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ABSTRACT OF THE DISSERTATION

Transport in Neutron Star Mergers

by

Steven P. Harris

Doctor of Philosophy in Physics

Washington University in St. Louis, 2020

Professor Mark Alford (Chair)

Neutron star mergers are the only situation in nature in which we find matter compressed

to several times nuclear saturation density and temperatures of several tens of MeV. By

observing and numerically simulating neutron star mergers, we can learn about the nature of

matter at high temperatures and densities. Neutron star merger simulations evolve Einstein’s

equations of general relativity coupled to the equations of relativistic hydrodynamics along

with a nuclear equation of state, which describes the neutron star matter. Many simulations

also take into account neutrino transport and electrodynamics. The purpose of this thesis

is to see whether other physical processes, including thermal transport and viscosity, are

relevant to neutron star mergers and thus should be included in merger simulations.

After an introduction to the QCD phase diagram, the nuclear equations of state, and

neutron star mergers, I discuss three projects related to transport and nuclear matter in neu-

tron star mergers. The first is the nature of beta equilibrium in the portion of a merger that

is transparent to neutrinos. We calculate the weak interaction (Urca) rates and find that the

beta equilibrium condition needs to be modified by adding an additional chemical potential,

which changes slightly the particle content in neutrino-transparent beta equilibrium. Sec-

ondly, we calculate the bulk viscosity in neutrino-transparent nuclear matter in conditions

encountered in neutron star mergers. Bulk viscosity arises from a phase lag between the

pressure and density in the nuclear matter, which is due to the finite rate of beta equili-

xi



bration. When bulk viscosity is sufficiently strong, which happens when the equilibration

rate nearly matches the frequency of the density oscillation, it can noticeably dampen the

oscillation. We find that in certain thermodynamic conditions likely encountered in mergers,

oscillations in nuclear matter can be damped on timescales on the order of 10 milliseconds,

so we conclude that bulk viscosity should be included in merger simulations. Finally, we

study thermal transport due to axions in neutron star mergers. We conclude that axions are

never trapped in mergers, but instead escape, carrying energy away from the merger. We

calculate the cooling time due to the energy carried away by axions and find that within cur-

rent constraints on the axion-nucleon coupling, axions could cool fluid elements in mergers

on timescales which could affect the dynamics of the merger.
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Chapter 1

QCD and nuclear matter

1.1 QCD and its predecessors

Despite the Coulomb repulsion of its constituent protons, the nucleus of an atom remains

bound. In 1934, Yukawa proposed that there is an attractive force, called the strong force

or the nuclear force, that keeps the neutrons and protons together in the nucleus despite

the repulsive electromagnetic interaction. The strong interaction must be very short-ranged,

as it is not observed in everyday life (unlike the long-ranged forces of electromagnetism

or gravity). The first serious model of the strong interaction was proposed by Yukawa in

1934 [16]. He suggested that the nucleons interact by exchanging a meson, generating an

attractive force. As the nuclear force was observed to act on distances of the size of the

nucleus (a few femtometers, or Fermi), the mass of the mediator meson was expected1 to be

around 100 MeV. In contrast, electromagnetism is a long-range force, because it is mediated

by the photon, which is massless [19]. One decade later, the exchanged meson for the strong

force was determined to be the pion, with mass around 140 MeV [20, 21, 22]. By the middle

of the twentieth century, the theory of the strong interaction involved protons and neutrons

as fundamental particles, which interact by exchanging pions [19].

1 The general idea here is that two nucleons in the nucleus will interact by producing a virtual pion, which
has energy ∆E and lives for time ∆t. This virtual pion production is allowed by the energy-time uncertainty
principle provided that ∆Eπ∆t ∼ ~. The energy ∆Eπ to create the pion is the pion rest mass-energy, mπc2,
and the pion has range r = c∆t. Putting this all together, ∆Eπ∆t = (mπc2)(r/c) ∼ ~, or mπc2 ∼ ~c/r and
so if the range of the pion-mediated strong interaction is 1 Fermi, then mπc2 ∼ 200 MeV [17]. See Ref. [18]
for a discussion of the use of the energy-time uncertainty principle in this context.
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Beginning in the late 1940s, a bevy of new particles was discovered, including mesons like

the kaon, eta, phi, omega, and rho and baryons like the lambda, sigma, and xi. Surprisingly,

these particles could be organized into patterns based on their electric charge and strangeness,

called the baryon octet, meson octet, and the baryon decuplet [19]. In 1964, Gell-Mann

and Zweig independently proposed that all baryons and mesons were made of fundamental

particles called quarks, which explained the octet and decuplet patterns [23, 24, 25]. Baryons

are made up of three quarks (antibaryons are made of three anti-quarks), while mesons are

made of a quark and an anti-quark. Within this model, there are three “flavors” of quarks,

called up, down, and strange. Soon after, Greenberg, Nambu, and Han [26, 27] proposed

that quarks have an additional degree of freedom, later called color [28, 29]. There are three

colors, red, green, and blue, and all hadrons (particles interacting via the strong interaction)

are color-neutral. Color explains why hadrons must be either baryons, anti-baryons, or

mesons. Later, it was determined that there are actually six flavors of quarks (the additional

flavors being charm, bottom, and top), but these three flavors are much heavier than the

original three [19].

The modern theory of the strong interaction, called quantum chromodynamics (QCD),

is a Yang-Mills theory [30] with gauge group2 SU(3), an idea first proposed in [32, 33].

A Yang-Mills theory describes fermionic matter fields interacting via a non-abelian gauge

field. In the case of QCD, the matter fields are quark fields qf = (qR, qB, qG)T of flavor

f ∈ {d, u, s, c, b, t} and the gauge theory is SU(3), which has 8 gauge bosons, called gluons

Aµ
a where a ∈ {1, 2, 3, 4, 5, 6, 7, 8} [34].

The QCD Lagrangian is3

LQCD =
6
∑

f=1

q̄f
i (i/∂ −mi)

ijqf
j − g(q̄f

i γ
µT a

ijq
f
j )Aa

µ − 1

4
Ga

µνG
a µν , (1.1)

2 See Ref. [31] for a review of Lie groups.
3 Throughout this thesis, I use natural units where ~ ≡ 1, c ≡ 1, and kB ≡ 1, which implies that

~c = (6.58×10−16 eV s)×(3×108 m/s) = 197 MeV fm. Also it implies that 1 MeV = 1.16×1010 K. In natural
units, all dimensions are expressible in powers of energy units, typically MeV. Thus, energy, mass, momentum,
frequency, and temperature are measured in MeV, while distance and time are measured in MeV−1. Velocity
and entropy are dimensionless. Newton’s gravitational constant is G = 6.70 × 10−45 MeV−2.
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QCD and nuclear matter

where T a = λa/2 where λa are the Gell-Mann matrices, that is, the 3×3 traceless, Hermitian

matrices that generate SU(3) (see Ref. [35] or [31]). The field tensor is

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcA

b
µA

c
ν , (1.2)

where fabc are the structure constants [35, 31] of SU(3), defined through the equation

[Ta, Tb] = ifabcTc.

The Lagrangian can be expanded by using the definition of the gluon field tensor Ga
µν

[Eq. (1.2)] which becomes (schematically) L ∼ “ q̄q ”+“G2 ”+g “ q̄qG ”+g “G3 ”+g2 “G4 ”.

Notice that there is just one coupling, g. This is a result of the interaction being through

a gauge field. All of the allowed interactions in QCD can be read off from this schematic

Lagrangian. The first three interactions are much like QED - quarks and gluons have their

kinetic terms and can couple to each other trilinearly with strength g. However, the non-

abelian gauge theory also allows gluons to couple to themselves, which makes QCD consid-

erably more complex than QED [35].

1.1.1 Asymptotic freedom

The charge of a particle is modified by the polarization of the vacuum in which the charge sits.

Thinking pictorially for a moment, an electron placed in vacuum will polarize the vacuum,

attracting virtual positrons which will surround the electron, reducing its “visible” charge.

When an observer tries to measure the charge, if they very weakly hit the screened electron

with a probe, then the probe will see an electron with significantly reduced negative charge.

However if the observer throws a high-energy particle at the electron, it will penetrate the

screening positrons, and will “see” an electron with higher negative charge. In the theory of

QED, this is expressed by the growth of the QED coupling with increased energy scales.

QCD acts in the opposite way - color charges are anti-screened. Placing a color charge

(say, a red quark) in vacuum will polarize the vacuum, but it will attract more virtual
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QCD and nuclear matter

red charges, not anti-red4. Thus, when an observer weakly throws a particle at the red

color charge, it sees a whole sea of red color charges adding up to a substantial net color

charge. However an observer throwing a very high energy particle at the red color charge

will penetrate a large fraction of the sea of red color charges, and will only observe a small

net color charge. This counter-intuitive behavior is asymptotic freedom. The QCD coupling

decreases in magnitude with increased energy [35].

Asymptotic freedom can be formally derived by calculating the QCD beta function and

noticing that it is negative. This calculation was done for QCD by Politzer, Gross, and

Wilczek [36, 37]. Coleman and Gross later showed that only non-abelian gauge theories can

be asymptotically free [38].

Asymptotic freedom allows the use of perturbation theory to do high-energy QCD calcu-

lations, as the coupling is weak at high energy. For example, QCD processes in colliders are

calculated perturbatively in any particle physics or field theory textbook [35, 39, 40, 41]. At

low energies, the QCD coupling becomes very large, and perturbation theory is inapplicable.

Here, the coupling is strong enough to confine quarks into hadrons, which are color-neutral.

As perturbation theory is impossible at low energies - relevant to nuclear physics - one must

resort to models of QCD to make progress.

1.2 The phase diagram of QCD

QCD can be studied coupled to external conditions, such as temperature, baryon chemical

potential, and isospin chemical potentials. These external “knobs” allow one to study the

strong interaction as it would appear in a real-world system. QCD, like many models, has

different behavior at different values of these external parameters and so it is useful to

construct a phase diagram to organize the behavior of QCD in different physical regimes.

This is analogous to how the behavior of water as a function of temperature and pressure is

depicted in a phase diagram. The typical presentation of the QCD phase diagram is with
4 This phenomenon is traceable to the presence of gluon loops [19].
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baryon chemical potential on the horizontal axis and temperature on the vertical axis, where

the isospin chemical potential is set to zero, and contributions from the four heaviest quark

flavors are neglected. That is, the most common version of the QCD phase diagram is the

phase diagram of an equal mixture of up and down quarks. A schematic version of the QCD

phase diagram is given in Fig. 1.1.

???

Quark-gluon	plasma

CSC
quark
matter

nuclear
matterHadron	gas

Vacuum

T

μB

Fig. 1.1: Schematic version of the QCD phase diagram at zero isospin chemical potential.
Matter described in this diagram is an equal mixture of up and down quarks (or
neutrons and protons in the confined phase) and is governed only by QCD, not the
weak interaction or electromagnetism. The interior of the diagram is uncertain,
for example, the first-order phase transition between the hadronic phase and the
quark-gluon plasma has not yet been detected, and if it exists, it may have one
or two critical points, whose locations are uncertain (this is indicated by the
red arrows). The dotted boundary between the color-superconducting (CSC)
quark matter and quark-gluon plasma phases indicates that the type of transition
between the two phases is uncertain.

In principle, studying 2-flavor QCD at finite baryon and isospin chemical potentials and

finite temperature amounts to adding up and down quark chemical potentials to the QCD
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Lagrangian [42, 43, 44, 45]

L2-flavor QCD = ūi(i/∂ + µuγ
0 −mu)ijuj + d̄i(i/∂ + µdγ

0 −md)ijdj (1.3)

− g(ūiγ
µT a

ijuj + d̄iγ
µT a

ijdj)A
a
µ − 1

4
Ga

µνG
a µν ,

where the up and down quark chemical potentials µu and µd are determined by the baryon

and isospin chemical potentials [46] via the relationships µu = (1/3)µB + (1/2)µI and µd =

(1/3)µB −(1/2)µI , which indicate that three quarks make one baryon, and each quark carries

plus or minus one-half unit of isospin (this is just a convention). At this point, we would

like to calculate the QCD partition function, which is a functional integral over quark and

gluon fields, and then we would calculate the pressure from the partition function (we use

grand canonical ensemble, see Appendix A). While the pressure is continuous as a function of

temperature and chemical potentials, its derivatives (the baryon density and entropy density,

see Appendix A) might not be. Discontinuities in the thermodynamic derivatives indicate

phase transitions, and so the phase diagram could be determined if we could calculate the

partition function of QCD. Of course, at present this is not possible, and so we have to rely

on models and experiment to map out the QCD phase diagram.

For the remainder of this chapter, we will survey the regions of the QCD phase diagram,

Fig. 1.1. It should be noted upfront that there is consensus about the behavior of QCD

matter only at µB = 0 and at asymptotically large µB at low temperature. The rest of the

QCD phase diagram is conjecture, inferred by models and some experiments.

1.2.1 Hadron gas

At low density and low temperature, QCD matter is in the hadron gas state. In this state,

quarks are confined and thus all states in this regime are color neutral. If the temperature

were zero, then no matter would be present at all - that is, the line on the phase diagram at

zero temperature and µB . 1 GeV represents the vacuum. At finite temperature, particle
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states are populated. With increasing temperature, heavier particle states have increasing

probability of occupation.

This region of the QCD phase diagram is often described with the hadron resonance

gas model, which assumes that the QCD matter is the sum of independent Fermi or Bose

gases corresponding to each hadron and hadron resonance in the particle data book below

a certain mass [47]. Thus, this model is reliant on our knowledge of the spectrum of QCD

[48, 49, 50].

1.2.2 Quark-gluon plasma

At sufficiently high temperatures, quarks are no longer confined into color-neutral hadrons,

and instead QCD matter is a plasma of quarks and gluons. At arbitrarily large tempera-

tures, asymptotic freedom indicates that the coupling between the quark and gluon quasi-

particles becomes weak, but the high temperature theory still contains non-perturbative

physics [51, 52] (see also the review [53]) and a weak-coupling treatment requires resum-

mations of diagrams of all loop orders [54]. As the temperature decreases, the coupling

increases and close to the deconfinement temperature, the coupling is strong enough that

the quasi-particle mean free path is shorter than the de-Broglie wavelength of the quasi-

particle, indicating that the quark-gluon plasma is so strongly coupled that it cannot be

described in terms of quasi-particles. In this regime, the quark-gluon plasma is a strongly

coupled fluid, well described by hydrodynamics [55, 56].

1.2.3 Dense QCD matter

While at high temperature and low density, lattice QCD (see Refs. [57, 58, 59, 60, 61] for

review) is successful and serves as an anchor for models like the hadron resonance gas, at

finite baryon density the sign problem prevents the use of lattice techniques. The calculation

of any observable in lattice QCD involves a calculation of the partition function, which is

a functional integral over all possible configurations of the quark and gluon fields. This
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extremely high dimensional integral is evaluated with Monte Carlo methods, which involve

sampling the integrand according to a weighting function. At finite baryon density, the

weighting function gains an imaginary part, causing the integrand to be highly oscillatory

and thus impossible to accurately evaluate with current computational resources [62, 63].

Some progress has been made on mitigating the sign problem in certain situations [64, 65,

66, 67, 68, 69, 70], and it is interesting to note that the sign problem does not appear in

QCD at finite isospin chemical potential (with µB = 0) [71].

Below we examine the QCD phase diagram at zero temperature.

1.2.3.1 Nuclear matter onset

When the baryon chemical potential is less than the mass of a nucleon (mN ≈ 939 MeV),

it is not possible to create neutrons and protons at zero temperature, and thus the state of

QCD in the region is the vacuum. However, when the baryon chemical potential reaches the

mass of the nucleon5, uniform nuclear matter becomes the equilibrium state of QCD.

Nuclear matter is a liquid with neutron and proton quasiparticles. As we are exploring

the QCD phase diagram at zero isospin chemical potential, the nuclear matter is symmetric,

meaning it has equal numbers of neutrons and protons. In contrast to the hadron gas phase,

the neutrons and protons are quasiparticles and interact with each other via the strong force.

There are many models of the nucleon-nucleon force, typically divided into nonrelativistic

constructions of 2- and 3-body nucleon potentials or nucleons interacting via meson exchange

as in a relativistic mean field theory [3, 4]. We will describe these models in Sec. 2.2.

At sufficiently low temperatures, nuclear matter is well described by a relativistic Fermi

liquid theory with neutron and proton quasi-particles [75, 76]. In addition, at sufficiently

low temperatures (on the order of 1 MeV [77, 78]), pairing between nucleons is expected,

analogous with BCS pairing of electrons [79], as the nucleon-nucleon potential is attractive

5 The chemical potential needed for the production of nuclear matter is slightly less than the nucleon mass,
as the nuclear matter has binding energy of 16 MeV that lowers the threshold to around 939−16 = 923 MeV
[72]. This binding energy occurs at a baryon density of around n0 ≈ 0.16 fm−3, which is termed nuclear
saturation density [73, 74].
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at long-range [78]. Thus, nuclear matter is superfluid at nuclear densities and low tempera-

tures.

1.2.3.2 Dense quark matter

At sufficiently high density, the nucleon quasiparticles in nuclear matter must touch, as

they have a finite size. If we assume a nucleon is a sphere of radius R = 0.8 fm [80], then

two adjacent neutrons touching have a linear density of 0.625 fm−1, which translates to a

volume density of ntouch = 0.24 fm−3 = 1.5n0. Taking into account more efficient packing

arrangements [81] would push this touching density up to ntouch = (4
√

2R3)−1 ≈ 2.2n0.

At densities much larger than this, it seems clear that quarks must be the relevant degree

of freedom, not nucleons, and so quark matter becomes the ground state of QCD at high

densities.

Though we know little about the transition from hadronic to quark matter, we expect at

high enough densities, quark matter will be a Fermi liquid, with up and down quark quasi-

particles. As the density increases, the typical momentum transfer in an interaction between

quarks near the Fermi surface becomes large6 so asymptotic freedom dictates that at suffi-

ciently high density quarks near their Fermi surface are weakly interacting [42]. Additionally,

the interaction between quarks on their Fermi surfaces is attractive, and so it is predicted

that, below some critical temperature (which is several tens of MeV [42, 83, 84, 85]), quarks

will form Cooper pairs, creating a superconducting state called a color superconductor. One

model for this type of matter is the 2SC (2-flavor, superconducting) phase [42], where the

up and down quarks can pair in any of the three combinations uu, dd, ud [86].

1.2.4 Phase transitions and critical points

Phases in a phase diagram are separated by nth-order phase transition lines, which in the

case of the QCD phase diagram in Fig. 1.1, are described by functions µB = µB(T ). A first-
6 Small-angle scattering with low momentum transfer is cut off in the infrared by Landau damping of the

gluons [82].
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order phase transition indicates a sharp change between the two phases, which shows up as

a discontinuity in the first derivative of the pressure between the two phases, while nth-order

transitions indicate a discontinuity in the nth derivative of the pressure. Phase transitions of

order greater than one are also called continuous phase transitions. On a phase transition

line, the phases on either side coexist. Phase transition lines either terminate in a critical

point or at the boundary of the phase diagram. They can also terminate by intersecting

another phase transition line, forming a triple point [87, 88].

There could also be a crossover between two phases, where one can go from one phase to

another by going around the critical endpoint, circumventing the nth-order phase transition

line. A crossover is not really a phase transition, rather, it is a sign that two adjacent

phases become indistinguishable in some region of the phase diagram (for example, liquid

and gaseous water become indistinguishable at sufficiently large temperature.)

1.2.4.1 Deconfinement phase transition at high temperature

The hadron gas state cannot exist at infinite temperature. This was first pointed out by

Hagedorn [89], who noticed that the density of hadronic states in QCD increases exponen-

tially in mass. As the temperature of the hadron resonance gas increases, higher mass hadron

states are increasingly populated and above the Hagedorn temperature TH (somewhere be-

tween 150-200 MeV), there would be so many hadronic states that any energy added to

the system would excite further resonances, but would not increase the temperature of the

system. This shows up as a divergence in the partition function for T > TH [90, 91, 72, 92].

Thus QCD matter must be in a different phase without hadronic degrees of freedom at

temperatures above the Hagedorn temperature.

The deconfinement of quarks due to increasing temperature is analogous to deconfinement

due to increasing density, explained earlier in this section. In this case, high temperature

leads to the increased overlap of the hadrons and hadron resonances, and at high enough

temperature one can no longer connect quarks to specific hadrons, making quarks the proper
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degree of freedom. This transition can be modeled as a percolation transition [91, 93], where

one essentially asks the question “how much overlap must hadrons have before they become

quarks?”7

Lattice calculations show that the transition from a hadron gas to the quark-gluon plasma

at µB = 0 is a smooth crossover8 [95, 96, 97, 98]. It is strongly suspected that the transition

becomes first-order at some finite baryon chemical potential. The current expectation is a

first-order transition line running from high temperature and low density to low temperature

and high density, shown in Fig. 1.1. The first-order line is expected to terminate in a critical

endpoint on the high temperature-low density end, and the low temperature-high density

end of the line either continues down to zero temperature, or ends in a critical endpoint

itself [55, 99]. These critical points are depicted in Fig. 1.1. However, at present there is

no direct evidence for the presence of this critical line or its associated critical endpoint(s).

There is little theoretical agreement on the location of the high-temperature critical endpoint,

though relativistic heavy ion collisions have ruled out a region of the phase diagram - see

Sec. 1.3. Recent calculations predict it could lie at chemical potentials of more than 400

MeV and temperatures below 150 MeV - see Ref. [63] for a summary of older predictions,

and [100, 101, 102, 103] for more modern predictions.

1.2.4.2 Liquid-gas transition

There is a first-order phase transition at zero temperature between the vacuum and the

onset of nuclear matter, where the baryon density (a first partial derivative of the pressure)

switches sharply from 0 to nuclear density n0 = 0.16 fm−3. The first-order line extends

to finite temperature, now separating a dense (liquid) hadron phase from a dilute hadron

gas. On the phase transition line, the liquid nuclear matter coexists with the hadron gas.

7 As an example of percolation, Baym asks the question: if you make a block-pile out of blocks that are
either copper or wood, what percentage of copper blocks is needed before the block-pile becomes a conductor?
[94].

8 Some thermodynamic quantities do change quite rapidly as temperature exceeds 150 MeV. For example,
the energy density [93].
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The first-order line ends in a critical point, and there is some evidence from low-energy

heavy ion collisions that the critical point lies near µB ≈ 924 MeV and T ≈ 5 − 20 MeV

[72, 92, 50, 104, 105].

1.2.4.3 High-density phase transitions

As discussed earlier in this section, it is expected that as density increases, the quasiparticle

nucleons in nuclear matter will become closer together until they eventually touch. We

estimated this would occur around nB ≈ 2.2n0 if the (hard-sphere) nucleons form a face-

centered cubic structure, which is the most efficient packing arrangement of uniform spheres.

Just like the deconfinement transition at high temperature, the quark-hadron transition has

been modeled as a percolation transition [94, 106, 93, 107]. Additionally, some models of

QCD, including the NJL model [108] and a random matrix model [109], predict a first-order

phase transition between hadronic and quark matter, and thus a jump in baryon density

between the two phases.

More recently, it has been proposed that the first-order line between hadronic matter

and quark matter has two critical endpoints, one at high density and low temperature and

the other at low density and high temperature [110, 111, 112]. We depict this possibility in

Fig. 1.1. This would mean that at very low temperature, below the critical endpoint, there

is a smooth crossover between nuclear matter and quark matter. This scenario is called

quark-hadron continuity [110, 113]. It has also been proposed that in the crossover region,

QCD matter goes through a series of spatially inhomogeneous phases as it transitions from

nuclear to quark matter [110, 114, 72].

1.2.5 Other two-dimensional planes of QCD phase diagram

QCD has been studied at finite isospin chemical potential (with µB = 0), first by [71, 115]

and later by [44]. The most recent analysis [116] predicts four phases. At low temperatures

and densities there is a hadronic gas, which at high temperatures deconfines to a quark-gluon
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plasma. Above a critical value of the isospin chemical potential, there is a second-order phase

transition to a pion-condensed phase, which only exists up to a certain temperature where it

smoothly transitions to a superconducting phase, which at high enough temperature turns

into a quark-gluon plasma.

Toublan and Kogut have studied QCD at finite baryon and isospin chemical potentials

[117]. QCD at finite strangeness chemical potential has also been studied, as this regime is

useful for heavy ion collisions [48, 118, 119, 120, 121].

1.3 Probes of the QCD phase diagram

1.3.1 Early universe

A few microseconds after the big bang, the universe was very dense and very hot. The

hadronic content at this time was a quark-gluon plasma, with a nearly even ratio of quarks

to antiquarks, meaning its baryon chemical potential was close to zero. As the universe

expanded, it cooled and eventually reached temperatures of 150-200 MeV, at which point it

passed through the confinement crossover and the quarks became confined in hadrons. The

early universe provides evidence that the QCD phase transition at µB ≈ 0 is not strongly

first-order, as that would disrupt big bang nucleosynthesis [122, 55].

1.3.2 Heavy ion collisions

1.3.2.1 Low energy

Low-energy heavy ion collisions can be used to see the liquid-gas phase transition. Unlike

current heavy ion collisions at RHIC or the LHC, these collisions are not energetic enough

to create a quark-gluon plasma. There is some evidence that these collisions have detected

signatures of the liquid-gas critical point, specifically, the observation [104] of a particular

distribution of nuclear fragments [123].
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1.3.2.2 Relativistic
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Fig. 1.2: Beam energy scan coverage of the QCD phase diagram, indicating the desired path
through the QCD phase diagram of the QCD matter in a heavy ion collision, from
quark-gluon plasma to a hadron gas. Figure reproduced from [1].

Relativistic heavy ion collisions have center of mass energy9 of greater than the rest mass

of the two nuclei10, so that the nuclei move with speeds close to the speed of light and

thus are significantly Lorentz contracted [56]. Because the overlapping nuclei have such high

energy density, a quark-gluon plasma is produced and is then stretched longitudinally in the

wake of the two receding nuclei. Heavy ion collisions at RHIC provided the first evidence of

the strongly-coupled nature of the quark-gluon plasma, including elliptic flow which showed

that the QGP behaved like a fluid [124]. The energy of the collision determines the baryon

chemical potential in the quark-gluon plasma. High-energy collisions (like those at the LHC)

produce QGP close to zero baryon chemical potential, while collisions at lower energy (like

those at RHIC) have higher baryon content.

9 This is usually quoted per nucleon [91].
10 A proton has mass 940 MeV, a gold nucleus 183 GeV, and a lead nucleus 194 GeV.
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RHIC has the ability to adjust its beam energy, and so it is currently running “beam

energy scans” in an effort to locate the QCD critical point (the one located at higher tem-

perature). The experiment is set up for nuclei to collide at a certain center of mass energy,

creating QGP at a certain temperature and baryon density. The QGP expands, cooling and

decreasing its density as indicated in Fig. 1.2, crossing into the hadron gas region. So far,

heavy ion collisions have not detected the first-order phase transition line. See Ref. [125] for

a summary of results of the first beam energy scan at RHIC. Relativistic heavy ion collisions

probe the high temperature and low baryon density region of the QCD phase diagram, but

they are aiming to reach higher densities in search of the critical point [126].

1.3.3 Neutron stars and neutron star mergers

As we will discuss in detail in Ch. 2, neutron stars probe the high density and low temperature

portion of the phase diagram, as they are made of cold nuclear matter and perhaps cold quark

matter. In addition, they do not have an equal number of neutrons and protons, so they

actually probe QCD at finite isospin chemical potential, which can be viewed as a third axis

of the QCD phase diagram, shown in Fig. 1.3. Neutron stars, like all astrophysical objects,

are governed not only by the strong interaction but also by the weak and electromagnetic

interactions. The weak interaction sets the ratio of neutrons to protons in the nuclear matter.

Due to electromagnetism, neutron stars, like all long-lived astrophysical objects, are charge

neutral11.

When two neutron stars merge, their temperature rises rapidly and they probe a hotter,

but still very dense region of the phase diagram, as indicated in Fig. 1.3. Neutron star

mergers will be discussed in detail in Ch. 3, and for the rest of this thesis.

11 Glendenning calculates that the excess number of charged particles per baryon must be less than 10−36

or else the astrophysical object will eject material due to Coulomb repulsion [127].
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QCD and nuclear matter

Fig. 1.3: Schematic phase diagram of QCD with axes for temperature, baryon chemical
potential and isospin chemical potential. Also shown are regions of the phase
diagram probed by different experiments and astrophysical situations. Figure
reproduced from [2].
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Chapter 2

Compact stars and the nuclear

equation of state

2.1 Neutron star observations

We now know that neutron stars are the remnants of main-sequence stars that underwent

core collapse supernovae. Core collapse occurs once a main-sequence star has extracted all of

the energy that it could from fusing elements in its core, and now, left with nothing but an

iron core from which no energy can be gained, begins gravitational collapse. As the stellar

material collapses, its density increases and eventually it reaches nuclear density, where a

combination of neutron degeneracy pressure and neutron-neutron hard-core repulsion make

the material stiff enough to halt the gravitational collapse, ejecting much of the remainder of

the infalling material. This bounce is only possible if the original star was between about 8-

30 solar masses. If the star is lighter than that, the collapse never occurs, and if it is heavier,

then not even the neutron repulsion can prevent the star from collapsing to a black hole. The

dense material left behind in the core collapse supernova is a neutron star [127, 128, 129].

Soon after James Chadwick discovered the neutron in 1932, Baade and Zwicky predicted

the existence of neutron stars, and even their birth in core collapse supernovae [130, 131]. In

1939, Tolman [132] and Oppenheimer and Volkoff [133] calculated, assuming a very simplistic

model of nuclear matter, the structure of neutron stars (see Sec. 2.3) and predicted neutron
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Chapter 2. Compact stars and the nuclear equation of state

stars of 0.3-0.7 solar masses, with radii of 3-20 kilometers. The first neutron star observation

occurred in 1967 when Hewish and Bell observed with their radio telescope a periodic signal

occurring on intervals of just over one second [134]. They called the source of this signal a

pulsar, and we now know that pulsars are rapidly rotating neutron stars with high magnetic

fields. The neutron star magnetic field causes electromagnetic beams to be emitted along an

axis that is different from the rotation axis, and when that axis sweeps across earth as the

star rotates, we see a periodic electromagnetic signal in the radio frequency range. A review

of pulsar physics and the history of neutron star and pulsar discoveries is given in [127, 135].

Neutron star observation is still of great interest at present. In particular, it is very

important to measure the mass and radii of neutron stars, which puts constraints on the

nuclear equation of state (see Sec. 2.2). While most neutron stars have masses of around

1.4 solar masses, three neutron stars with masses of around 2 solar masses have been found

[136, 137, 138] using Shapiro delay, a measurement that takes advantage of the warping of

spacetime around a compact object [139, 140]. These findings eliminated many models of

the nuclear equation of state [141, 142, 143].

The NICER experiment, an x-ray telescope on the International Space Station, has re-

cently measured the radius of one neutron star by modeling how light emitted from the back

of the star makes it to the front of the star due to the extreme curvature of spacetime. The

radius was found to be likely between 11-14 km [144, 145, 146].

The gravitational waves and electromagnetic signals that we observe from neutron star

mergers has significantly improved our understanding of nuclear matter, but we defer a

discussion of mergers to Ch. 3.

2.2 Nuclear equation of state

The equilibrium behavior of matter is a fundamental question in physics, and is only under-

stood in the mild conditions we encounter here on Earth. We will focus on matter that is
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charge-neutral and in equilibrium with respect to the weak interaction (called beta equilib-

rium), as this is the matter of astrophysical interest12. The information about the ground

state of this matter as a function of baryon density and temperature is encapsulated in the

equation of state of the matter. The equation of state contains the complete thermody-

namic description of the matter, including the pressure and its thermodynamic derivatives

(see Appendix A) as a function of temperature and baryon density (or baryon chemical

potential).

Constructing an equation of state involves first choosing particle degrees of freedom and

second, choosing how to model their interaction. These steps are done implicitly when

writing down a Hamiltonian or Lagrangian13. The equation of state is the thermodynamic

characterization of matter made of the chosen particles interacting in a specific way. For

example, the ideal gas law P = nT is an equation of state, as it encapsulates the ther-

modynamic behavior of a non-interacting, one-component classical gas [140]. Often, the

relationship between the energy density and pressure ε = ε(P ) is also called the equation of

state.

Understanding the behavior of charge-neutral, beta-equilibrated nuclear matter is not

exactly the same as understanding the QCD phase diagram, because the QCD phase diagram

neglects the electromagnetic and weak interactions, which have important contributions to

the nuclear matter in neutron stars. With that said, uncertainty in the QCD phase diagram

is by far the greatest obstacle to understanding the matter in neutron stars.

Neutron stars provide the ideal physical situation to study the behavior of high-density

nuclear matter. As we will discuss in Sec. 2.3, the baryon density at the edge of a neutron

star (the crust) starts out small, and grows as the core is approached. So, a neutron star

should exhibit the entire range of equilibrium states of nuclear matter from the crust to the

12 For example, we discussed in Sec. 1.3 the necessity for charge neutrality of neutron stars. Further, isolated
neutron stars must be close to beta equilibrium, because if their particle content was rapidly changing then
it is unlikely they would stay intact for millions of years, as we expect that they do [147, 148].

13 An exception would be the QCD Lagrangian, which has quark and gluon degrees of freedom, however
we know that at low temperatures, hadrons are the relevant degrees of freedom, not quarks.
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Fig. 2.1: Depiction of the ground state of charge neutral, beta equilibrated nuclear matter
as a function of density, showing the transition from a lattice of spherical nuclei
to uniform nuclear matter as density increases. Figure reproduced from [3].

core. A schematic illustration of the low density region of a neutron star is shown in Fig. 2.1.

At the edge of the star, there is a low density lattice of nuclei, but as the core is approached,

the density increases (due to the weight of the stellar material above) and eventually the

nuclei get close enough together to form uniform nuclear matter.

Below, we will discuss the charge-neutral, beta-equilibrated nuclear matter equation of

state at zero temperature, which is relevant for neutron stars. Then we will discuss extensions

to finite temperature, which are particularly relevant for neutron star mergers. Throughout

the rest of this section, I will discuss equations of state that we use throughout the rest of

this thesis.

2.2.0.1 Nuclear matter at low density and the neutron star crust

The ground state of nuclear matter at low density is known to us. At terrestrial densities,

nuclear matter arranges itself into a lattice of nuclei with electrons localized around each nu-

cleus, forming a shell structure. The lattice takes whatever structure minimizes the Coulomb

energy14. On Earth, we have many solids, for example, gold, lead, iron, and silicon. The

14 The density is too low for the short-ranged nuclear force to have an impact, except for determining the
mass of the nucleus.
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solid with the lowest energy is the ground state of charge neutral, beta equilibrated nuclear

matter, and all other states are only metastable (albeit with very long lifetimes). We know

from nuclear physics that 56Fe is the nucleus with the lowest energy per nucleon [135, 149],

and thus the ground state of nuclear matter at low densities is a lattice of atoms of 56Fe.

The ground state of nuclear matter at low densities was calculated by Feynman, Metropo-

lis, and Teller in [150], where they used Thomas-Fermi theory to model the electronic struc-

ture to see how the electrons delocalized as the density increased. This happens because an

increase in density increases the momentum of the electrons, and eventually an electron has

enough energy to escape the atom. The Feynman, Metropolis, and Teller calculation was

valid from terrestrial densities of several g/cm3 up to 1000 g/cm3, at which point the iron

atoms are essentially completely deionized and the electrons form a Fermi sea.

A calculation of the equation of state of nuclear matter from 1000 g/cm3 to 4.3 ×

1011 g/cm3 was done by Baym, Pethick, and Sutherland (called the BPS equation of state)

[151]. They assume the nuclei form a BCC lattice (which is the minimum energy configu-

ration for a one-component crystal) and they determine which isotope (A,Z) minimizes the

energy. The energy density of a one-component BCC lattice of nuclei with a Fermi sea of

electrons is

ε(A,Z, nN) = nN(WN +WL) + εe(ne), (2.1)

where A is the total number of nucleons in the nucleus, Z is the number of protons in

the nucleus, nN is the number density of nuclei, WN is the energy of an isolated nucleus

(due to the strong interaction)15, and WL is the lattice energy per nucleus, which is WL ≈

−1.44Z2e2n
1/3
N for a BCC lattice. The electron energy density at zero temperature is

εe = 2
∫ kF e

0

d3k

(2π)3

√

k2 +m2
e =

1

8π2

[

kF e

√

k2
F e +m2

e

(

2k2
F e +m2

e

)

−m4
e arcsinh

(

kF e

me

)]

,

(2.2)

15 This quantity comes from experiment, as we are unable to calculate nuclear masses from QCD. Even
to this day, the masses of many neutron-rich nuclei are unknown, and upcoming experiments like those at
FRIB [152] will try to make inroads on that section of the isotopic chart.

21



Chapter 2. Compact stars and the nuclear equation of state

where the electron Fermi momentum kF e = (3π2ne)
1/3. Since nN = nB/A and ne = nB(Z/A)

(due to charge neutrality), the expression for the system energy density [Eq. (2.1)] is a

function ε = ε(nB, A, Z). WN(A,Z) is taken from nuclear mass tables, for each possible

isotope (A,Z). The minimum energy state is determined by calculating the energy den-

sity ε = ε(nB, A, Z) for a given density and for each possible combination of A and Z,

and seeing which isotope has the lowest energy. Through this calculation, Baym, Pethick,

and Sutherland found that nuclear matter is a BCC lattice of 56Fe at low density, and

then as density increases the nuclei become increasingly neutron rich, going through the se-

quence 56Fe,62Ni,64Ni,84Se,82Ge,80Zn,78Ni,76Fe,124Mo,122Zr,120Sr, and 118Kr. Throughout this

sequence, the proton fraction xp = np/(np + nn) goes from 0.46 down to 0.31. Dense matter

is increasingly neutron-rich, a trend that continues to densities well beyond the crust.

We will use the BPS equation of state to model the crust of a compact object in Sec. 2.5.

The BPS equation of state is used to model neutron star crusts even today, though im-

provements have been made, stemming from an increased understanding of exotic nuclei

[3].

As the density increases beyond 4.1×1011 g/cm3, the nuclei become so neutron-rich that

the outer-shell neutrons16 become unbound and now the ground state of matter is a lattice

of neutron-rich nuclei with Fermi seas of electrons and neutrons. This density is called the

neutron drip density [110, 135, 151, 149].

2.2.0.2 Nuclear pasta and the inner crust

As the density increases past neutron drip, eventually the nuclei get sufficiently close together

that adjacent nuclei are now within the interaction range of the strong force. Now, the

equilibrium structure of matter is determined by competition between the strong force and

the Coulomb force. This new competition between forces defines the inner crust of the

neutron star.
16 In the sense of the shell model of the nucleus [73].
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The competition between the two forces seems to result in a transition from spherical

nuclei to uniform nuclear matter, with many new nuclear shapes in between, including

cylinders and slabs, and hence this type of matter is called nuclear pasta [153, 154, 155].

These shapes appear for a range of densities around 0.2n0 to 0.7n0, depending on the model

of the nuclear force used. For some models of the strong interaction, pasta phases do not

appear at all. Both classical [156] and quantum [157, 158] simulations have been used to

map out the array of possible pasta structures.

2.2.0.3 Uniform nuclear matter and the neutron star mantle

At sufficiently high densities (around nuclear saturation density n0), the nuclei (or pasta

structures) are so close together that they become uniform nuclear matter. In this regime,

adjacent nucleons are well within the range of the strong force, and so force between nucleons

is that of the strong interaction. Electromagnetism and the weak interaction help to control

the composition of the matter, which is a uniform fluid of neutrons, protons, and electrons.

The mantle and perhaps the core of a neutron star is made up of this matter. As the mantle

and core of a neutron star comprise most of the volume of the star, often neutron star matter

as a whole is treated with the equation of state of uniform nuclear matter. The equation

of state of nuclear matter is typically calculated by constructing a non-relativistic model of

the nuclear potential or by constructing a relativistic mean field theory. We will go into

detail about certain equations of state in the remainder of this section, as we will use those

equations of state to model neutron star matter throughout the rest of this thesis.

Non-relativistic nuclear potentials: One approach to constructing an equation of state

for uniform nuclear matter is to start with a model of the interaction between nucleons, as

is done in the APR equation of state [159]. The nucleon interaction is assumed to consist

of interactions between two nucleons, along with interactions between three nucleons, along

with interactions between four nucleons, and so on. Chiral effective field theory [160, 161]

provides a way to systematically organize the nucleon n-body interactions, and it suggests
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that at densities up to 2n0, 4-body and higher interactions are small [110, 160]. Thus the

nuclear Hamiltonian can be written as

H =
∑

i

p2
i

2m
+
∑

i<j

vij +
∑

i<j<k

Vijk, (2.3)

where vij is a nucleon two-body interaction and Vijk is a three-body interaction [162]. The

APR calculation used the A18 two-body potential [163] and the UIX three-body potential

[164]. These potentials are linear combinations of functions of the separation between the

nucleons as well as their spin, isospin, and angular momentum, weighted by coefficients that

are fit to nucleon scattering data and properties of the deuteron. The energy of neutron

matter and symmetric nuclear matter as a function of baryon density are calculated from

this Hamiltonian using the variational principle [162], and are plotted in Fig. 2.2. The APR
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Fig. 2.2: Energies of symmetric nuclear matter and neutron matter predicted by the APR
equation of state as a function of baryon number density, shown in blue trian-
gles. The energy in beta equilibrium is found by interpolating between these two
extremes, as explained in the text. Figure reproduced from [4].
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equation of state governing nuclear matter contains neutrons and protons, but also electrons

and muons17. The electrons and muons are treated as free Fermi gases (see Appendix B). The

condition of charge neutrality (np = ne +nµ) is enforced, and the energy of beta-equilibrated

nuclear matter at a given baryon density is found by interpolating18 between the energies of

xp = 0 and xp = 0.5 matter that are shown in Fig. 2.2 until the beta equilibrium condition

(µn = µp + µe and µe = µµ) is satisfied19. The APR equation of state is only intended

to be valid at low temperature20, so zero-temperature thermodynamic identities can be

used. The baryon chemical potentials in the beta equilibrium condition are found from the

energies through the thermodynamic identity µi = ∂E/∂Ni. The total energy is the sum of

the energies of the neutrons and protons found through the interpolation plus the electron

and muon energies. The total pressure can be found from the energy through the identity

P = n2
B∂E(nB)/∂nB, and then the equation of state ε = ε(P ) can be calculated [159, 162].

Relativistic mean field theory: Relativistic mean field (RMF) theory is a theory of neu-

trons and protons that interact via the strong interaction, which is modeled as meson-

exchange. To figure out which mesons are exchanged, we look for the lightest mesons in

the particle data book which do not change strangeness (as we are only interested here in

the force between nucleons, which have no strangeness). The lightest such mesons are the

pion, the sigma (or f0(500) resonance [166]), the rho, and the omega. In the mean field

approximation in infinite nuclear matter, the ground state expectation value of the pion

vanishes because the pion changes parity. Thus, the pion does not affect the equation of

state ε = ε(P ), so we will neglect it21 [127].

17 At zero temperature, leptons of mass mi appear when µe > mi. As we will see in the coming sections, µe

lies between about 100-300 MeV in nuclear matter at neutron star densities, so the electron (me = 0.511 MeV)
and the muon (mµ = 106 MeV) appear in neutron star matter. The tau lepton (mτ ≈ 1800 MeV) has no
chance of appearing in a neutron star.

18 The energy is assumed [159] to depend on the proton fraction xp via the combination 1 − 2xp.
19 This expression for beta equilibrium will be explained in detail in Ch. 4.
20 Cold equations of state like APR can be extended to finite temperature, see Ref. [165].
21 However, when calculating the rate of certain particle processes, the pion-nucleon coupling should be

considered in the Lagrangian. For example, nucleon-nucleon scattering proceeds via light meson exchange,
and the pion is the lightest meson so the one-pion-exchange diagrams will be the dominant contribution to
the rate [167, 168, 169, 170, 171].
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In the RMF formalism, we write down a Lagrangian with neutrons, protons, sigmas,

omegas, and rhos, which can interact in various ways and with different coupling strengths.

Different choices of interactions and coupling strengths will give rise to different equations

of state. Of course, the Lagrangian will include free electron and muon fields, as well as

neutrinos if studying neutrino-trapped nuclear matter (see Sec. 4.1). Dutra et al. [172]

created a classification system for the different types of RMFs, and then discussed their

compatibility with experiment [172, 173, 174]. In this thesis, we will use the DD2 [175, 176],

IUF [176, 177, 178], and NLρ [179] RMFs, which are type 5,4, and 2, respectively.

The original RMF was the Walecka model, which included “nucleons” (there was no

distinction between neutrons and protons) which interacted by exchanging sigma and omega

mesons [180]. The rho meson was later added to allow for differentiation between neutrons

and protons. To force the RMF to better reproduce nuclear data, one of two additions was

made. Some RMFs added nonlinear couplings of the sigma, omega, and rho mesons, and

adjusted the coupling constants to fit nuclear observables (this choice corresponds to models

of type 2, 3, and 4 in Dutra et al.’s classification). Other RMFs forsook nonlinear meson

couplings and turned the nucleon-meson coupling constants into functions of the baryon

density (type 5 in Dutra et al.’s classification)22

I will focus here on the NLρ equation of state, and refer the reader to the discussion of

Dutra et al. [172] for the full details of the other possible RMF theories. The thermodynamic

data from several of these RMF theories is tabulated on CompOSE, an online repository

[183].

22 This approach requires the addition of “rearrangement” terms in the Lagrangian [181, 182].
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The NLρ Lagrangian is23

L = ψ̄n (iγµ∂
µ − (m− gσσ) − gωγµω

µ − gργ
µt · ρµ)ψn

+ ψ̄p (iγµ∂
µ − (m− gσσ) − gωγµω

µ − gργ
µt · ρµ)ψp +

1

2
(∂µσ∂

µσ −m2
σσ

2)

− 1

3
bm(gσσ)3 − 1

4
c(gσσ)4 − 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ − 1

4
ρµνρ

µν +
1

2
m2

ρρµ · ρµ

+ ψ̄e(iγµ∂
µ −me)ψe + ψ̄ν(iγµ∂

µ)ψν , (2.4)

where ψi is a 4-component Dirac spinor, ωµν = ∂µων −∂νωµ and ρµν = ∂µρν −∂νρµ. We have

assumed massless neutrinos and the neutron and proton have the same mass m. From this

Lagrangian it is apparent why the rho meson distinguishes between neutrons and protons -

it is dotted into a vector of isospin operators t.

This Lagrangian leads to equations of motion (see Ref. [127] for a more complete dis-

cussion) for the neutron, proton, sigma, omega, and rho fields. Since we are interested in

the static, ground state of nuclear matter, the meson fields are assumed to be static and

equal to their ground state expectation values (thus, they become mean fields in which the

neutrons and protons interact), which are then determined through their (now simplified)

equations of motion. The neutron and proton equations of motion become modified version

of the Dirac equation

[

i/∂ − (m− gσσ) − gωγ
0ω0 +

1

2
gργ

0ρ03

]

ψn = 0 (2.5)
[

i/∂ − (m− gσσ) − gωγ
0ω0 − 1

2
gργ

0ρ03

]

ψp = 0. (2.6)

23 We use parameter set 1 in [179], which includes the sigma, omega, and rho mesons, but neglects the δ
meson. Application of this RMF to calculation of weak interaction rates is given in Ref. [184].
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We define the neutron and proton effective mass m∗ = m− gσσ and the nuclear mean fields

Un = gωω0 − 1

2
gρρ03 (2.7)

Up = gωω0 +
1

2
gρρ03, (2.8)

which will become useful soon. The neutron and proton have the same effective mass (inclu-

sion of the δ meson splits the effective masses [179]), but do not experience the same nuclear

mean field.

Fourier transforming, we find the energy dispersion relations

En =
√

p2 +m2
∗ + Un (2.9)

Ep =
√

p2 +m2
∗ + Up. (2.10)

In the mean field approximation, neutrons and protons behave like free particles with effective

(Dirac) masses m∗ and with effective chemical potentials µ∗
n = µn − Un and µ∗

p = µp − Up.

The nucleon spinor ψn or ψp is exactly the free nucleon spinor, but with effective mass m∗

and effective energy E∗
n or E∗

p , where E∗
n = En − Un and E∗

p = Ep − Up. The nucleon four-

vector to be used in matrix element calculations is pµ = (E∗,p). This formalism is discussed

in [184], but see also [5, 185, 186].

With the removal of the spacetime dependence of the meson fields, the meson equations

of motion become

gσσ =
(

gσ

mσ

)2 [

ns
p + ns

n − bm(gσσ)2 − c(gσσ)3
]

(2.11)

gωω0 =
(

gω

mω

)2

(np + nn) (2.12)

gρρ03 =

(

gρ

mρ

)2
1

2
(np − nn), (2.13)
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where

ns
N = 2

∫ d3p

(2π)3

m∗

E∗
N

(

1 + eβ(EN −µN )
)−1

(2.14)

nN = 2
∫ d3p

(2π)3

(

1 + eβ(EN −µN )
)−1

(2.15)

are the scalar density24 and the (familiar) number density for neutrons and protons. Note

that EN − µN = E∗
N − µ∗

N . The solution of these mean field equations turns out to only

depend on the ratio gi/mi for each of the three mesons, so mi can be eliminated from each

of the mean field equations leaving the couplings gi as the unknowns.

In matter with just neutrons, protons, and electrons, the equation of state can be found by

solving a system of 6 equations (numerically). Three equations are the relativistic mean field

equations (2.11,2.12,2.13), and then ne = np, nB = nn+np, and µn = µp+µe. Once you spec-

ify the temperature T and the baryon density nB, the quantities {gσσ, gωω0, gρρ03, µn, µp, µe}

are obtained from the solution of the system of equations.

For matter with neutrons, protons, electrons, and neutrinos, the equation of state can

be found by solving 7 equations (numerically). These equations are the same as for the

no-neutrino case, except for the beta equilibrium condition is now µn + µν = µp + µe (see

Sec.4.2), and there’s an extra equation ne +nν = YL(nn +np). Now, the temperature, baryon

density, and lepton fraction YL must be specified to solve for {gσσ, gωω0, gρρ03, µn, µp, µe, µν}.

We have plotted the proton fraction predicted by the NLρ equation of state as a function

of density in Fig. 2.3. Also, the effective mass and nuclear mean fields are plotted in Fig. 2.4.

We see that above nuclear saturation density, this equation of state predicts neutron-rich

nuclear matter that has a low Dirac effective mass at high density. Both nuclear mean fields

grow with density, as does the difference between them, which has kinematic consequences

for weak interactions [5]. For more on the nuclear mean fields, see Ref. [187].

24 Called the scalar density because it is the source term of the scalar (sigma) relativistic mean field
equation.
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Fig. 2.3: Proton fraction in npe matter with the NLρ equation of state, at T=1 MeV.

2.2.0.4 Exotic phases and the neutron star core

As the density increases past a few times nuclear saturation density, it is likely that other

degrees of freedom start to appear in nuclear matter, including quarks and hyperons (baryons

with net strangeness) [188, 189, 190, 191, 192]. The nature of the quark-hadron transition at

high density is unknown. It could be a first-order phase transition, which occurs at a specific

pressure. Depending on the value of the quark-hadron surface tension, which is unknown,

the transition could have a sharp jump in density between phases, or a very gradual change,

in the case of a mixed phase. Alternatively, the phase transition could be a crossover, which

has phase coexistence over a range of densities. Another option would be quarkyonic matter

[193]. Phase transitions in dense nuclear matter are discussed in [127, 194, 110].

2.3 TOV equation and Mass-Radius curves

In this section, we derive equations governing the structure of spherical stars and discuss the

impact of the equation of state on the stellar structure.
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Fig. 2.4: Nucleon effective mass m∗ and neutron and proton mean fields Un and Up, for
matter matter with the NLρ equation of state, at T=1 MeV. As density increases,
the difference in mean fields Un −Up grows, which has kinematic consequences for
weak interactions [5]. The nucleon effective mass decreases at high densities, which
means that at high densities, nucleons can no longer be treated non-relativistically
[6].

In Newtonian mechanics25, a sphere of matter holds together because for any given spher-

ical shell of the material, the forces that act on it balance. First, there is the gravitational

force inwards due to the mass enclosed by the shell. Second, there are forces due to pres-

sure from material above and below the shell (this should be considered one force, due to

a pressure gradient on the shell) [128]. If we consider a spherical shell of thickness dr at

distance r from the center, the shell has mass dm(r) = 4πr2ρ(r) dr, where ρ(r) is the rest

mass density at position r. The inward gravitational force on the shell due to the mass

m(r) that it encloses is −Gm(r) dm/r2 = −4πGm(r)ρ(r) dr. The outward force due to the

pressure gradient is −AdP = −4πr2 dP . In hydrostatic equilibrium, these forces balance,

25 Newtonian mechanics applies quite well to our Sun and fairly well to white dwarfs. It fails when describing
neutron stars, and obviously it cannot account for black holes.
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yielding the (coupled) Newtonian equations for stellar structure

dP

dr
= −Gm(r)ρ(r)

r2
, (2.16)

dm

dr
= 4πr2ρ(r). (2.17)

From these stellar structure equations, we can see that the enclosed mass grows from the

core to the crust, which is intuitive, but also that the pressure decreases monotonically from

core to crust. The distance r = R at which the pressure reaches zero defines the radius of

the star. The enclosed mass at that radius is the total mass of the star. To solve these

equations, the equation of state ρ = ρ(P ) of the stellar material must be introduced. These

coupled equations are integrated from core to crust, where the initial conditions at the core

are m(r = 0) = 0 and P (r = 0) = Pc, where Pc is called the central pressure (and can be

converted to a central density via the equation of state).

The extension of these equations to General Relativity begins with a metric ansatz for a

static and spherically symmetric spacetime

ds2 = gµν dx
µ dxν = e2ν(r) dt2 −e2λ(r) dr2 −r2(dθ2 + sin2 θ dφ2). (2.18)

The relativistic stellar matter is described as a perfect fluid, meaning that its stress-energy

tensor only depends on the energy density ε and pressure P of the fluid, and so the metric

ansatz and the perfect fluid stress-energy tensor T µν can be plugged into Einstein’s equations

Rµν − 1

2
Rgµν = 8πGT µν , (2.19)
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yielding the general relativistic structure equations

dP

dr
= −Gm(r)ε(r)

r2

(

1 +
P (r)

ε(r)

)(

1 +
4πr3P (r)

m(r)

)(

1 − 2Gm(r)

r

)−1

(2.20)

dm

dr
= 4πr2ε(r). (2.21)

These are called the Tolman, Oppenheimer, Volkoff (TOV) equations [132, 133]. The details

of the derivation are given in [127]. Again, an equation of state ε = ε(P ) is needed to solve

the equations, which is done the same way as in the Newtonian case. Here, the enclosed

mass is defined through

e2λ(r) =

(

1 − 2Gm(r)

r

)−1

. (2.22)

Eqs. (2.20) and (2.21) with an equation of state ε = ε(P ) can be solved together. Ein-

stein’s equations also produce a final equation

dν

dr
=
G

r

(

m(r) + 4πr3P (r)

r − 2Gm(r)

)

(2.23)

for ν(r), which was part of the spacetime metric ansatz [Eq. (2.18)]. Once Eqs. (2.20) and

(2.21) have been solved, Eq. (2.23) can be solved with the boundary condition ν(R) =

(1/2) ln (1 − 2GM/R), where the star has mass M and radius R. This boundary condition

ensures that the spacetime inside the star connects to the Schwarzchild solution outside of

the star [127].

A given equation of state allows many stellar equilibrium configurations, each of which

corresponds to a possible star that we could expect to find in the sky, if matter is indeed

governed by that particular equation of state. The set of allowed stellar configurations is

indexed by one parameter, the central pressure (or density). The set of all allowed stellar

configurations can be displayed as a mass-radius curve, parametrized by central pressure.

Each point on the curve corresponds to a choice of central pressure, giving rise to a star of

a particular mass and radius.
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Fig. 2.5: Schematic mass-radius diagram arising from a typical nuclear equation of state.
The central pressure (or density) is small at the bottom right of the plot, and
increasing as the curve continues in the direction of the arrows. Solid lines denote
stable configurations, dotted lines indicate unstable configurations. Letters (a)
through (e) label the extrema of the curve, which will be referred to in Sec. 2.4.
Figure reproduced from [7].

A schematic view of the mass radius curve26 for stars made of a typical nuclear equation

of state is shown in Fig. 2.5. Each point on the curve corresponds to a star with a specific

central pressure - low central pressure configurations start on the bottom right corner of

the plot and as the curve winds from low mass, large radius configurations to high mass

small radius configurations, the central pressure rises. Even though all points on the curve

are equilibrium configurations, only some of them (shown in solid lines) are stable to radial

oscillations. This will be discussed in Sec. 2.4.

The configurations at low central density are planets, and as the central density increases

they become white dwarfs. Even the core of the most massive white dwarf (and thus the one

with the highest central density) is orders of magnitude less dense than nuclear saturation

density. White dwarfs are smaller than stars like our sun, but still have radii of thousands

26 Quantitative versions of this curve are given in [7, 135, 149, 195, 196, 139].
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of kilometers. They are supported by electron degeneracy pressure. However, they have a

maximum mass (known to be about 1.44 solar masses [128]) called the Chandrasekhar mass,

above which the electron degeneracy pressure is not enough to support the mass of the white

dwarf [127, 135, 197].

For a wide range of central pressures above the Chandrasekhar limit, there are no stable

configurations. Eventually stability is regained, but at this point the stars are much smaller,

with radii closer to 10 kilometers27, and so they are generically called compact objects. If

the compact object is a neutron star, it supports itself through a combination of neutron

degeneracy pressure and nucleon-nucleon repulsion at short distances. However, it too has

a maximum mass it can support before it collapses to a black hole. From observations, we

know that this maximum mass is at least two solar masses, as discussed in Sec. 2.1, but

there is evidence to suggest the maximum mass is not too much larger than two solar masses

[198, 199]. If there is a phase transition from nuclear to quark matter [200, 201, 202, 203, 204],

or even two phase transitions [205], the mass-radius curve develops extra structure in the

compact star branch.

Knowing the mass-radius curve would significantly improve our understanding of nuclear

matter, because it can (uniquely) be turned back into the equation of state ε = ε(P ) [206].

2.4 Stability of compact objects

While all points on the mass-radius curve correspond to stars in hydrostatic equilibrium, only

some of the stars are stable against radial oscillations and thus could be expected to be seen

in nature. A stellar configuration is stable only if all of its radial modes are stable. There are

two approaches to determine the stability of a star - one involves the static properties of the

stellar sequence, namely the mass-radius curve, and the second involves dynamic properties

of a particular star, namely, its radial eigenmodes [207]. We present both below.
27 We will see in Sec. 2.5 that stable configurations can technically have radii of a couple hundred kilome-

ters, however nobody has ever seen such an object and we know of no theoretical formation channels (like
supernovae) that could produce such an object.
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2.4.1 Mass-radius stability criterion

The mass-radius stability criterion was proposed in [196] and further developed in [208, 209,

207]. Spherical stars of arbitrarily low central density are just terrestrial matter, and thus

are stable to radial perturbations - they have zero unstable modes. At each extremum in the

mass-radius curve, one radial oscillation mode changes stability. At each extremum where

the mass-radius curve turns counterclockwise with increasing central pressure, one stable

mode becomes unstable. At each extremum where the mass-radius curve turns clockwise

with increasing central pressure, one unstable mode becomes stable.

We now apply this criterion to Fig. 2.5. At low central pressure, all modes are stable. As

the central pressure increases and the curve goes through point (a), the winding is counter-

clockwise and thus one mode becomes unstable, causing stars after point (a) to be unstable.

As the central pressure increases through point (b), the winding again is counterclockwise,

so between (b) and (c) stars are unstable with two unstable oscillation modes. At point (c),

the winding is clockwise, so stars between (c) and (d) have one unstable mode. The curve

passes through (d) clockwise, so between (d) and (e) all modes are stable once more. At

point (e), the curve turns counterclockwise, and continues to do so up to arbitrarily high

central density and so there are no stable stars above (e), as more and more modes turn

unstable.

2.4.2 The Sturm-Liouville mode spectrum

The most direct way of calculating stellar stability is by solving the Sturm-Liouville problem

to find the radial eigenmodes. The radial oscillations are described [210, 195, 127] by

δrn(r, t) =
eν(r)

r2
un(r)eiωnt, (2.24)

36



Chapter 2. Compact stars and the nuclear equation of state

where n indexed the radial eigenmode and un(r) is a solution with eigenvalue ω2
n to the

Sturm-Liouville eigenvalue problem

d

dr

(

Π(r)
dun

dr

)

+ (Q(r) + ω2
nW (r))un(r) = 0, (2.25)

where

Π(r) =
eλ(r)+3ν(r)

r2
Γ(r)P (r),

Q(r) = −4
eλ(r)+3ν(r)

r3

dP

dr
− 8π

e3λ(r)+3ν(r)

r2
P (r)(ε(r) + P (r)) +

eλ(r)+3ν(r)

r2(ε(r) + P (r))

(

dP

dr

)2

,

W (r) =
e3λ(r)+ν(r)

r2
(ε(r) + P (r)),

Γ(r) =
ε(r) + P (r)

P (r)

dP

dε
.

The boundary conditions for the eigenvalue problem are

un ∝ r3 at r = 0, (2.26)

dun

dr
= 0 at r = R. (2.27)

The solutions to the Sturm-Liouville eigenvalue problem are a set of eigenfunctions un(r)

with eigenvalues ω2
n, which are the squared frequencies of the oscillation modes. The eigenval-

ues are real due to the Sturm-Liouville nature of the problem, and form [8] a lower-bounded

infinite sequence ω2
0 < ω2

1 < ω2
2 < .... If ω2

n > 0, then the nth mode has a real frequency and

thus is a stable, oscillatory mode. If, however, ω2
n < 0, then the frequency of the nth mode

is imaginary and the mode is unstable.

The overall stability of the star depends on just the lowest eigenvalue ω2
0. If ω2

0 > 0, the

lowest mode is stable and thus all other modes are stable because ω2
n > ω2

0 for n ≥ 1. If

ω2
0 < 0, then there is at least one mode that is unstable and thus the star is unstable.
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2.5 Strange dwarf stars and the strange matter

hypothesis

This section is based on my work with Mark Alford and Pratik Sachdeva, [7].

2.5.1 Strange matter hypothesis

In Sec. 2.2 we discussed that at terrestrial densities, a bar of gold is a metastable state (with

extraordinary long lifetime), since 56Fe is the state with the lowest energy per nucleon. In

the seventies and eighties, Bodmer [211] and Witten [212] proposed that the ground state of

nuclear matter was not 56Fe, but instead strange matter, a mixture of up, down, and strange

quarks. They proposed that 56Fe was just a long-lived metastable state, not the true ground

state.

2.5.2 Strange stars and strange dwarf stars

If strange quark matter is the true ground state, then strange stars, stars made of strange

quark matter, should exist. This does not mean that neutron stars could not also exist,

however [127]. For this section, we will focus on strange stars with a nuclear matter crust.

Strange quark matter has a small net positive charge, because the strange quark has a much

larger mass than the up and down quark, so its population is suppressed relative to the up

and down quark populations. As the strange quark has negative electric charge, the matter

as a whole will have net positive charge and thus will need to include electrons to make it

electrically neutral. Alcock, Farhi, and Olinto noted that the electrons would extend slightly

beyond the surface of the strange quark matter in a strange star, because they are not bound

by the strong interaction. Thus, strange stars have an electric dipole layer on their surface,

which allows the star to suspend a nuclear matter crust several hundred femtometers above

the strange matter [213].
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The strange star with a nuclear matter crust can be modeled by an effective equation of

state [214]

ε(P ) =



















εBPS(P ) P 6 Pcrit

kP + 4B P > Pcrit,

(2.28)

where below a certain pressure Pcrit, the matter is a nuclear lattice with a relativistic electron

Fermi sea (described by the BPS equation of state, see Sec. 2.2), while above Pcrit the matter

is strange quark matter described with the constant-speed-of-sound (CSS) parametrization

[202, 215, 216]. In contrast to equations of state discussed in previous sections, this one is

not supposed to represent the ground state of nuclear matter. Instead, it just realizes the

possibility of having a star made of strange matter with a metastable nuclear crust suspended

on top of it. Following Glendenning et al. [217, 218], we will take the transition pressure

Pcrit = Pdrip = 3724 MeV, which is the pressure above which neutrons begin to drip out of

nuclei in the Coulomb lattice (see Sec. 2.2)28. For the CSS phase, they choose k = 3 and

B1/4 = 145 MeV. This equation of state is plotted in Fig. 2.6.

In Refs. [217, 218] (see also [127]), Glendenning et al. constructed a sequence of stellar

configurations using the equation of state Eq. (2.28). They constructed a mass-radius curve

for this sequence and it looked (schematically) like Fig. 2.5. However, they claimed that in

addition to the regions before points (a) and between points (d) and (e), the region of the

mass-radius curve between (c) and (d) was also stable to radial oscillations. They termed

this new family of stars “strange dwarfs”, as they are of a similar size to white dwarfs, but

contain a small strange quark matter core. The fraction of the star in the quark matter

phase grows as the central pressure increases. If these strange dwarf stars were stable,

they would represent the first known contradiction between the mass-radius curve stability

analysis (strange dwarfs are unstable according to the mass-radius criteria) and the Sturm-

Liouville eigenmode analysis, which Glendenning et al. claimed yield stable strange dwarfs

28 The neutron drip pressure is the maximum allowed pressure the suspended nuclear crust can attain,
because once free neutrons appear in the nuclear crust they will fall into the strange matter core [127].
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Fig. 2.6: Equation of state Eq. (2.28) with a sharp, first-order transition at the neutron
drip pressure from BPS matter to a strange quark matter phase.

because they find ω2
0 > 0.

In [7], we use a version of the EoS (2.28) where the phase transition is smoothed out over

a range of pressures δP

ε(P ) =
1

2

(

1 − tanh
(

P − Pcrit

δP

))

εBPS(P ) +
1

2

(

1 + tanh
(

P − Pcrit

δP

))

(kP + 4B) . (2.29)

Using this regulated phase transition allows us to use the traditional techniques and boundary

conditions for solving the Sturm-Liouville problem for the radial modes29. The mass-radius

curve for this equation of state (with δP = 100 MeV4) is shown in Fig. 2.7. The point on the

mass radius curve (b) is where quark matter starts to appear. Stars with central pressures

less than at (b) are made solely of BPS nuclear matter. As the central pressure increases

beyond its value at (b), the stars have progressively larger quark matter cores. Stars between

29 Pereira and Rueda [219] have developed the matching conditions between the two regions of the star in
the case of a true discontinuity in the equation of state. See also [220]. These matching conditions have also
been formulated in the Newtonian limit in [221].

40



Chapter 2. Compact stars and the nuclear equation of state

(c) and (d) are Glendenning et al.’s strange dwarfs, neutron stars with a small strange quark

matter core. Stars between (d) and (e) are small, strange quark matter stars with a thin

nuclear crust.
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Fig. 2.7: Mass-radius plot for hybrid stars with equation of state Eq. (2.29). Solid lines indi-
cate stable configurations according to the mass-radius criterion and dashed lines
indicate unstable configurations. The arrows indicate the direction of increasing
central pressure.

If there is a sharp first-order transition in the equation of state then point (b) is a cusp

in the M(R) relation. For finite but very small transition width δP . 1 MeV4 the cusp

becomes a minimum at which, according to the mass-radius criteria, the second-lowest mode

goes from stable to unstable as central pressure increases. In our calculation we use values

of δP in the range 10 to 100 MeV4, in which case the mass radius relation develops a more

complicated structure at b which may have multiple extrema as the curve spirals and then

“uncoils” again. This structure occurs in a very small range of masses and radii near b,

and is invisible on the scales shown in Fig. 2.7. The details of this structure depend on the

exact profile of the regulated transition, but, as we will see, (i) the lowest eigenmode remains

negative so all these configurations are unstable; (ii) as central pressure increases through
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b, the net outcome is that the second-lowest mode goes from stable to unstable; (iii) this

behavior is not relevant to the stability of strange dwarfs, which lie between c and d on the

mass-radius curve.

To study the stability of the strange dwarfs between (c) and (d), we solved the Sturm-

Liouville problem for the radial eigenmodes using the equation of state Eq. (2.29) with the

regulated phase transition. Our results are displayed in Figs. 2.8, 2.9, 2.10, and 2.11.
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Fig. 2.8: Squared frequencies for the two lowest radial eigenmodes for TOV solutions plot-
ted in Fig. 2.7. We find that stellar configurations between (a) and (d) are unsta-
ble, because they have at least one unstable radial mode.

In Fig. 2.8 we show the lowest two eigenvalues ω2
0 and ω2

1 as a function of central pressure

for the entire stellar sequence depicted in Fig. 2.7. Our results are perfectly consistent with

the mass-radius criteria. Stars with central pressures less than at (a) or greater than at (d)

are stable because all of their radial eigenmodes are stable.

In Fig. 2.9, we focus on the range of central pressures where strange dwarfs were proposed

to exist, between points (c) and (d) on the mass-radius curve. In this range, the lowest

eigenvalue is always negative, indicating that strange dwarfs are unstable. Comparing with
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Fig. 2.9: Squared frequencies for the four lowest eigenmodes for TOV solutions shown in
Fig. 2.7. We have zoomed in on the region from (c) to (d) where the strange
dwarfs were hypothesized to occur. However, ω2

0 < 0 in this region, and thus
strange dwarfs are unstable.

Fig. 2 in [218], it seems likely that Glendenning et al. mistook the second-lowest eigenvalue

for the lowest one, giving them the impression that these configurations were stable.

To check that we have found the lowest eigenmode, we show in Fig. 2.10 the first three

eigenfunctions of a strange dwarf configuration, with Pc = 7 × 106 MeV4. The nth eigenfunc-

tion has n nodes, as should be the case for a Sturm-Liouville problem [8].

The eigenvalue spectra shown in Figs. 2.8 and 2.9 were calculated with a regulator width

of δP = 100 MeV4. To show that the results carry over to the discontinuous limit, in Fig. 2.11

we show the behavior of the lowest eigenvalue for different regulator widths. The spectrum

depends slightly on the regulator width around point (b) on the mass-radius curve, but

between points (c) and (d) there is almost no dependence on the regulator and the lowest

eigenvalue remains negative in the discontinuous limit.

We conclude that the mass-radius criteria remains valid, as it agrees with the results of

the Sturm-Liouville analysis of the eigenmodes, even in the case where the equation of state
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Fig. 2.10: The first three eigenfunctions un(r) for a TOV solution with a central pressure
of 7 × 106 MeV4, which lies between points (c) and (d) in Figs. 2.8 and 2.9. For
this TOV solution, the phase transition is located at r = 2.4 km. As expected
for Sturm-Liouville eigenfunctions [8], un(r) has n nodes.

has a first-order phase transition. Therefore, strange dwarf hybrid stars are unstable and

will not be found in nature.
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Fig. 2.11: Dependence of the lowest eigenvalue on the regulator width δP . As the regulator
tends to zero width, and thus the phase transition becomes sharper, the lowest
eigenmode remains unstable in the region between (c) and (d).
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Chapter 3

Transport and neutron star mergers

For the remainder of this thesis, the topic will be neutron stars mergers and the nuclear

matter in those mergers. Each of the next three chapters is a separate project we have

worked on related to these mergers. First, we set the stage by giving a general introduction

to binary neutron star mergers.

3.1 Neutron star merger observations

On August 17, 2017, the gravitational and electromagnetic signals from a neutron star

merger, GW170817, were detected on Earth for the first time [222]. The gravitational wave

signal was detected by LIGO, and two seconds after the merger a gamma ray burst was de-

tected, installing GW170817 as the second member of a class of multimessenger astrophysical

events, the first being supernova 1987a30. As a binary neutron star system evolves in time,

the orbiting stars emit gravitational waves, removing energy from the orbit and bringing the

stars closer together31. As the stars move closer together, their orbital frequency increases.

The frequency of the gravitational waves emitted by the binary system is twice the orbital

frequency [139], and so the frequency of emitted gravitational waves continues to increase as

the orbit loses energy and the stars get closer together until the stars touch, merging into

30 SN1987A had a clear electromagnetic signal, but also a few neutrinos emitted from the supernova were
detected [223].

31 The energy lost due to gravitational radiation for a circular binary system goes as dE / dt ∼ −µ2M3/(a5),
where µ is the reduced mass, M is the total mass, and a is the separation between the two stars [195].
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one object, either a neutron star or a black hole. The part of this process before the two

stars touch is called the inspiral. In Fig. 3.1 we show results from a simulation depicting the

various stages of a merger. We will discuss simulations of mergers in Sec. 3.2.
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Fig. 3.1: The results of a neutron star merger simulation. The time from first-touch to
combination into one object is about 25 milliseconds in this simulation. Figure
reproduced from [9].

As the gravitational wave frequency increases throughout the inspiral phase, eventually

it is high enough to be measured by LIGO. Fig. 3.2 shows the sensitivity of LIGO, Advanced

LIGO, and the Einstein Telescope across a wide range of gravitational wave frequencies. For

a given detector, the grey line indicates the noise threshold - signals above the grey line at

a particular frequency could be measured by the corresponding detector. Superimposed is

the gravitational wave signal as a function of gravitational wave frequency, which is a proxy

for time because the frequency of the emitted gravitational waves increases as the inspiral

progresses. This figure shows us that Advanced LIGO, which detected GW170817, can only

measure the inspiral, not the merger itself.

As the two compact objects get close together, they begin to tidally deform one another

due to the strong gravitational fields produced by both objects. The amount of tidal defor-
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post-merger signal. Figure courtesy of J. Read. See also [10, 11].

mation depends on the equation of state; a star that is stiff will not deform much, but one

that is softer will experience greater deformation. The degree of tidal deformation can be

inferred from the gravitational wave signal. Tidal deformation causes a phase shift in the

signal because orbital energy goes into deforming the stars (as well as gravitational radia-

tion). Using the tidal deformation to study the equation of state is discussed extensively in

[224].

After the two neutron stars merge, unless there is prompt collapse to a black hole, a

remnant neutron star will be created. If the remnant has a mass larger than the TOV

limiting mass, it survives for a period of time due to differential rotation, but it typically

collapses within a few tens of milliseconds. If the remnant has a mass less than the TOV

limit, then it can survive indefinitely as a massive neutron star [225, 226, 227]. The neutron
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star remnant experiences oscillations of fundamental modes with typical frequencies of a few

kHz. These oscillations emit gravitational waves, but unfortunately they are at frequencies

at which Advanced LIGO is not sensitive. However, in principle the equation of state can

be deduced from the frequency of these gravitational waves, because each equation of state

has a unique spectrum of oscillation modes [224]. Similarly, the gravitational wave signal

postmerger can determine if a phase transition from hadronic to quark matter was induced

by the merger [228, 229].

3.2 Neutron star merger simulations

Starting two decades before GW170817, various groups have conducted numerical simula-

tions of neutron star mergers. Simulations are needed because of the complexity of the the-

ories required to describe nuclear matter at high densities in dynamical, curved spacetime32.

Additionally, simulations are a playground in which the impact of adding or subtracting dif-

ferent types of physics can be explored. Simulations predict observables like the gravitational

wave signal or the optical signal, which can then be compared to observation to evaluate the

simulation and its physical assumptions.

The backbone of a merger simulation is general relativity. Einstein’s equations are evolved

from an initial configuration of two Schwarzschild solutions some distance apart. A detailed

account of the numerical solution of Einstein’s equations is given in [230]. General relativity

is also important to determine the gravitational radiation that escapes the system and is

measured in our gravitational wave detectors.

Just as in static neutron stars (see Sec. 2.3), the matter in the merging neutron stars

is modeled as a perfect fluid with some equation of state ε = ε(P ). Viscosity can also be

included in the stress-energy tensor33. Unlike isolated neutron stars, the fluid in a merger

is not static, but obeys the equation of motion ∂µT
µν = 0, which is coupled with Einstein’s

32 This is true for the last several revolutions of the inspiral, where the neutron stars can no longer be
treated like point particles (see Fig. 3.2).

33 See, for example, Israel-Stewart theory [230, 56].
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equations because both contain the fluid stress-energy tensor. Many simulations also couple

these equations to Maxwell’s equations in the form of magnetohydrodynamics (MHD) [225],

as neutron stars have very strong magnetic fields and magnetic fields are expected to impact

mergers.

As mergers represent violent, often far-from-equilibrium situations, a realistic nuclear

equation of state must be specified both in and out of beta equilibrium. Several such equa-

tions of state exist, many of them are tabulated on CompOSE [183]. The equation of state

must be constructed for a wide range of temperatures and densities (see Sec. 3.4). These

equations of state are reviewed in [3].

Nuclear matter in neutron star mergers is in thermal equilibrium, because the mean free

path of neutrons, protons, and electrons are certainly much less than the dynamical scales

which are certainly larger than a meter (we neglect the possibility of turbulence here). Thus

the neutrons, protons, and electrons collide very frequently compared to merger timescales

and thus stay in thermal equilibrium. However, the neutrino mean free path varies widely

throughout the merger (as we will see in Sec. 4.1), and often the neutrinos are not in thermal

equilibrium. Thus, neutrinos are treated separately from the rest of the nuclear matter, and

are either treated as their own fluid or in a kinetic theory formalism [231, 232, 233, 234, 235,

236].

3.3 Transport in mergers

Neutron star merger simulations already contain an immense amount of physics, but it is

natural to ask if there is something dramatic that they are missing. Transport processes

and viscosity are both possibilities. This question was considered by Alford et al., who

did back-of-the-envelope calculations to determine the importance of thermal conductivity,

shear viscosity, and bulk viscosity [15]. Electrical conductivity was examined in [237]. To

determine the importance of a particular physical effect, we determine the timescale on
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which it acts. If the timescale is comparable to the merger timescale of tens of milliseconds,

then the process might be relevant in mergers. Of course, if one is interested in a long-lived

neutron star remnant, then the timescale for relevance of a physical process must be adjusted

accordingly. Gravitational radiation damps large-scale motion in the post-merger system on

a timescale of tens of milliseconds [15], so a transport process involving large-scale motion

is only relevant if it acts on a timescale less than that of gravitational radiation.

Thermal conductivity κ, shear viscosity η, and bulk viscosity ζ enter the hydrodynamic

equations via entropy production. Entropy is conserved in a perfect fluid [140], but in a

non-perfect fluid, entropy is generated by terms proportional to κ, η, and ζ (see Refs. [83,

238] for the full details). Thermal conductivity produces entropy when there are thermal

gradients in the system, shear viscosity produces entropy when there is shear flow, and bulk

viscosity produces entropy when the velocity field has a nonzero divergence, meaning the

fluid is getting compressed or expanded. We will discuss bulk viscosity in Ch. 5 and thermal

conductivity in Ch. 6.

3.4 Thermodynamic conditions in mergers

Neutron star merger simulations, which typically do not take viscosity or transport processes

into account,34 give us an idea of the thermodynamic conditions encountered by the nuclear

matter, which is of vital importance for studying transport because many transport prop-

erties are strongly temperature-dependent. It is well established that neutron stars reach

densities of several times nuclear saturation density [240, 241], but before the merger they

have temperatures below 1 MeV. After the two stars touch, the temperature rises dramati-

cally to tens of MeV, and the density rises by perhaps a factor of two.

For example, Fig. 3.3 shows a plot from Perego, Bernuzzi, and Radice [12] which tracks

the maximum temperature and density throughout a merger simulation. Each different color
34 However, simulations have an inherent viscosity that comes from numerical error leading to energy non-

conservation [239]. Also, the simulations track gravitational radiation, which damps large-scale motion of
matter in the merger.
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line corresponds to a simulation run with a different equation of state. We see that before

the merger (t < 0), the maximum density is just the density of the core of the more massive

of the two inspiraling neutron stars. When the stars touch at t = 0, the maximum density

changes wildly for several milliseconds, indicating that the nuclear matter is undergoing

severe mechanical oscillations. For some equations of state, the maximum density diverges

as a black hole is formed. For others, where a hypermassive remnant is formed, the density

slowly increases as the hypermassive remnant ceases to differentially rotate and realizes its

instability. After about 20 milliseconds, a black hole is formed. For still other equations

of state, a stable neutron star is formed, which indeed has a larger core density than the

two original stars. As for the temperature, the inspiraling neutron stars start out with some

temperature, which is artificially large in Fig. 3.3 for numerical reasons. When the stars

touch, the temperature spikes to 60-100 MeV depending on the equation of state, and then

decreases as time progresses - an exception being when a black hole is formed, which causes

the temperature to diverge.

Fig. 3.3: Maximum baryon density and temperature present in the merger as a function
of time, where t = 0 is when the two stars touch. Each color corresponds to a
different equation of state. Figure reproduced from [12].

It is also informative to look at the temperature and density distributions throughout the
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Fig. 3.4: Temperature and densities attained by nuclear matter throughout a neutron star
merger. After ten milliseconds, this simulation indicates that the matter has
settled into a configuration with cold, low density matter on the outskirts of the
merger, hot medium-density matter in the outer core, and cold, high density
matter in the core. Figure courtesy of M. Hanauske and the Rezzolla group, see
also [13].

merging neutron stars. In Fig. 3.4 we show the results of simulations by the Frankfurt group,

where they have recorded the temperature and density of fluid elements in the merger at a

few snapshots in time, in particular 1.98 ms postmerger (left panel) and 10.29 ms postmerger

(right panel). Right at the time of merger, the temperature increases dramatically, up to 70

MeV according to the left panel of Fig. 3.4. After several milliseconds of chaos, the merger

has settled down into an arch-like structure in the {nB, T} plane, where the outskirts of the

merger are relatively cold and low density, the outer core of the merger is hot and moderate

density, and the core is cold and high density. This is illustrated in Fig. 3.5, which shows

that the highest temperatures are reached not in the core of the merger remnant, but in a

spherical shell 1-2 km thick that is in the outer-core region [14], which has density of 1−2n0.

See similar figures in [12].
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Fig. 3.5: Temperature distribution in neutron star merger 6.71 ms postmerger (left panel)
and 23.83 ms postmerger (right panel). The right panel indicates that the region
of the merger than experiences extremely large temperatures (above, say, 20 MeV)
is a spherical shell which is 1-2 km wide. Figure reproduced from [14].
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Beta equilibrium in

neutrino-transparent nuclear matter

This section is based on my work with Mark Alford, [242].

c©2018 American Physical Society.

4.1 Neutrinos in nuclear matter

The weak interactions that beta equilibrate nuclear matter35 produce electron neutrinos

and antineutrinos. Neutrinos and antineutrinos can participate in both charged current

and neutral current processes, the rate of which depends on the density, temperature, and

composition of matter with which the neutrinos are interacting. If the neutrinos interact

often, they will have a short mean free path and if they interact rarely they will have a long

mean free path. If the neutrino mean free path is very long compared to the size of a neutron

star, then neutrinos that are created in the neutron star free-stream from the star and do not

build up a population. If the neutrino mean free path is short compared to the system size,

then the neutrinos build up a population with some chemical potential µν according to the

Fermi-Dirac distribution. The value of µν is determined by the beta equilibrium condition,

which is explained in Sec. 4.2.

35 These are called Urca processes n → p+e− + ν̄ and e− +p → n+ν, which we discuss in the next section.
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The mean free path of neutrinos and anti-neutrinos has been calculated for several decades

with increasing levels of sophistication [243, 244, 245, 246, 6, 247]. Most recently, kinematic

effects relating the neutron and proton mean fields have been taken into account [5, 248]

and a software package for calculating neutrino mean free paths has been developed [249].

We used this software to calculate the neutrino mean free path using the nuclear mean fields

from the DD2 equation of state (see Sec. 2.2), as a function of temperature and density.

The results are plotted in Fig. 4.1. The neutrino mean free path also depends on the energy

of the neutrino, which we have set to the temperature, signifying thermal neutrinos. At a

temperature of 3 MeV, neutrinos have a mean free path of a few kilometers, so they would

easily escape from the merger. As the temperature rises above 5 MeV, the mean free path

drops below one kilometer, where we consider neutrinos to be trapped. At these densities,

the process trapping neutrinos is neutral current scattering n+ ν → n+ ν.
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Fig. 4.1: Mean free path of neutrino with energy Eν = T in nuclear matter described
by the DD2 equation of state. Neutrinos become trapped in the merger as the
temperature increases above 5 MeV.
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4.2 Beta equilibrium and flavor equilibration

As discussed in Sec. 2.2, a long-lived astrophysical object must be close to beta equilibrium

(also called chemical equilibrium), meaning its particle content does not change over time.

The particle content in nuclear matter is changed by weak interactions, called Urca processes

in this context. Let us first consider neutrino-trapped nuclear matter, where there are Fermi

seas of neutrons, protons, electrons, and either neutrinos or antineutrinos (this depends on

the lepton fraction YL = (ne + nν)/nB, which depends on the history of the system). In this

system, there are two direct Urca (dUrca) processes

n ↔ p+ e− + ν̄ dUrca neutron decay (4.1)

e− + p ↔ n+ ν dUrca electron capture, (4.2)

but also four modified Urca (mUrca) processes

n+N ↔ p+ e− + ν̄ +N mUrca neutron decay (4.3)

e− + p+N ↔ n+ ν +N mUrca electron capture, (4.4)

where N is a spectator neutron or proton. The modified Urca processes are important when

direct Urca is kinematically forbidden (see Sec. 4.3). If there is a large neutrino Fermi sea,

then the anti-neutrino processes are suppressed and vice-versa. In beta-equilibrated nuclear

matter, the forward and backward rates for each of these processes balance - this is called

detailed balance. A closed system in chemical equilibrium has a constraint on the chemical

potentials of its constituent particles. For example, if you have system of particle species A,

B, C, and D in chemical equilibrium, where a reaction aA+ bB ↔ cC + dD takes place (a,

b, c, and d represent stoichiometric coefficients), then aµA + nµB = cµC + dµD [127, 139].

We apply this first to the pair production process, for example, neutron bremsstrahlung

n + n ↔ n + n + ν + ν̄. If the system of neutrons, protons, electrons, and neutrinos is in
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equilibrium, then 2µn = 2µn + µν + µν̄ and thus neutrinos and antineutrinos have chemical

potentials of the same magnitude but opposite sign. This is true for any particle and its

antiparticle. Now if we apply the chemical equilibrium condition to any of the Urca processes,

we find that the beta equilibrium condition in neutrino-trapped nuclear matter is36

µn + µν = µp + µe. (4.5)

Neutrino-transparent nuclear matter contains Fermi seas of neutrons, protons, and elec-

trons, but not neutrinos. In addition, neutrinos and anti-neutrinos do not participate in

the initial state of any process, because their mean free path is larger than the system size.

Thus, only the direct Urca processes

n → p+ e− + ν̄ dUrca neutron decay (4.6)

e− + p → n+ ν dUrca electron capture, (4.7)

and the modified Urca processes

n+N → p+ e− + ν̄ +N mUrca neutron decay (4.8)

e− + p+N → n+ ν +N mUrca electron capture, (4.9)

which have neutrinos or antinuetrinos in the final state can proceed. In this case, detailed

balance no longer applies because there are no processes that are inverses of each other in

neutrino-transparent matter37. It is typically assumed that the neutrino or antineutrino

is kinematically negligible, (the conventional wisdom is that its energy is typically a few

times the temperature [252]), and so it is common to think of the direct Urca processes as

approximately n ↔ p+ e−, in which case neutron decay and electron capture are inverse re-

actions and detailed balance dictates that their rates are equal, yielding the beta equilibrium

36 Recall that we use relativistic definitions for the chemical potentials, so they include the rest mass.
37 For a similar discussion in the context of hot plasmas, see Refs. [250, 251].
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condition in neutrino-transparent nuclear matter,

µn = µp + µe. (4.10)

Because of the reasons above, we will call this the low-temperature beta equilibrium condi-

tion.

Matter remains transparent to neutrinos at temperatures of up to about 5 MeV, but by

this point the neutrino is no longer kinematically negligible. We will see in Fig. 4.3 that the

neutrino needs to have an energy of 10-15 MeV for the direct Urca electron capture process

to proceed below the direct Urca threshold. In the next sections, we study the validity of

the low-temperature beta equilibrium condition [Eq. (4.10)] in neutrino-transparent nuclear

matter. To do this, we will calculate the rate (number of reactions per time per volume) of

the Urca processes and see if they balance when the beta equilibrium condition [Eq. (4.10)]

is imposed.

4.3 Urca processes and the Fermi surface

approximation

We consider only the six Urca processes [Eq. (4.6)-(4.9)]. Weak interactions involving

positrons are negligible, since the electron chemical potential is always above 100 MeV for

the densities that we will consider, and so the positron occupation is suppressed by a factor of

more than exp(−100 MeV/T ). Additionally, for simplicity we neglect Urca processes involv-

ing muons, because even though those processes are not negligible, they do not qualitatively

change the conclusions that we present here.

We now obtain the standard expressions for the rate of the direct and modified Urca pro-

cesses in matter with the APR equation of state. We will assume ultra-relativistic electrons
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and neutrinos, but nucleons that are non-relativistic, with dispersion relation

Ei = meff,i +
p2

i

2mi

(4.11)

where, following Roberts et al. [248], at each density meff,i is chosen such that the Fermi

energy EF,i ≡ Ei(pFi
) matches the chemical potential µi from the APR equation of state,

which is a simple way of taking into account the nuclear mean field. For the kinetic mass

mi we use the rest mass in vacuum.

4.3.1 Direct Urca

The rates of the two direct Urca processes are given by the phase space integrals [253, 254]

ΓdU,nd =
∫ d3pn

(2π)3

d3pp

(2π)3

d3pe

(2π)3

d3pν

(2π)3

∑

spins |M|2
24EnEpEeEν

(2π)4 δ4(pn − pp − pe − pν)fn (1 − fp) (1 − fe)

(4.12)

ΓdU,ec =
∫ d3pn

(2π)3

d3pp

(2π)3

d3pe

(2π)3

d3pν

(2π)3

∑

spins |M|2
24EnEpEeEν

(2π)4 δ4(pn − pp − pe + pν) (1 − fn) fpfe,

(4.13)

where fi are the Fermi-Dirac distributions for n, p, or e, and the matrix element in the

approximation of non-relativistic nucleons is

∑

spins |M|2
24EnEpEeEν

= 2G2
(

1 + 3g2
A +

(

1 − g2
A

) pe · pν

EeEν

)

, (4.14)

where G2 = G2
F cos2 θc = 1.1 × 10−22 MeV−4, where GF is the Fermi coupling constant and

θC is the Cabibbo angle, and the axial vector coupling constant gA = 1.26. See Appendix C

for a derivation of this matrix element.

The direct Urca rate is commonly evaluated in strongly degenerate systems, for example,

cold neutron stars, in which case the rate can be calculated analytically using the Fermi
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surface (FS) approximation. In strongly degenerate systems, only particles near their re-

spective Fermi surfaces can participate in processes, so in the Fermi surface approximation,

all momentum magnitudes in the phase space integral are set equal to the appropriate Fermi

momentum. As the neutrino has no Fermi surface, it has negligible momentum and it is set

to zero. The phase space integral is converted to spherical coordinates, and then split into

an angular part and a momentum magnitude (or energy) part38. While the momenta are

set to their respective Fermi momenta, the particle energies are integrated over, consistent

with the thermal blurring of the Fermi surface (although inconsistent with the momentum

magnitudes having fixed values, because energy and momentum are related through the par-

ticle dispersion relation E = E(p).). The energy integral is evaluated in [135, 253] and the

angular integral in [255]. When we impose the low-temperature neutrino-transparent beta

equilibrium condition [Eq. (4.10)], we find that the direct Urca neutron decay and electron

capture rates balance and are given by [253, 256, 255]

ΓdU,nd = ΓdU,ec = AdUG
2
(

1 + 3g2
A

)

mnmppF eϑdUT
5 (4.15)

ϑdU ≡















0 if pF n > pF p + pF e

1 if pF n < pF p + pF e,

AdU ≡ 3
(

π2ζ(3) + 15ζ(5)
)

/(16π5) ≈ 0.0170.

We see from this expression that in the Fermi surface approximation, direct Urca has a

threshold - it only operates at densities where pF n < pF p + pF e. In nuclear matter, direct

Urca proceeds for densities above the threshold density, as the proton fraction increases

at densities above n0. For densities below the threshold density, the electron and proton

Fermi momenta are not large enough to add up to the neutron Fermi momentum, and so

direct Urca is kinematically forbidden. As density increases, the proton and electron Fermi

momenta grow more quickly than the neutron Fermi momentum and when the threshold is

38 This is called phase space decomposition [135].
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reached, they, when coaligned, add up to exactly the neutron Fermi momentum. Above the

direct Urca threshold, the proton and electron Fermi momenta can add up to the neutron

Fermi momentum even when they are not co-aligned [253]. Different equations of state have

different direct Urca thresholds. Fig. 4.2 shows the momentum mismatch pF n −pF p −pF e for

several different equations of state. Where the momentum mismatch is negative, the direct

Urca process is allowed. Some equations of state never allow direct Urca to proceed, at least,

as long as the Fermi surface approximation is applicable.
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Fig. 4.2: Momentum mismatch pF n − pF p − pF e for different equations of state. When
pF n −pF p −pF e < 0, direct Urca is kinematically allowed. Figure reproduced from
[15].

4.3.2 Modified Urca

When direct Urca is kinematically forbidden, modified Urca is the dominant weak interaction.

When direct Urca is allowed, modified Urca is subdominant, as we will see. The four modified

Urca rates are given by phase space integrals analogous to Eq. (4.12) and (4.13). For the

modified Urca processes, which involve strong interactions between the nucleons, we use the

matrix elements given by Yakovlev et al. [253] and Friman and Maxwell [168], which involve

a long-range one-pion exchange interaction [167]. The matrix element for neutron decay and
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electron capture with a neutron spectator (n-spectator modified Urca) is given by

S

∑

spins |Mn|
26EnEpEeEνEN1EN2

= 42G2 f
4

m4
π

g2
A

E2
e

p4
F n

(p2
F n +m2

π)
2 , (4.16)

and the matrix element for neutron decay and electron capture with a proton spectator

(p-spectator modified Urca) is given by

S

∑

spins |Mp|
26EnEpEeEνEN1EN2

= 48G2 f
4

m4
π

g2
A

E2
e

(pF n − pF p)4

(

(pF n − pF p)2 +m2
π

)2 , (4.17)

with the pion-nucleon coupling constant f ≈ 1. In both cases, S = 1/2 because there is one

set of identical particles in each process.

When the low-temperature beta equilibrium condition (4.10) is used, the n-spectator

modified Urca neutron decay and electron capture rates are equal and given by [253, 255,

135, 257]

ΓmU,n = AmUG
2f 4g2

A

m3
nmp

m4
π

p4
F npF p

(p2
F n +m2

π)
2 ϑn T

7 , (4.18)

ϑn ≡



















1 if pF n > pF p + pF e

1 − 3

8

(pF p + pF e − pF n)2

pF ppF e

if pF n < pF p + pF e.

See Sec. 6 of [255] for a comprehensive discussion of the integrals involved in the Fermi surface

approximation of the modified Urca rates, including clarification of errors and omissions in

the literature.

The p-spectator modified Urca neutron decay and electron capture rates are equal to

each other when (4.10) holds, and are given by [253, 255, 135, 257]

ΓmU,p =
AmU

7
G2f 4g2

A

mnm
3
p

m4
π

pF n(pF n−pF p)4

(

(pF n−pF p)2 +m2
π

)2 ϑpT
7 (4.19)
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ϑp ≡































































































0 if pF n > 3pF p + pF e

(3pF p + pF e − pF n)2

pF npF e

if
pF n > 3pF p − pF e

pF n < 3pF p + pF e

4
3pF p − pF n

pF n

if
3pF p − pF e > pF n

pF n > pF p + pF e

2 + 3
2pF p − pF n

pF e

− 3
(pF p − pF e)

2

pF npF e

if pF n < pF p + pF e .

where AmU ≈ 7 × 2300/(64π9) ≈ .0084. We see that the p-spectator modified Urca process

does have a threshold density, in this case the density where pFn
= 3pFp

+pFe
, which occurs at

a proton fraction xp = 1/65. Thus, the p-spectator modified Urca process is only prohibited

at extremely low densities [253], well below nuclear saturation density, which is the minimum

density that we consider here. In Appendix D, we give the Fermi-surface approximation for

the modified Urca rates when Eq. (4.10) is violated by an amount ξ = (µn − µp − µe)/T .

In the T → 0 limit, where the Fermi surface approximation is valid, the standard low-

temperature beta equilibrium condition holds: when Eq. (4.10) is obeyed, the neutron decay

and electron capture rates balance for both direct and modified Urca processes.

In the upper panels of Fig 4.4, we have plotted, among other curves that we explain in

Sec. 4.5, the Fermi-surface approximation of the two direct Urca (in dotted, green) and four

modified Urca (labeled “mU”, in blue) rates in APR matter for T = 500 keV and 5 MeV

respectively. For the APR equation of state the direct Urca threshold density is around 5n0.

Above threshold, the direct Urca neutron decay and electron capture rates are identical and

dominate over the modified Urca processes which have no threshold in the density range we

consider. Below threshold, neither direct Urca process is allowed and so the four modified

Urca processes dominate. The two n-spectator modified Urca processes are slightly more

important than the two p-spectator modified Urca processes. As long as the Fermi surface

approximation is used, and Eq. (4.10) is imposed, the proton-producing Urca processes
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balance the neutron-producing Urca processes exactly at all densities and temperatures.

4.4 Beyond the Fermi surface approximation

Nuclear matter is transparent to neutrinos for temperatures up to about 5 MeV, but at

such temperatures, the Fermi surface approximation might no longer be valid. The energy

distribution of fermions has width T near the Fermi energy [258], which translates - for

nonrelativistic particles like the neutron and proton - into a momentum-space blurring of

the Fermi surface ∆p = (m/pF )∆E = mT/pF . At neutron star densities with T = 5 MeV,

∆p is largest for the protons, and could be up to 30 MeV, significantly easing the kinematic

barriers to direct Urca.

For densities below the direct Urca threshold, we can estimate the range of validity of

the Fermi surface approximation by noting that it will become invalid when the exponential

suppression of direct Urca processes involving particles away from their Fermi surface is not

so severe as to make those processes negligible relative to modified Urca. In direct Urca

processes the proton is expected to play a crucial role, since it is the most non-relativistic

fermion which means that the energy Ep of a proton rises very slowly as the momentum pp of

the proton deviates from its Fermi surface: Ep−EFp
∼ (pp−pFp

)pFp
/m. For particles on their

Fermi surfaces, the momentum mismatch for direct Urca at densities around 3n0 in nuclear

matter described by the APR equation of state (Sec. 2.2) is pmiss = pF n −pF p −pF e ≈ 50 MeV

(see Fig. 4.2), and the proton Fermi momentum is about 220 MeV. The energy cost of finding

a proton that is pmiss from its Fermi surface is pmisspF p/m ≈ 12 MeV, so we might expect

that direct Urca electron capture, where the probability of finding a proton from above its

Fermi surface includes a Boltzmann factor, becomes unsuppressed at temperatures of order

10 MeV, and that it starts to compete with modified Urca at even lower temperatures.

In fact, the modified Urca rate is approximately a factor of (mnT/(3m
2
π))

2 smaller than

the above-threshold direct Urca rate (see Eq. (4.15) and (4.18)). Thus, the below-threshold
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direct Urca electron capture rate would begin to compete with modified Urca when

e−(Ep−EFp )/T ≈
(

mnT

3m2
π

)2

, (4.20)

which, for a proton with Ep − EFp
= 12 MeV, is when the temperature is between 1 and 2

MeV.

As we will show in a calculation of the full phase space integral for direct Urca, this

is a fair estimate. The Fermi surface approximation starts to become invalid at temper-

atures T & 1 MeV, which is still in the neutrino-transparent regime. As proofs of the

neutrino-transparent beta equilibrium condition rely on either the Fermi surface approxi-

mation (Sec. 4.3) or the ability to kinematically neglect the neutrino [250], we study the

validity of the neutrino-transparent beta equilibrium condition at temperatures of around

several MeV, where we expect possible corrections to appear. This is relevant to neutron star

mergers, which likely contain dense matter at temperatures of a few MeV (see Fig. 3.4).

4.4.1 Particles away from their Fermi surface

To discuss the rates it is useful to introduce the concept of the single particle free energy,

defined as γi(p) ≡ Ei(p) −µi = Ei(p) −EF,i (see Eq. (4.11) and subsequent discussion). The

single particle free energy tells us how far in energy a given state is from its Fermi surface.

At densities below the threshold density, the direct Urca process becomes Boltzmann

suppressed because after imposing energy and momentum conservation the phase space

integral is dominated by processes whose initial state includes particles above their Fermi

surface or whose final state requires holes below their Fermi surface. In both cases the

Fermi-Dirac factors in the rate expression provide a suppression factor of exp(−|γi|/T ).

To see how strong the resultant Boltzmann suppression will be, we show in Fig. 4.3 the

typical single particle free energy γi for the particles participating in neutron decay (left

panel) and electron capture (right panel) at various densities of nuclear matter described by
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Fig. 4.3: Energy relative to their Fermi energy (defined as “γ”) for particles participat-
ing in direct Urca reactions in APR nuclear matter obeying the standard low-
temperature condition Eq. (4.10) for beta equilibrium. At each density we choose
the momenta and energies of participating particles (consistent with energy and
momentum conservation) that maximizes the product of their Fermi-Dirac factors.
Above threshold, all particles can have γ = 0. Below threshold, the plot shows
the least Boltzmann-suppressed processes. The circles indicate the particles that
cause the Boltzmann suppression.

the APR equation of state, and obeying the low-temperature criterion for beta equilibration

Eq. (4.10). To obtain the typical momenta and energies at a given density we impose

energy and momentum conservation to reduce the momentum space integral to the lowest

possible dimension and find the point at which the product of Fermi-Dirac factors attains its

maximum value. We emphasize that these typical momenta and energies are independent

of temperature. Temperature merely influences the strength of the Boltzmann suppression

due to particles with finite single particle free energies γi participating in Urca reactions.

Above the direct Urca threshold density (about 5n0 for the APR equation of state) we

find, as expected, that particles on their Fermi surface (i.e. with γ = 0) can participate

in direct Urca processes while conserving energy and momentum. Below the direct Urca
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threshold density, however, this is no longer true.

4.4.2 Below-threshold direct Urca neutron decay

For direct Urca neutron decay, the kinematic obstacle is that although a neutron on its Fermi

surface has the same free energy as a proton on its Fermi surface and an electron on its Fermi

surface (they all have γ = 0), the neutron’s momentum is larger than the co-linear sum of

the proton and electron momenta. We see in Fig. 4.3 (left panel) that the best available

option below threshold is for a neutron on its Fermi surface to decay into a proton that is

above its Fermi surface by an amount γp and an electron that is below its Fermi surface by

the same amount, γe = −γp. The energies of the proton and electron still add up to the

energy of the neutron, but a co-linear proton and electron now have more momentum then

when they were both on their Fermi surfaces because the proton’s momentum rises rapidly as

γp becomes more positive (because the proton is non-relativistic with a low Fermi velocity)

whereas the electron’s momentum drops more slowly as γe becomes more negative, because

the electron is relativistic. This “best available option” has a Boltzmann suppression factor

of exp(−|γe|/T ) because the final state electron is trying to occupy a state in the already

mostly occupied electron Fermi sea. From Fig. 4.3 we see that for the APR equation of state

the value of |γe| for this process is around 20 to 25 MeV at lower densities and then drops

quickly to zero as we approach the direct Urca threshold.

4.4.3 Below-threshold direct Urca electron capture

For direct Urca electron capture, the kinematic obstacle is that a proton on its Fermi surface

combined with an electron on its Fermi surface does not have enough momentum to produce

a neutron on its Fermi surface. We see in Fig. 4.3 (right panel) that the best available

option below threshold is for a proton above its Fermi surface to combine with an electron

at its Fermi surface. Because the proton is nonrelativistic this combination has enough

momentum to create a neutron on its Fermi surface, and the excess energy γp (and the
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Fig. 4.4: Exact direct Urca and Fermi-surface approximate modified Urca rates at T =
500 keV (left panel) and T = 5 MeV (right panel), obeying the neutrino-
transparent beta equilibrium condition [Eq. (4.10)]. Far above the direct Urca
threshold, the two direct Urca rates balance each other, and they also match the
Fermi surface approximate direct Urca rate. At T = 500 keV, the direct Urca rates
fall off exponentially below the direct Urca threshold, and modified Urca domi-
nates. At T = 5 MeV, the direct Urca electron capture rate does not exponentially
fall off below the direct Urca threshold, and instead dominates at all densities.
The bottom panels of both plots show the deviation µδ from low-temperature beta
equilibrium needed to achieve true beta equilibrium.

remaining momentum) goes in to the final state neutrino. This process has a Boltzmann

suppression factor of exp(−|γp|/T ) because we are unlikely to find initial state protons far

above the proton Fermi surface. From Fig. 4.3 we see that for the APR equation of state

the value of |γp| for this process is around 10 to 15 MeV at lower densities and then drops

to zero as we approach the direct Urca threshold. The suppression is less than for neutron

decay because the neutrino momentum can be directed opposite to the neutron momentum,

so it helps to reduce the amount by which the proton needs to be above its Fermi surface.
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4.4.4 Relevance of below-threshold direct Urca

We learn from the calculation presented in Fig. 4.3 that, below the threshold density, direct

Urca processes are Boltzmann suppressed by a factor exp(−γ/T ) where γ is in the 10 to 20

MeV range at lower densities, dropping to zero as the threshold is approached. For typical

neutron star temperatures T . 100 keV the Boltzmann suppression is overwhelming, and

direct Urca processes can be safely neglected compared with modified Urca. However, as we

will show in the next section, at the temperatures characteristic of neutron star mergers this

is not the case.

We note that a similar analysis of the Fermi-Dirac factors can be done with the modified

Urca process, but it simply reproduces the expected finding that at any density the dominant

contribution comes from particles close to their Fermi surfaces, so the Fermi surface approx-

imation is always valid for modified Urca and there is never any Boltzmann suppression of

the rate. This is due to the presence of the spectator nucleon.

In Sec. 4.4, we estimated that at densities below the direct Urca threshold the Boltzmann-

suppressed direct Urca electron capture rate would match the modified Urca rate once the

temperature rose to around 1 or 2 MeV. As we will see in the next section, a full calcula-

tion confirms this estimate, showing that at T & 1 MeV the contribution of below-threshold

direct Urca processes leads to corrections to the low-temperature criterion for beta equi-

librium. Since the dominant contribution to the below-threshold direct Urca rates comes

from particles that are far from their Fermi surfaces, we now calculate the direct Urca rates

exactly, performing the entire momentum space integral.

4.5 Exact direct Urca calculation

Instead of assuming that all particles lie on their Fermi surfaces, we numerically evaluate the

direct Urca rate integrals (4.12) and (4.13) with non-relativistic nucleons, but without any

further approximation, allowing the particles to have any set of momenta that is consistent
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with energy-momentum conservation. The details of the calculation, which reduces to a

three dimensional numerical integral, are given in Appendix E.

4.5.1 Urca rates

Tne upper panels of Fig. 4.4 show the rates of various Urca processes in APR nuclear matter

that obeys the low-temperature beta equilibrium criterion Eq. (4.10). As we will see, at

T & 1 MeV the Fermi surface approximation starts breaking down and Eq. (4.10) is no

longer the correct criterion for beta equilibrium: an additional chemical potential is needed

to achieve beta equilibrium, and its magnitude µδ is shown in the lower panel.

In Fig. 4.4, we see that at a temperature of 500 keV, the Fermi surface approximation is

reasonably accurate. Well above the direct Urca threshold density, the neutron decay and

electron capture rates are almost identical and agree well with the Fermi surface approxi-

mation, so that when the low-temperature beta equilibrium criterion Eq. (4.10) is obeyed

the net rate of neutron or proton creation is zero. Consequently, to the accuracy of our

calculation (µδ is accurate to about ±150 keV, described in Sec. 4.5) there is no need for

any additional chemical potential to enforce beta equilibrium. As the density drops below

the threshold value, the direct Urca rates drop below the modified Urca rate and become

negligible, and the modified Urca rates for neutron decay and electron capture are identical

so again there is no net creation of neutrons or protons, and no noticeable modification to

the low-temperature beta equilibrium criterion. However, it is interesting to note that below

(and even slightly above) threshold the direct Urca rates for neutron decay and electron

capture are not the same. The deviation increases as the density goes further below thresh-

old. The size of the discrepancy agrees with our analysis in Fig. 4.3, where we determine

the exponential suppression of each direct Urca rate, due to the Fermi-Dirac factors. Only

right below threshold is there a region where the two direct Urca rates are different, but

both are larger than the modified Urca rates, requiring a finite but small µδ to establish

true beta equilibrium. As temperature decreases further, this effect will vanish, and the
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low-temperature beta equilibrium criterion (4.10) will be increasingly valid.

In Fig. 4.4 we see that when we increase the temperature to T = 5 MeV the Fermi surface

approximation becomes unreliable. The direct Urca electron capture rate agrees with the

Fermi surface result above threshold, but it also shows no suppression below threshold,

dominating over modified Urca and direct Urca neutron decay at all densities for which

APR is well defined. This means that when µn = µp + µe [Eq. (4.10)], there is a nonzero

net rate of proton to neutron conversion, implying that the system is not actually in beta

equilibrium.

4.5.2 Full criterion for beta equilibrium

The fact that electron capture is much less suppressed than neutron decay at T & 1 MeV

means that the system will be driven away from the state that obeys the standard low-

temperature beta equilibrium criterion. The predominance of electron capture drives the

neutron Fermi energy up and the proton Fermi energy down, effectively introducing an

additional chemical potential that couples to the third component of isospin. The general

criterion for beta equilibrium is

µn = µp + µe + µδ. (4.21)

As the proton density drops, the rates of electron capture and neutron decay move towards

each other and eventually balance when µδ reaches its equilibrium value, which depends on

the density and the temperature. This value of µδ at T = 5 MeV is shown in the bottom

right panel of Fig. 4.4. We see that below the direct Urca threshold µδ is about 15 MeV and

it decreases but remains non-negligible above threshold as well.

In Fig. 4.5, we show, for several temperatures, the magnitude of the additional chemical

potential µδ needed to achieve true beta equilibrium. At low temperatures, below 1 MeV, the

standard criterion [Eq. (4.10)] is correct to within about 1 MeV the only noticeable correction,

µδ ≈ 1.5 MeV, occurring right below threshold where direct Urca electron capture begins
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Fig. 4.5: The chemical potential µδ needed to achieve true beta equilibrium in APR matter
at various temperatures. For a given temperature, the upper and lower curves
indicate the range of values of µδ that are consistent with our estimates of the
theoretical uncertainty. Further details on the uncertainty are given in the text.

to dominate over modified Urca. After that, however, the correction term rises quickly

with temperature: at T = 5 MeV we need µδ ∼ 15 MeV and at T = 10 MeV we need

µδ ∼ 23 MeV. Although µδ drops with density once we reach the direct Urca threshold,

that decrease becomes quite slow at these higher temperatures. If the neutrino trapping

temperature is indeed around 5 MeV (see Sec. 4.1), then our calculations of µδ are only

physically relevant at temperatures below 5 MeV. Above the neutrino trapping temperature

we expect that neutrinos are in statistical equilibrium with a chemical potential µν obeying

the detailed balance relation µn + µν = µp + µe, as discussed in Sec. 4.2.

As discussed in Sec. 2.2, the APR equation of state is based on variational calculations of

the energy (as a function of density) of pure neutron matter (PNM, xp = 0) and symmetric

nuclear matter (SNM, xp = 0.5). An interpolation scheme was used to get to the intermediate

proton fraction, for a given density, that satisfies the low-temperature beta equilibrium

condition (4.10). Thus, all thermodynamic quantities calculated within the APR framework
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are functions of both baryon density and proton fraction. To find the value of µδ = µn−µp−µe

necessary to achieve true beta equilibrium at a given density and temperature, we varied the

proton fraction in discrete steps until we found a proton fraction that at which there was net

neutron production, and an adjacent-step proton fraction at which there was net neutron

destruction, giving us an upper and lower bound on µδ. These upper and lower bounds

provide the theoretical error on µδ. The uncertainty in the direct Urca rate calculations,

discussed at the end of Appendix E, is smaller than the binning of µδ, which is ≈ 300 keV.

The temperature-dependent correction µδ to the beta equilibrium condition arises from

the temperature dependence of the proton fraction in true beta equilibrium. In Fig. 4.6

we plot the proton fraction in true beta equilibrium as a function of density, for various

temperatures. As temperature rises above 1 MeV, the proton fraction drops. This reflects

the predominance of electron capture over neutron decay seen in Fig. 4.4.
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Fig. 4.6: Proton fraction in neutrino-transparent nuclear matter in true beta equilibrium,
for several different temperatures. As temperature increases, the beta-equilibrated
nuclear matter becomes more neutron-rich than predicted by the low-temperature
beta equilibrium condition.
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4.6 Conclusions

We have shown that the standard low-temperature criterion Eq. (4.10) for beta equilibrium

breaks down in neutrino-transparent nuclear matter at densities above nuclear saturation

density and temperatures above about 1 MeV. An additional chemical potential Eq. (4.21)

is required to obtain true equilibrium under the weak interactions. The ultimate reason for

this is that neutrinos are not in thermal equilibrium, so reactions that drive the system to

equilibrium are not exact inverses of each other (neutrinos can only occur in final states) so

the principle of detailed balance does not apply. Our calculations for nuclear matter obeying

the APR equation of state show (Fig. 4.5) that the chemical potential µδ = µn − µp − µe

required to obtain beta equilibrium becomes greater than about 5 MeV as the temperature

rises above 1 MeV, and reaches a maximum value around 23 MeV at temperatures of 10

MeV.
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Fig. 4.7: Urca rates in true beta equilibrium, µn = µp + µe + µδ. Above threshold, the two
direct Urca processes dominate. Below threshold, direct Urca electron capture
balances against modified Urca neutron decay (n-spectator) and, to a lesser extent,
direct Urca neutron decay.
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We have recalculated the Urca rates for APR nuclear matter at T = 5 MeV in true beta

equilibrium. The results are given in Fig. 4.7, which shows that there are three processes

that play the central role in beta equilibration. Above threshold, direct Urca neutron decay

balances with direct Urca electron capture. Far below threshold, neutron-spectator modified

Urca neutron decay competes with direct Urca electron capture, but as threshold is ap-

proached from below, direct Urca neutron decay becomes increasingly important, eventually

becoming more important than neutron-spectator modified Urca neutron decay.
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Fig. 4.8: Fractional change in the six Urca rates at T = 5 MeV when we change µδ from
zero to the value for true beta equilibrium. Below threshold, the change is the
most prominent, and as density increases to far above the threshold density, the
true beta equilibrium condition approaches the behavior of the low-temperature
beta equilibrium condition (4.10).

In Fig. 4.8, we show the fractional change in the six direct Urca rates when the correct

beta equilibrium condition is imposed, compared with the low-temperature criterion for beta

equilibrium (4.10). Far below threshold, the Urca rates increase or decrease by a factor of

10, and far above threshold, the Urca rates approach their low-temperature beta equilibrium

values.
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In this work we did not consider particle processes involving muons, although the APR

equation of state includes contributions from muons. Muons can participate in Urca processes

and also in leptonic processes [259] such as µ− → e− + ν̄e + νµ. A complete treatment of

the Urca processes in neutrino-transparent nuclear matter would introduce another chemical

potential µf (which couples to lepton flavor, differentiating electrons from muons) whose

value at a given temperature and density is determined by balancing the six muon Urca

process rates.

In Ch. 5, we will discuss how this modification to the beta equilibrium condition affects the

bulk viscosity in neutrino-transparent nuclear matter in conditions encountered in neutron

star mergers.
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Bulk viscosity from weak interactions

in neutron star mergers

This section is based on my work with Mark Alford, [260].

c©2019 American Physical Society

When two neutron stars merge, simulations indicate that the nuclear fluid that makes up

the neutron stars experiences wild oscillations in density, changing density by up to 50%.

The oscillations occur on a millisecond timescale39. One simulation tracked fluid elements

throughout the merger and plotted their density as a function of time, seen in Fig. 5.1.

The presence of fluid elements undergoing density oscillations makes it possible that bulk

viscosity will play a role in neutron star mergers40.

In this chapter, we calculate the bulk viscosity of neutrino-transparent nuclear matter41

undergoing uniform, small-amplitude density oscillations in thermodynamic conditions rele-

vant to neutron star mergers. Bulk viscosity is a resonance phenomenon, and we map out the

thermodynamic conditions where bulk viscosity is near its resonant maximum. We estimate

the timescale in which bulk viscosity dissipates energy from density oscillations and examine

39 This timescale can be estimated by considering the time it takes sound to cross a neutron star. The
speed of sound in a neutron star is some fraction of the speed of light, say c/3 on average, and so the time
for sound to cross a neutron star 25 km in diameter is t = x/v = 0.25 ms, which translates into a frequency
of 4 kHz.

40 Bulk viscosity is already considered an important process in isolated neutron stars undergoing oscillations
[171, 261, 256, 262].

41 The bulk viscosity in neutrino-trapped nuclear matter is calculated in [263].
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Fig. 5.1: Density of several comoving fluid elements during a neutron star merger. Fluid
elements initially experience large density oscillations right when the two neutron
stars touch (t = 0), but after 5 milliseconds the oscillation amplitude decreases.
Figure courtesy of M. Hanauske and the Rezzolla group.

its relevance for neutron star mergers. We take advantage of our results for the Urca rate in

neutrino-transparent nuclear matter obtained in Ch. 4.

5.1 Bulk viscosity

We will consider a fluid element of nuclear matter undergoing a small-amplitude oscillation

in baryon density

nB(t) = n̄B + δnB cos (ωt), (5.1)

which corresponds to an oscillation in volume

V (t) = V̄ + δV cos (ωt), (5.2)
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since the total baryon number NB = nBV is conserved. We consider adiabatic oscillations

(meaning entropy per baryon σ is constant) in this chapter, because there is negligible heat

flow between adjacent fluid elements during the merger. This is valid as long as the thermal

equilibration time in the absence of neutrinos is much longer than about 10 ms. From

Eq. (1) of Ref. [15] this will be true as long as density oscillations (and the resultant thermal

gradients) have wavelengths longer than about a meter. This criterion is obeyed in current

simulations, whose spatial resolution is tens of meters at best.

By definition, the energy dissipated due to bulk viscosity ζ is

dε

dt
= −ζ(∇ · v)2. (5.3)

Using the continuity equation (In the Lagrangian formalism that tracks fluid elements [230]),

∂nB

∂t
+ nB∇ · v = 0, (5.4)

we find that
dε

dt
= −ζ

(

∂nB/∂t

nB

)2

. (5.5)

Therefore, the average energy dissipated in one oscillation is

〈

dε

dt

〉

= −1

2
ω2

(

δnB

nB

)2

ζ. (5.6)

Energy is dissipated from the oscillation because of p dV work. When the fluid element

is compressed, the beta equilibrium proton fraction changes, causing the Urca processes to

change the proton fraction to the new equilibrium value. The weak interactions take a finite

amount of time, and thus the baryon density (or volume) and pressure (which is determined

by the particle content) are out of phase. The average energy dissipation over a cycle can

be calculated in this approach.
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The pressure, assumed to be out of phase with the baryon density, can be written as

P (t) = P̄ + Re(δP ) cos (ωt) − Im(δP ) sin (ωt), (5.7)

where δP is a complex number (if it were real, then pressure and baryon density would

be in phase and there would be no energy dissipation). For small oscillations, the energy

dissipated is

dε =
P

V
dV = − P

nB

dnB, (5.8)

and the average energy dissipated per cycle is

〈

dε

dt

〉

= − ω

2π

∫ 2π/ω

0
dt

P (t)

nB(t)

dnB

dt
. (5.9)

We again approximate small oscillations (nB(t) ≈ n̄B), and we notice that only the term

proportional to sin (ωt) in P (t) survives the integral. So,

〈

dε

dt

〉

= −ω2

2π

δnB

nB

Im(δP )
∫ 2π/ω

0
dt sin2 (ωt) = −ω

2

δnB

nB

Im(δP ). (5.10)

Setting these two expressions for the energy dissipation equal, we find

ζ =
Im(δP )

ω

nB

δnB

. (5.11)

With an eye towards incorporating the Urca process rates, we want to write δP in terms of

δxp. We are about to do a number of Taylor expansions around beta equilibrium, so it is

important that we understand that there are three independent variables in this section - the

baryon density nB, the proton fraction xp, and the entropy per baryon σ = S/NB = s/nB.

The entropy per baryon is constant throughout the oscillation, and thus does not appear in

Taylor expansions.
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The pressure expanded around equilibrium is

P ≈ P̄ +
∂P

∂xp

∣

∣

∣

∣

∣

nB ,σ

Re(δxpe
iωt) +

∂P

∂nB

∣

∣

∣

∣

∣

xp,σ

Re(δnBe
iωt). (5.12)

Equating this with Eq. (5.7) and matching the terms proportional to sin (ωt), we find

Im(δP ) =
∂P

∂xp

∣

∣

∣

∣

∣

nB ,σ

Im(δxp). (5.13)

Now we want to turn δxp into quantities related to the weak interactions that restore beta

equilibrium. We have

nB
dxp

dt
= Γn→p − Γp→n ≈ λµδ. (5.14)

The Urca rates Γ that we calculated in Ch. 4 (divided by baryon density) change the proton

fraction. Since we are assuming small oscillations, the nuclear matter is never pushed that

far out of beta equilibrium42 and thus we can use the linear approximation of the Urca rates

near beta equilibrium, where we define

λ =
∂(Γn→p − Γp→n)

∂µ∆

∣

∣

∣

∣

∣

µ∆=0

. (5.15)

Now we write

xp(t) = x̄p + Re(δxpe
iωt) = x̄p + Re(δxp) cos (ωt) − Im(δxp) sin (ωt) (5.16)

and expand µ∆ around beta equilibrium

µ∆ ≈ ∂µ∆

∂nB

∣

∣

∣

∣

∣

xp,σ

δnB cos (ωt) +
∂µ∆

∂xp

∣

∣

∣

∣

∣

nB ,σ

(Re(δxp) cos (ωt) − Im(δxp) sin (ωt)), (5.17)

where we’ve used the expression for Re(δxpe
iωt) from Eq. (5.16). Plugging Eq. (5.16) and

42 Oscillations where µ∆ ≪ T are called subthermal, and are by far the most frequently studied case of
bulk viscosity. Suprathermal oscillations µ∆ ≫ T as well as oscillations where µ∆ ∼ T are studied in [262].
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(5.17) into Eq. (5.14), and then matching the sin terms and cos terms, then solving for

Im(δxp), we find

Im(δxp) = −
λ∂µ∆

∂nB

∣

∣

∣

xp,σ
δnB

nBω + λ2

nBω

(

∂µ∆

∂xp

∣

∣

∣

nB ,σ

)2 . (5.18)

Combining Eqs. (5.11), (5.13), and (5.18), we find

ζ =
λ ∂P

∂xp

∣

∣

∣

nB ,σ

∂µ∆

∂nB

∣

∣

∣

xp,σ

ω2 + λ2

n2
B

(

∂µ∆

∂xp

∣

∣

∣

nB ,σ

)2 . (5.19)

Using a Maxwell relation (see Appendix F), we can show that

∂P

∂xp

∣

∣

∣

∣

∣

nB ,σ

= −n2
B

∂µ∆

∂nB

∣

∣

∣

∣

∣

xp,σ

. (5.20)

We also define the adiabatic susceptibilities43

B = − 1

nB

∂µ∆

∂xp

∣

∣

∣

∣

∣

xp,σ

, (5.21)

C = nB
∂µ∆

∂nB

∣

∣

∣

∣

∣

xp,σ

. (5.22)

Finally, we define the rate of beta equilibration γ = Bλ, and now the bulk viscosity can be

written in the form

ζ =
C2

B

γ

ω2 + γ2
. (5.23)

5.2 Reequilibration rates

As we can see from Eq. (5.23), bulk viscosity is a resonance phenomenon. For a fixed

oscillation frequency ω, the bulk viscosity peaks when the reequilibration rate γ = ω. This is

43 Instructions for turning isothermal susceptibilities into adiabatic susceptibilities are given in Appendix
G. B and C are actually inverse susceptibilities, as they are inverses of second derivatives of the pressure -
see Appendix A.
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why we assumed that particle content was the relevant quantity that equilibrated in response

to density oscillations. The density oscillations happen on a millisecond timescale, as can

weak interactions. Strong and electromagnetic interactions happen orders of magnitude too

quickly44.

The rate of beta equilibration γ = Bλ can take advantage of the Urca rates we calculated

in Ch. 4. The total rate of beta equilibration is the sum of the individual rates

λ = λdU + λmU,n + λmU,p, (5.24)

which are given by, in the FS approximation [253, 266, 267, 168, 268]

λdU =
17

240π
G2(1 + 3g2

A)mnmppF eT
4, (5.25)

λmU,n =
367

1152π3
G2g2

Af
4m

3
nmp

m4
π

p4
F npF p

(p2
F n +m2

π)2
ϑnT

6 , (5.26)

λmU,p =
367

8064π3
G2g2

Af
4mnm

3
p

m4
π

pF n(pF n − pF p)4

((pF n − pF p)2 +m2
π)2

ϑpT
6. (5.27)

We will use the full phase integration for the direct Urca (see Sec. 4.5) and the Fermi

surface approximation for the modified Urca rates. We will use the true beta equilibrium

condition for neutrino transparent nuclear matter, Eq. (4.21), so µ∆ is now defined as

µ∆ ≡ µn − µp − µe − µδ. (5.28)

We use two relativistic mean field theories to describe nuclear matter in this chapter: DD2

and IUF. See Sec. 2.2 for an explanation of RMFs. We use the same dispersion relations as

in Sec. 4.3. The rate of the Urca process at T = 4 MeV (a temperature high enough that

the FS approximation is not valid) with the IUF equation of state is plotted in Fig. 5.2.

44 Strong interactions are the relevant equilibration process in heavy ion collisions, however [264, 265].
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Fig. 5.2: Total Urca rates (direct plus modified) in beta equilibrium for the IUF EoS at
T = 4 MeV. The dashed (black) curve is the Fermi Surface approximation to the
Urca rates, using the low-temperature beta equilibrium criterion Eq. (4.10). The
solid (blue) curve is the total Urca rate with the full phase space integral, and
using the general beta equilibrium condition Eq. (4.21)

.

5.3 Bulk viscosity from 1 kHz density oscillations

In Fig. 5.3, we show the bulk viscosity of nuclear matter with the DD2 and IUF EoS, when

subjected to a 1 kHz density oscillation, which is a typical frequency for neutron star mergers

([15] and Fig. 5.1). The dashed lines are the bulk viscosity with Urca rates calculated in the

Fermi Surface approximation while the solid lines use the exact Urca rates.

In Fig. 5.3(a), corresponding to the DD2 EoS, the exact bulk viscosity peaks at a temper-

ature that is 1-2 MeV lower than would be predicted by the Fermi Surface approximation.

This is because DD2 never allows direct Urca (the threshold is at infinite density), and we

know (see Fig. 5.2) that the Fermi Surface approximation underestimates the below-threshold

Urca rate. This means that in the Fermi Surface approximation the temperature must be
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Fig. 5.3: Bulk viscosity of nuclear matter as a function of temperature, for densities of n0,
3n0, 5n0 when undergoing a density oscillation at 1 kHz. The equation of state
is DD2 (a) or IUF (b). Thin, dotted lines are the Fermi Surface approximation.
Thick, solid lines use the exact Urca rates.

pushed up to a higher value in order for the equilibration rate to match the oscillation

frequency, which is where the resonant peak occurs.

In Fig. 5.3(b), corresponding to the IUF EoS, which has a direct Urca threshold near 4n0.

Here we see two distinct behaviors. For densities n0 and 3n0, which are below threshold,

the behavior is similar to that seen for DD2: the Fermi Surface approximation only includes

modified Urca processes, but the exact calculation includes below-threshold direct Urca

processes which increase the total rate, moving the resonant peak to lower temperatures.

Above the threshold density, the Fermi Surface approximation for direct Urca overestimates

the total Urca rate, since the exact phase space integration leads to only a gradual opening of

the phase space around the direct Urca threshold, hence the resonant peak moves to higher

temperatures than predicted by the Fermi Surface approximation.

As can be seen from Eq. (5.23), the maximum value of bulk viscosity at a frequency ω is

ζmax =
C2

2Bω
. (5.29)
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Fig. 5.4: Logarithmic plot of the ratio of susceptibilities C2/B = 2ωζmax that determines
the maximum bulk viscosity at a given oscillation frequency. We show results
for the DD2 (a) and IUF (b) equations of state, calculated in beta equilibrium
[Eq. (4.21)].

In Fig. 5.4 we plot C2/B = 2ωζmax for a representative range of densities and tem-

peratures for which nuclear matter is likely neutrino-transparent. We see that for a given

frequency, the maximum value of bulk viscosity varies by 1-2 orders of magnitude, and de-

pends more strongly on density than on temperature. Most notably, we can see that C2/B

rises rapidly at low densities, then levels off at n ∼ 2nsat to a value about an order of

magnitude larger then its value at n = nsat. This could already be seen in Fig. 5.3.

In Fig. 5.5, we plot the bulk viscosity as a function of density and temperature (the curves

in Fig. 5.3 are cross-sections through Fig. 5.5). For a fixed density, as the temperature rises,

the beta equilibration rate γ rises rapidly because of the increase in available phase space. At

temperatures of a few MeV, the reequilibration rate closely matches the oscillation frequency

of 1 kHz, then bulk viscosity reaches a maximum. At higher temperatures, the reequilbration

is too fast and the bulk viscosity drops.

We see that for the DD2 EoS, the bulk viscosity peak is at a temperature of about 3 MeV

for all densities, which is a lower temperature than predicted by the Fermi surface approxi-

mation. For IUF, the FS approximation would suggest two different peaks in bulk viscosity:
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Fig. 5.5: Bulk viscosity as a function of density and temperature, for the DD2 (a) and IUF
(b) EoSs. The full phase space integral for the direct Urca rate is used in the solid
line contours, while the 28.5 dashed contour uses the FS approximation.

one below the direct Urca threshold corresponding to the near-equality of the modified Urca

rate and the density oscillation frequency, and one above the threshold, corresponding to

the near-equality of the direct Urca rate and the density oscillation frequency. However, the

gradual opening of the direct Urca threshold coming from the exact direct Urca calculation

melds these two peaks into one broad peak. At low density, the peak is at 3-4 MeV, but as

density increases it moves down to 2 MeV.

5.3.1 Energy dissipation time

The most direct indicator of the importance of bulk viscous damping is the dissipation time

τdiss for density oscillations. Since the merging stars settle down into a massive remnant in

tens of milliseconds, bulk viscous damping will be important if τdiss is tens of milliseconds or

less. To calculate the dissipation time, we need the energy of an oscillation and the rate at

which that energy is dissipated by bulk viscosity. The energy density of an adiabatic baryon

density oscillation nB(t) = nB + (δnB) sin (ωt) is [15]

ε =
1

2
(δnB)2 ∂

2ε

∂n2
B

∣

∣

∣

∣

∣

xp,s/nB

=
κ−1

S

2

(

δnB

nB

)2

, (5.30)
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where κS is the adiabatic compressibility [269, 183]

κ−1
S = nB

∂P

∂nB

∣

∣

∣

∣

∣

xp,s/nB

. (5.31)
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Fig. 5.6: Adiabatic inverse compressibility (κS)−1 at low temperature, versus density, for
several EoSs derived from relativistic mean-field theories. Each is tabulated on
CompOSE.

We note that the adiabatic compressibility depends on the EoS. However, it is a common

feature of all nucleonic EoSs that nuclear matter becomes more incompressible at high den-

sities, so the inverse compressibility 1/κS rises with density, as shown in Fig. 5.6 for a range

of EoSs including those used in this work. This means that at higher density, oscillations in

the density store more energy.

To facilitate comparison with previous work (for example, [15]), we mention that the

“stiffness” of nuclear matter is often described via the nuclear incompressibility K [135, 127,

45]. K is conventionally defined at saturation density, zero temperature, and for symmetric

nuclear matter, and is approximately 250 MeV [3]. Some works have extended the definition

of the nuclear incompressiblity to densities above nuclear saturation [270]. At zero temper-
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Fig. 5.7: Dissipation time τdiss of a 1 kHz density oscillation, using the DD2 EoS (a) and
IUF EoS (b), with the exact Urca rates.

ature, n0, and for symmetric nuclear matter, the adiabatic κS can be related to the nuclear

incompressibility K by K = 9/(κSn0) [183, 45].

The rate of energy density dissipation is given by [262, 271]

dε

dt
=
ω2

2

(

δnB

nB

)2

ζ. (5.32)

Using Eq. (5.30), the energy dissipation time is

τdiss ≡ ε

dε/dt
=

(κS)−1

ω2ζ
. (5.33)

Note that one can also define [272] a decay time for the amplitude, which would be longer

by a factor of two since the energy of an oscillation goes as the square of the amplitude.

In Fig. 5.7, we plot the dissipation time of a 1 kHz density oscillation as a function of

density and temperature for two different EoSs, using the exact Urca rates. We first discuss

the physical content and implications of the exact results (Fig. 5.7), then compare them to

the Fermi Surface approximation, shown in Fig. 5.8.

Temperature dependence. The adiabatic compressibility is relatively independent of tem-
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Fig. 5.8: Dissipation time τdiss of a 1 kHz density oscillation, using the DD2 EoS (a) and
the IUF EoS (b), calculated in the Fermi Surface approximation.

perature, so the bulk viscosity dominates the temperature dependence of the dissipation

time. As discussed in Sec. 5.3, for a given density, the bulk viscosity increases, reaches a

resonant maximum when the beta reequilibration rate γ matches the oscillation frequency

ω, and then decreases as temperature increases. This leads to minimum dissipation time at

approximately the temperature at which the bulk viscosity reaches its maximum, for a given

density.

Density dependence. The adiabatic inverse compressibility strongly increases as a function

of density, as seen in Fig. 5.6. While the bulk viscosity was weakly dependent on density, the

dissipation time at high density is strongly increased due to the several order-of-magnitude

rise of the adiabatic inverse compressibility. Physically, oscillations in high density nuclear

matter have a lot of energy due to the high incompressiblity of dense nuclear matter [see

Eq. (5.30)]. Thus, it takes correspondingly longer time for those high-energy oscillations to

damp. As a result of the behavior of the compressibility of nuclear matter, the minimum of

dissipation time is likely to be located at a low density.

It is worth noting that the bulk viscosity varies non-monotonically with density. It rises

as density increases from 0.5n0, reaches a peak at several times n0, and then falls off at high

density. This can be seen by noting that the maximum bulk viscosity is ζmax = (1/2ω)C2/B
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[Eq. (5.29)], which is plotted in Fig. 5.4. It is clear that the particular features of the

rise and fall in bulk viscosity as a function of density depend on the EoS. Throughout the

range of densities that we consider, the bulk viscosity prefactor C2/B varies by 1-2 orders

of magnitude. However, the inverse compressibility rises by three orders of magnitude over

that density range, so it has a more substantial effect on the density dependence of the

dissipation time.

For the DD2 EoS, as seen in Fig. 5.7(a), the minimum dissipation times lie around tem-

peratures of 3 MeV for all densities, indicating that the reequilibration rate doesn’t change

strongly with density, which is expected since only modified Urca and below-threshold direct

Urca are acting. As a function of density, the dissipation times get longer as density increases.

This behavior comes from the dramatic monotonic rise of the inverse compressibility as a

function of density. The bulk viscosity prefactor C2/B rises by one order of magnitude from

0.5n0 to 3 or 4 n0, and then slightly decreases at higher densities, but it doesn’t vary rapidly

enough to compete with the rise of the inverse compressibility, and thus the dissipation time

rises monotonically with density. DD2 has a minimum dissipation time of about 6 ms, which

occurs only at low density (0.5n0) at temperatures of just under 3 MeV. Only fluid elements

with densities under twice saturation density would dissipate energy on timescales relevant

for mergers.

As seen in Fig. 5.7(b), the behavior of the dissipation time scale for the IUF EoS is more

complicated. The lowest dissipation times do occur at temperatures of around 3 MeV, since

the resonant peak of bulk viscosity is around that temperature. However, the nonmonotonic

behavior of C2/B as a function of density is more dramatic for the IUF EoS than for DD2,

so it competes with the rapidly rising inverse compressibility as density increases, leading to

two minima in the dissipation time. The first is at low density, where the nuclear inverse

compressibility is decreasing rapidly as the density decreases to the lowest value for which

we trust our equation of state, n = 0.5n0. There, energy dissipation can occur in as little

as 5 ms. There is also a local minimum around n = 2n0, where the bulk viscosity prefactor
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Fig. 5.9: Dissipation time scale for 3 kHz oscillations in nuclear matter with the DD2 EoS
(a) or IUF EoS (b). The exact Urca rates are used.

C2/B has a local maximum (see Fig. 5.4(b)) and dissipation times reach down to 19 ms.

For the IUF EoS, dissipation occurs on merger timescales in fluid elements up to four times

saturation density, in contrast to the behavior of DD2.

It is interesting to compare the Fermi Surface approximate results (Fig. 5.8) and the exact

results (Fig. 5.7) for each EoS. For DD2, the use of the exact Urca rates just increases the

total Urca rate and thus the bulk viscosity is maximized at a lower temperature than would

be predicted by the Fermi Surface approximation. For IUF, the Fermi Surface approximate

result would predict a sharp change in the behavior of the bulk viscosity at the direct Urca

threshold, n = 4n0 (for a generic example of this behavior, see Fig. 1 in [257]). However, at

the temperatures of interest to us the exact Urca rates show a gradual increase with density

and thus the bulk viscosity does not change suddenly at the threshold density.

5.4 Higher frequency oscillations

There is evidence from simulations [273, 274, 275, 276, 277, 278, 228] (see also the review

[224]) that eccentric binary neutron star mergers excite oscillations at frequencies above 1

kHz. We plot the dissipation times for 3 kHz and 5 kHz oscillations in Figs 5.9 and 5.10. We
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Fig. 5.10: Dissipation time scale for 5 kHz oscillations in nuclear matter with the DD2 EoS
(a) or IUF EoS (b). The exact Urca rates are used.

see that at these higher frequencies, bulk viscosity plays a bigger role, and density oscillations

can be damped in as little as 1 ms, and for a broad range of temperatures and densities,

oscillations can be damped in under 25 ms.

We note that, at a given density, a higher temperature is required to make the reequili-

bration rate γ match a density oscillation which has a frequency above 1 kHz, and thus the

region of maximum bulk viscosity is moved to higher temperatures. For example, a 5 kHz

density oscillation has maximum bulk viscosity (and thus minimum damping time) at about

T = 4 MeV (see Fig. 5.10), while a 1 kHz density oscillation has maximum bulk viscosity at

around T = 3 MeV (see Fig. 5.7).

5.5 Conclusions

We have calculated the bulk-viscous dissipation time in nuclear matter at temperatures and

densities relevant to neutron star mergers. We assumed the material was transparent to

neutrinos, which should be valid for temperatures up to about 5 MeV, and we studied the

damping of oscillations with frequencies in the 1 kHz range, which are seen in simulations

of mergers. The main uncertainty in our result is the form of the nuclear matter equation
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of state at supranuclear densities, so we performed calculations for two different equations

of state, one stiffer, DD2, and one softer, IUF. Our main results are displayed in Fig 5.7.

Bulk viscous damping will play a significant role at densities and temperatures where the

dissipation time is comparable to or less than the typical timescale of the merger, which is

in the range of tens of milliseconds. Both equations of state show a similar overall pattern:

bulk viscosity damps oscillations on timescales comparable to a merger for nuclear matter

at temperatures of 2-4 MeV and for densities between 0.5n0 to 2n0, with IUF also exhibiting

fast damping for densities up to 4n0. Both EoSs have minimum dissipation times of about

5 ms, occurring at 0.5n0, while IUF has another local minimum of dissipation time, about

20 ms, occurring at 2n0. The occurrence of dissipation times in the 10 ms range leads us

to conclude that bulk viscous damping in neutrino-transparent nuclear matter should be

seriously considered for inclusion in future simulations. Bulk viscosity in neutrino-trapped

nuclear matter is too small to impact mergers, because the Urca rates are too fast at trapping

temperatures (T & 5-10 MeV) to match a 1 kHz density oscillation [263]. Between these

extremes lies the regime where the spectrum of neutrinos includes a low-energy population

that escapes, a high-energy tail that is trapped, and an intermediate energy range where

the mean free path is comparable to the distance scale of the fluid flows, requiring explicit

inclusion of neutrinos in the dynamics of the nuclear fluid [231, 232, 233, 234, 235, 236].

Another limitation of our calculation is the assumption of low-amplitude density oscilla-

tions. We calculated the “subthermal” bulk viscosity, but simulations show high amplitude

density oscillations [15] for which the suprathermal bulk viscosity [262] is relevant. This

could extend the region of large bulk viscosity down to lower temperatures, since suprather-

mal effects allow high-amplitude oscillations to experience the maximum bulk viscosity ζmax

[Eq. (5.29)] at lower temperatures [262].

Our discovery of short bulk-viscous dissipation times at densities below nuclear saturation

density, primarily due to the low inverse compressibility, underscores the need for a detailed

understanding of the structure of nuclear matter below saturation density. The DD2 and IUF
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EoSs predict uniform nuclear matter down to densities of 0.25 to 0.4 n0 respectively, which

is why we restricted our calculations to densities above 0.5n0. However, a sequence of mixed

“pasta” phases has been predicted at densities between 0.2 and 0.7 n0 [279, 157, 280, 281, 154].

It has been noted [282, 283] that the appearance of free protons in certain pasta phases

would open up the direct Urca process, albeit with such a reduced rate that it would take

temperatures of tens of MeV—which is well above the pasta melting temperature of a few

MeV [284]—to reach the resonant peak of bulk viscosity. Thus, it is important to know how

and at what densities and temperatures nuclear matter transforms from a uniform phase to

a mixed phase. Based on our findings above, we expect subthermal bulk viscosity to be large

for these low densities, down to the density at which uniform nuclear matter transitions to

a pasta or spherical nuclei phase.

We did not consider Urca processes involving muons, and did not include muons in the

EoSs. The presence of muon Urca processes would increase the equilibration rate γ for

densities at which muons are present. In addition, muon-electron conversion would give

rise to a separate contribution to the bulk viscosity [259]. The calculation of bulk viscous

damping time in Ref. [15] uses EoSs that contain muons. Above the onset density for muons

the nuclear matter susceptibilities are larger, which would lead to larger bulk viscosity and

thus shorter dissipation times compared to the muonless EoSs considered in this work. We

are therefore planning to perform a full study of bulk viscous dissipation in EoSs that include

muons.

There is evidence that properly including in-medium effects in the nucleon propagator

can lead to a large increase in the modified Urca rate just below the direct Urca threshold

[285]. We have not included this in our analysis, but it could potentially lead to a shift of

the resonant peak of bulk viscosity to lower temperatures for a range of densities near the

direct Urca threshold.
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Chapter 6

Thermal transport in neutron star

mergers: axions as a candidate

This section is based on my work with Mark Alford, Jeff Fortin, and Kuver Sinha [286].

6.1 Introduction

Thermal transport is due to particles with long mean free paths. If a particle’s mean free

path is extremely short compared to the system size, say 1 fm compared to the size of a

neutron star, the particle cannot transport anything, because it takes forever to travel any

significant distance. If a particle can travel a reasonable fraction of the system size, say,

10-100 meters in a neutron star, then it can help the system thermally equilibrate, that is, it

allows fluid elements to exchange energy and reach a common temperature. If a particle has

an extremely long mean free path compared to the system, say greater than 10 kilometers

compared to the size of a neutron star, then the particle acts as a way to take energy out of

the system, cooling it.

In neutron stars and neutron star mergers, neutrinos facilitate energy transport. As we

will see, neutrino cooling is only efficient at temperatures where neutrinos have a long mean

free path, perhaps for T . 5 MeV (see Sec. 4.1). As we will discuss in Sec. 6.5, trapped

neutrinos are not very efficient at thermally equilibrating the matter in a merger over the
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relevant tens of millisecond timescales. We analyze the possibility that axions [287, 288, 289,

290], bosonic particles which are an interesting candidate for physics beyond the standard

model, will play a role in cooling or thermally equilibrating neutron star mergers.

Supernovae and cold, isolated neutron stars have long been used as laboratories to study

beyond the standard model particles like the axion [291, 223, 292]. In this chapter, we discuss

the possible impact of axions on neutron star mergers, a hotter and denser environment than

individual neutron stars, and a denser and more neutron-rich environment than supernovae.

An early effort to include axions in simulations of neutron star mergers has been made

by Dietrich and Clough [293]. They model axion cooling of a merger by using standard

axion emissivity expressions from Brinkmann and Turner [294] in nuclear matter in both the

non-degenerate and degenerate regimes.

To determine the role of axions in neutron star mergers, we consider a couple of possi-

bilities. If axions have a long mean free path (MFP) compared to the size of the merger

(20-30 kilometers in diameter - see Figs. 3.1 and 3.5, as well as [225]), then they free-stream

through the nuclear matter, taking energy away from the merger which results in cooling.

On the other hand, if axions have a relatively short mean free path, they would contribute

to transport inside the merger.

To calculate the mean free path we first discuss the production (or absorption) of axions

(with field operator a) via bremsstrahlung from neutrons (with field operator ψn). The rele-

vant coupling term in the Lagrangian is L = Gan(∂µa) ψ̄nγ
µγ5ψn. The standard calculations

of axion mean free paths and emissivities rely on the Fermi surface (FS) approximation: we

propose an improvement to the Fermi surface approximation which extends its validity to

semi-degenerate nuclear matter. Our main result is a calculation of the axion emissivity and

mean free path, where the only approximation is the assumption of a momentum-independent

matrix element for the neutron bremsstrahlung process. We keep the relativistic energy dis-

persion of the neutrons and we keep the axion momentum in the energy-momentum conserv-

ing delta function. The full phase space integration is valid for degenerate neutrons as well
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as non-degenerate neutrons. We then discuss the axion-transparent regime (where the axion

mean free path is comparable to or larger than the system size) and axion-trapped regime

of the merger (where the axion mean free path is much less than the system size). For the

former, the temperature of fluid elements radiating axions as a function of time is computed

and the characteristic cooling times are obtained in Figs. 6.4 and 6.5. In the trapped regime,

the timescale of thermal equilibration for a fluid element to transfer heat to its neighboring

fluid elements is computed. The results are depicted in Fig. 6.6.

Throughout our work, we show the constraints coming from SN1987A on the axion-

neutron coupling constant Gan [295, 223, 296, 297, 298, 299, 300, 301] and discuss the inter-

play of our results with those coming from supernova physics. Generally, SN1987A bounds

on Gan prefer the axion-transparent regime. Since supernova bounds can vary considerably

depending on the details of the core-collapse simulations (we refer to [302] for a recent critical

assessment), our approach is to treat the SN1987A constraint loosely, and thus we examine

a range of axion-neutron couplings that extends somewhat above the upper bound, down to

significantly below the upper bound.

6.2 Axion production in nuclear matter

Axions are proposed to couple to neutrons with the interaction term L = Gan∂µaψ̄nγ
µγ5ψn

[294]. A neutron by itself cannot emit an axion because of energy-momentum conservation,

so a spectator nucleon is required to donate energy/momentum to the processes to allow it

to proceed. The strong interaction between the spectator nucleon and the nucleon emitting

the axion (throughout this paper, we assume that both nucleons are neutrons) is modeled by

one-pion exchange (OPE) [167] with Lagrangian Lnπ = i(2mn/mπ)fγ5π0ψ̄nψn, where f ≈ 1.

The neutron and pion masses here are their respective masses in vacuum. Thus, axions can

be created and absorbed by the neutron bremsstrahlung process n + n ↔ n + n + a. This

process is described at tree level by eight Feynman diagrams (see Fig. 4 of Ref. [294]), giving
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rise to the matrix element (derived in the appendix of [294])

S
∑

spins

|M|2 =
256

3

f 4m4
nG

2
an

m4
π

[

k4

(k2 +m2
π)2 +

l4

(l2 +m2
π)2 +

k2l2 − 3 (k · l)2

(k2 +m2
π) (l2 +m2

π)

]

, (6.1)

where k and l are three-momentum transfers k = p2 − p4 and l = p2 − p3. The symmetry

factor for these diagrams is S = 1/4 . As above, the prefactors of the neutron mass mn

and pion mass mπ correspond to respective masses in vacuum, since they arise from the

definitions of the couplings in the pion-neutron Lagrangian shown above. The dot product

term in the matrix element is often written as β ≡ 3〈(k̂ · l̂)2〉, where the brackets denote an

average over phase space, which is a common technique to simplify the matrix element [294].

For a QCD axion, the axion mass ma is related to the axion-neutron coupling strength

Gan through45

ma = 1.2 × 107 eV
(

Gan

GeV−1

)

(6.2)

Given current constraints on the axion-neutron coupling, the mass of the QCD axion must

be well below 1 eV, which is much less than the typical momentum scales of order 100 MeV

in neutron stars, thus we treat all ALPs as ultrarelativistic particles in our calculations.

We model the nuclear matter inside a neutron star with the NLρ EoS, which we discussed

in Sec. 2.2. The formalism for calculating the rate of a particle process in such a relativistic

mean field theory is detailed in [184], which uses parameter set I of the model in [179]. In the

mean free path and emissivity calculations, E∗ ≡
√

p2 +m2
∗ should be used for the energies

in the matrix element and in the energy factors in the denominator, while E = E∗ + Un

should be used in the energy delta function and the Fermi-Dirac factors [185, 5, 184]

fi = (1 + e(Ei−µn)/T )−1. (6.3)

45 This expression comes from Eq. (3.2) in [303], where fa is found in terms of Gan by matching the
coefficients of the axion-neutron interaction term in the Lagrangian (given in the beginning of this section
and in Eq. (3.6) in Ref. [303], taking Cj ≈ 1.)
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Note that E − µn = E∗ − µ∗
n.

In our calculations, we consider a lepton fraction of Yl = (nν + ne)/nB = 0.1, as this is

a typical value for the neutrino-trapped region of a neutron star merger [263] (though even

this might be an overestimate [12, 304]). In Fig. 6.1, we show the fugacities zi = e(µ∗

i
−m∗,i)/T

of neutrons and protons in this EoS at YL = 0.1. A fugacity much larger than one indicates

a very degenerate Fermi gas, while a fugacity much smaller than one indicates a highly non-

degenerate Fermi gas [305, 306]. Fig. 6.1 indicates that at nuclear saturation density n0,

the protons are nondegenerate for nearly all considered temperatures, while the neutrons

transition from degenerate to nondegenerate as the temperature goes above 50-60 MeV. At

7n0, both types of nucleons are degenerate for all considered temperatures.

NLρ	EoS
YL	=	0.1

zp	(1n0)
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Fig. 6.1: Fugacities zi = e(µ∗

i
−m∗,i)/T of neutrons and protons in the NLρ EoS, with YL =

0.1. A fugacity much larger than one indicates strongly degenerate particles, while
a fugacity much smaller than one indicates non-degenerate particles.
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6.3 Axion mean free path

The mean free path of an axion through nuclear matter depends on the temperature and

density of the nuclear matter, but also the axion energy. Often, we will consider axions with

energy ω ≈ 3T , called “thermal axions”, because this is the average energy of axions emitted

via n + n → n + n + a from a fluid element of temperature T [307]. In this section, we

will compute the mean free path of axions, specializing to the case ω = 3T , and categorize

thermodynamic conditions as either trapping axions or as allowing axions to free-stream.

As we are interested in neutron-star sized systems, we compare the mean free path to the

system size, which is 20-30 kilometers in diameter. If the mean free path of axions is less

than 100 meters, we will consider them trapped, and if the mean free path is longer than 1

kilometer, then we will consider them free streaming. These choices are somewhat arbitrary,

and deserve further study. Also, the intermediate region (mean free paths from 100 m to

1 km) is difficult to treat, as axions are neither trapped, forming a Bose sea, nor do they

escape cleanly from the nuclear matter.

The mean free path λ of an axion with energy ω, due to absorption via n+n+a → n+n,

is given by [296]

λ−1 =
∫ d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

d3p4

(2π)3

S
∑ |M|2

25E∗
1E

∗
2E

∗
3E

∗
4ω

(2π)4 δ4(p1+p2−p3−p4+ω)f1f2(1−f3)(1−f4).

(6.4)

In the rest of this section, we will describe the results of calculating this MFP in various

approximations, leaving the details to the appendix.

6.3.1 Relativistic, arbitrary degeneracy

While at nuclear saturation density the nucleon effective mass is about 3/4 of its vacuum

value [127], at high baryon densities the nucleon effective mass decreases to only a few

hundred MeV, which is comparable to or even lower than the typical momentum values of

the nucleons participating in bremsstrahlung. For example, the NLρ EoS predicts a neutron
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Dirac effective mass of 228 MeV at a density of 7n0, where the neutron Fermi momentum is

604 MeV. Thus, it is important to use the full dispersion relation [Eq. (2.9)] for the neutrons

in the MFP calculation at high densities. We are able to do the phase space integration while

using the relativistic neutron dispersion relation, provided we assume the matrix element is

momentum-independent (a common, though not always necessary, approximation assumed

in the literature by [294, 296, 308, 309]). The matrix element becomes independent of

momentum if we assume that the momentum transfer magnitudes k2 and l2 have some

typical value ktyp. Then the matrix element can be written as

S
∑

spins

|M|2 ≈ 256
f 4m4

nG
2
an

m4
π

(

1 − β

3

)(

1 +
m2

π

k2
typ

)−2

. (6.5)

The typical values of momentum transfer are ktyp ∼
√

3m∗T in the non-degenerate regime

and ktyp ∼ pF n in the degenerate regime. For temperatures and densities where the NLρ EoS

predicts degenerate neutrons, ktyp ∼ pF n takes values between 320-600 MeV, while where the

EoS predicts non-degenerate neutrons, ktyp ∼
√

3m∗T takes values between 375-470 MeV.

Thus the factor of
(

1 +m2
π/k

2
typ

)−2
ranges from 0.78 to 0.91. In the degenerate regime,

β = 0, while in the non-degenerate regime, β ≈ 1.0845 [294].

The momentum-independent matrix element can be pulled out of the phase space integral,

and now the integral can be reduced to a 6-dimensional integral to be done numerically. In

addition to using the relativistic dispersion relation for neutrons, our calculation is also novel

in that it keeps the axion three-momentum in the momentum-conserving delta function.

Finally, we emphasize that this approach to the mean free path integral is valid for arbitrary

neutron degeneracy, as we make no simplifications to the Fermi-Dirac factors. Our final

expression for the axion mean free path in the constant-matrix-element approximation is

given in Eq. (I.1), and the details of the calculation are given in Appendix I.1.

In Fig. 6.2 we show a contour plot of the axion mean free path [Eq. (I.1)]. We have

assumed the axion energy ω = 3T , and so Fig. 6.2 does not depict the MFP of a fixed-energy
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Fig. 6.2: Axion mean free path (for axions with energy ω = 3T ) due to absorption via
n + n + a → n + n with an assumed axion-neutron coupling constant equal to
the upper bound set by SN1987A. The dashed contours correspond to the axion
MFP calculated in the Fermi surface approximation, while the solid contours use
the constant matrix element approximation of the axion mean free path.

axion, but of axions with progressively higher energies as the temperature increases. The

solid contours are the result of our constant-matrix-element approximation of the axion mean

free path, where we have chosen β = 0 for convenience. The MFP is inversely proportional to

the square of the unknown axion-neutron coupling constant, so we have chosen that coupling

to be equal to the upper bound set by SN1987A. Thus Fig. 6.2 represents the smallest

MFP allowed by SN1987A. First, we see that the axion MFP is longer than 1 km for all

thermodynamic conditions, indicating that axions will free-stream from the neutron star

merger in which they are created. Second, we see that the axion mean free path shrinks as

matter becomes hotter and denser. We see that at large neutron degeneracy (high density,

low temperature), the mean free path of a thermal axion (ω = 3T ) becomes relatively

independent of density.

In Appendix I.2, we also present the phase space integral of the MFP while assuming
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non-relativistic neutrons. In this case, the momentum dependence of the matrix element

can be retained, and it is left inside the integral. This calculation has been done before in

the literature, but we present a version of the calculation well adapted to a relativistic mean

field theory.

6.3.2 Fermi surface approximation (degenerate neutrons)

The most common approximation of the full mean free path integral Eq. (6.4) is to assume

the neutrons are strongly degenerate. As can be seen in Fig. 6.1, this assumption is valid

at high densities like 7n0 for all temperatures encountered in neutron star mergers, but also

even at lower densities like n0, provided the temperature is below about 50 MeV. We call

this approximation the “Fermi surface approximation” because in degenerate nuclear matter

only the particles near the Fermi surface can participate in any reactions. The concept of

the Fermi surface approximation is discussed in detail in [242] and in Ch. 4 in the context

of the Urca process.

The mean free path of an axion with energy ω due to (inverse) axion bremsstrahlung has

been calculated in the Fermi surface approximation in [307, 310], where they find

λ−1
F S =

1

18π5

f 4G2
anm

4
n

m4
π

pF nF (y)
ω2 + 4π2T 2

1 − e−ω/T
, (6.6)

where

F (y) = 4 − 1

1 + y2
+

2y2

√
1 + 2y2

arctan

(

1√
1 + 2y2

)

− 5y arcsin

(

1√
1 + y2

)

, (6.7)

with y = mπ/(2pF n). The derivation of this formula is sketched in Appendix I.3. The axion

MFP in the Fermi surface approximation is plotted in dotted lines in Fig. 6.2. We see from

Fig. 6.2 that in conditions that are not strongly degenerate, the Fermi surface approximation

significantly underestimates the mean free path compared to the constant-matrix-element

approximation.
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The virtue of the Fermi surface approximation is that it allows the 15 dimensional phase

space integral to be done analytically. However, during the course of the calculation, the

lower endpoint of the integration over neutron energy (which comes from converting the phase

space integral into spherical coordinates and then turning the momentum magnitude integral

to an integral over energy - see Appendix I.3) is extended to minus infinity. Extending the

integration bounds this way is valid in degenerate nuclear matter, because it adds only

an exponentially small term [135]. However, as temperature increases, the extension of

the integral gives rise to a sizeable error. We propose here an improved Fermi surface

approximation calculation which keeps the energy bounded by Un + m∗ < En < ∞. From

there it is possible to write the axion mean free path as a one dimensional integral

λ−1 =
4

3π5

f 4G2
anm

4
n

ωm4
π

pF nF (y)T 3K1(ŷ, ω/T ), (6.8)

where

K1(ŷ, ω/T ) ≡
∫ ∞

−2ŷ
du

1

(1 − eu)(1 − e−u−ω/T )
(6.9)

× ln

{

cosh [(u+ ŷ + ω/T )/2]

cosh (ŷ/2)

}

ln

{

cosh (ŷ/2)

cosh [(u+ ŷ)/2]

}

,

and ŷ = (µ∗
n − m∗)/T . The degeneracy parameter ŷ is just the logarithm of the neutron

fugacity ŷ = ln zn. This expression for the mean free path follows the Fermi surface ap-

proximation, but better treats the lower endpoint of integration over the neutron energies,

where the traditional treatment [135] becomes increasingly poor. The details are further

explained in Appendix I.3. Our expression Eq. (6.8) of course matches the Fermi surface

approximation (6.6) in the degenerate limit ŷ → ∞.

We emphasize that this proposed expression improves the behavior of the FS approxima-

tion in semi-degenerate conditions, but is definitely not valid for non-degenerate conditions.

After all, this approximation still assumes that only neutrons on their Fermi surface partic-
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Fig. 6.3: Axion mean free path (for axions with energy ω = 3T ) via n + n + a → n + n
for densities of 1n0 (a) and 7n0 (b). All couplings larger than the dotted blue line
may be disallowed by the observation of SN1987A. Thus, axions likely free-stream
through neutron star mergers as their mean free path is above several kilometers
regardless of the density.

ipate in the process.

6.3.3 MFP dependence on the axion-neutron coupling

It is clear that if the axion-neutron coupling is less than or equal to the maximum value

SN1987A will allow, all thermodynamic conditions encountered in mergers will fail to trap

axions. However, if the axion-neutron coupling was larger, the hotter, denser regions of the

parameter space depicted in Fig. 6.2 would begin to trap axions. We depict this observa-

tion in Fig. 6.3, using the constant-matrix-element approximation for the axion mean free

path (and setting β = 0 in the constant matrix element, for simplicity.) We see that if

the SN1987A bound is robust, for allowed values of the coupling, the axion mean free path

is always comparable to or much bigger than the size of a neutron star and thus axions

would free-stream from the star or merger. However, if the SN1987A bounds are flexible

due to uncertainties in modeling supernovae as well as uncertainties in the nuclear EoS (as
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is suggested by [302, 311], see also [312] for useful commentary), in the highest density and

temperature conditions possibly reached in mergers, axions would be trapped for couplings

just 4 times the SN1987 bound. However, we note that there are many other independent

proposed upper bounds on the axion-neutron coupling, coming from neutron star observa-

tions [313, 292, 308, 314, 315], all within about an order of magnitude in either direction of

the SN1987A bound.

6.4 Axion-transparent matter

In the axion-transparent regime where the axion mean free path is comparable to or larger

than the system size, an axion created inside the merger by neutron bremsstrahlung would

escape, cooling down the merger. This is analogous to neutrino cooling [316, 317], which

occurs in nuclear matter at temperatures below 5 or 10 MeV, which is the regime where it is

transparent to neutrinos [242, 5, 246, 244, 243]. We study regions of the merger above tem-

peratures of 10 MeV, where neutrinos are trapped (and thus only cool via the relatively slow

diffusion process [318]) but axion emission could serve as an unexpected cooling mechanism.

We calculate the temperature of a fluid element radiating axions as a function of time,

and in particular, find the characteristic cooling time at which the temperature has halved.

We can write a differential equation for the temperature T as a function of time

dT

dt
= −Q

cV

, (6.10)

where Q = dε / dt is the axion emissivity (the energy emitted in axions per volume per time)

and cV = dε / dT is the specific heat of the nuclear matter per unit volume. The specific

heat is dominated by neutrons, as they have the largest particle fraction in the neutron star
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and thus the most possible low-energy excitations [15]. The specific heat46 is given by [319]

cV ≈ 1

3
mLpF nT, (6.11)

where mL is the Landau effective mass of the neutron, which is related to its density of states

at the Fermi surface [320, 321]

mL =
pF n

(dE / dp)|pF n

=
√

p2
F n +m2

∗. (6.12)

The axion emissivity is given by the phase space integral [294]

Q =
∫ d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

d3p4

(2π)3

d3ω

(2π)3

S
∑ |M|2

25E∗
1E

∗
2E

∗
3E

∗
4ω
ω (6.13)

× (2π)4 δ4(p1 + p2 − p3 − p4 − ω)f1f2 (1 − f3) (1 − f4) .

In the rest of this section, we will discuss approximations of this axion emissivity phase

space integral (just as we did for the axion MFP) and then we use our results to calculate

the cooling time due to axion emission.

6.4.1 Relativistic, arbitrary degeneracy

Like the calculation of the axion MFP, the axion emissivity involves an integration over phase

space and we will make the same set of approximations we made for the MFP in Sec. 6.3.

Thus, assuming a momentum-independent matrix element Eq. (6.5) and using relativistic

dispersion relation Eq. (2.9) for the neutrons, we do the phase space integral [Eq. (6.13)]

and find that the axion emissivity can be reduced to a six-dimensional integral to be done

46 Technically, we should not use the specific heat for a degenerate Fermi gas as we do here, but instead for a
Fermi gas at arbitrary degeneracy. However, for the thermodynamic conditions encountered here, these differ
by at most 14%, the greatest difference occurring at large temperature. Extending the traditional calculation
[319] to the case of neutrons described by a relativistic mean field theory, the specific heat of a neutron gas of

arbitrary degeneracy is cV = 2
∫

d3p
(2π)3 (E∗ −µ∗

n)
d(f(E∗

−µ∗

n
))

dT = T 3

4π2

∫

∞

−ŷn

dx
x2(x+(µ∗

n
/T ))

√
(x+(µ∗

n
/T ))2

−(m∗/T )2

cosh (x/2)2 ,

where ŷn ≡ (µ∗

n − m∗)/T and we have assumed that m∗ and µ∗

n do not depend on temperature.
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numerically. The expression [Eq. (H.15)] and its derivation are given in Appendix H.1. That

expression is valid for neutrons of arbitrary degeneracy.

In Appendix H.2, we also present the phase space integral of the axion emissivity while

assuming non-relativistic neutrons. In this case, the momentum-dependence of the matrix

element can be retained, and it is left inside the integral. This calculation has been done

before in the literature, but, as with the axion MFP integration, we present a version of the

calculation well-adapted to a relativistic mean field theory.

6.4.2 Fermi surface approximation (degenerate neutrons)

As in Sec. 6.3, the Fermi surface approximation can be applied to the axion emissivity if

the neutrons are strongly degenerate, as in that case only neutrons near the Fermi surface

will participate in the bremsstrahlung process. The calculation of the axion emissivity in

this regime was done first by Iwamoto [322], and extended by [310, 323]. The Fermi surface

approximation for the axion emissivity is

QF S =
31

2835π

f 4G2
anm

4
n

m4
π

pF nF (y)T 6, (6.14)

where F (y) is given in Eq. (6.7). The derivation of this formula is sketched in Appendix H.3.

As with the mean free path, discussed in Sec. 6.3, the Fermi surface approximation of

the emissivity extends the lower endpoint of integration of neutron energy down to −∞. We

propose an improvement to the FS approximation which keeps the neutron energy bounded

by m∗ + Un < En < ∞, at the cost of having an emissivity expression in terms of a two-

dimensional integral instead of an analytic expression like Eq. (6.14). The axion emissivity

in the improved FS approximation is

Q =
2

3π7

f 4G2
anm

4
n

m4
π

pF nF (y)T 6K2(ŷ) (6.15)
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where

K2(ŷ) =
∫ ∞

−2ŷ
du

1

1 − eu
ln

{

cosh (ŷ/2)

cosh [(u+ ŷ)/2]

}

(6.16)

×
∫ u+2ŷ

0
dw

w2

1 − ew−u
ln

{

cosh [(u+ ŷ − w)/2]

cosh (ŷ/2)

}

.

6.4.3 Radiative cooling time dependence on axion-neutron

coupling

In the Fermi surface approximation, the differential equation (6.10) for T (t) can be solved

exactly (assuming the neutron Landau effective mass does not depend on temperature, which

is a reasonable approximation) and we find a fluid element that starts at temperature T0

cools according to

T (t)−4 = T−4
0 +

124

945π

f 4G2
anm

4
nF (y)

mLm4
π

t, (6.17)

and thus has cooling time (to reach half of its initial temperature)

τF S,1/2 ≈ 12 s ×

(

mL

0.8mn

)

(

Gan

GSN1987A

)2

F (y)
(

T0

10 MeV

)4 . (6.18)

While there is no analytic result for the characteristic cooling time with our new expres-

sion for the emissivity Eq. (H.15), we can solve the differential equation numerically and

plot the characteristic cooling time as a function of density and temperature for a particular

choice of axion-neutron coupling constant. In Fig. 6.4, we plot the radiative cooling time

due to axion emission, choosing the coupling constant to be the maximum value allowed by

SN1987A. The solid contours use the constant-matrix-element phase space integral for the

emissivity (with β = 0), while the dotted contours use the FS approximation. We see that

hotter and denser regions cool faster, because they emit axions at a higher rate. The solid
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and dashed contours agree where the nuclear matter is strongly degenerate, which occurs

at high density and low temperature. This plot indicates that within the constraints set by

SN1987A, axions can cool fluid elements in timescales relevant to neutron star mergers. The

treatment of the axion emissivity via the full phase space integration limits (compared to the

FS approximation) the range of densities for which fast cooling can occur. In particular, hot

nuclear matter near saturation density has a significantly longer cooling time than predicted

by the FS approximation.

Radiative	cooling	time	(Gan	=	GSN1987a)
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Fig. 6.4: Cooling time of nuclear matter due to radiating axions. Solid lines use the
constant-matrix-element approximation of the emissivity while dotted lines use
the FS approximation. The axion-neutron coupling is chosen to be the bound set
by SN1987A.

In Fig. 6.5, we plot the radiative cooling time at two different densities, as a function

of temperature and axion-neutron coupling. Radiative cooling is only relevant for thermo-

dynamic conditions where the axions have a mean free path longer than a few kilometers.

At 1n0, it is difficult to get substantial cooling on merger timescales, but at high densities

(7n0), cooling times can be under 10 ms, and definitely under 100 ms for a wide range of

temperatures.
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Fig. 6.5: Radiative cooling time due to axion emission at densities of 1n0 (a) and 7n0 (b).
All couplings stronger than the dotted blue line are disallowed by the observa-
tion of SN1987A. Considering couplings compatible with SN1987A, lower density
regions cool somewhat slowly compared to merger timescales, but higher density
regions could cool on timescales relevant for mergers.

6.5 Axion-trapped matter

Based on our results in Fig. 6.2, we do not expect axions to be trapped in any part of

a neutron star merger. However, we present the following analysis of trapped axions for

completeness, but also as an example of the contribution to thermal equilibration of the

interior of a neutron star due to a boson that interacts with neutrons.

If the mean free path of axions is much less than the system size, then the axions form a

Bose gas inside the neutron star merger. In this situation, the axions could transport energy

around the star, smoothing out temperature gradients, much like neutrinos do when they are

trapped. We calculate the timescale of thermal equilibration for a fluid element to transfer

heat to its neighboring fluid elements. From [15], a hot spot of volume z3 in the merger has

extra thermal energy (compared to its neighbors) Eth ≈ (π/6)cV z
3∆T , and it conducts that

energy away through its boundaries at rate Wth = πκ∆Tz. Thus, the timescale for heat
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conduction is

τκ = Eth/Wth =
cV z

2

6κ
. (6.19)

As discussed in Sec. 6.4, the specific heat cV is dominated by the neutrons, which have

specific heat cV = (1/3)mLpF nT . The thermal conductivity is the sum of the contributions

κi = (1/3)cVi
viλi from each particle species. The particles with both high density and long

mean free path (but still less than the system size) will dominate the thermal conductivity.

We consider here only stars with temperatures above 10 MeV, which mean that neutrinos

will be trapped and would traditionally dominate the thermal conductivity [15]. However,

if the star also traps axions, then axions could take over the role of energy transportation.

The neutrinos have [318] thermal conductivity κν ≈ n2/3
ν /(3G2

Fm
2
Ln

1/3
e T ), which implies

that neutrinos re-establish thermal equilibrium between nearby fluid elements in time [15]

τν = 700 ms

(

0.1

xp

)1/3 (
mL

0.8mn

)3
(

µe

2µν

)2 (
z

1 km

)2 ( T

10 MeV

)2

.

When two species contribute to thermal equilibration, their individual timescales add ac-

cording to τ−1
κ = τ−1

κa
+τ−1

κν
. As we will see, the equilibration timescale due to axions is much

shorter (for the range of couplings we consider) than the timescale due to neutrinos, and so

for the rest of this discussion we assume axions are the only species contribution to thermal

equilibration and thus

τκ ≈ cVn
z2

6κa

. (6.20)

As the axions, when trapped, are a free Bose gas with zero chemical potential (they are

equilibrated by the reaction n + n + a ↔ n + n), they have energy density ε = (π2/30)T 4

and thus specific heat per unit volume cV = (2π2/15)T 3, and so their thermal conductivity

is κa = (2π2/45)T 3λa. The axion conduction timescale is

τa =
5

4π2

mLpF nz
2

T 2λ
, (6.21)
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Fig. 6.6: Thermal equilibration time due to axion conduction at a density of 1n0 (a) and
7n0 (b). All couplings stronger than the dotted blue line are disallowed by the
observation of SN1987A. The red shaded region corresponds to couplings at which
axions are not trapped, and so there is no axion conduction between neighboring
fluid elements.

which in the Fermi surface approximation for the MFP, reduces to

τκ,a,F S ≈ 2.757f 4G2
anmLp

2
F nF (y)z2. (6.22)

Eq. (6.21) indicates that the longer the axion mean free path, the shorter the timescale for

thermal equilibration. However, if the mean free path is too long, then there is no heat

conduction due to axions.

To get an estimate for the thermal equilibration timescale, we consider the situation

where a neutron star merger has only gradual temperature gradients, occurring on at least

the 1 km scale. For example, the hot spherical shell (Fig. 3.5) observed in many simulations

[14, 12, 13, 324, 325] is 1-2 km thick. If this is the case, then neutrino conduction has no

effect on a neutron star merger, as heat conduction via neutrinos occurs on timescales greater

than one second.

According to Fig. 6.6, at low axion-neutron couplings, the thermal equilibration due

115



Chapter 6. Thermal transport in neutron star mergers: axions as a candidate

to axion conduction would occur very quickly because of the long axion mean free path.

However, the mean free path is too long - bigger than the size of a neutron star - and

so neighboring fluid elements are unable to transfer heat to each other via axions. As the

coupling gets strong enough to trap axions, the thermal equilibration time is still fast enough

to be relevant. However, this only occurs at axion coupling constants more than an order

of magnitude higher than the limit set by SN1987A, which is why thermal equilibration of

neutron star mergers due to axions is unlikely.

6.6 Conclusion

We have analyzed the impact of axions on neutron stars mergers in the case that they are

trapped and in the case that they are free-streaming. As part of this effort, we calculated

the axion mean free path and emissivity due to the neutron bremsstrahlung process n+n ↔

n+n+a. In contrast to previous calculations, we integrated over the entire phase space while

using a relativistic treatment of the neutrons (although assuming the matrix element was

momentum-independent). In particular, we used a relativistic mean field theory to describe

the nucleons, which means that we took into account the precipitous decrease in the Dirac

effective mass of the nucleons as density increases above nuclear saturation density.

With our calculation of the axion mean free path, we were able to, for a given value of

the axion-neutron coupling, divide the thermodynamic parameter space {nB, T} into regions

where axions are trapped and where they are free-streaming (and of course, a difficult-to-

treat region in between where they are neither). We find that for axion-neutron couplings

allowed by SN1987A, axions have a long mean free path in all thermodynamic conditions

encountered in mergers (see Fig. 6.3), and thus we expect them to free-stream from a neutron

star merger.

We examine the time it would take for a fluid element of nuclear matter in a merger

to cool to one half of its current temperature by radiating axions. The result is depicted
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in Figs. 6.4 and 6.5. For allowed values of the axion-neutron coupling, we find that the

hottest fluid elements in a merger could cool in timescales less than 10 ms, which would have

an impact on the dynamics of a neutron star merger, in particular, reducing the thermal

pressure of the possible remnant [293] and changing the values of temperature-dependent

transport properties like bulk viscosity [15, 263, 260]. However, the radiative cooling time

increases dramatically as the axion-neutron coupling decreases.

We also consider the possibility of axion trapping, where axion diffusion might serve to

thermally equilibrate the interior of a neutron star or merger. The timescales of thermal

equilibration are given in Fig. 6.6. The SN1987A bound rules out axion trapping, but we

present the analysis of thermal equilibration as it is potentially useful for the study of thermal

transport due to future proposed bosons in neutron stars.

Finally, in Appendix H and Appendix I we present in detail our calculations of the

axion mean free path and emissivity. We first present the phase space integrals assuming

relativistic neutrons of arbitrary degeneracy but a momentum-independent matrix element.

Then we present the phase space integrals assuming non-relativistic neutrons of arbitrary

degeneracy and a momentum-dependent matrix element. Finally, we present the Fermi

surface approximation, which is valid for strongly degenerate neutrons, and we propose a

better treatment of the energy integration in that approximation which extends the usefulness

of the Fermi surface approximation to the semi-degenerate regime.

In our calculations, we have neglected the interaction of protons and axions, which should

further reduce the mean free path and increase the emissivity [294, 308, 310, 326, 327]. We

have also used a very simplistic neutron-neutron interaction (one pion exchange), improve-

ments to which have been discussed in [328, 327, 326, 314, 329], which indicate that more

sophisticated nuclear interactions decrease the emissivity and increase the axion mean free

path at high densities.

Future inclusion of axions in merger simulations should be done consistently. The axion

opacity should be calculated using the same nuclear equation of state used in the merger
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simulation itself [330, 331], and the nucleon effective mass should be taken into account as

discussed in Sec. 6.3. This parallels the improvements of the neutrino transport in supernovae

and merger simulations over the past couple of decades [231, 232, 233, 234, 235, 236].

118



Chapter 7

Conclusions

Mapping out the QCD phase diagram is a major goal in nuclear and particle physics, and

neutron star mergers provide an environment to study matter that is both dense and hot.

The problem of understanding the physics of neutron star mergers is attacked from two

directions. LIGO and Virgo can measure the gravitational waves during the inspiral - future

generations of gravitational wave detectors should be able to measure the post-merger signal

[275, 332] - and telescopes can measure the electromagnetic signal that comes from the

merger [333]. Neutron star mergers are sufficiently complicated that a second approach,

numerical simulation, is needed to compliment observations.

Numerical simulations of mergers evolve Einstein’s equations determining the spacetime

metric throughout the inspiral and merger. The neutron star matter is modeled as a fluid,

evolving according to the equations of relativistic hydrodynamics. The fluid has an equation

of state that is derived from nuclear physics, which is one of the great sources of uncertainty

in the modeling of mergers. The simulations also include neutrino transport.

In this thesis we investigated additional physical processes in merger conditions and

determined their relevance to neutron star mergers. We investigated the nature of beta

equilibrium in the neutrino-transparent region of the merger in Ch. 4. In Ch. 5, we calculated

the energy dissipation due to bulk viscosity in the merger, and in Ch. 6, we examined the

role that axions might play in thermal transport in mergers.

At zero temperature, the beta equilibrium condition is known to be µn = µp + µe,
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but as temperature increases above about 1 MeV, a correction to this beta equilibrium

condition appears. The rates of the Urca processes that determine beta equilibrium begin

to differ due to the kinematic impact of the neutrino, which becomes increasingly relevant

as temperature increases. We found the correction to the beta equilibrium condition as a

function of temperature and density for conditions where nuclear matter is transparent to

neutrinos. This modification of the beta equilibrium condition slightly changes the equation

of state. There is no modification for neutrino-trapped nuclear matter.

We calculated the bulk-viscous dissipation time for adiabatic density oscillations in

neutrino-transparent nuclear matter. For density oscillations with frequency 1 kHz, we

found that in certain thermodynamic conditions - densities from 0.5-2 n0 and temperatures

from 2-4 MeV, significant energy dissipation from the oscillations occurs in 5-20 ms, which

makes bulk viscosity relevant for neutron star mergers. The exact thermodynamic condi-

tions for low dissipation time depend on the nuclear equation of state. Higher frequency

oscillations, which likely occur post-merger, damp even more quickly. We considered only

small oscillations, but in the future we want to study the large oscillations that occur right

after the two stars touch (see Fig. 5.1).

Energy transport in neutron stars and mergers is done by particles with long mean free

paths, with neutrinos being by far the most likely candidate. We considered the possibility of

energy transport due to axions, calculating their mean free path and determining that they

are not trapped in any part of a neutron star merger. We calculated the cooling time of a

fluid element radiating axions and found that under current constraints on the axion-nucleon

coupling, axions could cool certain regions of a merger in under 10 milliseconds. Importantly,

this could occur for fluid elements at temperatures where neutrinos are trapped, and rapid

cooling would not ordinarily be expected.

In this thesis we have assumed that the matter in mergers is nuclear matter, that is,

it consists only of neutrons, protons, electrons, and in certain regions, neutrinos. We also

considered the possibility of trapped axions, though this situation is unlikely to occur in
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mergers. There is still much uncertainty in the composition of nuclear matter, as the nuclear

equation of state is not well known except around nuclear saturation density. A natural next

step would be to consider other forms of matter in mergers. One option is to include muons

and other flavors of neutrinos. Another would be to consider a phase transition from nuclear

to quark matter, and to see what influence the presence of quarks will have on the merger.

As discussed in Sec. 2.2, there are many possible ways this phase transition could occur,

each of which would surely have different physical consequences in mergers. In addition, the

presence of meson condensates [334] like pions or kaons could have important consequences.

The equation of state ε = ε(P ) can inform us to a certain extent about the particle content,

for example, if there is a strong first-order phase transition, but the possibility exists of two

different types of matter having indistinguishable equations of state [191]. We believe that

understanding transport in neutron star mergers offers a great opportunity to determine the

particle content of nuclear matter. Transport properties depend on particle interaction rates,

densities of states, and particle statistics, providing an increased number of signatures of the

presence of certain particles. The task of identifying the consequences of different forms of

matter in mergers has already begun [306, 13, 304, 335, 336].
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Appendix A

Thermodynamics in grand canonical

ensemble

For much of this thesis we work in grand canonical ensemble, which considers a system

hooked up to a large reservoir. The system and the reservoir are in equilibrium with respect

to energy and particle number. This means that they have the same temperature and

chemical potential (we assume one species of particle) [258]. The point of this setup is

that we can consider a system with external control parameters temperature and chemical

potential. These are the axes of the QCD phase diagram (Fig. 1.1), for example.

We also want to work in terms of intensive quantities, which do not depend on the

system size, so instead of considering the energy E, the entropy S, the particle number N ,

we consider the energy density ε, the entropy density s, and the particle number density n.

The first law of thermodynamics for a one-component system is

dE = −P dV +T dS+µ dN . (A.1)

We write this law in terms of intensive quantities by turning writing E = εV , S = sV , and

N = nV , and then using product rule to expand the differentials. Then we see that the

dV differential is multiplied by ε + P − Ts − µn, which equals 0 because it is nothing by

the Euler equation in thermodynamics (see Eq. 13.29 in [258]), which is valid for extensive
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systems47. Thus, the volume differential vanishes and we are left with

dε = T ds+µ dn . (A.2)

In this formulation, entropy density and number density are the control parameters, so we

must do a Legendre transformation [258] to make T and µ the control parameters. This is

accomplished by adding and subtracting s dT and n dµ to the right hand side of Eq. (A.2),

yielding

dε = d(Ts) + d(µn) −s dT −n dµ,

d(ε− Ts− µn) = −s dT −n dµ .

From Euler’s equation, the left hand side is just − dP , and so we have derived the first law

of thermodynamics in grand canonical ensemble

dP = s dT +n dµ, (A.3)

and it is now evident that T and µ are our control parameters. It is also apparent that

s =
∂P

∂T

∣

∣

∣

∣

∣

µ

and n =
∂P

∂µ

∣

∣

∣

∣

∣

T

. (A.4)

47 Extensive systems are homogeneous, for example, there are no surface effects. When we describe systems
thermodynamically, we usually assume that our description is for the bulk of the material, and that surface
effects are negligible, allowing us to take advantage of extensivity.
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Free Fermi gas

The simplest way to model a uniform phase of (fermionic) matter is as a free Fermi gas,

which consists of free particles which obey the Pauli exclusion principle. We will assume the

particles have energy dispersion relation E(p) =
√
p2 +m2 and that two particles can occupy

each momentum state because the fermions have spin-1/2. The occupation probability of a

specific energy state is given by the Fermi-Dirac distribution.

The number density of gas is found by adding up 1 for each momentum state weighted

by the Fermi-Dirac distribution, with a factor of 2 because of spin degeneracy

n = 2
∫ d3k

(2π)3

(

1 + eβ(
√

k2+m2−µ)
)−1

=
1

π2

∫ ∞

0
dk k2

(

1 + eβ(
√

k2+m2−µ)
)−1

. (B.1)

The energy density is similar, except that for each momentum state, the energy of that

momentum state
√
k2 +m2 is counted

ε = 2
∫ d3k

(2π)3

√
k2 +m2

(

1 + eβ(
√

k2+m2−µ)
)−1

=
1

π2

∫ ∞

0
dk k2

√
k2 +m2

(

1 + eβ(
√

k2+m2−µ)
)−1

.

(B.2)

The pressure is

P =
T

V
lnZGC , (B.3)
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where ZGC is the grand canonical partition function [258]. We find that

P =
T

V
lnZGC =

T

V

[

2V
∫ d3k

(2π)3
ln
(

1 + e−β(
√

k2+m2−µ)
)

]

(B.4)

=
T

π2

∫ ∞

0
dk k2 ln

(

1 + e−β(
√

k2+m2−µ)
)

.
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Direct Urca matrix element

Using Feynman rules from, for example, [19], the matrix element for neutron decay n →

p+ e− + ν̄ is

∑

spins

|M|2 = 32G2
F cos2 θc

[

(1 + gA)2(pp · pe)(pn · pν) + (g2
A − 1)m2(pe · pν)

+ (gA − 1)2(pn · pe)(pp · pν)
]

. (C.1)

In the nonrelativistic limit, En ≈ m and Ep ≈ m, and the nucleon momentum |p| ≪ m.

Applying these approximations to the matrix element yields

∑

spins

|M|2 ≈ 32G2
F cos2 θc

[

(1 + 3g2
A)m2EeEν + (1 − g2

A)m2pe · pν

]

. (C.2)

In calculation of the Urca rate, the quantity that appears under the integral is
∑

spins |M|2/(2En2Ep2Ee2Eν), which is the nonrelativistic transition amplitude in Fermi’s

Golden rule. In the non-relativstic approximation, this quantity becomes

∑

spins |M|2
2En2Ep2Ee2Eν

= 2G2
F cos2 θc

[

1 + 3g2
A + (1 − g2

A)
pe · pν

EeEν

]

, (C.3)

which is the expression used in [253] and hence in our papers [242, 260]. Thanks to crossing

symmetry [35], this is also the matrix element for electron capture e− + p → n+ ν.
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Appendix D

Modified Urca rates when µn 6= µp + µe

We present here the Fermi-surface approximation of the modified Urca rates, when allowed

to deviate from the low-temperature beta equilibrium criterion (4.10) by an amount ξ ≡

(µn − µp − µe) /T . In the following expressions for the rates the non-equilibrium behavior is

encapsulated in the function

F (ξ) = −
(

ξ4 + 10π2ξ2 + 9π4
)

Li3(−eξ) + 12ξ
(

ξ2 + 5π2
)

Li4(−eξ)

− 24
(

3ξ2 + 5π2
)

Li5(−eξ) + 240ξLi6(−eξ) − 360Li7(−eξ), (D.1)

where Lin is the Polylogarithm function of order n [337]. We note that F (0) ≈ 2300. The

rate of modified Urca neutron decay with a neutron spectator is

ΓmU,nd(n)(ξ) =
7

64π9
G2g2

Af
4m

3
nmp

m4
π

p4
Fn
pFp

(

p2
Fn

+m2
π

)2F (ξ)ϑnT
7 (D.2)

where ϑn is defined as in Eq. (4.18). The rate of modified Urca electron capture with a

neutron spectator is

ΓmU,ec(n)(ξ) = ΓmU,nd(n)(−ξ), (D.3)

and so the two neutron-spectator modified Urca rates agree in low-temperature beta equilib-

rium (4.10). The Fermi surface approximation of the modified Urca neutron decay process
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with a proton spectator is

ΓmU,nd(p)(ξ) =
1

64π9
G2g2

Af
4mnm

3
p

m4
π

pFn

(

pFn
− pFp

)4

(

(

pFn
− pFp

)2
+m2

π

)2F (ξ)ϑpT
7 (D.4)

with ϑp defined as in Eq. (4.19), and the modified Urca electron capture rate with a proton

spectator is

ΓmU,ec(p)(ξ) = ΓmU,nd(p)(−ξ), (D.5)

where again both modified Urca rates with a proton spectator agree in low-temperature beta

equilibrium (4.10).
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Appendix E

Exact direct Urca rate integral

The neutron decay rate given by a twelve dimensional integral in Eq. (4.12) can be reduced,

without approximation, to a three dimensional integral. Integrating over neutrino three-

momentum, we have

Γn =
G2

128π8

∫

d3pn d
3pp d

3pe fn (1 − fp) (1 − fe) δ(q − |pn − pp − pe|)

×
(

1 + 3g2
A +

(

1 − g2
A

)

p̂e · pn − pp − pe

|pn − pp − pe|

)

, (E.1)

where we define q ≡ En −Ep −Ee, and the “hat” denotes a unit vector. We adopt spherical

coordinates for the momentum of each of the three particles. We have the freedom to choose

the coordinates such that the neutron momentum lies along the z axis, and the proton

momentum lies in the same plane as the neutron momentum, and so the momentum unit

vectors are written as

p̂n = (0, 0, 1) (E.2)

p̂p =
(√

1 − z2
p , 0, zp

)

(E.3)

p̂e =
(

√

1 − z2
e cosφ,

√

1 − z2
e sinφ, ze

)

, (E.4)

where zp and ze are cosines of the polar angles of the proton and electron momenta and as

such, take values from −1 to 1. The azimuthal angle φ of the electron with respect to the
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Appendix E. Exact direct Urca rate integral

plane formed by the proton and neutron momenta ranges from 0 to 2π.

This choice of coordinates allows us to integrate over the three trivial angles, giving a

factor of 8π2. The rate integral can now be written as

Γn =
G2

16π6

∫ ∞

0
dpn dpp dpe p

2
np

2
pp

2
efn (1 − fp) (1 − fe) I(pn, pp, pe), (E.5)

where

I =
∫ 1

−1
dze

∫ 1

−1
dzp

∫ 2π

0
dφ (E.6)

× δ



q −
√

p2
n + p2

p + p2
e + 2pppe

√

1 − z2
p

√

1 − z2
e cosφ+ 2pppezpze − 2pnppzp − 2pnpeze





×









1 + 3g2
A +

(

1 − g2
A

) pnze − ppzpze − pe − pp

√

1 − z2
p

√

1 − z2
e cosφ

√

p2
n + p2

p + p2
e + 2pppe

√

1 − z2
p

√

1 − z2
e cosφ+ 2pppezpze − 2pnppzp − 2pnpeze









.

We do the φ integral first, using the delta function. Clearly we require q > 0, because if q is

negative, the argument of the delta function could never be zero and thus the integral would

be zero. For q > 0, the delta function argument vanishes for either zero or two values of φ

between 0 and 2π. We find that

I = 4|q|
∫ 1

−1
dzp

(

1 + 3g2
A +

1 − g2
A

2peq

(

p2
n + p2

p − p2
e − q2 − 2pnppzp

)

)

Θ(q) (E.7)

×
∫ 1

−1
dze

Θ(B)
√

4p2
pp

2
e

(

1 − z2
p

)

(1 − z2
e) −

(

q2 − p2
n − p2

p − p2
e − 2pppezpze + 2pnppzp + 2pnpeze

)2
,

where the step function Θ(B) enforces B > 0, where

B = 2pppe

√

1 − z2
p

√

1 − z2
e (E.8)

− |q2 − p2
n − p2

p − p2
e − 2pppezpze + 2pnppzp + 2pnpeze|.

This is the condition for there to be two, not zero, values of φ in the integration range which
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Appendix E. Exact direct Urca rate integral

make the argument of the delta function vanish and thus contribute to the integral.

We now evaluate the ze integral, noting that the step function Θ(B) adjusts the range of

integration. Only if C > 0, where

C = 2pe|q| − |p2
e + q2 − p2

n − p2
p + 2pnppzp|, (E.9)

is the step function nonzero for any range of ze in the interval [−1, 1], in which case the step

function is nonzero only for z−
e < ze < z+

e , where z±
e lie inside the interval [−1, 1], and thus

z±
e become the new integration bounds. Doing the ze integral, we find

I =
2π|q|
pe

Θ(q)
∫ 1

−1
dzp Θ(C)













1 + 3g2
A +

1 − g2
A

2peq

(

p2
n + p2

p − p2
e − q2 − 2pnppzp

)

√

p2
n + p2

p − 2pnppzp













. (E.10)

The step function Θ(C) creates a restriction on the bounds of zp and so the actual

range of integration over zp is the intersection of the intervals [−1, 1] and [z−
p , z

+
p ], where

z±
p = (p2

n + p2
p − p2

e − q2 ± 2pe|q|)/(2pnpp), and so the range of integration will depend on the

values of {pn, pp, pe}. Evaluating the integral over zp with the bounds y+ and y−, we have

I(pn, pp, pe) =
2π|q|
pnpppe

Θ(q)J(pn, pp, pe) (E.11)

where

J(pn, pp, pe) =

[

(

1 + 3g2
A − (1 − g2

A)
p2

e + q2

2peq

)

y1/2 +
1 − g2

A

6peq
y3/2

]

∣

∣

∣

∣

∣

∣

y=y+

y=y−

(E.12)
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with

y+ =



























































(pe + |q|)2 if − 1 < z−
p < 1 < z+

p

(pe + |q|)2 if − 1 < z−
p < z+

p < 1

(pn + pp)2 if z−
p < −1 < 1 < z+

p

(pn + pp)2 if z−
p < −1 < z+

p < 1

(E.13)

and

y− =



























































(pn − pp)2 if − 1 < z−
p < 1 < z+

p

(pe − |q|)2 if − 1 < z−
p < z+

p < 1

(pn − pp)2 if z−
p < −1 < 1 < z+

p

(pe − |q|)2 if z−
p < −1 < z+

p < 1.

(E.14)

Thus, the direct Urca neutron decay rate is

Γn =
G2

8π5

∫ ∞

0
dpn dpp dpe pnpppe|q|Θ(q)fn (1 − fp) (1 − fe) J(pn, pp, pe) (E.15)

with J(pn, pp, pe) as defined in Eqs. (E.12), (E.13), and (E.14).

The direct Urca electron capture rate integral is identical, except for fn (1 − fp) (1 − fe)

is replaced by (1 − fn) fpfe and, because the neutrino is now on the same side of the reaction

as the neutron, instead of with the electron and proton, Θ(q) is replaced by Θ(−q).

The remaining three dimensional integral in Eq. (E.15) can be done numerically (we used

Mathematica’s Monte Carlo integration routine), giving the direct Urca rate results shown in

Fig 4.4. Mathematica’s estimated error on the numerical integrals is under twenty percent,

and repeated evaluation of the integrals leads to results within ten percent of their average.
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Appendix F

A Maxwell relation for bulk viscosity

We begin with the first law of thermodynamics for npe matter

dE = −P dV +T dS+µn dNn +µp dNp +µe dNe . (F.1)

We normalize the extensive quantities by the baryon number, where σ = S/NB, xi = Ni/NB,

and V = NB/nB, and the first law becomes

d
(

ε

nB

)

=
P

n2
B

dnB +T dσ+µn dxn +µp dxp +µe dxe . (F.2)

Because of charge neutrality, np = ne, so dxp = dxe, and the Urca processes indicate that

dxn = − dxp. Turning the particle fractions into proton fractions and defining µ∆ = µn −

µp − µe, the first law becomes

d
(

ε

nB

)

=
P

n2
B

dnB +T dσ−µ∆ dxp . (F.3)

One of the three Maxwell relations [258] that one can derive from this expression is Eq. (5.20).
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Appendix G

Adiabatic and isothermal oscillations

Most previous works use the isothermal susceptibilities

BT = − 1

nB

∂µ∆

∂xp

∣

∣

∣

∣

∣

nB ,T

, (G.1)

CT = nB
∂µ∆

∂nB

∣

∣

∣

∣

∣

xp,T

, (G.2)

often only considering the zero temperature case [282, 262, 256, 338, 268]. As discussed in

Sec. 5.1, because thermal equilibration is so slow in neutrino-transparent nuclear matter in

merger conditions, we must use the adiabatic susceptibilities

B = − 1

nB

∂µ∆

∂xp

∣

∣

∣

∣

∣

nB ,s/nB

, (G.3)

C = nB
∂µ∆

∂nB

∣

∣

∣

∣

∣

xp,s/nB

. (G.4)

Note that at zero temperature, adiabatic and isothermal quantities become equivalent [269,

258]. Often, it is convenient to work with thermodynamic derivatives at constant tempera-

ture T , or baryon density nB, or proton fraction xp. In particular, these three variables are

the degrees of freedom in the CompOSE database of EoSs [183]. Using a Jacobian coordi-

nate transformation [339, 258], we can relate adiabatic derivatives (derivatives at constant

entropy per baryon) to isothermal derivatives. The adiabatic susceptibility derivatives are
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related to the isothermal susceptibility derivatives by

∂µ∆

∂nB

∣

∣

∣

∣

∣

s/nB ,xp

=
∂µ∆

∂nB

∣

∣

∣

∣

∣

T,xp

−
∂(s/nB)

∂nB

∣

∣

∣

T,xp

∂µ∆

∂T

∣

∣

∣

nB ,xp

∂(s/nB)
∂T

∣

∣

∣

nB ,xp

(G.5)

∂µ∆

∂xp

∣

∣

∣

∣

∣

s/nB ,nB

=
∂µ∆

∂xp

∣

∣

∣

∣

∣

T,nB

−
∂(s/nB)

∂xp

∣

∣

∣

T,nB

∂µ∆

∂T

∣

∣

∣

nB ,xp

∂(s/nB)
∂T

∣

∣

∣

nB ,xp

. (G.6)

The isothermal compressibility is

κ−1
T = nB

∂P

∂nB

∣

∣

∣

∣

∣

xp,T

(G.7)

and the adiabatic compressibility is given by

κ−1
S = nB

∂P

∂nB

∣

∣

∣

∣

∣

xp,s/nB

. (G.8)

The adiabatic derivative can be obtained from the isothermal derivative by

∂P

∂nB

∣

∣

∣

∣

∣

s/nB ,xp

=
∂P

∂nB

∣

∣

∣

∣

∣

T,xp

−
∂(s/nB)

∂nB

∣

∣

∣

T,xp

∂P
∂T

∣

∣

∣

nB ,xp

∂(s/nB)
∂T

∣

∣

∣

nB ,xp

. (G.9)

Above n0, the adiabatic and isothermal derivatives are within 25% of each other for all

temperatures considered here. For nuclear matter that is below n0 with T > 5 MeV, there

are noticeable differences between the isothermal and adiabatic susceptibility C and the

compressibility κ. The susceptibility B is not sensitive to differences between adiabaticity

and isothermality (the differences are below 10%).

Below n0, the adiabatic C is greater than the isothermal C by as much as a factor of

2.5 (DD2) or 5.5 (IUF). These large differences are at temperatures above 5 MeV. Thus, the

adiabatic C2/B is larger than the isothermal version by factors of up to 6 (DD2) or 30 (IUF).

However, these large differences occur at low densities (≈ 0.5n0) and high temperatures

(T ≈ 10 MeV) where the bulk viscosity is small anyway, since the equilibration rate γ is
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much faster than a 1 kHz density oscillation. In the regions where bulk viscosity is large,

the difference between adiabatic and isothermal susceptibilities is at most a factor of 2 in

the quantity C2/B.

At the densities and temperatures where bulk viscosity is large, the isothermal compress-

ibility is at most 20% larger than the adiabatic compressibility, which means that adiabatic

density oscillations would lose energy slightly more slowly than isothermal density oscilla-

tions. At densities below n0 and temperatures above 5 MeV, the isothermal compressibility

can be up to 40% (DD2) or 80% (IUF) larger than the adiabatic value, but the bulk viscosity

is too small for fluid elements under these conditions for this to matter.
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Axion emissivity integrals

Below, we detail a series of approximations for the axion emissivity, Eq. (6.13).

H.1 Relativistic, constant-matrix-element phase

space integration

The phase space integral Eq. (6.13) can be done if we make the approximation of a momentum-

independent matrix element [Eq. (6.5)]. The resulting emissivity will be valid at arbi-

trary neutron degeneracy and arbitrary degree of relativistic nature of the neutrons. In

the constant-matrix element approximation the axion emissivity is

Q =

(

1 − β

3

)

f 4m4
nG

2
an

256π11m4
π

(

1 +
m2

π

k2
typ

)−2

(H.1)

×
∫

d3p1 d
3p2 d

3p3 d
3p4 d

3ω δ4(p1 + p2 − p3 − p4 − ω)
f1f2(1 − f3)(1 − f4)

E∗
1E

∗
2E

∗
3E

∗
4

.

The zeroth component of the delta function can be written as δ(E∗
1 +E∗

2 −E∗
3 −E∗

4 −ω)

since the neutron mean fields Un cancel out. This integral can be broken up into 2 subsystems

A and B which exchange some 4-momentum q, which is integrated over (a similar approach

was used by [255] in a different context). Thus,

Q =

(

1 − β

3

)

f 4m4
nG

2
an

256π11m4
π

(

1 +
m2

π

k2
typ

)−2
∫

d4q A(q0, q)B(q0, q) (H.2)
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where

A(q0, q) =
∫

d3p1 d
3p2 δ

4(p1 + p2 − q)
f1f2

E∗
1E

∗
2

(H.3)

and

B(q0, q) =
∫

d3p3 d
3p4 d

3ω δ4(q − p3 − p4 − ω)
(1 − f3)(1 − f4)

E∗
3E

∗
4

. (H.4)

Then we split A and B up into subsystem with 4-momentum transfers k and l

A(q0, q) =
∫

d4k I1(k0, k)I2(k0, k) (H.5)

B(q0, q) =
∫

d4l I3(l0, l)I4(l0, l) (H.6)

where we define and compute

I1 ≡
∫

d3p1 δ
4(p1 + k)

f1

E∗
1

=
δ(k0 +

√

k2 +m2
∗)

√

k2 +m2
∗(1 + e(

√
k2+m2

∗
−µ∗

n)/T )
(H.7)

I2 ≡
∫

d3p2 δ
4(p2 − q − k)

f2

E∗
2

=
δ(
√

m2
∗ + (q + k)2 − q0 − k0)

√

m2
∗ + (q + k)2(1 + e(

√
m2

∗
+(q+k)2−µ∗

n)/T )
(H.8)

I3 ≡
∫

d3p3 δ
4(q − p3 − l)

(1 − f3)

E∗
3

=
δ(q0 − l0 −

√

m2
∗ + (q − l)2)

√

m2
∗ + (q − l)2(1 + e−(

√
m2

∗
+(q−l)2)−µ∗

n)/T )
(H.9)

I4 ≡
∫

d3p4 d
3ω δ4(l − p4 − ω)

(1 − f4)

E∗
4

=
2π

l

∫ ω+

ω−

dω
ω

1 + e−(l0−ω−µ∗

n)/T
θ(l20 − l2 −m2

∗),

(H.10)

where

ω− =
l20 − l2 −m2

∗
2(l0 + l)

(H.11)

ω+ =
l20 − l2 −m2

∗
2(l0 − l)

. (H.12)
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We can now calculate A(q) and B(q) using Eq. (H.5) and (H.6). We find

A(q0, q) =
2π

q

∫

√
q2

0
−m2

∗

0
dk

k(q0 −
√

k2 +m2
∗)

√

k2 +m2
∗

√

k2 +m2
∗ + q2

0 − 2q0

√

k2 +m2
∗

(H.13)

×
θ(2kq − |q2

0 − q2 − 2q0

√

k2 +m2
∗|)

(1 + e(
√

k2+m2
∗
−µ∗

n)/T )(1 + e
(

√

k2+m2
∗
+q2

0
−2q0

√
k2+m2

∗
−µ∗

n)/T
)

and

B(q0, q) =
4π2

q

∫ q0

m
dl0

∫

√
l2
0
−m2

∗

0
dl
θ(2ql − |m2

∗ + q2 + l2 − q2
0 − l20 + 2q0l0|)

1 + e−(q0−l0−µ∗

n)/T

×
∫ ω+

ω−

dω
ω

1 + e−(l0−ω−µ∗

n)/T
. (H.14)

Thus, the full expression for the emissivity is

Q =

(

1 − β

3

)

f 4m4
nG

2
an

8π7m4
π

(

1 +
m2

π

k2
typ

)−2
∫ ∞

m∗

dq0

∫ ∞

0
dq
∫

√
q2

0
−m2

∗

0
dk
∫ q0

m∗

dl0

∫

√
l2
0
−m2

∗

0
dl
∫ ω+(l0,l)

ω−(l0,l)
dω

× kω(q0 −
√

k2 +m2
∗)
θ(2kq − |q2

0 − q2 − 2q0

√

k2 +m2
∗|)θ(2ql − |m2

∗ + q2 + l2 − q2
0 − l20 + 2q0l0|)

√

k2 +m2
∗

√

k2 +m2
∗ + q2

0 − 2q0

√

k2 +m2
∗

(H.15)

× 1

(1 + e(
√

k2+m2
∗
−µ∗

n)/T )(1 + e
(

√

k2+m2
∗
+q2

0
−2q0

√
k2+m2

∗
−µ∗

n)/T
)(1 + e−(q0−l0−µ∗

n)/T )(1 + e−(l0−ω−µ∗

n)/T )

.

This six-dimensional integral can be done numerically in Mathematica.

H.2 Non-relativistic phase space integration

The axion emissivity [Eq. (6.13)] can be computed assuming non-relativistic neutrons. In this

case, it is possible to keep the full momentum-dependence of the matrix element [Eq. (6.1)].

However, the axion 3-momentum is neglected in the 3-momentum conserving delta function.

Calculations similar to this have been done in the literature, mostly for non-degenerate
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nucleons [327, 340, 323, 341, 301]. The full calculation of the axion emissivity with non-

relativistic neutrons and at arbitrary degeneracy has been done recently by [342]. Here we

will apply this calculation to neutrons described by the NLρ EoS, that is, neutrons with

dispersion relation given by Eq. (2.9). We will do the calculation for arbitrary degeneracy,

using Fermi-Dirac factors instead of a Maxwell-Boltzmann distribution. In the nonrelativistic

approximation, E − µn = E∗ − µ∗
n ≈ m∗ + p2/(2m∗) − µ∗ = p2/(2m∗) − (µ∗ − m∗) ≡

p2/(2m∗) − µ̂, where µ̂ ≡ µ∗ −m∗ is the non-relativistic definition of the chemical potential.

Starting with Eq. (6.13), we neglect the axion three-momentum in the three-dimensional

delta function and we set the neutron energy E∗ = m∗, in the factor (25E1E2E3E4ω)−1

as is conventional [341], as it often simplifies the integration. Converting the integral over

the axion momentum to spherical coordinates and doing the trivial integral over the axion

momentum solid angle, we obtain

Qa =
1

96π10

f 4m4
nG

2
an

m4
πm

3
∗

∫

d3p1 d
3p2 d

3p3 d
3p4

∫ ∞

0
dω ω2δ(p2

1 + p2
2 − p2

3 − p2
4 − 2m∗ω) (H.16)

× δ3(p1 + p2 − p3 − p4)f1f2(1 − f3)(1 − f4)

[

k4

(k2 +m2
π)2 +

l4

(l2 +m2
π)2 +

k2l2 − 3 (k · l)2

(k2 +m2
π) (l2 +m2

π)

]

.

Now we define a new coordinate system, p+ = (p1 + p2)/2, p− = (p1 − p2)/2, a = p3 − p+,

b = p4 − p+, which has Jacobian d3p1 d
3p2 d

3p3 d
3p4 = 8 d3p+ d

3p− d
3a d3b. The three-

dimensional delta function becomes δ3(a + b), so we integrate over the three-momentum b

and then over the axion energy ω, using the delta function (which became δ(p2
− −a2 −m∗ω)).

We are now left with an integral over the three-vectors p+, p−, and a, so we choose a

coordinate system where a = a(0, 0, 1), p− = p−(
√

1 − r2, 0, r), and

p+ = p+(
√

1 − s2 cosφ,
√

1 − s2 sinφ, s). Now, k2 = p2
− + a2 − 2p−ar, l2 = p2

− + a2 +

2p−ar, k · l = p2
− − a2, p2

1 = p2
+ + p2

− + 2p+p−(
√

1 − r2
√

1 − s2 cosφ + rs), p2
2 = p2

+ + p2
− −

2p+p−(
√

1 − r2
√

1 − s2 cosφ+ rs), p2
3 = p2

+ + a2 + 2p+as, and p2
4 = p2

+ + a2 − 2p+as.

Now we can integrate over the three trivial angles, giving a factor of 8π2, leaving us

with a six-dimensional integral that we simplify with the coordinate transformations u =
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p2
+/(2m∗T ), v = p2

−/(2m∗T ), w = a2/(2m∗T ), and we define ŷ = µ̂/T . Thus the key

variables in the emissivity expression become

k2 = 2m∗T (v + w − 2
√
vwr)

l2 = 2m∗T (v + w + 2
√
vwr)

k · l = 2m∗T (v − w)

β(E1 − µn) = −ŷ + u+ v + 2
√
uv(

√
1 − r2

√
1 − s2 cosφ+ rs) (H.17)

β(E2 − µn) = −ŷ + u+ v − 2
√
uv(

√
1 − r2

√
1 − s2 cosφ+ rs)

β(E3 − µn) = −ŷ + u+ w + 2
√
uws

β(E4 − µn) = −ŷ + u+ w − 2
√
uws.

and the axion emissivity is

Q =
32

√
2

3π8

f 4m4
nG

2
an

m4
π

m1/2
∗ T 6.5

∫ ∞

0
du dv

∫ v

0
dw

∫ 1

−1
dr ds

∫ 2π

0
dφ u1/2v3/2w3/2(v − w)2

× (α4 (r2 + 3) − 6α2 (r2 − 1) (v + w) − 3 (r2 − 1) (2 (1 − 2r2) vw + v2 + w2))
(

2w (α2 − 2r2v + v) + (α2 + v)2 + w2
)2

×
(

(1 + eβ(E1−µn))(1 + eβ(E2−µn))(1 + e−β(E3−µn))(1 + e−β(E4−µn))
)−1

(H.18)

where α = mπ/
√

2m∗T . This integral can be done numerically.

H.3 Fermi surface approximation and its

improvement

In nuclear matter, to good approximation the dominant contribution to a process involving

degenerate fermions will be from those fermions near their Fermi surface. Since calculations

of the full phase space integral are often not possible, and almost always result in an integral

that must be done numerically, the calculations of the mean free path, rate, and emissivity
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are almost always done via the Fermi surface approximation, which we describe below.

In the Fermi surface approximation, the phase space integral (like in Eq. (6.4) and (6.13))

is converted into spherical coordinates for each momentum-three vector and then broken up

(termed “phase space decomposition” [135]) into an angular integral A and an integral J

over momentum magnitudes (equivalently, energies). In the angular integral, the fermion

momentum magnitudes are set equal to their respective Fermi momenta, while in the energy

integral, the energies are integrated over, consistent with thermal blurring of the Fermi

surface (although inconsistent with the momenta magnitudes in the angular integral, which

were not allowed to vary above or below the Fermi surface).

The emissivity due to axion emission via n + n → n + n + a is given by Eq. (6.13). We

again neglect the axion 3-momentum in the momentum-conserving delta function and then

multiply by one in the form

1 =
∫ ∞

0
dp1 dp2 dp3 dp4 δ(p1 − pF n)δ(p2 − pF n)δ(p3 − pF n)δ(p4 − pF n) (H.19)

=
1

p4
F n

∫ ∞

m∗+Un

dE1 dE2 dE3 dE4 E
∗
1E

∗
2E

∗
3E

∗
4δ(p1 − pF n)δ(p2 − pF n)δ(p3 − pF n)δ(p4 − pF n),

where we have used dE = (p/E∗) dp as can be seen from the neutron dispersion relation

Eq. (2.9). We perform phase space decomposition, obtaining

QF S =
1

768π11

G2
anf

4m4
n

m4
πp

4
F n

A(pF n)J2(T, ŷ). (H.20)

The angular integral A is

A(pF n) =
∫

d3p1 d
3p2 d

3p3 d
3p4 δ(p1 − pF n)δ(p2 − pF n)δ(p3 − pF n)δ(p4 − pF n)δ3(p1 + p2 − p3 − p4)

×









k4

(k2 +m2
π)2 +

l4

(l2 +m2
π)2 +

k2l2

(

1 − 3
(

k̂ · l̂
)2
)

(k2 +m2
π) (l2 +m2

π)









= 32π3p5
F nF (y), (H.21)
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where F (y) is given in Eq. (6.7). The energy integral is

J2(T ) =
∫

d3ω
∫ ∞

m∗+Un

dE1 dE2 dE3 dE4 δ(E1 +E2 −E3 −E4 −ω)f1f2(1−f3)(1−f4). (H.22)

The energy integral is evaluated by changing to dimensionless variables centered at the Fermi

energy xi = (Ei −µn)/T , and then to variables u = x1 +x2 and v = x1 −x2 and so Eq. (H.22)

becomes

J2(T, ŷ) ≡ T 3
∫

d3ω
∫ ∞

−ŷ
dx1 dx2 dx3 dx4

δ(x1 + x2 − x3 − x4 − ω/T )

(1 + ex1)(1 + ex2)(1 + e−x3)(1 + e−x4)

= 8πT 6
∫ ∞

−ŷ
dx1 dx2

∫ x1+x2+2ŷ

0
dz z2

ln
(

cosh ((x1+x2−z+ŷ)/2)
cosh (ŷ/2)

)

(1 + ex1)(1 + ex2)(1 − ez−x1−x2)

= 16πT 6
∫ ∞

−2ŷ
du

1

1 − eu
ln

{

cosh (ŷ/2)

cosh [(u+ ŷ)/2]

}

∫ u+2ŷ

0
dw

w2

1 − ew−u
ln

{

cosh [(u+ ŷ − w)/2]

cosh (ŷ/2)

}

= 16πT 6K2(ŷ) (H.23)

where ŷ = (µ∗
n − m∗)/T and K2(ŷ) is given in Eq. (6.16). For strongly degenerate nuclear

matter (ŷ → ∞),

K2(ŷ → ∞) =
31

1890
π6. (H.24)

H.4 Comparison of emissivity expressions

In Fig. H.1 we compare various approximations of the axion emissivity, namely, the FS

approximation [Eq. (6.14)], our improvement to the FS approximation [Eq. (6.15)], the non-

relativistic phase space integral [Eq. (H.18)], and the fully relativistic phase space integral48

(with constant matrix element) [Eq. (H.15)]. We see that at 1n0, at low temperature the

approximations all agree. Here the neutrons are degenerate, which explains the success of

the FS approximation, and the neutrons are indeed nonrelativistic because their Fermi mo-

48 In the fully relativistic phase space integral, we choose two values of ktyp: k2
typ = 3m∗T and also

k2
typ = p2

F n as upper and lower bounds, marked “ND” and “D” respectively in Fig. H.1.
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Fig. H.1: Comparison of several approximations of the axion emissivity, including the
FS approximation [Eq. (6.14)] (red, dashed), our improvement to the FS ap-
proximation [Eq. (6.15)] (blue, dotted), the non-relativistic phase space integral
[Eq. (H.18)] (green, dash-dotted), and the fully relativistic phase space integral
(with constant matrix element) [Eq. (H.15)] (black, solid) at densities of 1n0 (a)
and 7n0 (b).

mentum is not yet large, which explains the success of the nonrelativistic approximation. As

the temperature increases, the neutrons become non-degenerate and so the FS approxima-

tion fails dramatically. The improved treatment of the FS approximation does better than

the original, but still fails at temperatures above 40-50 MeV. The NR approximation fails

at high temperature because it neglects the axion momentum in the 3d delta function (at

T = 100 MeV, the axion spectrum peaks at ω = 300 MeV, which is not negligible compared

to the neutron Fermi momentum of 320 MeV). At 7n0, the neutrons are always degenerate,

and thus the Fermi surface approximation and its improvement match the full phase space

integral quite well. The non-relativistic phase space integral doesn’t match as well because

the approximation E∗ ≈ m∗ in the denominator of the phase space integral becomes a very

poor approximation as the effective mass dwindles to around 250 MeV at this high density.

144



Appendix I

Axion mean free path integrals

Below, we detail a series of approximations for the axion mean free path, Eq. (6.4).

I.1 Relativistic, constant-matrix-element phase space

integration

Following the same procedure as for the emissivity full phase space integral, we can do the

full phase space integration of the axion mean free path (with the same approximation of a

constant matrix element) and we obtain

λ−1 =

(

1 − β

3

)

f 4m4
nG

2
an

4π5m4
πω

(

1 +
m2

π

k2
typ

)−2
∫ ∞

m∗

dq0

∫ ∞

0
dq
∫ 1

−1
dr
∫

√
(q0+ω)2−m2

∗

0
dx
∫

√
q2

0
−m2

∗

0
dk

×
kqx(q0 −

√

k2 +m2
∗)θ(2kq − |q2

0 − q2 − 2q0

√

k2 +m2
∗|)

√

x2 +m2
∗

√

k2 +m2
∗
√
ω2 + q2 + 2ωqr

√

k2 +m2
∗ + q2

0 − 2q0

√

k2 +m2
∗(1 + e(

√
k2+m2

∗
−µ∗

n)/T )

(I.1)

×
θ(2x

√
ω2 + q2 + 2ωqr − |q2 + 2ωqr − q2

0 − 2q0ω + 2(q0 + ω)
√

x2 +m2
∗|)

(1 + e
(

√

k2+m2
∗
+q2

0
−2q0

√
k2+m2

∗
−µ∗

n)/T
)(1 + e−(

√
x2+m2

∗
−µ∗

n)/T )(1 + e−(ω+q0−
√

x2+m2
∗
−µ∗

n)/T )

.
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I.2 Non-relativistic phase space integration

The axion mean free path [Eq. (6.4)] can be computed assuming non-relativistic neutrons.

A similar calculation (for nondegenerate neutrons) has been done in [296, 340] and was

extended to arbitrary degeneracy in [342]. We start with Eq. (6.4), keeping the matrix

element as momentum-dependent and thus inside the integral. We use the nonrelativistic

(quadratic) approximation for the neutron dispersion relations except in the four energy

denominators where E∗ = m∗, just as in the emissivity calculation. We obtain

λ−1
a =

1

48π8

f 4m4
nG

2
an

m4
πωm

3
∗

∫

d3p1 d
3p2 d

3p3 d
3p4 δ(p

2
1 + p2

2 − p2
3 − p2

4 + 2m∗ω)δ3(p1 + p2 − p3 − p4)

× f1f2(1 − f3)(1 − f4)

[

k4

(k2 +m2
π)2 +

l4

(l2 +m2
π)2 +

k2l2 − 3 (k · l)2

(k2 +m2
π) (l2 +m2

π)

]

. (I.2)

Just as in the emissivity calculation, we transform coordinates to {p+,p−, a,b}, picking up a

factor of 8 from the Jacobian, and then we integrate over b, using the three-dimensional delta

function δ3(a + b). We choose the same coordinate system as in the emissivity calculation

(Appendix H.2), aligning the “z” axis along the a three-momentum vector. We integrate

over the 3 trivial angles and then use the energy delta function to integrate over a. Then we

create nondimensional variables u = p2
+/(2m∗T ) and v = p2

−/(2m∗T ), and define ŷ = µ̂/T =

(µ∗ −m∗)/T as in the emissivity calculation. We also define γ = ω/(2T ).

k2 = 2m∗T (2v + γ − 2
√
v
√
v + γr)

l2 = 2m∗T (2v + γ + 2
√
v
√
v + γr)

k · l = −m∗ω

β(E1 − µn) = −ŷ + u+ v + 2
√
uv(

√
1 − r2

√
1 − s2 cosφ+ rs) (I.3)

β(E2 − µn) = −ŷ + u+ v − 2
√
uv(

√
1 − r2

√
1 − s2 cosφ+ rs)

β(E3 − µn) = −ŷ + u+ v + γ + 2
√
u
√
v + γs

β(E4 − µn) = −ŷ + u+ v + γ − 2
√
u
√
v + γs.
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We find that

λ−1 =
8
√

2

3π6

f 4m4
nG

2
an

m4
πω

m1/2
∗ T 3.5

∫ ∞

0
du dv

∫ 1

−1
dr ds

∫ 2π

0
dφ u1/2v3/2(v + γ)3/2 (I.4)

× α4 (r2 + 3) − 6α2 (r2 − 1) (γ + 2v) + 3 (r2 − 1) (−γ2 + 4γ (r2 − 1) v + 4 (r2 − 1) v2)
(

4v (α2 − γr2 + γ) + (α2 + γ)2 − 4 (r2 − 1) v2
)2

(

(1 + eβ(E1−µn))(1 + eβ(E2−µn))(1 + e−β(E3−µn))(1 + e−β(E4−µn))
)−1

I.3 Fermi surface approximation and its improvement

The mean free path of an axion due to the process n+ n+ a → n+ n is given by Eq. (6.4).

We neglect the 3-momentum of the axion in the momentum-conserving delta function, and

then multiply by one in the form Eq. (H.19). Then we perform phase space decomposition,

splitting the integral into integral expressions A and J1

λ−1 =
f 4G2

anm
4
n

96π8ωm4
πp

4
F n

A(pF n)J1(ω, T, ŷ), (I.5)

The angular integral is the same as for the emissivity calculation (see Eq. (H.21)) and the

energy integral is

J1(ω, T, ŷ) =
∫ ∞

m∗+Un

dE1 dE2 dE3 dE4 δ(E1 + E2 − E3 − E4 + ω)f1f2(1 − f3)(1 − f4). (I.6)

The energy integral is evaluated by changing to dimensionless variables centered at the Fermi

energy xi = (Ei −µn)/T , and then to variables u = x1 + x2 and v = x1 − x2 and so Eq. (I.6)
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becomes

J1(ω, T, ŷ) ≡ T 3
∫ ∞

−ŷ
dx1 dx2 dx3 dx4

δ(x1 + x2 − x3 − x4 + ω/T )

(1 + ex1)(1 + ex2)(1 + e−x3)(1 + e−x4)

= 2T 3
∫ ∞

−ŷ
dx1 dx2

ln
(

cosh ((x1+x2+ω/T +ŷ)/2)
cosh (ŷ/2)

)

(1 + ex1)(1 + ex2)(1 − e−x1−x2−ω/T )

= 4T 3K1(ŷ, ω/T ), (I.7)

where ŷ = (µ∗
n −m∗)/T and K1(ŷ, ω/T ) is given in Eq. (6.9). In the literature, it is standard

to consider strongly degenerate nuclear matter where ŷ → ∞ and so

K1(ŷ → ∞, ω/T ) =

(

ω/T

24

)

(ω/T )2 + 4π2

1 − e−ω/T
, (I.8)

and we arrive at the formula for the axion mean free path in strongly degenerate nuclear mat-

ter, Eq. (6.6). In semi-degenerate matter, the improved FS approximation yields Eq. (6.8)

for the axion mean free path.

I.4 Comparison of MFP expressions

In Fig. I.1 we compare different approximations for the axion mean free path, namely, the FS

approximation [Eq. (6.6)], our improvement to the FS approximation [Eq. (6.8)], the non-

relativistic phase space integral [Eq. (I.4)], and the fully relativistic phase space integral49

(with constant matrix element) [Eq. (I.1)].

We see in Fig. I.1 that at 1n0, at low temperature the approximations all agree (though

the nonrelativistic phase space integral deviates slightly from the rest, because of the ap-

proximation in the energy denominators E∗ ≈ m∗, which shows up more in this figure than

in Fig. H.1 because of the difference in y-axis scales). At saturation density and low temper-

ature, neutrons are degenerate, which explains the success of the FS approximation, and the

49 In the fully relativistic phase space integral, we choose two values of ktyp: k2
typ = 3m∗T and also

k2
typ = p2

F n as upper and lower bounds, marked “ND” and “D” respectively in Fig. I.1.
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Fig. I.1: Comparison of the various approximations of the axion MFP including the FS
approximation [Eq. (6.6)] (red, dashed), our improvement to the FS approxima-
tion [Eq. (6.8)] (blue, dotted), the non-relativistic phase space integral [Eq. (I.4)]
(green, dash-dotted), and the fully relativistic phase space integral (with constant
matrix element) [Eq. (I.1)] (black, solid) at densities of 1n0 (a) and 7n0 (b).

neutrons are indeed nonrelativistic because their Fermi momentum is not yet large, which

explains the success of the nonrelativistic approximation. As the temperature increases,

the neutrons become non-degenerate and so the FS approximation fails dramatically. The

improved treatment of the FS approximation does better than the original, but still fails

at temperatures above about 40 MeV. The NR approximation fails at high temperature be-

cause it neglects the axion momentum in the 3d delta function (again, at T = 100 MeV,

the axion spectrum peaks at ω = 300 MeV, which is not negligible compared the neutron

Fermi momentum of 320 MeV). At 7n0, the neutrons are always degenerate, and thus the

Fermi surface approximation and its improvement match the full phase space integral quite

well. Again, the non-relativistic phase space integral doesn’t match as well because the ap-

proximation E∗ ≈ m∗ in the denominator of the phase space integral becomes a very poor

approximation as the effective mass dwindles to around 250 MeV.
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