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There are a number of emergent traffic and transportation phenomena that cannot be
analyzed successfully and explained using analytical models. The only way to analyze
such phenomena is through the development of models that can simulate behavior of
every agent. Agent-based modeling is an approach based on the idea that a system is
composed of decentralized individual ‘agents’ and that each agent interacts with other
agents according to localized knowledge. The agent-based approach is a ‘bottom-up’
approach to modeling where special kinds of artificial agents are created by analogy
with social insects. Social insects (including bees, wasps, ants and termites) have lived
on Earth for millions of years. Their behavior in nature is primarily characterized by
autonomy, distributed functioning and self-organizing capacities. Social insect colonies
teach us that very simple individual organisms can form systems capable of performing
highly complex tasks by dynamically interacting with each other. On the other hand, a
large number of traditional engineering models and algorithms are based on control and
centralization. In this article, we try to obtain the answer to the following question: Can
we use some principles of natural swarm intelligence in the development of artificial
systems aimed at solving complex problems in traffic and transportation?
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1. INTRODUCTION

Many traffic and transportation problems show a complex behavioral
pattern. We see, for example, urban or air traffic congestion as emergent
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phenomena, which are frequently unpredictable and even sometimes
counterintuitive. It is very difficult (if not impossible) to explain the
relationships between individual behavior (drivers, passengers, cars,
airlines, airports, etc.) and actions and these emergent phenomena –
they cannot be analyzed successfully and explained using analytical
models. The only way to analyze such emergent phenomena is through
the development of simulation models that can simulate the behavior
of every agent. Agent-based modeling is an approach based on the idea
that a system is composed of decentralized individual ‘agents’ and that
each agent interacts with other agents according to their localized
knowledge. In our case, the interacting agents might be drivers,
passengers, cars, airlines, airports, traffic authorities, and/or govern-
ment. Kikuchi et al. [1] have pointed out that: ‘Transportation activi-
ties take place at the intersection between supply and demand in a
complex physical, economic, social and political setting. The overall
performance of the system reflects the outcome of complex interac-
tions of the individual agents. We feel that Agent-based modeling
holds a promise in application to transportation analysis, because this
approach is not just a specific computational tool, but a concept and a
pattern of thinking’. This agent-based approach to modeling is often
called the ‘bottom-up’ approach.

Special kinds of artificial agents are the agents created by analogy
with social insects. Communication systems between individual in-
sects in nature contribute to the formation of the ‘collective intelli-
gence’ of social insect colonies. Recently, the term ‘swarm
intelligence’ has been applied, denoting this ‘collective intelligence’.
Swarm intelligence (SI) concepts are not currently employed in solv-
ing traffic and transportation engineering problems. We strongly be-
lieve that SI has the potential to offer many new ideas that could
inform a new research approach and novel algorithms to traffic and
transportation engineering problems. The first aim of this article is to
acquaint the reader with the basic elements of SI, its applications to
date in engineering, management and control, and to indicate the
directions for future research in this area. The second aim is to show
how some principles of natural SI could be used in the development of
artificial systems aimed at solving complex problems in traffic and
transportation. The organization of the article is as follows: Section 2
explains the basic characteristics of SI; the relationship between SI and
multi-agent systems (MAS) is discussed in Section 3; the need for SI
approaches in transport modeling are described in Section 4; the basic
characteristics of the ant system are explained in Section 5; in Section
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6, the basic concept of the fuzzy ant system is proposed and Section
7 is devoted to a new computational paradigm – the bee system;
potential applications of SI in traffic and transportation are discussed
in Section 8; and finally in Section 9 we present our conclusions and
recommendations for further research.

2. WHAT IS SWARM INTELLIGENCE?

Social insects (including bees, wasps, ants and termites) have lived on
Earth for millions of years, building nests and more complex
dwellings, organizing production and procuring food. It has also been
noted that they care about order and cleanliness, perform funerals,
occasionally move around, have a communication and warning sys-
tem, maintain an army, wage wars and divide labor. In addition, the
colonies of social insects are very flexible and can adapt well to the
changing environment. There have been examples of ‘higher special-
ization’ workers taking on the duties of ‘lower specialization’ workers
when there was a shortage of the latter. This flexibility allows the
colony to be robust and maintain its life in spite of considerable
disturbances [2].

Interaction between individual insects in a colony of social insects
has been well documented. The examples of such interactive behavior
are bee dancing during food procuring, ants’ pheromone secretion, and
performance of specific acts which signal the other insects to start
performing the same actions. These communication systems between
individual insects contribute to the formation of the ‘collective intelli-
gence’ of social insect colonies. Recently, the term ‘swarm intelli-
gence’, denoting this ‘collective intelligence’, has came into use [2–5].

As with honeybees, the self-organization of ants is also based on
relatively simple rules of individual insect behavior [6–10]. In the
majority of ant species a number of ‘scouts’ leave the nest foraging for
food [11]. Ants successful at finding food leave the pheromone trail
behind them so other ants can follow in order to reach food. The
appearance of the new ants at the pheromone trail reinforces the
pheromone signal. This comprises typical autocatalytic behavior, i.e.
the process that reinforces itself and thus converges fast. The ‘ex-
plosion’ in such processes is regulated by a certain limitation mechan-
ism. In the ant case, the pheromone trail evaporates with time. In this
behavioral pattern the decision of an ant to follow a certain path to
food depends on the behavior of its nestmates. At the same time, the
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ant in question also increases the chance that the nestmates leaving the
nest after it will follow the same path. In other words, one ant’s
movement is highly determined by the movement of previous ants.

Self-organization of bees is based on a few relatively simple rules of
individual insect behavior [12–25]. In spite of the existence of a large
number of different social insect species, and variation in their behav-
ioral patterns, it is possible to describe individual insects’ behavior as
follows [26]: Each bee decides to reach the nectar source by following
a nestmate who has already discovered a patch of flowers. Each hive
has a so-called dance floor area in which the bees that have discovered
nectar sources dance, in that way trying to convince their nestmates to
follow them. If a bee decides to leave the hive to get nectar, it follows
one of the bee dancers to one of the nectar areas. Upon arrival, the
foraging bee takes a load of nectar and returns to the hive relinquishing
the nectar to a food storer bee. After the food is relinquished, the bee
can: (a) abandon the food source and become again an uncommitted
follower; (b) continue to forage at the food source without recruiting
nestmates; or (c) dance and thus recruit the nestmates before the return
to the food source. The bee opts for one of the above alternatives with
a certain probability. Within the dance area the bee dancers ‘advertise’
different food areas. The mechanisms by which the bee decides to
follow a specific dancer are not well understood, but it is considered
that the recruitment among bees is always a function of the quality of
the food source [26]. It is also noted that not all bees start foraging
simultaneously. Experiments confirmed that new bees begin foraging
at a rate proportional to the difference between the eventual total and
the number presently foraging.

Interaction and self-organization are also present in many trans-
portation phenomena. Let us consider, for example, the route choice
problem. Do we somehow ‘collaborate’ with other drivers when
making a route choice? Are we ‘in conflict’ with other drivers when
making a route choice? The more drivers choose a certain route, the
lower the probability the ‘incoming’ ones will do the same. The higher
the congestion on a particular link, the less likely it is for an arriving
driver to choose that link. It is important not to forget that congestion
is a consequence of many decisions different drivers make. In other
words, drivers who choose a specific route before we do, influence our
route choice decision to some extent. In the same way, we have a
certain influence on the route choice of drivers that will make the
decision after us. Let us look at another example. When a traffic
incident causes two lanes on a highway to be relatively congested, and
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the third one stays with relatively low density, a number of drivers will
try to change lane and enter the ‘fast’ one. When we realize such
behavior is successful we start to consider entering the ‘fast lane’ and
potentially decrease our travel time. That is, ‘success’ in decreasing
travel time of other drivers indirectly tells us something like ‘come and
join us’, ‘do the same’, etc. This kind of behavior is very similar to the
bee dancing during food procuring. By dancing, bees are trying to
recruit their nestmates for the good nectar source. Showing that we can
significantly decrease our travel time, the other drivers are recruiting
us for the ‘fast lane’ on the highway. This kind of positive feedback
will undoubtedly decrease total travel time for a certain number of
drivers. At a specific moment, drivers could start competing to enter
the ‘fast lane’. This will finally cause congestion in the ‘fast lane’. In
other words, competition and saturation represent a type of negative
feedback. The more bees fly to a ‘good’ nectar source, the more that
source becomes congested and less rich in nectar. Positive and nega-
tive feedback are obviously very important characteristics of swarm
behavior phenomena. Let us consider a third example. During winter,
students always find the ‘best path’ through the snow on campus. In
the greatest number of cases, the ‘new’ student will follow the existing
path, at the same time making that path even more visible for incoming
pedestrians. This is very similar to the behavior of ants successful at
finding food, that leave the pheromone trail behind them, so other ants
can follow in order to reach food. Human beings are the decision-
makers within different traffic and transportation systems (pedestrians,
drivers, passengers, etc.). Human beings have been on the Moon,
created the Mona Lisa, wrote Romeo and Juliet and invented the
Internet, but will still very often join other drivers and park their cars
illegally in a forbidden area, as members of a ‘driver swarm’.

It should be noted that a large number of traditional engineering
models and algorithms are based on control and centralization. On the
other hand, bee or ant swarm behavior in nature is primarily character-
ized by autonomy and distributed functioning and self-organizing.
Social insect colonies teach us that very simple individual organisms
can form systems capable of performing highly complex tasks by
dynamically interacting with each other. It is of course of great
importance to investigate both advantages and disadvantages of auton-
omy, distributed functioning and self-organizing in relation to tra-
ditional engineering methods that rely on control and centralization.
The basic question about the above-mentioned characteristics of social
insects that should be answered is: Can we use some principles of
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natural SI in the development of artificial systems aimed at solving
complex problems in traffic and transportation?

It is important to state here that the development of artificial systems
does not entail the complete imitation of natural systems, but explores
them in search of ideas and models. The successful application of
emergent techniques based on natural metaphors (e.g. vehicle fleet
planning and static and dynamic routing and scheduling of vehicles
and crews for airlines, railroads, truck operations and public trans-
portation services, designing transportation networks and optimizing
alignments for highways and public transportation routes through
complex geographic spaces, different locations problems, etc.), such as
simulated annealing, genetic algorithms and neural networks, to com-
plex transportation engineering problems are certainly encouraging.
They most definitely point to natural systems as a source of ideas and
models for development of various artificial systems.

3. SWARM INTELLIGENCE AS A PART OF MULTI-AGENT
SYSTEMS

SI is a part of artificial intelligence (AI). In practice, the main aim of
AI during the last four decades has been to develop ‘intelligent
machines’ with the capabilities for solving complex tasks similar to
human beings. AI has passed through a number of different phases in
the past. A very important area of AI is expert systems, computer
programs based on expert knowledge and capable of performing
complex tasks to a certain extent. When trying to develop very
complex expert systems, researchers realized it is rather difficult to
discover and detect ‘unique knowledge’ and to incorporate it into a
knowledge base. When solving problems in everyday life, or in
engineering practice, we collaborate with others, we learn from others,
we make different adjustments, we ‘fight’ for our goals, we sometimes
negotiate, and all the time we exchange some information and knowl-
edge. Biologists, psychologists and many other scientists contributed
significantly to the area of AI. Engineers who are trying to apply some
of the AI techniques have to agree with biologists, psychologists and
sociologists that intelligence cannot be considered as a purely individ-
ual attribute without any social context. The ‘classic’ AI and ap-
proaches based on principles of centralization and sequential
computing should be carefully explored and compared with the ap-
proaches based on problem solving by individual entities. These
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entities or agents could communicate and cooperate among them-
selves, exchange information and try to solve complex problems
together. MAS can be described as systems composed of physical
individuals (robots, for example) or ‘virtual’ (artificial) ones that
communicate among themselves, cooperate, collaborate, exchange in-
formation and knowledge and perform some tasks in their environ-
ment. In other words, scientists have enormous freedom to create
different MAS, defining the environment, as well as different artificial
autonomous entities that live in such an environment. Success in
solving a particular class of complex problem is the only criterion for
evaluating a specific MAS. Distributed AI represents a relatively new
area of AI, therefore all of its potential advantages and disadvantages
should be explored in great detail. MAS can be composed of ‘intelli-
gent’ agents or ‘reactive’ agents. An ‘intelligent’ agent has some level
of intelligence, knowledge, certain skills and can communicate, collab-
orate or ‘fight’ with other agents. Usually, an ‘intelligent’ agent has
certain goals it wants to achieve. ‘Reactive’ agents are not ‘intelligent’.
They can interact directly or indirectly with other agents, and they
‘react’ to different events or communication signals from other agents.
However, they are autonomous. These communication systems be-
tween individual ‘reactive agents’ contribute to the formation of the
‘collective intelligence’ of the whole MAS. Bees, wasps or ants are
‘reactive’ agents, since bee dancing, ants’ pheromone secretion, or
performing another act, indicate and signal to the other insects to start
performing a consecutive action. The term ‘swarm intelligence’ can be
related to the MAS composed of ‘reactive’ agents. Once more, it is
important to say that the development of artificial systems does not
entail the complete imitation of natural systems. Natural systems
should be studied primarily for ideas, models and analogies. Therefore,
strict and rigid classifications, used to describe ‘intelligent’ and ‘reac-
tive’ agents, should not be perceived literally. As researchers trying to
solve a complex problem, we have considerable liberty to create a
completely ‘artificial world’, thus an ‘artificial environment with
artificial life’, with the agents that are ‘more or less’ ‘intelligent’ or
more or less ‘reactive’.

4. A SWARM INTELLIGENCE (MULTI-AGENT SYSTEM)
APPROACH TO TRANSPORT MODELING

Physically distributed systems, their combinatorial nature, multiple
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conflicting criteria, uncertainty (randomness, stochasticity, fuzziness)
and time-dependence (dynamic, real-time) are some of the attributes
characterizing the complexity of contemporary traffic and transporta-
tion engineering problems. Let us discuss these attributes in more
detail.

All transportation systems are physically distributed systems.
Significant numbers of trips are made using urban and intercity
transport, and thousands tonnes of freight are transported every day.
When traveling, passengers and/or drivers are making certain deci-
sions. These decisions are related to choice problems including, for
example, choosing the mode of transportation, choosing the class in
the aircraft, choosing the public transportation route, choosing the
route to drive, choosing departure time, etc. Who could be considered
as an agent (‘artificial bee’, ‘artificial ant’) in such transportation
systems? For instance, all passengers could be thought of as agents. In
some other situations, all drivers could be agents. If we investigate
problems of avoiding collisions in air traffic control or those related to
air traffic control system congestion, all aircraft could be considered
agents. In other words, when modeling transport phenomena, depend-
ing on the problem’s context, agents could be passengers, dispatchers,
drivers, operators, air traffic controllers, vehicles, aircraft, vessels,
terminals, intersections or whatever. Sometimes agents cooperate and
at other times they are in conflict. Increasing numbers of cars on streets
and aircraft in airspace create conflict situations. On the other hand,
drivers obeying traffic light instructions and pilots who strictly follow
air traffic control rules are cooperative agents.

It is important to emphasize that sometimes a ‘bee’, an ‘ant’, or an
agent can be a completely artificial entity which we create in order to
solve a particular, complex transportation problem. In other words,
transportation networks, pedestrians, drivers, dispatchers, pilots, ves-
sels, aircraft or cars do exist as real entities, but we introduce artificial
entities – agents – into the analysis, as a computational tool, to help us
solve the problem.

Most complex transportation engineering problems are combinato-
rial by their nature. A large portion of social insects’ activities is tied
to food foraging. It is known that honeybees normally spend the last
part of their life collecting food [27]; they also spend a considerable
portion of their life span learning and improving their foraging skills
[19]. Every bee colony has scouts who are the colony’s explorers [28].
The explorers do not have any guidance while looking for food. They
are concerned primarily with finding any kind of food source. As a
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result of such behavior, the scouts are characterized by low search
costs and a low average in food source quality. Occasionally, the
scouts can accidentally discover rich, entirely unknown food sources.
The artificial scouts attempting to solve difficult combinatorial opti-
mization problems could have as a task the fast discovery of a group
of feasible solutions. Some of those feasible solutions to the difficult
combinatorial optimization problems could then prove to be solutions
of very good quality. In the case of honeybees, the recruitment rate
represents a ‘measure’ of how quickly the bee colony finds and
exploits a newly discovered food source. Artificial recruiting could
similarly represent the ‘measurement’ of the speed with which the
feasible solution or the ‘good quality’ solution is found. The co-
operation between the insects decreases foragers’ costs in finding new
food sources. This suggests that cooperation between artificial agents
would also allow for the fast discovery of the feasible solution. It is
also known that cooperation increases the quality of the food sources
located by foragers. This implies that cooperation could also help us
find the best solutions to difficult combinatorial optimization problems.
The survival and progress of the bee colony is dependent upon rapid
discovery and efficient utilization of the best food resources. In other
words, the successful solution of difficult engineering problems
(especially those that need to be solved in real time) is connected to the
relatively fast discovery of ‘good solutions’.

A number of complex transportation engineering problems are also
characterized by multiple conflicting criteria. Fleet size and total
transportation costs conflict with the level of service provided to
passengers. When matching transportation demand and supply, these
conflict criteria and interests should certainly be taken into account.
Could we develop MAS consisting of a few different agent types, each
one representing a particular interest group (passengers, carriers, vehi-
cles)? For instance, drivers are in conflict among themselves since they
have to share limited resources (road capacity); or, aircraft are in
conflict because of limited runway and airspace sector capacities.
Could we develop MAS composed of the same agent types (competi-
tor agents) who would fight among themselves for limited resources?

Uncertainty is another common characteristic of many complex
transportation problems. Uncertainty also significantly influences the
real, every day life of ant and bee colonies. Social insects look
continuously for food primarily by performing random and semi-
random searches. Discovering good food sources is a complex task
portrayed by uncertainty. Development of MAS, which would solve
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the problem of uncertainty in transportation systems, is a highly
important research task. Agents in such systems would use approxi-
mate reasoning and rules of fuzzy logic in their communication and
acting.

Numerous complex transportation problems are characterized by
time dependence. Flows in transportation systems vary over time. At
the same time, many transportation phenomena could also be de-
scribed by their autocatalytic behavior. In essence, many processes in
transportation systems reinforce themselves and converge fast. The
appearance of more new drivers on a faster route over some time
interval reinforces the ‘signal’ to other drivers and decreases the
probability of choosing the route in question. A driver’s decisions to
choose a certain route is time dependent and depends highly on other
drivers’ behavior.

A SI approach could be applied to a variety of traffic and transporta-
tion engineering problems, including: vehicle and crew routing and
scheduling for airlines, rail systems, public transportation, discrete
location problems (hub locations and emergency facility locations),
supply chain management, highway alignment, designing transporta-
tion networks, transportation planning (route choice, traffic assignment
and user and system equilibrium), air traffic control, or urban traffic
control. Modern transportation networks are very large, characterized
by complex relationships between particular nodes and links, and
frequently congested. Therefore, it is quite difficult to monitor and
analyze them to find appropriate solutions for problems, and probably
impossible to control the whole network in a centralized way. It is
therefore self-evident that research efforts would be beneficial in order
to achieve decentralized monitoring, analysis and control. To be more
specific, ‘bees’ or ‘ants’ would be at the nodes or links, trying to solve
problems as autonomous agents at the local level, at the same time
cooperating among themselves. This approach could eventually lead to
a discovery of good solutions for the problems related to the whole
transportation network. In years to come, research in the area of SI
applications in traffic and transportation could help us find the answers
to the following questions:

• What is the real potential of SI in traffic and transportation research?
• Can we use some principles of natural SI in the development of

artificial systems aimed at solving complex problems in transporta-
tion engineering?

• Should artificial ants, termites or bees (agents) be regarded as equal,
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or should there be several types of agent? Should they have the
ability to learn? Should they communicate directly or indirectly? In
other words, we need to ask what kind of system performance
various types of dynamic interactions between different system
elements could achieve.

• When should principles of autonomy, decentralization, self-
organizing, flexibility and robustness be used when developing
artificial systems based on the analogy of social insect colonies?

• What could be the potential of artificial SI systems in traffic and
transportation? For what type of problems is artificial SI most
useful?

• Are there any possibilities for the hybrid combination of SI and
other artificial intelligence approaches and different heuristic al-
gorithms?

• Could SI be combined with other techniques (e.g. fuzzy set theory)
to solve complex traffic and transportation engineering problems
characterized by uncertainty?

• What are the costs and benefits of the development of artificial
systems based on natural SI in transportation engineering?

5. ANT SYSTEM

The most important result of artificial system development based on SI
is the creation of the ant system and the ant colony system [2, 29–34].
The ant colony system is a new metaheuristic for hard combinatorial
optimization problems. Dorigo et al. [30] applied the ant system to the
classic traveling salesman problem. They also tested their approach on
the asymmetric traveling salesman problem, the quadratic assignment
problem and the job-shop scheduling problem. Bullnheimer et al. [35,
36] used the ant system to solve the vehicle routing problem in its
basic form (i.e. homogenous fleet, capacity restriction, distance restric-
tion, one central depot) and obtained very good results.

Dorigo et al. [30] introduced the ant system in trying to solve the
traveling salesman problem. Given a set N of n towns (nodes), this
well-known problem is based on finding the shortest route the travel-
ing salesman should take when visiting each town exactly once. The
traveling salesman departs from and returns to a depot located in one
of the towns.

Artificial ants, proposed by Dorigo et al. [30], search the solution
space, simulating real ants looking for food in the environment. The
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objective function values correspond to the quality of food sources.
Existence of an adaptive memory characterizes the searching process.
In our case, the adaptive memory corresponds to the pheromone trials.
It should be emphasized that time in the artificial ants’ environment
is discrete. At the beginning of the search (time t � 0), ants are
located in different towns. Dorigo et al. [29] denoted by �ij(t) the
intensity of trial on edge (i, j) at time t. In time point t � 0 the value
�ij(0) is equal to a small positive constant c. At time t, every ant is
moving from the current town to the next one. Reaching the following
town at time (t � 1), every ant moves towards a ‘new’ (as yet
unvisited) town. Located in town i, ant k chooses to visit the next town
j at time t, with the transition probability pk

ij(t) defined by the following
relation:


pk

ij(t) �
[�ij(t)]�[�ij]�

�
h � �j

k(t)
[�ih(t)]�[�ih]�, if j � �i

k(t)

 0, otherwise

where �i
k(t) � set of feasible nodes to be visited by ant k (the set of

feasible nodes is updated for each ant after every move);
dij � Euclidean distance between node i and node j; �ij � 1/dij ‘visi-
bility’; and �, � � parameters representing the relative importance of
trail intensity and visibility.

The greater the importance the analyst gives to visibility, the greater
the probability that the nearest towns will be selected. When trial
intensity is given greater importance, the highly desirable links will be
the ones through which many ants have already previously passed.

Dorigo et al. [30] defined iteration as m moves performed by m ants
in the time interval (t, t � 1). After n iterations every ant will have
completed the traveling salesman tour. Dorigo et al. [30] also stated
that n iterations represent a cycle. They proposed that trial intensity
should be updated after every cycle in the following way:

�ij(t � n) � ��ij(t) � ��ij

where: � � the coefficient (� � 1) such that (1 � �) represents evapor-
ation of the trial between time t and t � n.

The total increase in trial intensity along link (i, j) after one
completed cycle is equal to:
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��ij � �m
k � 1

�k
ij

where �k
ij is the quantity of pheromone laid on link (i, j) by the kth ant

during time interval (t, t � n).
The quantity �k

ij is given by:

�k
ij(t) �

Q
Lk(t)

, if the k-th ant walks along the link (i, j) in its tour
during the cycle

0, otherwise
where Q � a constant; and Lk(t) � the tour length developed by the kth
ant within the cycle.

6. FUZZY ANT SYSTEM

Among others, Lučić and Teodorović [37] and Teodorović and Lučić
[38] made an attempt to modify the ‘classical’ ant system. They
proposed the fuzzy ant system (FAS). The basic modification would be
in the way of calculating transition probabilities, so that fuzzy logic is
used. When using fuzzy logic as a separate module within the ant
system, it is possible to deal with the uncertainty which sometimes
exists in complex combinatorial optimization problems. The control
strategies of the ant can also be formulated in terms of numerous
descriptive rules. Zadeh [39] first introduced the original idea of the
possibility of decision-making based on imprecise, qualitative data by
combining descriptive linguistic rules through fuzzy logic. The combi-
nation of imprecise logic rules in a single control strategy is called by
Zadeh [40] approximate or fuzzy reasoning. Zadeh [39, 40] first
presented fuzzy logic as a means of processing vague, linguistic
information. Fuzzy rules include descriptive expressions such as small,
medium, or large used to categorize the linguistic (fuzzy) input and
output variables. A set of fuzzy rules, describing the control strategy,
forms a fuzzy control algorithm, that is, approximate reasoning algor-
ithm, whereas the linguistic expressions are represented and quantified
by fuzzy sets. The main advantage of this approach is the possibility
of introducing and using rules from experience, intuition and heuris-
tics, and the fact that a model of the process is not required. Fuzzy
reasoning (approximate reasoning) involves the transformation of a
group of fuzzy rules into fuzzy relations in order to achieve a result.
Fuzzy reasoning is an inference procedure, therefore the way of
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generating the conclusion from the premises when the linguistic
expressions are quantified by fuzzy sets. The inference engine of the
fuzzy logic system maps fuzzy relations into fuzzy sets. The inference
engine handles the way in which rules are combined [41]. There are a
number of inferential procedures in the literature.

When making a decision about the next node to be visited, an ant
takes both ‘visibility’ and pheromone trial intensity into consideration.
We can assume that an ant can perceive a particular distance between
nodes as ‘small’, ‘medium’ or ‘large’, and the trial intensity as ‘weak’,
‘medium’ or ‘strong’. Depending on the distance from the next node,
as well as the trial intensity, the ant chooses the next link with the
greater or lesser probability. These probabilities can be described by
appropriate fuzzy sets.

An approximate reasoning algorithm for calculating the probability
of choosing the next link could consist of rules of the following type:

If distance is SMALL and trial intensity is STRONG
Then probability is VERY HIGH

The approximate reasoning algorithm could replace the original rela-
tion for calculating transition probabilities. Therefore, it would be
possible to calculate transition probabilities even if some of the input
data were only known approximately. It seems that a FAS could be a
very powerful tool in solving different transportation engineering
problems characterized by their combinatorial nature and uncertainty.
The author’s preliminary results with the FAS are promising.

7. BEE SYSTEM: A NEW COMPUTATIONAL PARADIGM

In their preliminary research, Lučić and Teodorović [37, 42, 43] have
developed the bee system that represents the new concept within the
area of SI. This bee system is heavily inspired by the analogy of bee
behavior. The main goal of Lučić and Teodorović [37, 42, 43] research
was not to develop a new heuristic algorithm for the traveling sales-
man problem but to explore possible applications of SI (particularly
collective bee intelligence) in solving complex engineering and control
problems. The traveling salesman problem is only an illustrative
example, which shows the characteristics of the proposed concept.

The bee system was tested in preliminary research on a number of
numerical examples. Benchmark problems were taken from the Uni-
versity of Heidelberg’s Internet site � http://www.iwr.uni-heidelberg.
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de/iwr/comopt/software/TSPLIB95/tsp/ � . The problems considered
were: Eil51.tsp, Berlin52.tsp, St70.tsp, Pr76.tsp, Kroa100.tsp,
Eil101.tsp, A280.tsp, Pcb442.tsp and Pr1002.tsp. (All tests were run
using a PC with PIII processor, 533MHz.) The results obtained are
given in Table I.

As we can see from Table I, the bee system offers high quality
results. Computer times required for finding out the best solutions were
very low. In other words, the bee system was able to provide ‘very
good’ solutions in a ‘reasonable amount’ of computer time.

8. SOME POTENTIAL APPLICATIONS OF SWARM
INTELLIGENCE IN TRAFFIC AND TRANSPORTATION

This section describes some of the potential applications of SI in traffic
and transportation engineering. The following examples were chosen
from a large number of potential applications primarily for illustrative
purposes.

The transit network-planning problem [44] can be defined as fol-
lows: for known estimated annual numbers of passengers between
individual pairs of nodes, the shape of a network of public transporta-
tion lines and their corresponding service frequencies should be deter-
mined, taking into account operator revenues and costs as well as the
level of service offered to passengers. The problem of determining the
shape of public transportation routes and corresponding service fre-
quencies is combinatorial by its nature. It should also be emphasized
that when public transportation is established among a large number of
nodes, the dimensions of the problem become enormous. Transit
network planning and design is an ideal problem for a SI application.
It would be very interesting to see how successful ‘ants’ or ‘bees’ are
in transit network design.

Timetabling and schedule synchronization [38] are the planning
phases that follow transit network design, detailed line alignment,
frequency determination and line headways. In other words, schedule
synchronization can be achieved only after determining detailed line
alignment and line headways. Trips between any two nodes in a public
transit network may or may not include a transfer. A direct connection
could be provided only to a certain number of passengers, primarily for
economic reasons. At the same time, some passengers use different
modes of transportation (e.g. bus, light rail, tram, metro, trolley bus,
coordinated dial-a-ride, etc.). Although they represent inconvenience to
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passengers, transfers cannot be completely avoided in public transit. It
is especially important to carefully synchronize schedules in cases of
larger headways, since badly coordinated transfers significantly in-
crease waiting times. At the same time, poorly coordinated transfers
could also decrease the total number of passengers using public transit
and their switching to other competitive modes (especially private
cars). Optimal schedule synchronization assumes minimal total wait-
ing times of all passengers at transfer nodes. Real world instances of
the schedule synchronization problem could be tremendous.

The alignment problem for public transportation routes assumes
selection of the ‘best’ path to connect two points on a map. The ‘best’
alignment [45, 46] minimizes total costs and satisfies the engineering
design, operational constraints and established level of service. This a
difficult combinatorial optimization problem which could be character-
ized by uncertainty, as well as the existence of a few usually
conflicting criteria. Operator’s economic results, as well as the level of
service offered to passengers, highly depend on the alignment of
public transportation routes. Development of hybrid models (ant sys-
tem with fuzzy logic, or bee system with fuzzy logic) for solving
alignment problems would be of great benefit for public transportation
companies and the broader traveling public.

Every vehicle trip in public transportation is characterized by an
origin (terminal at the beginning of a transit line), destination (terminal
at the end of a transit line), departure time, expected duration of the
trip and time points at different stops along the line. The sequence of
trips is known as a block. Since in most cases buses leave the depot
more than once a day, they usually perform more than one block per
day. The generic version of the vehicle-scheduling problem can be
defined in the following way: assign the minimum possible number of
vehicles for planned trips so that all trips are performed by the vehicles
located at a single depot and total operational costs are minimized. The
generic vehicle-scheduling problem can be transformed into different
versions.

Labor costs in the transit industry are very high. This means that the
run cutting (crew scheduling) problem must be studied very carefully
taking into account operator’s as well as crew’s objectives [47, 48].
Once the vehicle schedule has been designed, scheduling crews and
their assignment to planned duties are among the most important
problems transit operators face. The run-cutting (crew scheduling)
problem is a very complex one and it is characterized by the following
factors: (a) large dimensions (many transit lines, buses and operators);
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(b) variability in demand for crews during the day (caused by varia-
bility in passenger travel demand during the day, corresponding varia-
bility in the number of trips to be performed and variability in the
number of buses needed); and (c) complex operator labor agreements
(the rules regulating crew operations). When performing their duty,
crews change vehicles from time to time. The segment of a crew
schedule during which it is continually in the same vehicle is usually
called a piece. One possible combination of pieces is called the run
(shift). By assigning a particular run to a crew, its workday is defined
completely. The run cutting (crew scheduling) problem can be formu-
lated as follows: for a given vehicle schedule, schedule the crew ‘in the
best possible way’, while simultaneously respecting all the rules that
regulate crew operations.

Dial-a-ride [49] is a type of paratransit service that provides shared
ride public transportation for citizens with disabilities, seniors, or the
general public. Different versions of the dial-a-ride problem are found
in every day practice – for example: transportation of people in
low-density areas, transportation of the handicapped and elderly, and
parcel pick-up and delivery services in urban areas. A carrier that
provides the service receives inquiries for transportation. Origin, desti-
nation and preferred start time of the transportation service character-
ize every request. The carrier’s ‘job’ is to design vehicle routes and
schedules of vehicles to optimize objectives such as maximizing
passenger trips served, minimizing the total traveling distance, reduc-
ing the number of vehicles needed, and minimizing detour time. In the
static version of the dial-a-ride problem, it is customary to collect
requests for transportation a day prior to the beginning of service. All
customers demanding service define pick-up and delivery location, as
well as preferred beginning of the service. In the case of the dynamic
dial-a-ride system all routing and scheduling decisions must be done in
real time. Police cars, ambulances and taxi dispatching are also
situations that require real time dispatching decisions. A logical ques-
tion which arises is: Who should respond to a new request? It is
obvious that all requests must be divided among available units in a
way that provides maximum efficiency of the whole system. Labor
division is one of the main traits of the social insects colonies.
Assigning vehicles to planned trips, defining crew workday in public
transportation, or allocating available units to the transportation or
emergency request are good examples of transportation problems
related to labor division.

Vehicle and crew routing and scheduling problems appear in various
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transportation activities. In the case of distribution systems, vehicles
usually leave the depot, serve the nodes in the network and return to
the depot on completion of their routes. Every node is described by a
certain demand (the amount to be delivered to the node or the amount
to be picked up from the node). Other known values include the
coordinates of the depot and nodes, the distance between all pairs of
nodes, and the capacity of the vehicles providing service. The classical
vehicle routing problem consists of finding the set of routes that
minimize transport costs. Further variations of this problem include
existence of few depots in the network, performing the service with
several types of different vehicles, uncertain demand at nodes, or
existence of the time windows for carrying out the service at certain
nodes. Development of hybrid models (bee system, fuzzy logic and
visualization) for solving complex vehicle routing and scheduling
problems would be of great benefit for both distribution companies and
the general public.

Designing an airline or utility network is an extremely complex
planning task, combinatorial in its nature. Network shape and flight
frequency on individual links directly affect operator’s business results
and the quality of service provided to passengers. Designing the best
hub-and-spoke architecture represents a typical example of the facili-
ties location problem. Packages or passengers in intercity transport are
very frequently routed through one or more hubs, on their way from
origin to destination. In other words, instead of routing passengers
from each origin directly to their destination, the hub-and-spoke
system transports passengers and packages through hubs. Determining
the best architecture of the hub-and-spoke system has great
significance. The highly competitive environment in air transportation,
logistics and communication assumes the best possible hub-and-spoke
architecture. A major goal of this research would be introducing
swarm intelligence and its application to generic air transportation
network design, as well as to the generic hub-and-spoke design
problem. Potential sources of possible ideas could include studying the
brood sorting or cemetery organization in social insect colonies.

In recent years, congestion has appeared in numerous parts of the air
traffic control system (attributable to many airports, numerous air
routes and air traffic control sectors). Congestion arises due to the fact
that in certain time periods, ‘demand’ at an airport or on an air route
exceeds its capacity. Major airports usually have multiple runways in
operation. Assignment of aircraft mix and take-off and landing opera-
tions could be accomplished in many different ways. Every possible
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runway-operating configuration has its appropriate capacity value.
Previous research and every day practice has revealed and proved that
landing capacities are the main cause of aircraft delays. During the last
decade, airport development has not been compatible with an increas-
ing demand for that airport. This is one of the main causes of
congestion. Congestion is also highly influenced by the fact that in air
traffic control, demand for airports as well as airport capacities are not
constant. Arrival times of longer-haul flights are quite often changed
because of meteorological conditions. Maintenance problems, aircrew
absenteeism, meteorological conditions or airport equipment failure
may cause some flights to be delayed or cancelled. The variations in
airport capacities could be even greater. The most frequent congestion
occurs at airports, where meteorological conditions (such as ceiling,
visibility and wind velocity and direction) have a direct influence on
airport capacity. Since precise forecasts of meteorological conditions is
not possible over a long period of time, the capacity of an airport can
be only approximately determined over the long run. Different actions
could be undertaken in order to minimize negative consequences of
congestion. Air traffic flow management represents a set of actions
performed to prevent overloading of any element of the air traffic
control system, to provide maximum utilization of existing capacities,
to minimize airline delay costs and passenger inconvenience. The
basic goal of this research would be to introduce swarm intelligence
and its potential application to a generic air traffic flow management
problem.

Many models have been developed for dealing with transportation
problems during past four decades. Most frequently, the basic assump-
tion in these models was that all planned transportation activities
would be performed without any disturbances. Every day, certain
buses have a delay, some of the planned flights are cancelled, traffic
incidents occur on highways, some links are completely congested,
and meteorological conditions cause lower traffic flow speeds in
particular locations. How will an artificial system design based on
swarm intelligence principles behave in unusual, unpredictable situa-
tions? Will it be able to find reasonable ‘good’ solutions for the
complex transportation problems caused by unpredictable events? Will
the autonomy, distributed functioning and self-organizing capabilities
of the artificial system significantly help to mitigate disturbances
within the transportation system under consideration? Finding the
appropriate answers to these questions is without a doubt an important
and challenging scientific task.
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9. CONCLUSION

The initial applications of the ant and bee systems to some of the
difficult transportation engineering combinatorial optimization prob-
lems are very encouraging, since they confirm the value of natural
systems as a source of ideas and models for the development of a
variety of useful artificial systems. SI has already been applied (the ant
system) in some other engineering areas such as robotics and the
results obtained have been very good.

Bee or ant swarm behavior in nature is primarily characterized by
autonomy, distributed functioning and self-organizing capacities.
Social insect colonies teach us that very simple individual organisms
can form systems capable of performing highly complex tasks by
dynamically interacting with each other. It seems that the development
of MAS composed primarily of ‘reactive agents’ would lead to the
achievement of reasonably good research results in solving certain
transportation problems. In such a way we can avoid problems regard-
ing the development of agents’ knowledge base, as well as problems
regarding type of ‘direct’ communication among ‘intelligent’ agents.
It is certainly of great importance to investigate both advantages
and disadvantages of autonomy, distributed functioning and self-
organizing capacities in relation to traditional engineering methods
relying on control and centralization.

This article could be considered as one author’s educated guess
(based on intuition and prior knowledge) that the SI approach is valid
and promising. It is important to remember, however, that even
biologists have only partial knowledge about bee or ants behavior in
nature. They also need to make some ‘educated guesses’ in order to
explain properly natural SI.

Preliminary results have shown that the development of new models
based on SI principles (autonomy, distributed functioning, self-
organizing, potential adaptability and robustness) could probably con-
tribute significantly to solving complex transportation engineering
problems.
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