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Transport Map Accelerated Markov Chain Monte Carlo∗
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Abstract. We introduce a new framework for efficient sampling from complex probability distributions, using a
combination of transport maps and the Metropolis–Hastings rule. The core idea is to use determin-
istic couplings to transform typical Metropolis proposal mechanisms (e.g., random walks, Langevin
methods) into non-Gaussian proposal distributions that can more effectively explore the target den-
sity. Our approach adaptively constructs a lower triangular transport map—an approximation of
the Knothe–Rosenblatt rearrangement—using information from previous Markov chain Monte Carlo
(MCMC) states, via the solution of an optimization problem. This optimization problem is convex
regardless of the form of the target distribution and can be solved efficiently without gradient in-
formation from the target probability distribution; the target distribution is instead represented via
samples. Sequential updates enable efficient and parallelizable adaptation of the map even for large
numbers of samples. We show that this approach uses inexact or truncated maps to produce an
adaptive MCMC algorithm that is ergodic for the exact target distribution. Numerical demonstra-
tions on a range of parameter inference problems show order-of-magnitude speedups over standard
MCMC techniques, measured by the number of effectively independent samples produced per target
density evaluation and per unit of wallclock time.
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optimal transport
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1. Introduction. Markov chain Monte Carlo (MCMC) algorithms provide an enormously
flexible approach for sampling from complex target probability distributions, using only eval-
uations of an unnormalized probability density [19, 54, 36, 9]. Within this general framework,
the Metropolis–Hastings algorithm [41, 25] is one of the most broadly applicable and well-
studied sampling strategies. It combines a simple proposal distribution with an accept/reject
step to create the transition kernel for a Markov chain that has the desired target as its sta-
tionary distribution. Under some additional technical conditions on the proposal and on the
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646 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

target density π, the Markov chain is also ergodic [56].
This paper introduces a new approach to the design of Metropolis–Hastings algorithms

based on the adaptive construction of transport maps between the target probability distri-
bution and a simple reference distribution. These maps are monotone and typically nonlinear
transformations of the target distribution that render it easier to sample, much as a precon-
ditioner expedites the solution of a linear system. To put our approach into context, we first
recall some challenges underlying MCMC sampling and current methods for addressing them.

Effective MCMC proposal mechanisms seek to make successive iterates of the Markov
chain as independent as possible. When estimating an expectation over the target distribu-
tion, efficient “mixing” in this sense reduces the variance of estimates computed from the
MCMC samples. A useful intuition is that effective MCMC proposals aim to approximate the
target distribution at least locally (e.g., in the case of random-walk Metropolis or Langevin
proposals) or perhaps globally (e.g., in the case of Metropolis independence samplers). Con-
sider, for example, a Gaussian proposal density centered at the current state of the chain, as
in a random-walk Metropolis algorithm. The adaptive Metropolis scheme of [24] sequentially
updates the covariance of this proposal in order to reflect the covariance of π. In a similar
fashion, [3] uses the empirical covariance of the target to scale proposals in a Metropolis-
adjusted Langevin algorithm (MALA), which also uses the gradient of π to push the proposal
mean towards regions of higher target density.

Many other MCMC algorithms use local derivative information to improve sampling of
the target distribution. Hamiltonian Monte Carlo methods, as in [48] and [27], propose sam-
ples via trajectories of a Hamiltonian dynamical system defined on an augmented state space.
Computing these trajectories requires many evaluations of the gradient of the target density,
but can produce large steps that have high acceptance probability. The stochastic Newton
method of [38] uses higher-order derivative information, in the form of approximate Hessians
of the local log-posterior, to scale a Gaussian proposal in high dimensions. The geometri-
cally motivated approach of [22] also uses higher-order derivative information to define a local
metric for both Langevin proposals and Hamiltonian dynamics on a Riemannian manifold.
Contrasting with these schemes but also related to our work are adaptive Metropolis indepen-
dence samplers [2], which construct a global approximation of the target using, for example,
Gaussian mixtures. This approximation is updated recursively from past MCMC samples
using a stochastic approximation scheme.

The theory of optimal transport has a rich history dating back to Monge [44], who—
motivated by logistical problems involving earthworks—sought a deterministic transformation
from one probability measure to another that would minimize an expected transport cost. This
cost is defined by a function c(θ, r) that reflects the cost of transporting a unit of mass from θ
to r. A transformation that solves the Monge problem is called an optimal transport map and
induces a deterministic coupling of the two probability measures. A relaxation of the Monge
problem to more general couplings was introduced by Kantorovich [30, 66], yet under certain
conditions, a minimizer of the Kantorovich formulation also solves the Monge problem, i.e.,
is an optimal transport map. For a contemporary development of this subject, see [68, 67]
and [52].

Optimal transport between discrete measures has been used for Bayesian inference in [53],
where the solution of a discrete assignment problem yields a consistent ensemble transforma-
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 647

tion scheme to replace resampling in the context of a Bayesian filter. This problem differs
from those considered here, however, as we focus on transport between continuous probability
measures. In [47] continuous transport maps were introduced that characterize the Bayesian
posterior distribution as a pushforward of the prior distribution. In this formulation, the
transport map is used to generate independent samples from a distribution that in principle
can be made arbitrarily close to π. However, constructing sufficiently accurate maps can be
computationally taxing. The implicit sampling approach of [15, 14, 46] and the randomize-
then-optimize approach of [5] compute the action of certain transport maps sample by sample,
without representing the maps explicitly. But these samples do not come from π and thus
require reweighting in order to represent the target. Implementing either of these approaches
requires access to gradients of π.

In this paper, we will use approximate transport maps to achieve exact sampling from
the target distribution by integrating transport maps with MCMC. We reverse the direction
of the maps computed in [47] and adaptively construct our maps (now from the target to a
simple reference distribution) by solving an optimization problem based on MCMC samples.
We will show that the optimization problem has a remarkably simple structure: it is convex
regardless of the form of the target distribution and separable across dimensions of the pa-
rameter space; it also affords substantial opportunities for parallel computation and efficient
sequential updating. Moreover, computing derivatives of the optimization objective requires
no derivative information from the target probability density. We will analyze the scheme
from the theoretical perspective of adaptive MCMC, allowing us to establish ergodicity of the
resulting chain. The transport map constructed in this way aims to represent the entire target
distribution as the pullback of a Gaussian reference measure, and in that sense our approach
is a global one. Unlike adaptive Metropolis independence samplers, however, we approximate
the target density not by choosing from a particular family of densities, but by building an
invertible transformation between the target distribution and a reference distribution. Criti-
cally, this structure enables us to use both local proposals and global/independence proposals,
and to transition naturally between the two as the transport map becomes more accurate.
The transport map is not tied to any particular type of MCMC proposal; it instead provides
a framework for improving many standard proposal schemes.

The remainder of this paper is organized as follows. Section 2 will provide relevant back-
ground on transport maps and explain how suitable maps can be constructed from samples.
Section 3 will formulate the map-based MCMC approach, while section 4 will introduce adap-
tive strategies. A theoretical convergence analysis is provided in section 5. Section 6 compares
the performance of map-based MCMC with that of existing state-of-the-art samplers on a
range of test problems.

2. Construction of transport maps. Transport maps will be used in sections 3 and 4
to define a new class of MCMC methods. This section first introduces transport maps in
the context of optimal transportation (section 2.1) and then describes a practical method for
constructing maps from samples (section 2.2).

2.1. Optimal transportation. Consider two Borel probability measures on R
n, µθ and µr.

We will refer to these as the target and reference measures, respectively, and associate them
with random variables θ ∼ µθ and r ∼ µr. A transport map T : Rn → R

n is a deterministic
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648 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

transformation that pushes forward µθ to µr, yielding

(1) µr = T]µθ.

In other words, µr (A) = µθ
(
T−1(A)

)
for any Borel set A ⊆ R

n. In terms of the random

variables, we write r
d
= T (θ), where

d
= denotes equality in distribution. The transport map

induces a deterministic coupling of probability measures [68].
Of course, there can be infinitely many transport maps between two probability measures.

On the other hand, it is possible that no transport map exists: consider the case where µθ has
a point mass (an “atom”) but µr does not. If a transport map exists, one way of regularizing
the problem and finding a unique map is to introduce a cost function c(θ, r) on R

n ×R
n that

represents the work needed to move one unit of mass from θ to r. Using this cost function,
the total cost of pushing µθ to µr is

(2) C(T ) =

∫

Rn

c (θ, T (θ)) dµθ(θ).

Minimization of this cost subject to the constraint µr = T]µθ is called the Monge problem,
after [44]. A transport map satisfying the measure constraint (1) and minimizing the cost
in (2) is an optimal transport map. The celebrated result of [8], later generalized by [40],
shows that this map exists, is unique, and is monotone µθ-almost everywhere (a.e.) when µθ
is atomless and the cost function c(θ, r) is quadratic. Generalizations of this result to other
cost functions and spaces have been established in [13, 1, 18, 6].

The choice of cost function in (2) naturally influences the structure of the map. For
illustration, consider the Gaussian case of θ ∼ N(0, I) and r ∼ N(0,Σ) for some positive
definite covariance matrix Σ. The associated transport map is linear: T = Sθ, where the
matrix S is any square root of Σ. When the transport cost is quadratic, c(θ, r) = |θ − r|2, S
is the symmetric square root obtained from the eigendecomposition of Σ, Σ = V ΛV >, and
S = V Λ1/2V > [49]. If the cost is instead taken to be the following weighted quadratic

(3) c(θ, r) =
n∑

i=1

ti−1|θi − ri|
2, t > 0,

then, as t → 0, the optimal map becomes lower triangular and equal to the Cholesky factor
of Σ. Generalizing to non-Gaussian µθ and µr, as t→ 0, the optimal maps Tt obtained with
the cost function (3) are shown by [11] and [7] to converge to the Knothe–Rosenblatt (KR)
rearrangement [59, 32] between probability measures. The KR map exists and is uniquely
defined if µθ is absolutely continuous with respect to Lebesgue measure. The KR map also
has several useful properties: the Jacobian matrix of T is lower triangular and has positive
diagonal entries µθ-a.e. Because of this triangular structure, the Jacobian determinant and
the inverse of the map are easy to evaluate. This is an important computational advantage
that we exploit in section 2.2.

We will employ lower triangular maps in our MCMC construction, but without directly
appealing to the transport cost in (3). While this cost is meaningful for theoretical analysis
and even numerical continuation schemes [11], we find that for small t, the sequence of weights
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 649

{ti} quickly produces numerical underflow as the parameter dimension n increases. Instead, we
will directly impose the lower triangular structure and search for a map T̃ that approximately
satisfies the measure constraint, i.e., for which µr ≈ T̃]µθ. This approach is a key difference
between our construction and standard optimal transportation.

Numerical challenges with (3) are not the only reason to seek approximate maps. Suppose
that the target measure µθ is a posterior or some other intractable distribution, but let the
reference µr be something simpler, e.g., a Gaussian distribution with identity covariance. In
this case, the complex structure of µθ is captured by the map T . Sampling and other tasks
can then be performed with the simple reference distribution instead of the more complicated
distribution. In particular, if a map exactly satisfying (1) were available, sampling the target
distribution µθ would simply require drawing a sample r′ ∼ µr and pushing it to the target
space with θ′ = T−1(r′). This concept was employed by [47] for posterior sampling. Depending
on the structure of the reference and the target, however, finding an exact map may be
computationally challenging. In particular, if the target contains many nonlinear dependencies
that are not present in the reference distribution, the representation of the map T (e.g., in some
canonical basis) can become quite complex. Hence, it is desirable to work with approximations
to T . Below we will demonstrate that even approximate maps can capture the key structure
of the target distribution and thus be used to construct more efficient MCMC proposals.

Another reason for seeking approximate transport maps is regularity. There is an extensive
theory on the regularity of optimal transport—with much that is understood, along with some
open questions [10]. Since we are only concerned with approximate measure transformations,
we can impose regularity conditions that may not hold for the optimal map or the KR map.
In particular, we will require that T̃ and its inverse have continuous derivatives on R

n, i.e.,
that T̃ be a C1-diffeomorphism. Later we will impose additional constraints on the derivatives
of T̃ , which will prove useful for our theoretical analysis of map-based MCMC.

2.2. Constructing maps from samples. As noted above, we will seek transport maps that
have a lower triangular structure, i.e.,

(4) T (θ1, θ2, . . . , θn) =




T1(θ1)
T2(θ1, θ2)
...
Tn(θ1, θ2, . . . , θn)


 ,

where θi denotes the ith component of θ and Ti : R
i → R is the ith component of the map

T . For simplicity, we assume that both the target and reference measures are absolutely con-
tinuous on R

n, with densities π and p, respectively. This assumption precludes the existence
of atoms in µθ and thus makes the KR coupling well-defined. To find a useful approximation
of the KR coupling, we will define a map-induced density π̃(θ) and minimize the distance
between this map-induced density and the target density π(θ). The next three subsections
describe the setup of this optimization problem.

Note that when the reference measure is a standard Gaussian (as we shall prescribe below),
the construction of a map from target samples to the reference is a goal shared by the iterative
Gaussianization scheme of [34] and the density estimation schemes of [65, 64]. Both of these
approaches compose a series of simple maps (e.g., sigmoid-type functions of one variable in
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650 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

[64]) in order to achieve the desired transformation, but can require a large number of such
layers in order to converge. Also, the resulting maps are not triangular. Here, we seek to
develop a more expressive all-at-once approximation of the triangular KR map.

2.2.1. Optimization objective. Let p be the probability density associated with the ref-
erence measure µr, and consider a transformation T̃ (θ) that is monotone and differentiable
µθ-a.e. (In section 2.2.2 we will discuss constraints to ensure monotonicity; moreover, we will
employ maps that are everywhere differentiable by construction.) Now consider the pullback
of µr through T̃ . The density of this pullback measure is

(5) π̃(θ) = p(T̃ (θ))| det∇T̃ (θ)|,

where ∇T (θ) is the Jacobian of the map, evaluated at θ, and | det∇T̃ (θ)| is the absolute value
of the Jacobian determinant. We call π̃ the map-induced density.

If the measure constraint µr = T̃]µθ were exactly satisfied, the map-induced density π̃

would equal the target density π. This suggests finding T̃ by minimizing a distance or di-
vergence. Out of many possibilities [21], here we use the Kullback–Leibler (KL) divergence,
which takes the form

DKL(π‖π̃) = Eπ

[
log

(
π(θ)

π̃(θ)

)]
(6)

= Eπ

[
log π(θ)− log p

(
T̃ (θ)

)
− log

∣∣∣det∇T̃ (θ)
∣∣∣
]
.

The KL divergence, in this particular direction, is a widely adopted objective (cf. expecta-
tion propagation [42] and adaptive importance sampling [17, 60]) that offers computational
advantages discussed below and in section 2.4. Minimizing this KL divergence also favors
approximations π̃ that “cover” the target π [37]. (Of course, other divergences might em-
phasize different aspects of matching between π̃ and π, and thus be better suited for certain
applications.) We can now find transport maps by solving the following optimization problem:

(7) min
T∈T

Eπ

[
− log p (T (θ))− log |det∇T (θ)|

]
,

where T is some space of lower-triangular functions from R
n to R

n. If T is large enough to
include the KR map, then the solution of this optimization problem will exactly satisfy (1).
Note that we have removed the log π(θ) term in (6) from the optimization objective (7), as it
is independent of T . If the exact coupling condition is satisfied, however, then the quantity
inside the expectation in (6) becomes constant in θ. If π is unnormalized, this constant is in
fact the log of the normalizing constant of π.

One benefit of using KL divergence in the direction specified above is that we can use
Monte Carlo samples (in particular, MCMC samples) to approximate the expectation with
respect to π. Furthermore, as we will show below, this direction allows us to dramatically
simplify the solution of (7) when p is Gaussian. Suppose that we have K samples from
π, denoted by {θ(1), θ(2), . . . , θ(K)}. Taking a sample-average approximation (SAA) [31], we
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 651

replace the objective in (7) with its Monte Carlo estimate and, for this fixed set of samples,
solve the corresponding deterministic optimization problem:

(8) T̃ = argmin
T∈T

1

K

K∑

k=1

[
− log p

(
T (θ(k))

)
− log

∣∣∣det∇T (θ(k))
∣∣∣
]
.

The solution T̃ is an approximation to the exact transport map for two reasons: first, we
have used an approximation of the expectation operator, and second, we have restricted the
feasible domain of the optimization problem to T . The specification of T is the result of
constraints, discussed in section 2.2.2, and of the finite-dimensional parameterization of the
map, discussed in section 2.3.

2.2.2. Constraints. To write the map-induced density π̃ as in (5), it is sufficient that T̃
be differentiable and monotone, i.e., (θ′− θ)>(T̃ (θ′)− T̃ (θ)) ≥ 0 for distinct points θ, θ′ ∈ R

n.
Since we assume that µθ has no atoms, to ensure that the pushforward T̃]µθ also has no

atoms we only need to require that T̃ be strictly monotone. To show ergodicity of the MCMC
samplers constructed in sections 3 and 4, however, we will need to impose the stricter condition
that T̃ be bi-Lipschitz,

(9) λmin‖θ
′ − θ‖ ≤ ‖T̃ (θ′)− T̃ (θ)‖ ≤ λmax‖θ

′ − θ‖

for some 0 < λmin ≤ λmax < ∞. This condition implies that T̃ is differentiable almost
everywhere. But the maps we will employ are, by construction, everywhere differentiable and
lower triangular, and hence the lower Lipschitz condition in (9) is equivalent to a lower bound
on the map derivative,

(10)
∂T̃i
∂θi
≥ λmin, i = 1, . . . , n.

Since T̃ is lower triangular, the Jacobian ∇T̃ is also lower triangular, and (10) ensures that
the Jacobian is positive definite. Because the Jacobian determinant is then positive, we can
remove the absolute value from the determinant terms in (7), (8), and related expressions. This
is an important step towards arriving at a convex optimization problem (see section 2.2.3).
We stress that while a nonzero λmin is required for our theoretical analysis, it does not need
to be tuned in order to apply the algorithm in practice; typically we just choose a very small
value, e.g., λmin = 10−8. An explicit value for λmax can also be prescribed, but can instead
be defined implicitly through the construction described next.

Many representations of T̃ (e.g., polynomial expansions) will yield maps with unbounded
derivatives as ‖θ‖ → ∞. Clearly, such maps would not satisfy the upper bound in (9).
Fortunately, a simple correction ensures (9) is satisfied. Let T̃ : Rn → R

n be a continuously
differentiable function whose derivatives grow without bound as ‖θ‖ → ∞, but are finite
within a ball B(0, R) of radius R < ∞. We can satisfy (9) by setting T̃R(θ) = T̃ (θ) over
B(0, R) and forcing T̃R(θ) to be linear outside of this ball. More precisely, let w(θ) := R θ

‖θ‖

be the projection of θ to the closest point in B(0, R), and let d(θ) := θ
‖θ‖ · ∇T̃ (w(θ)) be the
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652 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

directional derivative of T̃ at the ball boundary. We then define T̃R(θ) in terms of T̃ (θ) as

(11) T̃R(θ) =

{
T̃ (θ), ‖θ‖ ≤ R,

T̃ (w(θ)) + d(θ)(θ − w(θ)), ‖θ‖ > R.

Note that a continuously differentiable T̃ (θ) will yield a continuously differentiable T̃R(θ).
Moreover, if T̃ (θ) satisfies the lower bound in (9), T̃R(θ) will satisfy both the lower and upper
bounds in (9).

When a finite number of samples are used in the Monte Carlo sum of (8), R can usually
be chosen so that all the samples lie in B(0, R), and hence T̃ can be evaluated directly. In this
setting, a value of R need not be explicitly prescribed. However, our asymptotic convergence
theory requires finite derivatives of the map as ‖θ‖ → ∞ in order to achieve the correct tail
behavior, which is guaranteed by using T̃R as in (11).

Unfortunately, we cannot generally enforce the lower bound in (10) over the entire support
of the target measure. A weaker, but practically enforceable, alternative is to require the map
to be increasing at each sample used to approximate the KL divergence. In other words, we
use the constraints

(12)
∂T̃i
∂θi

∣∣∣∣∣
θ(k)

≥ λmin ∀i ∈ {1, 2, . . . , n}, ∀k ∈ {1, 2, . . . ,K}.

In practice, we find that (12) is usually sufficient to ensure the monotonicity of a map repre-
sented by a finite basis expansion. When K is small, however, the pointwise constraint in (12)
may not be an adequate representation of the global constraint (10), and the map may not be
monotone over the entire support of the target density. When this occurs, the value of inverse
map T̃−1(r) may not be unique. To overcome this issue in our implementation, we choose the
value that is closest to the current sample mean. In our tests, this “trick” is infrequently used
and does not seem to impact convergence of the algorithm. We also mention ongoing work
to develop monotone parameterizations of triangular maps [39, 61]; these parameterizations
can guarantee global monotonicity at the expense of a slightly more challenging optimization
problem.

2.2.3. Convexity and separability of the optimization problem. Now we consider the
task of minimizing the objective in (8). The 1/K term can immediately be discarded, and
the derivative constraints above let us remove the absolute value from the determinant term.
While one could tackle the resulting minimization problem directly, we can simplify it further
by exploiting the structure of the reference density and the triangular map.

First, we let r ∼ N(0, I). This choice of reference distribution yields

(13) log p(r) = −
n

2
log(2π)−

1

2

n∑

i=1

r2i .

Next, the lower triangular Jacobian ∇T̃ simplifies the determinant term in (8) to give

(14) log
∣∣∣det∇T̃ (θ)

∣∣∣ = log (det∇T̃ (θ)) = log

(
n∏

i=1

∂T̃i
∂θi

)
=

n∑

i=1

log
∂T̃i
∂θi

.
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 653

The objective function in (8) now becomes

(15) C(T̃ ) =

n∑

i=1

K∑

k=1

[
1

2
T̃ 2
i (θ

(k))− log
∂T̃i
∂θi

∣∣∣∣∣
θ(k)

]
.

This objective is separable: it is a sum of n terms, each involving a single component T̃i of the
map. The constraints in (12) are also separable; there are K constraints for each T̃i, and no
constraint involves multiple components of the map. Hence the entire optimization problem
separates into n individual optimization problems, one for each dimension of the parameter
space. Moreover, each optimization problem is convex : the objective is convex and the feasible
domain is closed (note the ≥ operator in the linear constraints (12)) and convex.

In practice, we must solve the optimization problem over some finite-dimensional space of
candidate maps. Let each component of the map be written as T̃i(θ; γi), i = 1, . . . , n, where
γi ∈ R

Mi is a vector of parameters, e.g., coordinates in some basis. The complete map is then
defined by the parameters γ̄ = [γ1, γ2, . . . , γn]. Note that there are distinct parameter vectors
for each component of the map. The optimization problem over the parameters remains
separable, with each of the n different subproblems given by

(16)

min
γi

K∑

k=1

[
1

2
T̃ 2
i (θ

(k); γi)− log
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

]

s.t.
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

≥ λmin, k ∈ {1, 2, . . . ,K},

for i = 1, . . . , n. All of these optimization subproblems can be solved in parallel without
evaluating the target density π(θ). Since the map components T̃i are linear in the coefficients
γi, each finite-dimensional problem is still convex.

2.3. Map parameterization. In this work, we parameterize each component of the map
T̃i with a multivariate polynomial expansion. Each multivariate polynomial ψj is defined as

(17) ψj(θ) =
n∏

i=1

ϕji(θi),

where j = (j1, j2, . . . , jn) ∈ N
n
0 is a multi-index and ϕji is a univariate polynomial of degree ji.

The univariate polynomials can be chosen from any family of orthogonal polynomials (e.g.,
Hermite, Legendre, Jacobi); even monomials are sufficient for the present purposes.1 Using
these multivariate polynomials, we express the map as a finite expansion of the form

(18) T̃i(θ; γi) =
∑

j∈Ji

γi,j ψj(θ),

1In principle, there is some advantage to choosing polynomials that are orthogonal with respect to the
input distribution µθ, as in polynomial chaos approaches [20, 35]. In the present context, however, we only
have samples from µθ, and this distribution is almost certainly not one of the canonical distributions found in
the Wiener–Askey scheme [71]. Thus µθ-orthogonal polynomials are not readily available, and there is little
reason to be picky about the choice of polynomial basis.
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654 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

where Ji is a set of multi-indices defining the polynomial terms in the expansion. Notice that
the cardinality of the multi-index set defines the dimension of each parameter vector γi, i.e.,
Mi = |Ji|. An appropriate choice of each multi-index set Ji will force the entire map T̃ to be
lower triangular.

One simple choice of the multi-index set corresponds to a total-order polynomial basis,
where the maximum degree of each multivariate polynomial is bounded by some integer p ≥ 0:

J TOi = {j : ‖j‖1 ≤ p, jk = 0 ∀k > i}.

The first constraint in this set limits the polynomial order, while the second constraint, jk = 0
for all k > i, applied over all i = 1, . . . , n components of the map, forces T̃ to be lower
triangular. A smaller multi-index set for large n can be obtained by removing all the mixed
terms in the basis:

J NMi = {j : ‖j‖1 ≤ p, jkjm = 0 ∀k 6= m, jk = 0 ∀k > i}.

An even more parsimonious option is to use diagonal maps, via the multi-index sets

JDi = {j : ‖j‖1 ≤ p, jk = 0 ∀k 6= i}.

We will occasionally use a union of low degree J TOi and high degree JDi to define expressive
map expansions with a tractable number of terms.

Finally, we emphasize that any parameterization of the map that is linear in the coefficients
γ̄ can be used in the optimization problems defined earlier. While the examples in this paper
will focus on polynomial maps, we have also had good success representing the map as a
summation of linear terms and radial basis functions [50].

2.4. Solving the map optimization problem. Since the map T̃i(θ; γi) is linear in the
expansion coefficients γi, the objective in (15) can be evaluated using efficient matrix-matrix
and matrix-vector operations. We first construct matrices Fi, Gi ∈ R

K×Mi with components

defined by [Fi]k,j = ψj(θ
(k)) and [Gi]k,j =

∂ψj

∂θi

∣∣∣
θ(k)

for all j ∈ Ji. Recall that K is the number

of samples in our Monte Carlo approximation of the optimization objective. Using these
matrices and the expansion (18), we can rewrite (15) as

(19)
min
γi

1

2
γ>i (F

>
i Fi)γi − c

> log(Giγi)

s.t. Giγi ≥ λmin,

where c is a K-dimensional vector of ones and the log is taken componentwise. Clearly, the
objective can be evaluated with efficient numerical linear algebra routines.

Beyond efficient evaluations, the only difference between (19) and a simple quadratic
program is the log term in the objective. However, the quadratic term often dominates the
log term, making a standard Newton optimizer with backtracking line search quite efficient.
In practice, starting with an identity map, we usually observe convergence in fewer than ten
Newton iterations. Notice also that the log term in (19) acts as a barrier function for the
constraints.
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 655

3. Map-based MCMC proposals. Now we will show how a transport map can be used
to modify the Metropolis–Hastings algorithm by equivalently transforming either the target
distribution or the proposal mechanism. In this section, we assume that a fixed transport
map T̃ is in hand. Of course, this map must somehow be constructed, and hence the fixed-
map approach described here is just an intermediate step in our exposition. The next section
(section 4) will use the optimization approaches of section 2 to iteratively build such a map
in an adaptive MCMC framework.

A simple Metropolis–Hastings algorithm [25, 41] generates a new state θ(k+1) from the
current state θ(k) in two steps. First, a sample θ′ is drawn from a proposal density qθ,γ̄(·|θ

(k)).
Then an accept-reject step is performed: θ(k+1) is set to θ′ with probability α(θ′, θ(k)) and to
θ(k) with probability 1− α(θ′, θ(k)), where

(20) α
(
θ′, θ(k)

)
= min

{
1,

π(θ′)qθ,γ̄(θ
(k)|θ′)

π(θ(k))qθ,γ̄(θ′|θ(k))

}
.

The choice of proposal qθ,γ̄ controls the dependence between successive states in the MCMC
chain through both the acceptance rate and the step size. Knowledge of the target density π is
helpful in designing proposals to make large moves that simultaneously have a high acceptance
probability. The scheme presented here encodes information about the target distribution via
a transport map T̃ .

3.1. MCMC with a fixed transport map. Assume that we have an approximate transport
map T̃ between a standard Gaussian reference and the target measure µθ, i.e., µr ≈ T̃]µθ.
The pushforward of the target measure through this map will not be Gaussian. But a map
that reduces the optimization objective of section 2 will make the pushforward closer (in
this particular sense) to a standard Gaussian than the original target. We will then use
MCMC to sample this pushforward distribution, with a proposal qr(r

′|r). The proposal qr
may be chosen quite freely, and examples below will encompass both local and independence
proposals. Equivalently, one can view this process from the perspective of the target space
by considering the pullback through the map T̃ of the proposal qr; this map-induced proposal
is applied to the original target density π. Below we will describe our algorithm from this
second perspective, but the first perspective of transforming or “preconditioning” the target
density may also provide useful intuition.

Let qr(r
′|r) be a standard Metropolis–Hastings proposal on the reference space. The

pullback of this proposal through T̃ induces a target space proposal density written as

(21) qθ,γ̄(θ
′|θ) = qr

(
T̃ (θ′)|T̃ (θ)

) ∣∣∣det∇T̃ (θ′)
∣∣∣ ,

where γ̄ denotes the dependency of this proposal on the map parameters. To perform MCMC,
we need the ability to evaluate this proposal density and to draw samples from it. The
expression (21) provides an easy way of evaluating the proposal density. Sampling from the
proposal qθ,γ̄(·|θ) involves three steps: (1) use the current target state θ to compute the current

reference state, r = T̃ (θ); (2) draw a sample r′ ∼ qr(r
′|r) from the reference proposal; and (3)

evaluate the inverse map at r′ to obtain a sample from the target proposal: θ′ = T̃−1(r′). These
steps are given as lines 4–6 of Algorithm 1 and illustrated in Figure 1. Ignoring the adaptation
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r

θ

p̃(r)

T̃ (θ)
π(θ)

θ

r

4

r′

qr(r
′|r)5

θ′ 6

Figure 1. Illustration of the Metropolis–Hastings proposal process in transport map–accelerated MCMC.
The gray circled numbers on each arrow correspond to the line number in Algorithm 1.

in lines 9–13, Algorithm 1 is equivalent to a standard Metropolis–Hastings algorithm on the
target distribution, using qθ,γ̄(θ

′|θ) as a proposal.

Because of the map’s lower triangular structure, evaluating the inverse map T̃−1(r) only
requires n one-dimensional nonlinear solves. These one-dimensional problems can be tackled
efficiently with a simple Newton method or, if the map is represented with polynomials, with
a bisection solver based on Sturm sequences [69]. We utilize the latter approach because of
its robustness.

3.2. Derivative-based proposals. An important feature of our approach is that the map-
induced proposal qθ,γ̄(θ

′|θ) requires derivative information from the target density π(θ) if and
only if the reference proposal qr(r

′|r) explicitly requires derivative information. We also note
that Algorithm 1 does not require π(θ) to take any particular form (e.g., to be a Bayesian
posterior or to result from a Gaussian prior). The ability to work with arbitrary target dis-
tributions for which derivative information may not be available is a distinction from many
recent sampling approaches, such as Riemannian manifold MCMC [22], the No-U-Turn Sam-
pler of [27], or optimization-based samplers such as implicit sampling or RTO [46, 5]. That
said, though our approach can perform quite well without derivative information, we can still
accommodate proposals that employ it.

The reference proposal qr is applied to the pushforward distribution of the target π through
the map T̃ . Let p̃ denote the corresponding pushforward density. Taking advantage of the
map’s lower triangular structure, we can write the logarithm of this density as

(22) log p̃(r) = log π
(
T̃−1(r)

)
+

n∑

i=1

log
∂T̃−1

i

∂ri
.

We will use the chain rule to obtain the gradient of this expression. First, make the substitution
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 657

r = T̃ (θ) and take the gradient with respect to θ:

(23) ∇θ log p̃
(
T̃ (θ)

)
= ∇θ log π(θ)−

n∑

i=1

(
∂T̃i
∂θi

)−1

Hi(θ),

where Hi is a row vector of second derivatives coming from the determinant term: Hi(θ) =[
∂2T̃i
∂θ1∂θi

∂2T̃i
∂θ2∂θi

· · · ∂2T̃i
∂θn∂θi

]
. Accounting for our change of variables, we now have an ex-

pression for the reference gradient given by

(24) ∇r log p̃(r) =

(
∇θ log π(θ)−

n∑

i=1

(
∂T̃i
∂θi

)−1

Hi(θ)

)[
∇T̃ (θ)

]−1
.

Note that this expression is only valid at θ = T̃−1(r).
The lower triangular structure allows us not only to expand the determinant and obtain

(24), but also to apply the inverse Jacobian (∇T (θ))−1 easily through forward substitution.
Furthermore, computing the Jacobian ∇T̃ (θ) or the second derivatives in Hi(θ) is trivial when
polynomials or other standard basis functions are used to parameterize the map.

4. Adaptive transport map MCMC. Given more samples of the target distribution, we
can construct a more accurate transport map, which in turn yields a more efficient map-
accelerated proposal. Hence, we adaptively construct the map T̃ as the MCMC chain pro-
gresses.

4.1. Adaptive algorithm overview. In our adaptive MCMC approach, we initialize the
sampler with a simple map T̃0 and update the map every KU steps using the previous states
of the MCMC chain. The map update uses these samples to define the optimization problem
(16), the solution of which yields a new map. This approach is conceptually similar to the
adaptive Metropolis algorithm of [24]. In [24], however, previous states are used to update
the covariance matrix of a Gaussian proposal; in the present case, previous states are used to
construct a nonlinear transport map that yields more general non-Gaussian proposals.

The most straightforward version of our adaptive algorithm would find the coefficients
γi for each component of the map by solving (16) directly. However, when the number of
existing samples K is small or if the initial steps of the chain mix poorly, the Monte Carlo
sum in (16) will be a poor approximation of the true integral, producing maps that do not
capture the structure of π. This is a standard issue in adaptive MCMC, and though it does
not matter asymptotically, it can impact practical performance with finite samples. One way
to overcome this problem is to start adapting the map only after some initial exploration of
the parameter space, i.e., after drawing a sufficient number of MCMC samples using the initial
map T̃0. A more efficient alternative, however, is to introduce a regularization term g(γi) into
the objective, allowing the map to start adapting much earlier. The purpose of this term is
to ensure that the map does not prematurely focus on one region of the target space, making
it more difficult for the chain to explore the entire support of π. Regularization yields the
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658 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

following modified objective:

(25)

min
γi

g(γi) +
K∑

k=1

[
1

2
T̃ 2
i (θ

(k); γi)− log
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

]

s.t.
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

≥ λmin ∀k ∈ {1, 2, . . . ,K}.

In practice, we choose g(γi) to prevent T̃ from deviating too strongly from the identity map,
particularly whenK is small. Thus, we use a simple quadratic penalty function centered on the
coefficients of the identity map: letting γIdi denote the coefficients of the identity map, we put
g(γi) = kR‖γi−γ

Id
i ‖

2, where kR is a user-defined regularization parameter. We have found that
in most problems, small values of kR yield similar performance. (In the numerical examples
below, we mostly set kR = 10−4.) Because we have discarded the 1/K coefficient scaling the
Monte Carlo sum in (25), the second term of the objective overwhelms the regularization term
as the number of samples grows, and the value of kR eventually becomes unimportant.

Other forms of regularization might also be effective. For instance, if additional problem
structure such as the covariance of π were known, it could also be incorporated into the
regularization term. Alternatively, one could add upper bounds on the map derivative to the
constraints in (25); these bounds would prevent the map-induced proposal distribution T̃−1

] µr
from becoming too narrow. Finally, note that because of the Metropolis–Hastings correction,
the map does not actually need to converge to an exact transformation. Hence one could
retain a regularization term that does not decay as the number of samples increases, e.g.,
by reintroducing a 1/K prefactor to the sum in (25). The only drawback of these stronger
regularizations is that they constrain the potential expressiveness of the map, even at large
K, and thus might sacrifice efficiency for robustness.

Lines 9–13 of Algorithm 1 show how we incorporate the map update into our adaptive
MCMC framework.

4.2. Sequential map updates. At first glance, updating the map every KU MCMC iter-
ations might seem computationally taxing. Fortunately, the form of the optimization problem
in (25) allows for efficient updates. When KU is small relative to the current number of steps
K, the objective function in (25) changes little between updates, and the previous map co-
efficients provide a good initial guess for the new optimization problem. Thus new optimal
coefficients can be found in only a few Newton iterations—sometimes only one or two. As the
timing results in section 6 show, even for long chains (large K), the advantage of using the
map to define qθ,γ̄ greatly outweighs the computational costs of sequential map updates.

We also note that the optimization could be performed with stochastic approximation
techniques [33, 2], in which case each map update would use only a portion of the chain, and
would have a cost independent of K. Our tests with K up to 5×105 have shown SAA to be
more efficient, but even longer chains might favor a stochastic approximation approach.

4.3. Monitoring map convergence. As the map in Algorithm 1 is adapted, the pushfor-
ward of π through the map becomes closer to the reference Gaussian, and the best choice
of reference proposal qr(r|r

′) will evolve as well. A small-scale random-walk proposal may
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Algorithm 1: MCMC algorithm with adaptive map.

Input: Initial state θ0, initial vector of transport map parameters γ̄0, reference
proposal qr(·|r

(k)), number of steps KU between map adaptations, total
number of steps L.

Output: MCMC samples of the target distribution,
{
θ(1), θ(2), . . . , θ(L)

}
.

1 Set state θ(1) = θ0
2 Set parameters γ̄(1) = γ̄0
3 for k ← 1 . . . L− 1 do

4 Compute the reference state, r(k) = T̃ (θ(k); γ̄(k))

5 Sample the reference proposal, r′ ∼ qr(·|r
(k))

6 Compute the target proposal sample, θ′ = T̃−1(r′; γ̄(k))
7 Calculate the acceptance probability:

α = min

{
1,

π(T̃−1(r′; γ̄(k)))

π(T̃−1(r(k); γ̄(k)))

qr
(
r(k)|r′

)

qr
(
r′|r(k)

) det[∇T̃−1(r′; γ̄(k))]

det[∇T̃−1(r(k); γ̄(k))]

}

8 Set θ(k+1) to θ′ with probability α; else set θ(k+1) = θ(k)

9 if (k mod KU ) = 0 then

10 for i← 1 to n do

11 Update γ
(k+1)
i by solving (25) with

{
θ(1), θ(2), . . . , θ(k+1)

}

12 else

13 γ̄(k+1) = γ̄(k)

14 return Target samples
{
θ(1), θ(2), . . . , θ(L)

}

be appropriate at early iterations, but a larger and perhaps position-independent proposal
may be advantageous as the map captures more of the target distribution’s structure. By
monitoring the difference between p̃ (22) and the uncorrelated standard Gaussian density, we
can adapt the reference proposal qr to better explore the changing p̃.

To this end, it is important to have an indicator of the map’s current accuracy. In the
discussion following (6), we noted that log π − log p ◦ T̃ − log | det∇T̃ | becomes a constant
function of θ when an exact transformation (1) between the target and reference is achieved. A
useful way to monitor the map’s convergence is then to calculate the variance of this quantity,

(26) σ2M = Varθ

[
log π(θ)− log p

(
T̃ (θ)

)
− log

∣∣∣det∇T̃ (θ)
∣∣∣
]
.

A variance of zero indicates that the map is exact: p̃ is a standard Gaussian. Asymptotically,
as σ2M → 0, the KL divergence (6) becomes 2σ2M [47].

4.4. Choice of reference proposal. Until now, we have left the choice of reference pro-
posal qr(r

′|r) rather open. Indeed, any nonadaptive proposal, including both independence
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660 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

(a) Local reference. (b) Local target. (c) Global reference. (d) Global target.

Figure 2. Example proposals in the reference space and the target space. Plots of both qr(r
′|r) and qθ(θ

′|r) =

qr(r
′|r)|∇T̃ (θ′)| are shown for local and independence (global) proposals. The black contours depict the target

distributions, while the colored contours illustrate the proposal densities.

proposals and random-walk proposals, could be used within our framework. Figure 2 shows
some typical proposals on both the reference space and the target space. In this section, we
describe a few reference proposals that we will use in our numerical demonstrations, with
particular attention to how they are implemented within the transport map framework. This
selection is far from exhaustive and is only intended to indicate how the transport map can
dictate the choice of reference proposal.

Metropolis-adjusted Langevin (MALA) proposal. Discretizing an appropriate Langevin
equation yields a proposal of the form

(27) qMALA(r
′|r) = N

(
r +

(∆τ)2

2
∇r log p̃(r), (∆τ)

2 I

)
,

with a step size (∆τ)2 and a symmetric positive definite matrix Σ [57].

Delayed rejection proposals. The delayed-rejection (DR) MCMC scheme of [43] allows
several proposals to be attempted during each MCMC step. With such a multistage proposal,
we can try a larger or more aggressive proposal at the first stage, followed by more conservative
proposals likely to produce accepted moves. We use this scheme to define qr(r

′|r) in two ways.
Our first instantiation of DR employs a standard Gaussian as an independence proposal

in the first stage, followed by a Gaussian random-walk proposal in the second stage. Our
motivation for this global-then-local strategy is the evolving nature of p̃(r). Initially, p̃(r) will
resemble the target density, which is more efficiently sampled by the random-walk proposal;
we need samples to be accepted in order to build a good map. As the map adapts, how-
ever, p̃(r) will approach a standard normal density, which can be efficiently explored by the
position-independent first stage. DR naturally trades off between these alternatives. Figure 2
illustrates the difference between local and independence proposals for a simple banana-shaped
distribution. Our second instantiation of DR employs two symmetric random-walk proposals,
the first with a larger variance and the second with a smaller variance.

5. Convergence analysis. This section investigates conditions under which our adaptive
algorithm yields an ergodic chain. Proofs of the lemmas are deferred to Appendix B.

5.1. The need for bounded derivatives. Consider a random-walk proposal on the ref-
erence space qr(r

′|r) = N(r, σ2I) with some fixed variance σ2. For illustration, assume that

c© 2018 U.S. Government

D
o
w

n
lo

ad
ed

 1
0
/2

9
/1

9
 t

o
 1

8
.1

1
.2

6
.1

6
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h

t;
 s

ee
 h

tt
p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 661

the target density is a standard normal distribution: π(θ) = N(0, I). The random walk
Metropolis (RWM) algorithm is geometrically ergodic for any density satisfying the following
two conditions (see Theorem 4.3 of [28]):

(28) lim sup
‖θ‖→∞

θ

‖θ‖
· ∇ log π(θ) = −∞

and

(29) lim
‖θ‖→∞

θ

‖θ‖
·
∇ log π(θ)

‖∇ log π(θ)‖
< 0.

Densities that satisfy (28) are called super-exponentially light. It is easy to show that our
example Gaussian density satisfies these conditions. In Algorithm 1, however, instead of
applying the RWM proposal to π directly, we apply the RWM proposal to the map-induced
density in (22). If the conditions in (11) are not satisfied, we can show that even when π is
Gaussian, any monotone polynomial map with degree greater than one results in a density p̃(r)
that is no longer super-exponentially light. For example, let T̃ have a maximum polynomial
degree of M > 1, with M odd. Then

lim sup
‖r‖→∞

r

‖r‖
· ∇ log p̃(r) = lim sup

‖r‖→∞

1

‖r‖

n∑

i=1

ri

(
∂T̃−1

i

∂ri

)−1
∂2T̃−1

i

∂r2i

= lim sup
‖r‖→∞

n

‖r‖

(
1

M
− 1

)
= 0.(30)

Clearly, the map-induced density is not super-exponentially light. We have therefore jeop-
ardized the geometric ergodicity of our sampler on a simple Gaussian target. Additional
restrictions on the map are needed to ensure convergence.

The loss of geometric ergodicity in (30) is due to the unbounded derivatives of nonlinear
polynomial maps, which do not satisfy (9). Unbounded derivatives of T̃ imply that T̃−1 has
derivatives that approach zero as ‖r‖ → ∞, which leads to (30). More intuitively, without an
upper bound on their derivatives, polynomial maps move too much weight to the tails of p̃.
In the next section, we show that the conditions in (9) ensure the ergodicity of Algorithm 1,
even with map adaptation.

5.2. Convergence of the adaptive algorithm. Our goal in this section is to show that
the adaptive Algorithm 1 produces samples that can be used in Monte Carlo approximations.
We thus need to show that Algorithm 1 is ergodic for the target density π(θ).

Assume that the target density is finite, continuous, and super-exponentially light. (Note
that certain densities which are not super-exponentially light can be transformed to super-
exponentially light densities using the techniques from [29].) Also assume that the reference
proposal qr(r

′|r) is Gaussian with bounded mean. Furthermore, let Γ be the space of the map
parameters γ̄ such that T̃ (θ; γ̄) satisfies the bi-Lipschitz condition given by (9).

The map at iteration k of the MCMC chain is defined by the coefficients γ̄(k). Let Pγ̄(k)

be the transition kernel of the chain at iteration k, constructed from the map T̃ (θ; γ̄(k)), the
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662 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

target space proposal in (21), and the Metropolis–Hastings kernel:

(31) Pγ̄(k)(θ,A) =

∫

A

(
α(θ′, θ)qθ,γ̄(k)(θ

′|θ) + (1− r(θ)) δθ(θ
′)
)
dθ′.

Here qθ,γ̄(k) is the map-induced proposal density from (21), α(θ′, θ) is the acceptance proba-
bility defined in (20), and r(θ) =

∫
α(θ′, θ)qθ,γ̄(k)(θ

′|θ)dθ′. Now, following [55] and [4], we can
establish the ergodicity of our adaptive algorithm by showing that it satisfies two conditions:
diminishing adaptation and containment. Diminishing adaptation is defined as follows.

Definition 5.1 (diminishing adaptation). For any starting point x(0) and initial set of map
parameters γ̄(0), a transition kernel Pγ̄(k) satisfies the diminishing adaptation condition when

(32) lim
k→∞

sup
x∈Rn

∥∥∥Pγ̄(k)(x, ·)− Pγ̄(k+1)(x, ·)
∥∥∥
TV

= 0 in probability,

where ‖ · ‖TV denotes the total variation norm.

Instead of working with the containment condition directly (see [4] or [55]), we will show
that our adaptive MCMC algorithm instead satisfies the simultaneous strongly aperiodic geo-
metric ergodicity condition.

Definition 5.2 (SSAGE). Simultaneous strongly aperiodic geometric ergodicity (SSAGE) is
the condition that there exist a measurable set C ∈ B(RD), a drift function V : Rn → [1,∞),
and scalars δ > 0, λ < 1, and b < ∞ such that supx∈C V (x) < ∞ and the following two
conditions hold:

1. (Minorization.) For each vector of map parameters γ̄ ∈ Γ, there is a probability mea-
sure νγ̄(·) defined on C ⊂ R

n with Pγ(x, ·) ≥ δνγ̄(·) for all x ∈ C.
2. (Simultaneous drift.)

∫
Rn V (x)Pγ̄(x, dx) ≤ λV (x) + bIC(x) for all γ̄ ∈ Γ and x ∈ R

n.

By Theorem 3 of [55], SSAGE ensures the containment condition. The following three
lemmas establish diminishing adaptation and SSAGE. In the following, let C = B(0, RC) be
a ball of radius RC > 0 and let V (x) = kvπ

−α(x) for some α ∈ (0, 1) and kv = supx π
α(x).

Also, assume that π(x) > 0 for all x ∈ C. For this choice of V (x) and our assumption that
π(x) > 0 for x ∈ C, we have that supx∈C V (x) <∞.

Because the reference proposal is Gaussian with bounded mean, we can find two scalars
k1 and k2, and two zero-mean Gaussian densities g1 and g2, such that the reference proposal
is bounded as

(33) k1g1(r
′ − r) ≤ qr(r

′|r) ≤ k2g2(r
′ − r).

The bounds in (9) then imply that the target space proposal can also be bounded. This result
is captured in Lemma 5.3.

Lemma 5.3 (bounded target space proposal). For any map coefficients γ̄ ∈ Γ, the map-
induced proposal qθ,γ̄(θ

′|θ) is bounded as

(34) kLgL(θ
′ − θ) ≤ qθ,γ̄(θ

′|θ) ≤ kUgU (θ
′ − θ),

where kL = k1λ
n
min, kU = k2λ

n
max, gL(x) = g1(λmaxx), and gU (x) = g2(λminx).
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 663

The upper and lower bounds in (34) are key to our proof of convergence. In fact, with these
bounds, the proofs of Lemmas 5.5 and 5.6 below closely follow the proof of Proposition 2.1 in
[3]. Again, proofs of these results are left to the appendix.

Lemma 5.4 (diminishing adaptation of Algorithm 1). Let the map parameters γ̄ be restricted
to a compact subset of Γ. Then the sequence of transition kernels defined by the update step
in lines 9–13 of Algorithm 1 satisfies the diminishing adaptation condition.

Lemma 5.5 (minorization condition for Algorithm 1). There is a scalar δ and a set of prob-
ability measures νγ̄ defined on C such that Pγ̄(x, ·) ≥ δνγ̄(·) for all x ∈ C and γ̄ ∈ Γ.

Lemma 5.6 (drift condition for Algorithm 1). For all points x ∈ R
n and all feasible map

parameters γ̄ ∈ Γ, there are scalars λ and b such that
∫
Rn V (x)Pγ̄(x, dx) ≤ λV (x) + bIC(x).

With Lemmas 5.4–5.6 in hand, Theorem 5.7 finally yields the ergodicity of our adaptive
algorithm.

Theorem 5.7 (ergodicity of Algorithm 1). Algorithm 1 is ergodic for the target distribution
π(θ) when γ̄ is constrained to a compact set within which T̃ (θ; γ̄) is guaranteed to satisfy (9)
for all θ ∈ R

n.

Proof. Lemmas 5.5 and 5.6 ensure that SSAGE is satisfied, which subsequently ensures
containment. The diminishing adaptation property from Lemma 5.4 combined with SSAGE
implies ergodicity by Theorem 3 of [55].

6. Numerical examples. Here we compare the performance of Algorithm 1 with that of
several existing MCMC methods, including delayed rejection adaptive Metropolis (DRAM)
[23], simplified manifold MALA (sMMALA) [22], adaptive MALA (AMALA) [3], and the
No-U-Turn Sampler (NUTS) [27]. For a full comparison, we will pair transport maps with
several different reference proposal mechanisms: a random walk (TM+RW), both varieties of
delayed rejection discussed in section 4.4 (denoted by TM+DRG for the global/independence
proposal and TM+DRL for local proposals), and a MALA proposal (TM+LA). To explore
the strengths and weaknesses of each algorithm, we consider three test problems that provide
a range of target distributions.

Throughout our results, the minimum effective sample size (ESS) over all parameter di-
mensions is used to evaluate MCMC performance. We run multiple independent chains for
each sampler, extract the median integrated autocorrelation time for each dimension, then take
the worst case over dimensions; details on this ESS evaluation are provided in Appendix A.
Larger effective sample sizes correspond to smaller variances of estimates computed from
MCMC samples. To illustrate the computational cost of each method, we also report the
ESS normalized by run time and by the number of function evaluations. Posterior density
evaluations and gradient evaluations are summed when normalizing by “function evaluation.”

6.1. Biochemical oxygen demand model. In water quality monitoring, the simple bio-
chemical oxygen demand (BOD) model given by B(t) = θ0(1 − exp(−θ1t)) is often fit to
observations of B(t) at early times (e.g., t < 5) [63]. In this example, we wish to infer θ0 and
θ1 given N observations at times {t1, t2, . . . , tN}. We use 20 observations evenly spread over
[1, 5], with additive Gaussian errors, y(ti) = θ0(1− exp(−θ1ti)) + e, where e ∼ N(0, σ2B) and
σ2B = 2× 10−4.
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664 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

Table 1
Performance of MCMC samplers on the BOD problem. τmax is the maximum integrated autocorrelation

time, where the maximum is taken over all dimensions; ESS is the corresponding minimum effective sample
size. Results are averaged over multiple independent runs of each sampler, and στ is the empirical standard
deviation of τmax over these runs.

Method τmax στ ESS ESS/sec ESS/eval
Rel.

ESS/sec
Rel.

ESS/eval
DRAM 59.2 24.6 551 1.04e-01 4.23e-03 1.00 1.00
NUTS 14.7 1.0 2214 4.97e-02 1.20e-03 0.48 0.28
sMMALA 84.4 14.4 385 1.05e-03 2.57e-03 0.01 0.61
AMALA 42.1 11.7 771 1.46e-01 5.14e-03 1.40 1.22

TM+DRG 2.1 0.7 15660 1.44e+00 1.61e-01 13.85 38.06
TM+DRL 4.5 0.5 7174 6.13e-01 5.90e-02 5.89 13.95
TM+RWM 5.0 0.2 6558 7.98e-01 8.73e-02 7.67 20.64
TM+LA 854.9 340.3 38 2.94e-03 2.53e-04 0.03 0.06

Our synthetic data come from evaluating B(ti) with θ0 = 1 and θ1 = 0.1 and sampling e.
Using a uniform improper prior over R2, we have the target posterior given by

(35) log π(θ0, θ1) = −2πσ
2
B −

1

2

2∑

i=1

[θ0(1− exp(−θ1ti))− y(ti)]
2 .

It is easy to obtain gradients of the posterior density, allowing us to again compare many
different MCMC algorithms. For each algorithm, we run 30 independent chains starting at
the posterior mode, which is computed with an LBFGS optimization algorithm. Each chain
is run for 7.5×104 iterations, with the first 1×104 iterations discarded as burn-in. Results are
shown in Table 1.

In this example, we represent the map with total-order Hermite polynomials of degree
three. The additional nonlinear terms help capture the changing posterior correlation struc-
ture shown in Figure 3(a), which is challenging for standard samplers to explore. Methods like
DRAM and AMALA may capture the global covariance, but this covariance is often not repre-
sentative of the local structure and does not provide enough information for efficient posterior
sampling. Other methods, like sMMALA and NUTS, use derivative information to capture
local geometry, but the local geometry varies considerably and is not sufficiently representa-
tive of the global structure, making it difficult for these samples to take large jumps through
the parameter space. Our transport map proposals, on the other hand, are capable of captur-
ing the global non-Gaussian structure of Figure 3(a); in fact, the pushforward of this target
density through the map becomes much more Gaussian, as shown in Figure 3(b). Map-based
methods with global independence proposals (e.g., TM+DRG) can then efficiently “jump”
across the entire parameter space, yielding the much shorter integrated autocorrelation times
shown in Table 1.

Another interesting result in Table 1 is the poor performance of TM+LA. In this example,
the basic MALA algorithm was not able to sufficiently explore the space on its own (or,
equivalently, with an initial identity map); hence, poor exploration in the early stages of
Algorithm 1 hindered good adaptation and resulted in the inefficient sampling shown here.
Because of this poor performance, the TM+LA algorithm will not be employed in our other
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0.4 0.6 0.8 1 1.2
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θ 2

(a) Scatter plot of BOD posterior samples.
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(b) Contours of the map-induced density
in the reference space p̃(r).

Figure 3. The narrow high-density region and changing correlation structure of the target distribution
on the left is difficult for many samplers. The transport map approach, after adaptation, pushes forward the
original target to the distribution shown on the right, which can be sampled much more effectively.

test problems.

6.2. Predator-prey system. The previous example has a posterior density whose deriva-
tives are easy to evaluate in closed form. However, many realistic inference problems involve
complex likelihoods for which derivative information is expensive to compute. This example
illustrates such a situation; we consider parameter inference in an ODE model of a predator-
prey system,

dP

dt
= rP

(
1−

P

K

)
− s

PQ

a+ P
,

dQ

dt
= u

PQ

a+ P
− vQ,(36)

where (P,Q) are the prey and predator populations and r, K, s, a, u, and v are model
parameters. See [58] for model details and the ecological meaning of these parameters. In
addition to these six parameters, we infer the initial conditions P (0) and Q(0) from five noisy
observations of both P and Q at times regularly spaced on [0, 50]. The observations are
perturbed with independent Gaussian observational errors with mean zero and variance 10.
We generate the data using the following “true” parameter values:

(37) [P ∗(0), Q∗(0), r∗,K∗, s∗, a∗, u∗, v∗]T = [50, 5, 0.6, 100, 1.2, 25, 0.5, 0.3]T .

The MCMC chain is run on a set of parameters θ that are scaled by these true parameters.
The prior for this problem is uniform over the intersection of a hypercube in parameter

space, [0.001, 50]8, and the set of parameters that produce cyclic solutions. The cyclic solution
requirement can be enforced by examining the Jacobian of (36) at its fixed points. A fixed
point, denoted by [Pf , Qf ], must satisfy Pf > 0 and Qf > 0, and the Jacobian on the right-
hand side of (36) must have eigenvalues with positive real components when evaluated at
[Pf , Qf ] [62].
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P (0)

Q(0)

r

K

s

a

u

v

Figure 4. Posterior distribution for the predator-prey inference example. The lack of sharp abrupt edges
in the posterior indicates that the posterior density is significantly different from the uniform prior.

1

2

3

P
(0
)

DRAM sMMALA AMALA

1

2

3

MCMC Step

P
(0
)

TMDRG

MCMC Step

TMDRL

MCMC Step

TMRWM

Figure 5. Trace of MCMC chains for the parameter P (0) on the predator-prey problem. These plots
show the 5×104 steps occurring just after 2×105 burn-in steps, for a realization of the long-chain cases. The
map-accelerated approaches show significantly better mixing.

The posterior distribution of the parameters is shown in Figure 4. While not as narrow
as the BOD posterior, this target distribution is non-Gaussian and its various marginals
have changing local correlation structures. Figure 5 shows trace plots for each algorithm,
while Table 2 shows a performance comparison of the samplers. Results are computed for
two different chain lengths: chains of 1.2×105 steps, with the first 5×104 steps discarded
as burn-in; and longer chains with 5×105 total steps, discarding the first 2×105 as burn-in.
The longer chains are intended as a check to validate the performance conclusions drawn
from shorter chains in the other examples. The transport map algorithms used multivariate
Hermite polynomials of total degree three.
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Table 2
Performance of MCMC samplers on the predator-prey parameter inference problem. Column headings are

as described in Table 1. The “long” results use a chain of 5 × 105 total steps, while the “short” results use
chains of length 5×104. The long and short chains were generated on different platforms, so the timing results
should not be compared directly. Also, because the chains are different lengths, the raw ESS values should also
not be compared directly. The relative results are normalized by DRAM-Short values for short chains and by
DRAM-Long values for long chains.

Method
Chain
length

τmax στ ESS ESS/sec ESS/eval
Rel.

ESS/sec
Rel.

ESS/eval

DRAM
5e4 4131.5 2613.7 8 7.0e-06 1.7e-04 1.0 1.0
5e5 6673.8 5950.5 22 1.6e-05 2.7e-05 1.0 1.0

sMMALA
5e4 1913.4 521.8 18 2.9e-06 3.7e-04 0.43 2.2
5e5 6365.7 3508.8 23 4.5e-06 2.2e-05 0.28 0.81

AMALA
5e4 1244.6 858.3 26 3.9e-06 5.4e-04 0.56 3.2
5e5 4323.8 3611.8 34 5.9e-06 2.6e-05 0.37 0.95

TM+DRG
5e4 27.3 26.3 1280 1.4e-04 2.6e-02 20 150
5e5 18.0 19.5 8344 9.3e-04 1.2e-02 59 420

TM+DRL
5e4 32.8 16.7 1067 1.2e-04 2.1e-02 17 130
5e5 24.7 7.5 6081 6.7e-04 8.3e-03 42 300

TM+RWM
5e4 42.9 21.3 790 9.2e-05 1.6e-02 13 93
5e5 32.7 15.6 4585 5.4e-04 1.1e-02 34 390

For the shorter chains, each algorithm was started at the posterior mode, and 30 indepen-
dent runs of each sampler were used to generate the results. The longer chains were started
with random initial points taken from the prior, and 100 independent runs of each sampler
were performed. All derivative information was computed by solving the forward sensitivity
equations corresponding to (36). Even though we would expect NUTS to have a large effective
sample size on this problem, NUTS was not included here because of the intractable number
of gradient evaluations it required. Our initial tests indicated that roughly 40 days would be
required to run our full numerical comparison with NUTS.

As in the BOD example, map-accelerated algorithms using independence proposals have
dramatically shorter integrated autocorrelation times. For the longer chains, TM+DRG yields
an ESS about 380 times larger than that of DRAM. Moreover, in terms of ESS per posterior
evaluation, TM+DRG is 420 times more efficient than DRAM. We also observe good agree-
ment between the longer-chain and shorter-chain results; trends are the same in both cases.
Overall, the gradient-based methods showed relatively poor performance. sMMALA in partic-
ular suffers from nearly singular metrics. We found that tuning the step size in sMMALA was
difficult. On the other hand, the derivative-free methods were easier to tune and had much
better performance. Even when normalized by run time, the ESS/sec of TM+DRG is still
more than one order of magnitude larger than that of DRAM. While posterior evaluations
in this example are not trivially cheap, the ESS/evaluation represents the limiting behavior
of the algorithm as evaluations become the dominant cost of an MCMC step; here we see
improvements of at least two orders of magnitude over the baseline schemes.

Results for the longer chains are generally more favorable for the transport map ap-
proaches. We believe this is caused by two factors: first, the burn-in is smaller in relative
terms for the longer chains, which reduces wasted computational effort; second, the adaptive
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668 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

proposals have more time to accurately characterize the posterior. In longer trace plots, we
observe that the adaptation is negligible after approximately 1×105 steps, which suggests that
the different burn-in lengths dominate the difference between long and short chains.

6.3. Maple sap exudation. This section presents an inference problem based on the sys-
tem of differential-algebraic equations introduced in [12] to describe microscale sap dynamics
in a maple tree during spring freeze-thaw cycles. The posterior in this 10-dimensional prob-
lem is particularly challenging to explore, and helps illustrate aspects of the map adaptation
process. The nonlinear forward model has three state variables describing the positions of gas,
liquid, and ice interfaces (sgi(t), siw(t), and r(t)) as well as a state variable U(t) representing
the volume of melted ice. These variables are related via the following differential-algebraic
equations:

2ρisgi(t)ṡgi(t) =
ρw
πLf

U̇(t)− 2(ρw − ρi)siw(t)ṡiw(t),(38)

λρwṡiw(t) = −κ(x)∂xT (x, t) at x = siw(t),(39)

NU̇(t) = −
KA

ρwgW

[
pvw(t)− p

f
g (t)−RT (R

f , t)cvs

]
,(40)

r(t)ṙ(t) = −
NU̇(t)

2πLv
.(41)

In addition to the state equations, the model is closed with five algebraic relations:

pfg (t) = pfg (0)

(
sgi(0)

sgi(t)

)2

,(42)

pvw(t) = pvg(x, t) +
σ

r(t)
at x = Rf +Rv − r,(43)

pvg(t) =
ρvg(x, t)RT

v
g (x, t)

Mg
at x = Rf +Rv − r,(44)

cvg(t) =
H

Mg
ρvg(x, t) at x = Rf +Rv − r,(45)

ρvg(x, t) =
ρvg(x, 0)V

v
g (0)− Mgc

v
g(t̃)

(
V v − V v

g (t̃)
)∣∣t
t̃=0

V v
g (t)

at x = Rf +Rv − r.(46)

In this system, T (x, t) is a transient temperature field, [ρi, ρw, λ,R, g, σ,H,Mg] are physical
constants, and the parameters [V v, V v

g , N,K,A,W,L
f , Lv, cvs ] are inference targets. The initial

conditions sgi(0), siw(0), and r(0) are also inference targets. For additional details on the
model and its parameters, see Appendix C.

We describe the model parameters with a random variable θ taking values in R
10. As

detailed in Appendix C, the components of θ are scaled and combined to obtain the model
parameters and initial conditions. We choose θ so that each component of the prior π(θ) is
independent. In particular, the prior is given by θ1:3 ∼ U [−1, 1]3 and θ4:10 ∼ N(0, I). Noisy
observations of pvw(t) at 100 times equally spaced over t ∈ [0, 1209600] are combined with
an independent additive Gaussian error model to define the likelihood function π(θ|d). The
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θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

(a) Posterior distribution (single and pairwise posterior marginals). Each
parameter label θi sits above the row to which it corresponds.

−1 −0.5 0 0.5

0

1

2

θ1

θ 7

(b) Scatter plot of θ1 and θ7.

−1 −0.5 0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0.4

θ3

θ 6

(c) Scatter plot of θ3 and θ6.

Figure 6. Posterior distribution of the maple sap exudation example. The kernel density estimates in
Figure 6(a) misrepresent some sharp edges and narrow regions of the posterior, as illustrated in the scatter
plots of Figures 6(b) and 6(c).

additive errors are identically distributed with zero mean and a standard deviation of 1000
pascals.

The posterior distribution is illustrated in Figure 6, and the performance of several algo-
rithms is summarized in Table 3. We restricted this study to derivative-free MCMC samplers,
due to the complexity of computing derivative information with the maple forward model.
To obtain our performance results, we ran MCMC chains of 2×105 steps each, discarding the
first 1×105 samples as burn-in. As before, the ESS values reported in Table 3 represent a
minimum over all ten components of each chain, calculated after burn-in. Yet the number
of evaluations and the run times reported in the table reflect the cost of all 2×105 steps, in-
cluding burn-in. Hence these are conservative numbers that include the computational effort
required for adaptation. 50 repetitions of each sampler were used to obtain these performance
evaluations. We again used cubic total-degree polynomial maps.

Many of the two-dimensional marginal plots in Figure 6 are close to Gaussian; however,
the complicated relationships between (θ1, θ7) and between (θ3, θ6) yield a difficult posterior
for MCMC methods. The very tight and curved joint distribution shown in Figure 6(c)
is particularly challenging to capture and sample. At the early stages of adaptation, both
DRAM and the transport map proposals are nearly isotropic and require very small steps
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670 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

Table 3
Performance of MCMC samplers on the maple parameter inference problem. Column headings are as

described in Table 1.

Method τmax στ ESS ESS/sec ESS/eval
Rel.

ESS/sec
Rel.

ESS/eval
DRAM 2571.4 1410.0 19 2.2e-06 5.6e-05 1.0 1.0

TM+DRG 1144.2 494.8 43 4.4e-06 1.2e-04 2.0 2.1
TM+DRL 460.1 170.0 108 1.2e-05 3.3e-04 5.4 5.9
TM+RWM 1129.7 775.9 44 8.0e-06 8.9e-04 3.7 15.8

to have a nonzero acceptance rate. As the methods adapt, however, the proposals begin to
capture the strong correlation between θ3 and θ6 and larger steps can be employed. The
nonlinear dependencies are much better captured by the transport map proposals, resulting
in the order-of-magnitude performance gains shown in Table 3.

In contrast with the previous two examples, the TM+DRG method is not the top per-
former in this comparison. The previous examples had simpler target distributions where the
transport map could capture nearly all of the problem structure, allowing the independence
proposal in TM+DRG to efficiently explore the parameter space. The maple model’s pos-
terior, however, is much more challenging and cannot be entirely characterized with a cubic
map; thus, the global proposals are less effective. In this example, TM+DRL is the best-
performing variant of the algorithm because it uses only local proposals and is not as sensitive
to map deficiencies.

With challenging target distributions like this one, small initial proposal steps are needed
to begin sampling. However, small initial steps do not adequately explore the parameter space,
yielding an inaccurate finite-sample approximation to the KL divergence in (25). Without
the regularization term in (25), one may then obtain transport maps that place too much
probability mass on the relatively small region explored by the initial chain. A sufficiently
large regularization term prevents this, but can also result in a slower adaptation process. We
started adapting the map after 5×103 steps of the chain and found that kR = 2×10−5 was
sufficiently large to ensure the proposal did not become too small when the starting isotropic
random-walk proposal was tuned to have a 1% acceptance rate. However, when the initial
proposal was shrunk to obtain a 30% acceptance rate, we needed a much larger value of
kR ≈ 1×10−2.

7. Conclusions. We have introduced a new MCMC approach that uses transport maps to
accelerate sampling from challenging target distributions. Our approach adaptively constructs
nonlinear transport maps from MCMC samples, via the solution of a convex and separable
optimization problem. From one perspective, the resulting maps transform the target to a
reference distribution that is increasingly Gaussian and isotropic, and hence easier to sample.
From a complementary perspective, the maps transform simple proposal mechanisms into non-
Gaussian proposals on the target. Our maps are by construction invertible and continuously
differentiable functions between the reference and target spaces, and hence they allow broad
flexibility in choosing reference-space MCMC proposals. Yet building the maps themselves
requires no derivative information from the target distribution.

The efficiency of our approach is primarily a result of capturing nonlinear dependencies
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 671

and non-Gaussian structure in the posterior and, when possible, exploiting this knowledge
with global independence proposals (e.g., TM+DRG). Of course, sequentially updating the
transport map introduces an additional computational cost, which may become important
in simple problems. As shown in the BOD example, however, our methods can be more
efficient on strongly non-Gaussian problems, even when the target density is trivial to evaluate.
On more complex posteriors, as in the ODE and DAE examples of sections 6.2 and 6.3,
the efficiency gains can be even more significant, both in terms of effective sample size per
posterior evaluation and effective sample size per unit of wallclock time. It is also important
to point out that our current implementation does not exploit the many levels of parallelism
afforded by the map construction algorithm: solution of the optimization problem (25) can
be made embarrassingly parallel over parameter dimensions, and additional parallelism can
be introduced over samples.2

While the present work used polynomials to represent the transport map, this is not an
essential aspect of the framework. In fact, the optimization problem for the map coefficients
in (25) will be unchanged for any map representation that is linear in the coefficients; we have
experimented with other bases, e.g., radial basis functions, to good effect. Moreover, both
polynomials and radial basis functions could be embedded in the monotone parameterizations
recently proposed in [39, 61]; adopting these parameterizations may improve numerical ro-
bustness, particularly in the small-sample regime. Extending the transport map approach
to higher-dimensional problems may also require a more parsimonious choice of basis (ver-
sus the total-order bases used here). Recent results on the sparsity of triangular transports
[61, 45] may be useful in this regard. The map regularization term can also affect perfor-
mance, especially in early iterations of MCMC with challenging targets. Alternative forms
of regularization, e.g., additional constraints on the gradients or Jacobian determinant of the
map, or entropic regularization of optimal transport as in [16], could also be investigated.
We also note that the transport map defines a Riemannian metric on the parameter space,
locally given by (∇T̃ (θ))>(∇T̃ (θ)). This suggests links between map-accelerated sampling
and differential geometric MCMC methods, which we plan to explore.

Appendix A. ESS calculation details. Here we describe the calculation of the maximum
integrated autocorrelation time τmax used throughout our results. Assume we are given M
independent MCMC chains on an n-dimensional parameter space. Then let τi,j be the inte-
grated autocorrelation time of dimension j on chain i. This value is computed by applying
the Fourier transform method from [70] to each dimension of each chain independently. We
then define τmax as

(47) τmax = max
j∈{1,...,n}

[
median
i∈{1,...,M}

(τi,j)

]
,

where the median is taken over the chains and the maximum (worst case) is taken over
dimensions.

Effective sample size (ESS) is calculated similarly. Let ESSi,j = K
2τi,j

, where K is the

2Our implementation is freely available in MUQ [51]. This work used commit 7417f35 from MUQ’s Git
repository.
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672 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

number of post-burn-in samples in each chain. The reported ESS is then given by

(48) ESS = min
j∈{1,...,n}

[
median
i∈{1,...,M}

(
K

2τi,j

)]
.

Note that while ESS uses only the samples produced after the burn-in period, normalized
values of ESS reported in section 6 (e.g., ESS per function evaluation and ESS per second of
wallclock time) use all function evaluations or computational time in evaluating the denomi-
nator. Thus the cost of burn-in is reflected in these normalized performance metrics.

Appendix B. Proof of ergodicity. Section 5 of the paper provides an overview of the
convergence properties of our map-accelerated MCMC algorithm. In this appendix, we in-
clude some of the associated technical analysis. In particular, we provide detailed proofs of
Lemmas 5.3 and 5.4. The remaining results needed for Theorem 5.7 are direct extensions of
the proof of Lemma 6.1 in [3].

B.1. Bounded target proposal. The goal of this section is to prove Lemma 5.3 by finding
two zero-mean Gaussian densities that bound the map-induced target space proposal density
qθ,γ̄ . We assume throughout this appendix that the target density π(θ) is finite, continuous,
and super-exponentially light. (See (28) for the definition of super-exponentially light.) We
also assume that the reference proposal density qr(r

′|r) is a Gaussian random walk with a
location-dependent bounded drift term m(r) and fixed covariance Σ. Such a proposal takes
the form

(49) qr(r
′|r) = N(r +m(r),Σ).

Given this proposal density, we can follow [3] and show that there exist two zero-mean Gauss-
ian densities g1 and g2, as well as two scalars k1 and k2, such that 0 < k1 < k2 <∞ and

(50) k1g1(r
′ − r) ≤ qr(r

′|r) ≤ k2g2(r
′ − r).

Now, we will use the bi-Lipschitz condition in (9) to bound the target space proposal qθ,γ̄ as
required by Lemma 5.3.

Proof of Lemma 5.3. The following steps yield an upper bound:

qθ,γ̄(θ
′|θ) = qr(T̃ (θ

′)|T̃ (θ))| det∇T̃ (θ′)|

≤ qr(T̃ (θ
′)|T̃ (θ))λnmax

≤ k2g2(T̃ (θ
′)− T̃ (θ))λnmax

≤ (k2λ
n
max) g2

(
λmin

(
θ′ − θ

))

= kUgU
(
θ′ − θ

)
,(51)

where gU is another zero-mean Gaussian. Moving from the second line to the third line above
is a consequence of (9). Moving from the third line to the fourth line uses the lower bound
in (9) and the fact that g2 is a Gaussian with zero mean, which implies that g2(x1) > g2(x2)
when ‖x1‖ < ‖x2‖. Notice that kU does not depend on the particular coefficients of the map
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 673

T̃ ; it only depends on the Lipschitz constant in (9). A similar process can be used to obtain
the following lower bound:

qθ,γ̄(θ
′|θ) = qr(T̃ (θ

′)|T̃ (θ))| det∇T̃ (θ′)|

≥ qr(T̃ (θ
′)|T̃ (θ))λnmin

≥ k1g1(T̃ (θ
′)− T̃ (θ))λnmin

≥ (k1λ
n
min) g1

(
λmax

(
θ′ − θ

))

= kLgL
(
θ′ − θ

)
.(52)

Lemma 5.3 follows directly from (51) and (52).

B.2. SSAGE. With (51) and (52) in hand, the proof of Lemma 6.1 in [3] yields Lemma 5.5:
the minorization component of the SSAGE condition. Thus, to show SSAGE, we only need
to establish Lemma 5.6. Our proof of Lemma 5.6 is built on the intermediate Lemmas B.1
and B.2 provided below and on the proof of Lemma 6.2 in [3].

For the arguments below, we will use the Metropolis–Hastings transition kernel given by

Pγ̄(x, dy) = αγ̄(x, y)qθ,γ̄(y|x)dy + rγ̄(x)δx(dy),

where

rγ̄(x) = 1−

∫
αγ̄(x, y)qθ,γ̄(y|x)dy,

and α is the Metropolis–Hastings acceptance probability given by

αγ̄(x, y) = min

{
1,
π(y)qθ,γ̄(x|y)

π(x)qθ,γ̄(y|x)

}
.

We will also use the set of guaranteed acceptance, given by

Aγ̄(x) = {y ∈ R
n : π(y)qθ,γ̄(x|y) ≥ π(x)qθ,γ̄(y|x)} ,

and the set of possible rejection, simply defined as the complement of the set above:

Rγ̄(x) = Aγ̄(x)
C .

Lemma B.1. Let V (x) = cV π
−α(x) be a drift function defined by some α ∈ (0, 1). The

constant cV = supx π
α(x) is chosen so that infx V (x) = 1. Then the following holds:

(53) lim sup
‖x‖→∞

sup
γ̄

∫
Rn V (y)Pγ̄(x, dy)

V (x)
< lim sup

‖x‖→∞
sup
γ̄

∫

Rγ̄(x)
qθ,γ̄(y|x)dy.

Proof. First, we decompose the left-hand side of (53) into
∫
Rn V (y)Pγ̄(x, dy)

V (x)
=

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy +

∫

Rγ̄(x)

π−α(y)

π−α(x)

π(y)qθ,γ̄(x|y)

π(x)qθ,γ̄(y|x)
qθ,γ̄(y|x)dy

+

∫

Rγ̄(x)

(
1−

π(y)qθ,γ̄(x|y)

π(x)qθ,γ̄(y|x)

)
qθ,γ̄(y|x)dy.(54)
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674 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

Following the proof of Lemma 6.2 in [3], we can show that the first two integrals in (54) go
to zero as ‖x‖ → ∞. With that, we have

lim sup
‖x‖→∞

sup
γ̄

∫
Rn V (y)Pγ̄(x, dy)

V (x)
= lim sup

‖x‖→∞
sup
γ̄

∫

Rγ̄(x)

(
1−

π(y)qθ,γ̄(x|y)

π(x)qθ,γ̄(y|x)

)
qθ,γ̄(y|x)dy

< lim sup
‖x‖→∞

sup
γ̄

∫

Rγ̄(x)
qθ,γ̄(y|x)dy.(55)

The inequality results from the fact that [π(y)qθ,γ̄(x|y)]/[π(x)qθ,γ̄(y|x)] < 1 when y ∈ Rγ̄(x).

Lemma B.2. The proposal has a nonzero probability of acceptance, i.e.,

(56)

∫

Rγ̄(x)
qθ,γ̄(y|x)dy < 1.

Proof. A nonzero probability of acceptance occurs if and only if there is a measurable set
W (x) ⊂ Aγ̄(x). To show that W (x) exists, consider a small ball of radius R around x. Since
gL and gU are zero mean and have positive variance, this implies

(57) inf
y∈B(x,R)

inf
γ̄

qθ,γ̄(x|y)

qθ,γ̄(y|x)
≥ inf

y∈B(x,R)

kLgL(x− y)

kUgU (y − x)
≥ c0

for some c0 > 0. Because π(x) is super-exponentially light, for any u ∈ (0, R), there exists a
radius r4 such that ‖x‖ > r4 implies

π

(
x− u

x

‖x‖

)
≥
π(x)

c0
.

Subsequently, for any map coefficients, the acceptance probability for x1 = x− u x
‖x‖ is one,

which implies that x1 ∈ Aγ̄(x). Now, define W (x) as

W (x) =

{
x1 − aζ, 0 < a < R− u, ζ ∈ Sn−1,

∥∥∥∥ζ −
x1
‖x1‖

∥∥∥∥ <
ε

2

}
,

where ε is an arbitrarily small scalar and Sn−1 is the unit sphere in R
n dimensions. Note

that ‖ζ − x1/‖x1‖‖ <
ε
2 ensures that W (x) is a cone of points closer to the origin than x1.

Now, using the final paragraph of the proof of Lemma 6.2 in [3], the curvature condition from
(29) ensures that the target density is larger in W (x) than at x1. Since x1 was accepted, this
means that everything in W (x) will also be accepted and that W (x) ⊆ Aγ̄(x). Subsequently,
we obtain

lim
‖x‖→∞

∫

Rγ̄(x)
qθ,γ̄(y|x)dy = lim

‖x‖→∞

(
1−

∫

Aγ̄(x)
qθ,γ̄(y|x)dy

)

≤ lim
‖x‖→∞

(
1−

∫

W (x)
qθ,γ̄(y|x)dy

)

< 1,(58)

where we have used the fact that W (x) is a measurable subset of Aγ̄(x) for large x.
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 675

With Lemmas B.1 and B.2 in hand, we can now proceed to the proof of Lemma 5.6 (the
drift condition) from the main text.

Proof of Lemma 5.6. Recall our choice of drift function: V (x) = cV π
−α(x) for α ∈ (0, 1).

Using this function and the definitions of Pγ̄ , Rγ̄ , and Aγ̄ we can show that

∫
Rn V (y)Pγ̄(x, dy)

V (x)
=

∫
Rn π

−α(y)Pγ̄(x, dy)

π−α(x)

+

∫

Rγ̄(x)

(
1−

π(y)qθ,γ̄(x|y)

π(x)qθ,γ̄(y|x)

)
qθ,γ̄(y|x)dy

=

∫

Rγ̄(x)
qθ,γ̄(y|x)dy +

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy

+

∫

Rγ̄(x)

(
π−α(y)

π−α(x)
− 1

)
π(y)qθ,γ̄(x|y)

π(x)qθ,γ̄(y|x)
qθ,γ̄(y|x)dy

+

∫

Rγ̄(x)

π−α(y)

π−α(x)

π(y)qθ,γ̄(x|y)

π(x)qθ,γ̄(y|x)
qθ,γ̄(y|x)dy

≤ 1 +

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy(59)

+

∫

Rγ̄(x)

π−α(y)

π−α(x)

π(y)qθ,γ̄(x|y)

π(x)qθ,γ̄(y|x)
qθ,γ̄(y|x)dy.

Within the region of possible rejection Rγ̄(x), the acceptance rates are all in [0, 1), which
allows us to further simplify (59) to obtain

∫
Rn V (y)Pγ̄(x, dy)

V (x)
≤ 1 +

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy +

∫

Rγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy

< 1 +

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy +

∫

Rγ̄(x)

q−αθ,γ̄ (y|x)

q−αθ,γ̄ (x|y)
qθ,γ̄(y|x)dy

= 1 +

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy +

∫

Rγ̄(x)
q1−αθ,γ̄ (y|x)qαθ,γ̄(x|y)dy

≤ 1 +

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy

≤ 1 +

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy + k2U

∫

Rγ̄(x)
gU (y − x)dy

= 1 + CR +

∫

Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y|x)dy,(60)

where we have used the density upper bound in (51) and CR is a finite constant. A similar
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676 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

application of (51) over Aγ̄(x) yields
∫
Rn V (y)Pγ̄(x, dy)

V (x)
≤ 1 + CR +

∫

Aγ̄(x)

πα(x)

πα(y)
qθ,γ̄(y|x)dy

≤ 1 + CR +

∫

Aγ̄(x)
qαθ,γ̄(x|y)q

1−α
θ,γ̄ (y|x)dy

≤ 1 + CR + k2U

∫

Aγ̄(x)
gU (x− y)dy

<∞.(61)

Using Lemmas B.1 and B.2, we also have that

(62) lim sup
‖x‖→∞

sup
γ̄

∫
Rn V (y)Pγ̄(x, dy)

V (x)
< lim sup

‖x‖→∞
sup
γ̄

∫

Rγ̄(x)
qθ,γ̄(y|x)dy < 1.

From the proof of Lemma 6.2 in [3], which resembles the proofs in [28], Lemma 5.6 follows
from simultaneously satisfying the bounds (61) and (62).

B.3. Diminishing adaptation. In addition to SSAGE and containment, Theorem 5.7 re-
quires diminishing adaptation (Definition 5.1). The following proof establishes the diminishing
adaptation proposed in Lemma 5.4.

Proof of Lemma 5.4. The proof of this lemma relies on continuity of the map with respect
to γ̄ and the convergence of (25) as the number of samples K → ∞. Note that we do not
require (25) (or (8)) to converge to the minimizer of the true KL divergence.

When the MCMC chain is not at an adaptation step, γ̄(k+1) = γ̄(k). Thus, to show
diminishing adaptation, we need to show that the difference between transition kernels at
step K and K +KU decreases as K →∞. Mathematically, we require

(63) lim
K→∞

P

(
sup
x∈Rn

∥∥∥Pγ̄(K)(x, ·)− Pγ̄(K+KU )(x, ·)
∥∥∥
TV
≥ δ1

)
= 0

for any δ1 > 0. Because the maps are linear in γ̄, for a fixed x, the mapping from γ̄ to Pγ̄(x,A)
is continuous for any A. Combined with the fact that qθ,γ̄ is bounded, we have that (63) will
be satisfied when

(64) lim
K→∞

P

(∥∥∥γ(K+KU )
i − γ

(K)
i

∥∥∥ ≥ δ
)
= 0

for any δ > 0 and all i ∈ {1, 2, . . . , n}. We now turn to proving (64).
Recall that γ̄(K) is the minimizer of (25), which is based on a K-sample Monte Carlo

approximation of the KL divergence. To notationally simplify (25), we will now use the

convention that log(0) = −∞ and define the objective functions f
(K)
i (γi) and f

(K+KU )
i (γi) as

f
(K)
i (γi) =

1

K
g(γi) +

1

K

K∑

k=1

[
1

2
T̃ 2
i (θ

(k); γi)− log
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

]
,(65)

f
(K+KU )
i (γi) =

1

K
g(γi) +

1

K

K+KU∑

k=1

[
1

2
T̃ 2
i (θ

(k); γi)− log
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

]
.(66)
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TRANSPORT MAP ACCELERATED MARKOV CHAIN MONTE CARLO 677

From (25), it should be clear that

γ
(K)
i = argmin f

(K)
i (γi),(67)

γ
(K+KU )
i = argmin f

(K+KU )
i (γi)(68)

for all i = {1, 2, . . . , n}.3 Combining these expressions, we have

(69) f
(K+KU )
i (γi) = f

(K)
i (γi) +

1

K

K+KU∑

k=K+1

[
1

2
T̃ 2
i (θ

(k); γi)− log
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

]
.

From Markov’s inequality, we then have
(70)

P

[∣∣∣f (K+KU )
i (γi)− f

(K)
i (γi)

∣∣∣ ≥ δ2
]
≤

1

Kδ2
E

[∣∣∣∣∣

K+KU∑

k=K+1

(
1

2
T̃ 2
i (θ

(k); γi)− log
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

)∣∣∣∣∣

]

for any δ2 > 0 and all γi. Notice that the expectation on the right-hand side of this expression
is finite because the map is bi-Lipschitz (9), the proposal density is bounded by Gaussian
densities (see Lemma 5.3), and the map is linear for large ‖θ‖ (see (11)). Thus,

(71) lim
K→∞

P

[∣∣∣f (K+KU )
i (γi)− f

(K)
i (γi)

∣∣∣ ≥ δ2
]
= 0 ∀γi.

We now show that this implies the convergence of ‖γ
(K+KU )
i − γ

(K)
i ‖. First, consider a set

C(K) that depends on δ2 and takes the form

(72) C(K) =
{
γi : f

(K)
i (γi)− δ2 ≤ f

(K)
i (γ

(K)
i ) + δ2

}
.

By definition, C(K) will always contain γ
(K)
i . Recall that f

(K)
i is convex and admits a unique

global minimizer. Thus, as δ2 → 0, the set C(K) will collapse on γ
(K)
i and the maximum

distance between any two points in C(K) will go to zero. This implies that for any δ > 0, there
exists a δ2 such that

(73) sup
γi,γ′i∈C

(K)

‖γi − γ
′
i‖ < δ.

We will now combine this expression with (71). Notice that for any δ2 > 0, (71) implies that

(74) lim
K→∞

P

(
γ
(K+KU )
i ∈ C(K)

)
= 1.

Combining this result with (73) yields

(75) lim
K→∞

P

(∥∥∥γ(K+KU )
i − γ

(K)
i

∥∥∥ ≥ δ
)
= 0 ,

which is the desired condition in (64).

3Using the factor 1
K

in both (65) and (66) is intentional. Multiplying the objective in (25) by any positive
scalar will not affect the solution, and the common value of 1

K
used here simplifies the results later on.
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678 MATTHEW D. PARNO AND YOUSSEF M. MARZOUK

Appendix C. Maple exudation model details. The forward model in section 6.3 is a
complicated system of differential-algebraic equations describing maple sap dynamics. Here
we give a minimal description of the model. Interested readers should consult the original
derivation in [12].

In addition to the differential-algebraic system defined by (38)–(46), the volumes V v and
V v
g (t) are given by

V v = π(Rv)2Lv,

V v
g (t) = πr(t)2Lv,

N =
2π(Rf +Rv +W )

2Rf +W
.

The system is solved using MUQ [51], which in turn links to SUNDIALS [26]. The initial
conditions for the state variables sgi, siw, and r(t) are derived from a steady state solution.
We put U(0) = 0.

The temperature field is assumed to be quasi-steady and is defined by the heat equation

∂x (κ(x)∂xT (x, t)) = 0 for x ∈ ( siw(t), R
f + 2Rv ),(76)

T (x, t) = 0 at x = siw(t),

[.7em]κw∂xT (x, t) = h(Ta(t)− T (x, t)) at x = Rf + 2Rv,

where Ta(t) is a transient temperature forcing at the edge of the computational domain (x =
Rf + 2Rv), h = 10 is a heat transfer coefficient, and the thermal conductivity is defined
piecewise as

κ(x) =





κw, x ∈ [ siw(t), Rf +Rv − r(t) ),

κg, x ∈ [Rf +Rv − r(t), Rf +Rv + r(t) ),

κw, x ∈ [Rf +Rv + r(t), Rf + 2Rv ],

where κw is the thermal conductivity of water and κg is the thermal conductivity of air. At
any particular time, it is straightforward to solve (76) analytically, yielding a piecewise linear
temperature field.

The inference parameters θ are related to the model parameters in (38)–(46) using the
transformations in Table 4; variables with an overbar are default parameters taken from [12]
and are shown in Table 5. Values for the remaining physical constants are listed in Table 6.

Acknowledgments. The authors would also like to thank F. Augustin, B. Calderhead,
T. Cui, M. Girolami, T. Moselhy, A. Solonen, and A. Spantini for many helpful comments
and suggestions.
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Table 4
Relationship between inference targets θ and model parameters for the maple problem.

Model variable Transformation from θ

sgi(0) (0.5θ2 + 0.5) exp
[
0.2 log(R̄f )θ7 + log(R̄f )

]

siw(0) exp
[
0.2 log(R̄f )θ7 + log(R̄f )

]

r(0) (0.5θ2 + 0.5) exp
[
0.2 log(R̄v)θ8 + log(R̄v)

]

pfg (0) 50×103θ3 + 150×103

K 0.2 log(K̄)θ4 + log(K̄)

W 0.2 log(W̄ )θ5 + log(W̄ )

cvs 0.2 log(c̄vs)θ6 + log(c̄vs)

Rf 0.2 log(R̄f )θ7 + log(R̄f )

Rv 0.2 log(R̄v)θ8 + log(R̄v)

Lf 0.2 log(L̄f )θ9 + log(L̄f )

Lv 0.2 log(L̄v)θ10 + log(L̄v)

Table 5
Default values used to generate synthetic data and to scale the inference parameters in the maple problem.

Symbol Value Units Description

s̄gi(0) 0.7R̄f m Initial location of gas-ice interface in fiber.

s̄iw(0) R̄f m Initial location of ice-water interface in fiber.

r̄(0) 0.3R̄v m Initial radius of vessel gas bubble.

p̄fg (0) 200×103 Pa Initial gas pressure in fiber.

K̄ 1.98×10−14 ms−1 Hydraulic conductivity of fiber-vessel wall.

W̄ 3.64×10−6 m Thickness of fiber-vessel wall.

c̄vs 58.4 molm−3 Sucrose concentration in vessel sap.

R̄f 3.5×10−6 m Fiber radius.

R̄v 2×10−5 m Vessel radius.

L̄f 1×10−3 m Fiber length.

L̄v 5×10−4 m Vessel length.

Table 6
Physical constants used in the maple exudation model.

Symbol Value Units Description

ρi 917 kgm−3 Density of water ice.

ρw 1000 kgm−3 Density of water.

λ 3.34×105 J kg−1 Latent heat of fusion for water.

R 8.314 Jmol−1 K−1 Universal gas constant.

g 9.81 m s−2 Acceleration due to gravity.

σ 0.0756 Nm−1 Surface tension of water.

H 0.0274 – Henry’s constant for air and water.

Mg 0.0290 kgmol−1 Molar mass of air.

κw 0.580 Wm−1 K−1 Thermal conductivity of water.

κg 0.0243 Wm−1 K−1 Thermal conductivity of air.
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