1] as a lobe.
Then S[f−1(q0), q0] ∪ U [f−1(q0), q0] forms the boundary of precisely two lobes; one
in R1, defined by L1,2(1) := int(U [q0, q1] ∪ S[q0, q1]), where int denotes the interior
operation on sets, and the other in R2, L2,1(1) := int(U [f−1(q0), q1]∪S[f−1(q0), q1]).
Under one iteration of f , the only points that can move from R1 into R2 by crossing
B12 are those in L1,2(1). Similarly, under one iteration of f the only points that can
move from R2 into R1 by crossing B12 are those in L2,1(1). The two lobes L1,2(1)
and L2,1(1) are called a turnstile. It is important to note that f−n(L1,2(1)), n ≥ 2,
need not be contained entirely in R1, i.e., the lobes can leave and re-enter regions
with strong implications for the dynamics. As will be shown, the quantities of
interest, Ti,j(n), can be expressed compactly in terms of intersection areas of images
or pre-images of turnstile lobes.

Multilobe, Self-Intersecting Turnstiles. Before we derive expressions for the
Ti,j(n), some comments regarding technical points are in order (Rom-Kedar and
Wiggins [1990]). In the previous paragraph we assumed that there was only one pip
between q and f−1(q), but this is not the case for the application to the PCR3BP
in Section 4. Suppose that there are k pips, k ≥ 1, along U [f−1(q), q] besides q and
f−1(q). This gives rise to k + 1 lobes; m in R2 and (k + 1) − m in R1. Suppose

L0, L1, · · · , Lk−m ⊂ R1,

Lk−m+1, Lk−m+2, · · · , Lk ⊂ R2.

Then we define

L1,2(1) ≡ L0 ∪ L1 ∪ · · · ∪ Lk−m,

L2,1(1) ≡ Lk−m+1 ∪ Lk−m+2 ∪ · · · ∪ Lk,

and all the previous results hold.
Furthermore, we previously assumed that L1,2(1) and L2,1(1) lie entirely in R1

and R2, respectively. But L1,2(1) may intersect L2,1(1), as shown schematically in
Figure 3.2(a). We want U [q, f−1(q)] and S[q, f−1(q)] to intersect only in pips, so we
must redefine our lobes, as shown in Figure 3.2(b). Let

I = int (L1,2(1) ∩ L2,1(1)) .

The lobes defining the turnstile are redefined as

L̃1,2(1) ≡ L1,2(1) − I,

L̃2,1(1) ≡ L2,1(1) − I,
(3.2)

and all our previous results hold. To the best of our knowledge, the PCR3BP is the
first example of a physical system that has a multilobe turnstile, so the fact that
it is a multilobe, self-intersecting turnstile is even more surprising. We believe this
has a great effect on the dynamics.
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R1

L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))

p

q
f -1(q) f (q)

R2

q1

q2

q3 f (q1)

f (q2)

f (q3)

I = L1,2(1)    L2,1(1)
U

W u(p)+ W s(p)+

R1

L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))

p

q
f -1(q) f (q)

R2

~

~ ~

~

(a) (b)

Figure 3.2: A multilobe, self-intersecting turnstile. The stable and unstable manifolds of

the unstable fixed point p intersect in such a way that there are three pips between q and f−1(q), but

our naively defined turnstile “lobes” have a non-empty intersection I = int (L1,2(1) ∩ L2,1(1)) 6= ∅.

When we redefine the turnstile lobes such that L̃1,2(1) ≡ L1,2(1)− I and L̃2,1(1) ≡ L2,1(1)− I, the

result is a multilobe, self-intersecting turnstile consisting of a sequence of six regions; three defining

L̃1,2(1) and three others defining L̃2,1(1).

Expressions for the Transport of Species. In the application in the present
paper, the phase space M is known to possess resonance regions whose boundaries
have complicated lobe structures, which can lead to complicated transport properties
(cf. Meiss [1992]; Schroer and Ott [1997]; Koon, Lo, Marsden, and Ross [2000]). In
this paper, we limit ourselves to the study of transport between just two regions.
We suppose that our map f has a period-1 hyperbolic point p. We consider only
one branch of the unstable manifold W u

+(p), and one branch of the stable manifold
W s

+(p). We suppose that they intersect each other, as in Figure 3.2, forming a
boundary between two regions, R1 and R2. Using the lobe dynamics framework,
the transport of species between the regions—Ti,j(n), i, j = 1, 2—can be computed
via the following formulas.

Let Li,j(m) denote the lobe that leaves Ri and enters Rj on the m-th iterate,
so that fm−1(Li,j(m)) = Li,j(1). Let Lk

i,j(m) ≡ Li,j(m) ∩ Rk denote the portion of
lobe Li,j(m) that is in the region Rk. Then

Ti,j(n) − Ti,j(n − 1) =
2∑

k=1

[µ(Li
k,j(n)) − µ(Li

j,k(n))] (3.3)

where

µ(Li
k,j(n)) =

2∑

s=1

n−1∑

m=0

µ (Lk,j(1) ∩ fm(Li,s(1)))

−
2∑

s=1

n−1∑

m=1

µ (Lk,j(1) ∩ fm(Ls,i(1))) . (3.4)
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Thus, the dynamics associated with particles crossing B is reduced completely
to a study of the dynamics of the turnstile lobes associated with B. The amount of
computation necessary to obtain all the Ti,j(n) can be reduced due to conservation
of area and species, as well as symmetries of the map f (to be discussed in Section 4).

3.2 Set Oriented Approach

The Transfer Operator. Computing transport between regions in phase space is
a question about the global dynamical behavior of the underlying dynamical system
f : M → M . One is interested in the evolution of sets or, more generally, of densities
or measures on M instead of single trajectories. The evolution of e.g. a (signed)
measure ν on M is compactly described in terms of the transfer operator (or Perron–
Frobenius operator) associated with f , which is the linear operator P : M → M,

(Pν)(A) = ν(f−1(A)), A measurable,

on the space M of signed measures on M .
To see how this operator relates to the transport quantities of interest, namely,

the total amount Ti,j(n) of species, consider the following observation.

Proposition 3.1. Let f : M → M be an area preserving map, then

Ti,j(n) = µ(f−n(Rj) ∩ Ri)

(where, again, µ denotes the volume–measure on M).

Proof. By definition (see Wiggins [1992], p. 30 ff.), we have

Ti,j(n) = µ

(
NR⋃

k=1

fn(Li
k,j(n))

)

, (3.5)

where Li
k,j(n) is the set of points that at time t = n = 0 is in Ri and is mapped

from region Rk into region Rj on the n-th iterate, i.e.

Li
k,j(n) = f−n(Rj) ∩ f−(n−1)(Rk) ∩ Ri. (3.6)

Combining (3.5) and (3.6) with the fact that f is a diffeomorphism yields

Ti,j(n) = µ

(
NR⋃

k=1

fn(f−n(Rj) ∩ f−(n−1)(Rk) ∩ Ri)

)

= µ

(
NR⋃

k=1

Rj ∩ f(Rk) ∩ fn(Ri)

)

= µ

(

Rj ∩ fn(Ri) ∩

NR⋃

k=1

f(Rk)

︸ ︷︷ ︸

=M

)

= µ(f−n(Rj) ∩ Ri),

where the latter equality follows from the fact that f is area–preserving. �
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Since αi,j(n) = Ti,j(n) − Ti,j(n − 1), one obtains the formula

αi,j(n) = µ(f−n(Rj) ∩ Ri) − µ(f−(n−1)(Rj) ∩ Ri) (3.7)

for the flux of species Si into region Rj on the n-th iterate.
The following consequence of Proposition 3.1 tells us how we can compute

µ(f−n(Rj) ∩ Ri) using the transfer operator P (where, as usual, Pn refers to the
n-fold application of P ):

Corollary 3.2. Let µi ∈ M be the measure µi(A) = µ(A ∩ Ri) =
∫

A
χRi

dµ, where
χRi

denotes the indicator function on the region Ri. Then

Ti,j(n) = (Pnµi)(Rj). (3.8)

Evidently, since we are interested in actually computing the quantities of interest
for the PCR3BP, we need to explicitly deal with the transfer operator. Since an
analytical expression for it will only be derivable for none but the most simple
systems, we need to derive a finite–dimensional approximation to it. For more
details on the following description see Dellnitz, Hohmann, Junge, and Rumpf [1997];
Dellnitz and Junge [1999]; Dellnitz, Froyland, and Junge [2001]; Dellnitz and Junge
[2002].

Discretization of the Transfer Operator. Consider a covering of the phase
space M by a finite collection B = {B1, . . . , Bb} of compact sets, i.e. a partition

M =
b⋃

i=1

Bi and µ(Bi ∩ Bj) = 0 for i 6= j.

In practice such a partition can efficiently be computed using a hierarchical multi-
level approach as described in Dellnitz and Hohmann [1997].

As a finite dimensional space MB of measures on M we consider the space of
absolutely continuous measures with density h ∈ ∆B := span{χB : B ∈ B}, i.e. one
which is piecewise constant on the elements of the partition B. Let QB : L1 → ∆B

be the projection

QBh =
∑

B∈B

1

µ(B)

∫

B

h dµ χB,

then for every set A that is the union of partition elements we have
∫

A

QBh dµ =

∫

A

h dµ. (3.9)

We define the discretized transfer operator PB : ∆B → ∆B as

PB = QBP.

With respect to the basis (χB)B∈B it is represented by the matrix

PB = (pij), where pij =
µ(f−1(Bi) ∩ Bj)

µ(Bj)
, 1 ≤ i, j ≤ b. (3.10)
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For the computation of µ(f−1(Bi) ∩ Bj), that is, the measure of the subset of Bj

that is mapped into Bi, one can use a Monte Carlo approach as described in Hunt
[1993]:

µ(f−1(Bi) ∩ Bj) ≈
1

K

K∑

k=1

χBi
(f(xk)),

where the xk’s are selected at random in Bj from a uniform distribution. Evaluation
of χBi

(f(xk)) only means that we have to check whether or not the point f(xk) is
contained in Bi. There are efficient ways to perform this check based on a hierarchi-
cal construction and storage of the collection B (see Dellnitz and Hohmann [1997];
Dellnitz, Hohmann, Junge, and Rumpf [1997]).

Approximation of Transport Rates. Note that we can write

Ti,j(n) =

∫

Rj

PnχRi
dµ

For some (measurable) set A let

A =
⋃

B∈B:B⊂A

B and A =
⋃

B∈B:B∩A6=∅

B.

Since P is positive, it follows that for two given regions Ri and Rj , Pn(χRi
−χRi

) ≥ 0,
i.e., PnχRi

≥ PnχRi
and thus

∫

Rj

PnχRi
dµ ≤

∫

Rj

PnχRi
dµ,

similarly, we can bound the term
∫

Rj
PnχRi

dµ from above and thus get the following
estimate.

Proposition 3.3.
∫

Rj

PnχRi
dµ ≤ Ti,j(n) ≤

∫

Rj

PnχRi
dµ. (3.11)

The next step is to replace Pn by Pn
B , since this is the operator we have at hand

for computing. The error in making such a replacement is given by the estimate in
the following Lemma.

Lemma 3.4. Let R,S ⊂ M and

S0 = S, Sk+1 = f−1(Sk), k = 0, 1, 2, . . . .

Then for n = 1, 2, . . .

∣
∣
∣
∣

∫

S

PnχR dµ −

∫

S

Pn
BχR dµ

∣
∣
∣
∣
≤ 2

n−1∑

k=0

(n − k)µ(R ∩ Sk \ Sk).
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Proof. We proceed by induction on n. For n = 1 we use (3.9) and the fact that
‖I − QB‖ ≤ 2 and ‖P‖ = 1 to obtain

∣
∣
∣
∣

∫

S

PχR dµ −

∫

S

PBχR dµ

∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

∫

S

(P − PB)χR dµ −

∫

S\S
(P − PB)χR dµ

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣

∫

S

(I − QB)PχR dµ

∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

S\S
(I − QB)PχR dµ

∣
∣
∣
∣
∣

≤ 0 + 2µ(R ∩ S \ S) = 2µ(R ∩ S0 \ S0).

Now note that since ‖I − QB‖ ≤ 2, ‖QB‖ = 1 and ‖P‖ = 1,

‖Pn − (QBP )n‖ ≤ ‖Pn − QBPn‖ + ‖QBPn − (QBP )n‖

≤ 2 + ‖QB‖‖P‖‖Pn−1 − (QBP )n−1‖

≤ 2n,

by induction. For n > 1 we get

∣
∣
∣
∣

∫

S

PnχR dµ −

∫

S

Pn
BχR dµ

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫

S

(Pn − Pn
B )χR dµ −

∫

S\S
(Pn − Pn

B )χR dµ

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣

∫

S

(Pn − Pn
B )χR dµ

∣
∣
∣
∣
+ 2nµ(R ∩ S\S)

and, using (3.9) and the definition of P , the first term on the right hand side can
be estimated as
∫

S

(Pn − Pn
B )χR dµ =

∫

S

(Pn − QBPn + QBPn − (QBP )n)χR dµ

=

∫

S

(I − QB)PnχR dµ +

∫

S

(QBP )(Pn−1 − (QBP )n−1)χR dµ

=

∫

S

P (Pn−1 − (QBP )n−1)χR dµ,

=

∫

f−1(S)
(Pn−1 − (QBP )n−1)χR dµ.

Thus, by induction, we obtain the claim. �

Using Proposition 3.3 and Lemma 3.4 we obtain the following estimate on the
error between the true transport rate Ti,j(n) and its approximation. To abbreviate
the notation, let ei, ei, ui and ui ∈ R

b be defined by

(ei)k =

{
1, if Bk ⊂ Ri,
0, else

, (ei)k =

{
1, if Bk ∩ Ri 6= ∅,
0, else

and

(ui)k =

{
µ(Bk), if Bk ⊂ Ri,

0, else,
, (ui)k =

{
µ(Bk), if Bk ∩ Ri 6= ∅,

0, else,
,

where k = 1, . . . , b.
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Lemma 3.5. Let Ri, Rj ⊂ M and

Rj
0 = Rj , Rj

k+1 = f−1(Rj
k), k = 0, 1, 2, . . . ,

then for n = 1, 2, . . .

∣
∣
∣Ti,j(n) − ej

T Pn
B ui

∣
∣
∣ ≤ ej

T Pn
B (ui − ui) + (ej − ej)

T Pn
Bui

+ 2

n−1∑

k=0

(n − k)µ(Ri ∩ Rj
k \ Rj

k).

Proof.

∣
∣
∣Ti,j(n) − ej

T Pn
B ui

∣
∣
∣ =

∣
∣
∣
∣
∣

∫

Rj

PnχRi
dµ −

∫

Rj

Pn
BχRi

dµ

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∫

Rj

PnχRi
dµ −

∫

Rj

Pn
BχRi

dµ

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

Rj

Pn
BχRi

dµ −

∫

Rj

Pn
BχRi

dµ

∣
∣
∣
∣
∣

A bound on the first term on the right side is given by Lemma 3.4. For the second
term, we use the observation that led to Proposition 3.3 and get

∣
∣
∣
∣
∣

∫

Rj

Pn
BχRi

dµ −

∫

Rj

Pn
BχRi

dµ

∣
∣
∣
∣
∣
≤

∫

Rj

Pn
BχRi

dµ −

∫

Rj

Pn
BχRi

dµ

= ej
T Pn

B ui − ej
T Pn

B ui

= ej
T Pn

B (ui − ui) + (ej − ej)
T Pn

B ui,

which proves the claim. �

This estimate gives a bound on the error between the true transport rate Ti,j(n)
and the one computed via the transition matrix, ej

T Pn
B ui, in terms of those elements

of the fine partition B that either intersect the boundary of Ri and are mapped into
Rj or that intersect Ri at all and are mapped “onto” the boundary of Rj . In
Figure 3.3 we illustrate this idea by sketching two box-transitions that contribute to
the error. So an obvious consequence of Lemma 3.5 is that in order ensure a certain
degree of accuracy of the transport rates for large n, these particular boxes need to
be refined. Using (3.9) it also follows that for n = 1 the estimate in Proposition 3.3
holds for the discretized transfer operator, too, i.e.,

ej
T PB ui ≤ Ti,j(1) ≤ ej

T PB ui. (3.12)

Moreover, if Ri = Ri for all sets Ri under consideration, (i.e. the sets Ri are box
collections) then

ej
T Pn

B ui = ej
T Pn

B ui
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f

f

R

Rj

i

Figure 3.3: Two box transitions that contribute to the error between the computed and the actual

value of the transport rate Ti,j(1) from region Ri into region Rj after one iterate.

for all n ∈ N. Notably the estimate in Lemma 3.5 reduces to

|Ti,j(n) − ej
T Pn

B ui| ≤ 2
n−1∑

k=0

(n − k)µ(Ri ∩ Rj
k \ Rj

k), (3.13)

and for the special case of n = 1 we even get the exact transport rate:

ej
T PB ui = Ti,j(1) = ej

T PB ui. (3.14)

Note in particular that the numerical effort to compute the approximate transport
rate ej

T Pn
B ui essentially consists in n matrix-vector-multiplications – where the

matrix PB is sparse.

Convergence. Lemma 3.5 yields the following convergence statement for the ap-
proximate transport rate ej

T Pn
B ui as the partition B is refined. Let (Bℓ)ℓ be a

sequence of partitions such that

max
B∈Bℓ

diam(B) → 0 as ℓ → ∞. (3.15)

Corollary 3.6. If the regions Ri, i = 1, . . . , NR, are chosen such that for all i

µ







⋃

B∈Bℓ

B∩∂Ri 6=∅

B







→ 0 as ℓ → ∞, (3.16)
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then for all n (fixed) and all i, j,

ej
T Pn

Bℓ
ui → Ti,j(n) (3.17)

as ℓ → ∞.

Clearly, under the assumption (3.15), the condition (3.17) will be satisfied if
the boundaries of the regions Ri are piecewise smooth—as in our case, where the
boundaries of the regions are composed of pieces of invariant manifolds.

Almost Invariant Decompositions. So far, we have discussed how to compute
transport between two given regions. In the remainder of this Section we will turn
to the question of how to actually find regions of interest. In this context, a region
will be of interest if it is almost invariant in the sense that typical points are mapped
into the region itself with high probability. The problem of decomposing M into
almost invariant sets can be formulated in graph theoretic notation and then solved
by applying graph partitioning methods.

The transition probability for two measurable sets Ri and Rj is defined as

ρ(Ri, Rj) =
µ(f−1(Ri) ∩ Rj)

µ(Rj)
, µ(Rj) 6= 0. (3.18)

If we consider the case Ri = Rj = R, then this transition probability measures
which fraction (measured with respect to µ) of the points in R stays within R after
one iteration of f . For an invariant set R = f(R) with positive µ-measure, this ratio
will be 1. We therefore define the invariance ratio of R as

ρ(R) = ρ(R,R) . (3.19)

For a given map f : M → M one can decompose its maximal invariant set into
invariant parts, as e.g. chain recurrent sets and connecting orbits between them.
For details on these concepts see e.g. Easton [1998]. But one may go one step fur-
ther and ask for macroscopic dynamical structures within the chain recurrent sets
themselves. One possible decomposition is given by an almost invariant decompo-
sition of M (where for simplicity we assume M to be chain recurrent from now
on) as defined in Froyland and Dellnitz [2003]: We ask for a measurable partition
R = {R1, . . . , RNR

} of M into NR sets (with NR fixed) with positive measure (i.e.,
µ(Rk) > 0), such that the quantity

ρ(R) =
1

NR

NR∑

k=1

ρ(Rk) (3.20)

is maximized over all such partitions.
Evidently the infinite dimensional optimization problem (3.20) needs to be dis-

cretized so it may be treated numerically. To this end we again restrict ourselves to
sets within CB, i.e. to sets that are unions of elements of the partition B. Therefore,
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our goal is to look for partitions R̃ = {R̃1, . . . , R̃NR
}, R̃k ∈ CB, µ(R̃k) > 0, such

that

ρ(R̃) =
1

NR

NR∑

k=1

ρ(R̃k) =
1

NR

NR∑

k=1

ρ(R̃k, R̃k) (3.21)

is maximized over these special partitions.

Graph Formulation. Consider the transition matrix PB from (3.10). A transi-
tion matrix P = (Pij) is called reversible, if for all i, j we have pjPij = piPji, where
p is the stationary distribution of P , i.e. Pp = p. The matrix PB is not necessarily
reversible. However, the matrix QB defined by

QB =
1

2
(PB + DP T

B D−1) ,

where D = diag(µ) denotes the diagonal matrix with the entries of µ on the diagonal
and which has matrix entries

qij =
µ(Bj)pij + µ(Bi)pji

2µ(Bj)

is reversible. Let R̃ = {R̃1, . . . , R̃NR
}, R̃k ∈ CB, µ(R̃k) > 0, be a partition of M into

NR sets. The function (3.21) to be optimized can be written as

ρ(R̃) =
1

NR

NR∑

k=1

∑

Bi,Bj⊂R̃k
pij · µ(Bj)

∑

Bj⊂R̃k
µ(Bj)

=
1

NR

NR∑

k=1

∑

Bi,Bj⊂R̃k
qij · µ(Bj)

∑

Bj⊂R̃k
µ(Bj)

(3.22)

because of µ(Bj)pij + µ(Bi)pji = 2µ(Bj)qij .
This optimization problem can be translated into the question of finding an

optimal cut in a graph. Let G = (V,E) be a graph with vertex set V = B and
directed edge set

E = E(B) = {(B1, B2) ∈ B × B | f(B1) ∩ B2 6= ∅} .

The vertex weight function vw : V → R with vw(Bi) = µ(Bi) assigns a weight to
the vertices and the edge weight function ew : E → R with ew((Bi, Bj)) = µ(Bi)pji

assigns a weight to the edges. Furthermore, let

Ē = Ē(B) = {{B1, B2} ⊂ B | (f(B1) ∩ B2) ∪ (f(B2) ∩ B1) 6= ∅} .

This defines an undirected graph Ḡ = (V, Ē) with a weight function ew : Ē → R

with ew({Bi, Bj}) = 2µ(Bi)qji = 2µ(Bj)qij = µ(Bj)pij + µ(Bi)pji on the edges.
The difference between the graphs G and Ḡ is that in Ḡ the edge weight between
two vertices is the sum of the edge weights of the two directed edges between the
same vertices in G. Thus, the total edge weights of both graphs are identical.

The partition R̃ corresponds to the partition of V into V = {V1, . . . , VNR
} with

Vi = {Bi;Bi ⊂ R̃i}. For a set W ⊂ V we denote

Cint(W ) =

∑

(v,w)∈E;v,w∈W ew({v, w})
∑

v∈W vw(v)
=

∑

{v,w}∈Ē;v,w∈W ew({v, w})
∑

v∈W vw(v)
,
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called the internal cost of W . Note that the internal cost is independent from the
choice between the directed graph G or the undirected graph Ḡ. Thus, we are
allowed to operate on undirected graphs, as we shall do in the following.

For a partition V = {V1, . . . , VNR
} we denote

Cint(V) =
1

NR

NR∑

i=1

Cint(Vi) (3.23)

called the internal cost of V. It is an easy task to check that ρ(R̃) = Cint(V).
Thus, the optimization of our cost function (3.21) is identical to the optimization of
the internal costs of the partition V (3.23) written in graph notation and we have
established the graph partitioning problem

Cint(V) → max . (3.24)

Heuristics and Tools for the Graph Partitioning Problem. The optimiza-
tion problem (3.24) is known to be NP-complete (even for constant weights, see
Garey and Johnson [1979]), i.e., an efficient algorithm for solving this problem is
not known. Efficient graph partitioning heuristics have been developed for a num-
ber of different applications. There are several software libraries, each of which
provides a range of different methods. Examples are chaco (Hendrickson and Le-
land [1995]), jostle (Walshaw [2000]), metis (Karypis and Kumar [1999]), scotch

(Pellegrini [1996]) or party (Monien, Preis and Diekmann [2000]). These libraries
are designed to create solutions to the balanced partitioning problem in which all
parts are restricted to have an equal (or almost equal) volume of the underlying
measure. Therefore, we will use parts of the library party and combine them with
some new code which is specially designed to address our cost function (3.24).

party, like other graph partitioning tools, follows the Multilevel Paradigm which
has been proven to be a very powerful approach to efficient graph-partitioning.
See e.g. Gupta [1997]; Hendrickson and Leland [1995]; Karypis and Kumar [1999];
Monien, Preis and Diekmann [2000]; Ponnusamy, Mansour, Choudhary and Fox
[1994]; Preis [2000] for a deeper discussion. The efficiency of this paradigm is dom-
inated by two parts: graph coarsening and local improvement. The graph is coars-
ened down in several levels until a graph with a sufficiently small number of vertices
is constructed. A single coarsening step between two levels can be performed by the
use of graph matching (independent sets of vertex pairs).

Different methods for calculating the matching will result in different solutions of
the partitioning problem. To achieve a selection of different results we will consider
heuristics with the following graph matching algorithms:

1. Heavy Edge Matching (HEM): It is a simple, fast and widely used matching
strategy in which the weight of the edges are considered.

2. Greedy Matching (GRM): The solution is within a factor of 2 from the optimal
matching, but it requires the sorting of the edges in a preprocessing step.
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3. Locally Heaviest Matching (LHM): It is a short algorithm which also guaran-
tees a factor of at most 2, but it runs in linear time (Preis [1999]).

4. Path Growing Matching (PGM): It has the same theoretical runtime and ap-
proximation quality as LHM but it follows a different strategy (Drake and
Hogardy [2002]).

All these matching algorithms are implemented in party and a discussion about
their use in the graph partitioning context can be found in Monien, Preis and Diek-
mann [2000]; Preis [2000].

The coarsening process is stopped when the number of vertices is equal to the
desired number of parts NR. Thus, each vertex of the coarse graph is one part of
the partition. However, it is also possible to stop the coarsening process as soon as
the number of vertices is sufficiently small. Then, any standard graph partitioning
method can be used to calculate a partition of the coarse graph.

Finally, the partition of the smallest graph is projected back level-by-level to the
initial graph and the partition is locally refined on each level. Standard methods
for local improvement are Kernighan/Lin (Kernighan and Lin [1970]) type of algo-
rithms with improvement ideas from Fiduccia/Mattheyses (Fiduccia and Mettheyses
[1982]). The algorithm moves single vertices between the parts to improve the cost
function. The choice of the vertices to be moved depends on the cost function to
be considered. Therefore, the Kernighan/Lin implementation has been modified in
party such that it optimizes the cost-function Cint.

The software environment gads (Graph Algorithms for Dynamical Systems) has
been established, which consists of a collection of graph algorithms which are useful
for the analyses of dynamical systems. See Dellnitz and Preis [2003] and Padberg,
Preis, and Dellnitz [2004]. It has an interface to the graph partitioning library party

(Monien, Preis and Diekmann [2000]) and is designed to work with the tool gaio

(Global Analysis of Invariant Objects, cf. Dellnitz, Froyland, and Junge [2001]).

4 Example: The Sun-Jupiter-Asteroid System

We will compare and combine both methods from Section 3 within the example of
the PCR3BP with the Sun and Jupiter as the main bodies, using ǫ = 9.5368×10−4.
We consider the motion of a particle (asteroid) that has an energy E = −1.525 (that
is, the Jacobi constant is C = 3.05), case 1, as depicted in Figure 2.1(a). We will
study transport in the exterior realm, using the Poincaré section, f : M → M where
M ⊂ R

2, defined in Eq. (2.3), which is shown in Figure 2.2(b).

4.1 Lobe Dynamics

The only requirement to use lobe dynamics is being able to generate stable and
unstable manifolds of the hyperbolic structures in phase space for the time window
of interest. This has been done for many years using a simple principle. A small
seed set near the hyperbolic point (positioned along the unstable eigenspace) will
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deform in time and stretch along the unstable invariant manifold. The same proce-
dure performed backwards in time will render the stable manifold, but we can save
computational effort by using symmetries of the map f .

Symmetries of the Poincaré Map f . Using the following symmetry of the
equations of motion (2.1),

y 7→ −y, t 7→ −t, for all x, ẏ

and therefore ẋ 7→ −ẋ, the Poincaré map f on the surface of section (2.3) has the
corresponding symmetry

sym : M × Z → M × Z, (x, ẋ) 7→ (x,−ẋ), n 7→ −n. (4.1)

This symmetry implies that the Poincaré map f is symmetric with respect to re-
flection about the x-axis and time reversal. Note that this notion of symmetry with
time reversal is very useful since it relates stable and unstable manifolds.

Finding a Fixed Point p of f . Due to the symmetry (4.1), we may expect to find
a fixed point for the Poincaré-map f along the x-axis. Using differential correction,
we numerically find an unstable fixed point at p = (x̄, ˙̄x) = (−2.029579567343744, 0),
shown in Figure 4.1(a).

Finding the Stable and Unstable Manifolds of p under f . Denote the four
branches of the stable and unstable manifolds of p by W u

+(p),W u
−(p),W s

+(p), and
W s

−(p). We will consider only the “+” branches. Using the symmetry reduces the
calculations by a factor of two, i.e., W s

+(p) = sym
(
W u

+(p)
)
. The local approximation

to W u
+(p) can be obtained as given in Parker and Chua [1989]. The basic idea is

to linearize the equations of motion about the periodic orbit in the energy surface
and then use the monodromy matrix provided by Floquet theory to generate a
linear approximation of W u

+(p). The linear approximation, in the form of a state
vector, is numerically integrated in the nonlinear equations of motion to produce
the approximation of W u

+(p).
In practice, we take a finite segment along this linear approximation described

by an ordered array of points (the “seed”). Using a standard numerical integration
scheme (in this case, rk78), we numerically integrate the equations of motion (2.1)
to obtain the Poincaré map f . Under iterates of f , each point approaches the man-
ifold at an exponential rate, reducing the positioning error. However, the seed also
stretches in the direction of the manifold and the distance between each point in-
creases exponentially. Since the manifold experiences rapid stretching as it fgrows in
length, it is necessary to check the distance between adjacent points and insert new
points if necessary to insure that sufficient spatial resolution is maintained (Lekien
[2003]). The software package mangen is used to implement the adaptive condi-
tioning of the mesh of points approximating the manifold (Lekien and Coulliette
[2004]; Lekien [2003]). More points are added where curvature or stretching is high.
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Defining the Regions and Finding the Relevant Lobes. The symmetry
(4.1) is useful for defining the regions and lobes. The first intersection of W u

+(p)
with the axis of symmetry is the natural choice for the pip q defining the boundary,
shown in Figure 4.1(a). We define R1 (in cyan) to be the region bounded by B =
U+[p, q] ∪ S+[p, q], where U+[p, q] and S+[p, q] are segments of W u

+(p) and W s
+(p),

respectively, between p and q. We define R2 (in white) to be the complement of R1.
mangen can then be used to compute the turnstile lobes L1,2(1)∪L2,1(1). The

turnstile lobes are shown as colored regions in the upper half plane of Figure 4.1(a).
The first iterate of the turnstile lobes is shown in the lower half plane of Figure 4.1(a)
in corresponding colors. In the enlarged view, Figure 4.1(b), the turnstile lobes are
shown in greater detail. This is a case of a multilobe, self-intersecting turnstile,
discussed in Section 3.1.

The area of the turnstile lobes, i.e., the flux of phase space across the boundary
B (and the transport of species across B for just the first iteration of the map f),
is summarized in Table 1.

Higher Iterates of the Map. To compute all the transport quantities T1,1(n),
T1,2(n), T2,1(n), and T2,2(n), it is only necessary to compute one of them. We
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Figure 4.1: Transport using lobe dynamics for the same Poincaré surface of section shown

in Figure 2.2(b). (a) The boundary B between two regions is shown as the thick black line, formed

by pieces of one branch of the stable and unstable manifolds of the unstable fixed point p. We

can call the region inside of the boundary R1 (in cyan) and the outside R2 (in white). The pips q

and f−1(q) are shown as black dots along the boundary and the turnstile lobes that will determine

the transport between R1 and R2 are shown as colored regions. In (b), we see more detail of the

turnstile lobes. This is a case of a multilobe, self-intersecting turnstile discussed in Section 3.1. A

schematic of this situation is shown in Figure 3.2. In this case we define the turnstile lobes to be
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µ(L
(a)
1,2(1)) µ(L

(b)
1,2(1)) µ(L

(c)
1,2(1)) µ(L1,2(1))

0.000956 0.000870 0.000399 0.002225

Table 1: Flux of phase space across the boundary in terms of canonical area per iterate.

Note, µ(L1,2(1)) is the sum µ(L
(a)
1,2(1))+ µ(L

(b)
1,2(1))+ µ(L

(c)
1,2(1)). This is the flux in both directions,

i.e., µ(L1,2(1)) = µ(L2,1(1)), since the map f is area-preserving on M .

compute T1,2(n). By area preservation of the map f , we have

T1,1(n) = µ(R1) − T1,2(n),

T2,1(n) = T1,2(n),

T2,2(n) = µ(R2) − T1,2(n).

The values for T1,2(n) up to n = 5 are given in Table 5. We cannot compute beyond
n = 5 due to computer memory limitations of storing the windy boundaries of the
lobes.

Re-entrainment of the Lobes. We now illustrate the effect of re-entrainment
of the lobes, i.e., lobes leaving and re-entering the specified regions. This geometric
effect is believed to have important consequences for the behavior of Ti,j(n) as n
increases (Wiggins [1992]).

Consider Figure 4.2. In this figure we show pre-images and images of only the

lobe labeled L
(b)
2,1(1) in Figure 4.1(b). Four pre-images and five images of this lobe

are shown in Figure 4.2(a). By definition, we must have f(L
(b)
2,1(1)) ⊂ R1, but the

other images, i.e., fk(L
(b)
2,1(1)) for k > 1, need not be contained entirely in R1. In the

specific geometry shown here, fk(L
(b)
2,1(1)) ∩ R2 6= ∅ for k > kf , where kf = 3. The

boxed region in Figure 4.2(a) is shown in more detail in Figure 4.2(b). The area of
the lobe which lies in R1 or R2 is shown in Figure 4.2(c). We conclude that some

particles in L
(b)
2,1(1), which begins in R2 will enter R1 only to return to R2 after just

three iterates in R1.

4.2 Set Oriented Approach

For the Poincaré map f : M → M we consider M to be the chain recurrent set
within the rectangle X = [−2.95,−1.05] × [−0.5, 0.5] in the section y = 0, ẏ > 0
(see Section 2). For an efficient approach to the construction of the box coverings B
as needed for the discretization of the transfer operator we refer to Dellnitz, Junge,
Rumpf, and Strzodka [2000]. We approximate the entries of the transition matrix
(3.10) in analogy to the Monte-Carlo approach as described in Section 3.2. Only
here instead of randomly choosing points in each box we employ a uniform grid of
16 × 16 points.

Almost Invariant Decomposition of the Poincaré Section. The number of
parts NR is an input to the graph partitioning tools. We have experimented with
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(a)

(b) (c)

Figure 4.2: Re-entrainment of the lobes. We show pre-images and images of only the lobe

labeled L
(b)
2,1(1) in Figure 4.1(b). (a) Four pre-images and five images of this lobe are shown. Notice

that the images are not contained entirely in R1, i.e., fk(L
(b)
2,1(1))

T

R2 6= ∅ for k > kf , where

kf = 3. (b) The boxed region in (a) is shown in more detail. (c) The area of the lobe which lies in

R1 or R2 is shown.

different values for NR and found that NR = 7 exhibits a lot of valuable informa-
tion for the current example. As stated in the previous Section, we would like to
find a partition that maximizes our internal cost. Since the problem of computing
an optimal solution is NP-complete, we apply some heuristics as described in Sec-
tion 3.2. Figure 4.3 shows 4 different decompositions of M into 7 almost invariant
sets, obtained by different parameters for the coarsening step. For the partition V1

we used the matching strategy HEM, for V2 we used GRM, for V3 we used LHM
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and for V4 we used PGM.

(a) The partition V1 obtained with the
HEM coarsening strategy has an internal
cost of 0.9453.

(b) The partition V2 obtained with the
GRE coarsening strategy has an internal
cost of 0.9493.

(c) The partition V3 obtained with the
LHM coarsening strategy has an internal
cost of 0.9472.

(d) The partition V4 obtained with the
PGM coarsening strategy has an internal
cost of 0.9458.

Figure 4.3: Almost invariant decomposition of the chain recurrent set M into 7 sets, indicated by

different colors. We used different partitioning strategies to obtain the Subfigures above.

The partition V2 has the highest internal cost, although the internal costs are
almost equal for all partitions. We define the red region as R11, light blue as R12,
dark blue as R13, magenta as R14, yellow as R21, green as R22 and white as R23. To
compare the regions obtained by computing an almost invariant decomposition of
M with the regions found by considering branches of stable and unstable manifolds
we agglomerate the 7-set partition from above into a two-set partition R = {R1, R2}
by defining R1 = {R11, R12, R13, R14}, R2 = {R21, R22, R23}. Figure 4.4 shows R
together with the boundary as computed in the previous Section. It is intriguing
to see how well the partitions which were found by the respective methods agree
visually. However, using Equation (3.14) (which follows from Lemma 3.5 for the
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Figure 4.4: Almost invariant decomposition into two sets. We are interested in the transport

between the two regions R1 and R2 which we already displayed in Figure 4.2(a). The red and

yellow areas are an almost invariant decomposition into two sets. The border between the two sets

roughly matches the boundary formed by the branches of the stable and unstable manifolds of the

fixed point (−2.029579567343744, 0) drawn as a line.

special case of n = 1 and R1, R2 box collections) we get T1,2(1) ≈ 0.005 for this
particular size of the boxes in the covering, which is quite a bit larger than the value
of 0.0022 as computed in the previous Section for the corresponding partition given
by the invariant manifolds.

Transport for a Two-Set Partition. In this Section we are going to compare
the value for the quantity Ti,j(1) as computed using lobe dynamics with the one
resulting from an application of the set oriented approach. For both computations
we consider the two-set partition R = {R1, R2} defined by the two segments of
stable and unstable manifolds of a certain fixed point as computed in Section 4.1,
see Figure 4.1(a).

The third and fourth column of Table 2 show the values e2
T PB u1 and e2

T PB u1

for different partitions B of equally sized boxes. As suggested in Equation (3.12)
these values indeed sandwich the value of 0.002225 for T1,2(1) as computed using
lobe dynamics. However, the bounds are not very tight and seem to converge rather
slowly towards the true value.

On the other hand, the error in computing Ti,j(1) has to be related to a small
subset of boxes of B only, see Lemma 3.5 and comments thereafter. It is therefore
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box volume no. of boxes e2
T PB u1 e2

T PB u1

4.6387 × 10−4 2238 0 0.067417

2.3193 × 10−4 4436 0 0.058418

1.1597 × 10−4 8673 0 0.041038

5.7983 × 10−5 17216 0.000034 0.034708

2.8992 × 10−5 32789 0.000258 0.022962

Table 2: Lower and upper bounds for the total amount T1,2(1) of species S1 in region R2 after

one iterate for the two-set partition R = {R1, R2} shown in Figure 4.1(a) for various box coverings

B.

natural to consider an adaptive approach to the construction of the partitions B in
the sense that one only refines boxes that contribute to the error. To be able to
identify these, we rely on the results from the previous Section on the lobe dynamics
approach, where we computed the pieces of the invariant manifolds bounding the
two regions to high accuracy. Figure 4.5 shows the result of an implementation of
this approach, the third and fourth columns of Table 3 show the corresponding lower
and upper bounds. Note that for a comparable number of boxes in the partitions B
these bounds are much tighter than those computed using equally sized boxes.

Figure 4.5: Adaptive covering. Dynamical systems techniques have been used to identify loca-

tions in which box refinements are needed, i.e., where the lobes are located. This speeds up the

computation considerably.
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box volume (min) no. of boxes e2
T PB u1 e2

T PB u1 optimized value

4.6387 × 10−4 2238 0 0.067417 0.008605

1.1597 × 10−4 3269 0 0.041038 0.005166

2.8992 × 10−5 5455 0.000258 0.022962 0.003497

7.2479 × 10−6 10422 0.000790 0.012654 0.002622

1.8110 × 10−6 21655 0.001362 0.007508 0.002324

4.5290 × 10−7 45946 0.001722 0.004887 0.002314

Table 3: Lower and upper bounds and the optimized value of the total amount of species S1

contained in region R2 after one iteration T1,2(1). The columns 3 and 4 present lower and upper

bounds for the total amount T1,2(1) of species S1 in region R2 after one iterate for the two-set

partition R = {R1, R2} shown in Figure 4.1(a) for various adaptively refined box partitions B.

Column 5 lists the approximate value for T1,2(1), obtained by additionally locally optimizing the

partition of B into two sets.

Local Optimization. The partitions obtained in the adaptive approach described
above are used to compute an improved approximation of the transport rate T1,2(1).
The idea is to use local optimization methods for graph partitioning to smoothen
the boundary between the two regions.

The adaptive approach is based on a partition into three sets A1, A2 and Ab

with A1 ∪A2 ∪Ab = R1 ∪R2 corresponding to an internal set A1 ⊂ R1, an external
set A2 ⊂ R2 and a boundary set Ab, which is a box covering of the boundary
between R1 and R2 provided by the results from the lobe dynamics approach. To
get an approximation of the transport rates T1,2(1), we artificially construct a 2-
partition of the underlying graph corresponding to the sets A1 and A2 ∪ Ab. This
partition is then locally optimized (by maximizing the the internal costs (3.24)) by
the methods described in 3.2. In this way, one obtains approximations of the sets
R1 and R2, which are given as box collections, so that for this particular setting
we can again compute the transport rate T1,2(1) using Equation (3.14). The fifth
column of Table 3 presents the corresponding results.

Extrapolation. The results in Table 3 suggest that one should try to derive even
better bounds by extrapolating the computed values. By Lemma 3.5 and comments
thereafter, the error between Ti,j(1) and its approximation ej

T PB ui can be bounded
in terms of the Lebesgue measure of a certain set of boxes that either intersect the
boundary of region Ri or are mapped onto the boundary of region Rj . Roughly
speaking this means that whenever those boxes are refined by bisection with re-
spect to both coordinate directions, the Lebesgue measure of the set of boxes that
contribute to the error will shrink by a factor of 1

2 . In view of this, we make the
following Ansatz for an asymptotic expansion of the computed values in terms of
the Lebesgue measure µ(B) = minB∈B µ(B) of the relevant boxes:

ej
T PB ui ≈ Ti,j(1) + C

√

µ(B), (4.2)

for some constant C > 0; similarly for ej
tPB ui and the value as computed after

locally optimizing the partition. Table 4 shows the results of extrapolating the
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values in Table 3 based on the expansion (4.2). For the extrapolation we have been
linearly interpolating the values of two subsequent rows of Table 3, respectively.

µ(B) e2
T PB u1 e2

T PB u1 linear extrapolation

1.811 × 10−6 0.0019337 0.0023648 0.002026

4.529 × 10−7 0.0020821 0.0022651 0.002304

Table 4: Extrapolation of the results in Table 3. Using the asymptotic expansion (4.2), the

extrapolation is based on a linear interpolation of the values of two subsequent rows of Table 3.

Higher Iterates of the Map. For the two-set partition R = {R1, R2} as em-
ployed in the previous Section, Table 5 lists the approximate total amount Ti,j(n)
of species S1 in region R2 after n time steps. The values in the second column are
based on the n-th iterates of lobe volumes, whereas the values in the third column
have been computed as Ti,j(n) ≈ e2

T Pn
B u1 using the approximations of R1 and

R2 obtained by the locally optimized partition on the finest box level in Table 3.
Although the two methods do not use exactly the same two-set partition they agree
to within 5% over their common domain. Table 5 and Figure 4.6 show that using
the set oriented approach one can efficiently approximate the quantities Ti,j(n) for
quite large n - every new iterate requires a single matrix-vector product (where the
matrix is sparse) and a scalar product to be computed. Note however that since we
are working with a covering consisting of boxes, typically there will be boxes that
map outside the covering and thus the resulting transition matrix is not exactly
stochastic. This will ultimately lead to e2

T Pn
B u1 dropping to 0 with increasing n.

n T1,2(n) (lobe dynamics) e2
T Pn

B u1 (set oriented)

1 0.002230 0.002314

2 0.004461 0.004449

3 0.006692 0.006533

4 0.008898 0.008568

5 0.01110 0.01056

6 – 0.01250

7 – 0.01438

8 – 0.01623

9 – 0.01803

10 – 0.01978

Table 5: Comparison of the two approaches for higher iterates: Approximate values for the amount

T1,2(n) of species S1 in region R2 after n iterates.

Return Times of the Poincaré map. In terms of the time scale of the under-
lying differential equation, a species from R = R1 ∪ R2 needs 13.02 to 36.34 years
to return to R. In Figure 4.6 the approximate values for T1,2(n) for 50 iterates are
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Figure 4.6: Higher iterates using the set oriented method. Approximate values for T1,2(n) and

T1,1(n) up to n = 50 iterates using the set oriented approach.

shown. Accordingly, the probability of the transition of a species from R1 to R2 is
about 28% after 1817 years.

5 Conclusions and Future Directions

Good Agreement Between Approaches. We have shown how invariant ma-
nifold techniques and the set oriented approach can work together in an important
two degree of freedom example problem, reduced to a two dimensional Poincaré
map. For example, graph partitioning gives a coarse-grain global picture of the
important regions and indicates where key unstable periodic points reside. The
one-dimensional stable and unstable manifolds of those periodic points can then be
computed and the lobe areas determined to yield highly accurate transport rates.

As one computes its extent of stable and unstable manifold curves from an initial
seed, computer memory restrictions and the rapid stretching of the manifolds limits
the length of the manifold which can be computed. This translates to a maximum
iterate, nlobe

max, up to which transport can be accurately computed using the invariant
manifold/lobe dynamics method.

Based on a coarse model of the underlying system in form of a finite-state Markov
chain, the set oriented approach can compute transport quantities at higher iterates.
Using a boundary between regions obtained from the invariant manifold method, one
can implement adaptive refinement strategies for the underlying partition of phase
space, which improves efficiency of the method. The good agreement between the
set oriented approach with adaptive refinement and the lobe dynamics method over
their common domain (up to nlobe

max) leads us to believe that also for larger iterates
n > nlobe

max the computed transport rates are quite reliable. However, without proper
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modification the method is not yet suitable for very large iterates (n > 100). On
the other hand, the method gives reliable transport rates for thousands of Earth
years and with cautious extrapolation, one can conclude that the method is indeed
of astrodynamical interest.

Extension to Higher Dimensions and Time Dependent Systems. Some
work has been done on transport in higher dimensions, for example, four-dimensional
symplectic maps (Lekien and Marsden [2004]; Gillilan and Ezra [1991]). In future
work, we intend to use box methods and graph algorithms in conjunction with
ideas from invariant manifold theory for studying phase space transport in higher
dimensions.

Related to this, one can also consider an extension of lobe dynamics to the four-
dimensional case (Lekien and Marsden [2004]; Lekien [2003]). The four-dimensional
phase space M of a volume- and orientation-preserving Poincaré map f : M → M
can be divided into disjoint regions of interest, Ri, i = 1, ..., NR, where the bound-
aries between regions are pieces of three-dimensional stable and unstable mani-
folds of two-dimensional normally hyperbolic invariant manifolds (NHIMs), pi, i =
1, ..., Np. Moreover, transport between regions of phase space can be completely
described by the dynamical evolution of the higher dimensional turnstile lobes, vol-
umes of the phase space enclosed by segments of the stable and unstable manifolds.

One way to approach this problem is to simply use the box subdivision and graph
partitioning algorithms to partition M into its important regions and then compute
the transport between them. However, this may not be computationally tractable.
The complexity of box subdivision methods are proportional to the dimension of the
object of interest, not the dimension of the embedding space. Thus, box subdivision
methods could be used to (i) obtain the two-dimensional NHIMs, and then (ii) their
stable and unstable three-dimensional manifolds which bound regions of M .

Another challenging but potentially very fruitful application is to put box sub-
division methods and almost invariant sets into the time dependent context, such
as occurs in, for instance, ocean dynamics (Lekien, Coulliette, and Marsden [2003]).
For such systems, the idea of “fixed points” and “invariant manifolds” is problem-
atic and one replaces them with notions such as those of Haller [2002] involving
Lagrangian coherent structures. Preliminary computations suggest that set oriented
methods may be able to reveal such objects with similar properties.

Merging Techniques Into a Single Software Package. The merging of sta-
tistical and geometric approaches yields a powerful tool. This could be reflected
in the merging of the two software packages used in the current study, gaio and
mangen. We envision a software package for transport calculations using the box
formulation along with adaptive strategies to reduce the computational effort based
on highest transport and/or curvature of a low codimensional object.

Furthermore, we can make use of variational integration (VI) techniques, which
are known to perform well when computing long time dynamics and chaotic invariant
sets for mechanical systems, with and without dissipation. See, for instance Kane,
Marsden, Ortiz, and West [2000]; Rowley and Marsden [2002]; Marsden and West
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[2001]. This also includes asynchronous VI techniques (Lew, Marsden, Ortiz, and
West [2003]) which are appropriate for taking different time steps in different spatial
regions and yet maintaining all the conservation properties of variational integrators.

Miscellany. Other topics that warrant further investigation are the addition of
dissipation and forcing to the problem, including the effect of other bodies, the
Poynting Robertson drag and the Yarkovski effect. It would also be of interest
to know how the choice of the coordinate system affects the results; specifically,
lobe boundaries may be easier to handle in other coordinates, such as Delaunay
(action-angle canonical) coordinates for the PCR3BP; in fact, they won’t appear as
convoluted in Delaunay coordinates.

Progress Towards the Grand Challenges in Computational Science. In
this paper, we seek to lay a foundation for significant progress toward some of the
grand challenges in computational science, including computational astrodynamics,
protein folding, and detailed predictive ocean dynamics. Our long term vision is to
make a link between (i) the statistical methods which have been used to probe the
dynamics in high dimensional systems and (ii) the geometric methods which provide
detailed insight into the dynamics of low dimensional systems. This is a gap that
we believe the work here begins to bridge.

We are ultimately interested in investigating whether the techniques described
here will work for models of direct, practical interest. Thus we first work on simple
models with an eye towards building more complex models using the results of simple
models as building blocks.
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