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Ionomeric polymer transducers consist of an ion-conducting membrane sandwiched between two
metal electrodes. Application of a low voltage ��5 V� to the polymer produces relatively large
bending deformation ��2% strain� due to the transport of ionic species within the polymer matrix.
A computational model of transport and electromechanical transduction is developed for ionomeric
polymer transducers. The transport model is based upon a coupled chemoelectrical multifield
formulation and computes the spatiotemporal volumetric charge density profile to an applied
potential at the boundaries. The current induced in the polymer is computed using the isothermal
transient ionic current associated with surface charge accumulation at the electrodes induced by
nonzero volumetric charge density within the polymer. The stress induced in the polymer is assumed
to be a summation of linear and quadratic functions of the volumetric charge density.
Euler-Bernoulli beam mechanics are used to compute the bending deflection of the transducer to an
applied potential. The diffusion coefficient and permittivity of the polymer is identified from the
measured current density to a step change in the applied potential. A comparison between the
measured data and the predicted response demonstrates that this model accurately predicts the
current discharge due to the applied potential at voltages over the range of 50–500 mV.
Furthermore, the measured strain response is accurately predicted by determining the two
parameters of the mechanics model that relates volumetric charge density to induced stress. The
coupled model with parameters identified from the step response analysis is used to predict the
harmonic response of the current and the bending strain. Comparisons between measured data and
simulations illustrate that the coupled transport-mechanics model accurately predicts the magnitude
and trends associated with the current response and strain output. Excellent agreement is obtained
at excitation periods above approximately 1 s while good agreement is obtained at longer excitation
periods. The transport model highlights the importance of the asymmetry that develops at large
applied potentials and long excitation periods in the volumetric charge density due to the fixed
anionic species in the polymer. © 2007 American Institute of Physics. �DOI: 10.1063/1.2409362�

I. INTRODUCTION

Ionomeric polymer transducers, also called ionic
polymer-metal composites, are transducers that exhibit elec-
tromechanical sensing and actuation properties. It is well es-
tablished that ionomer materials, when suitably plated with
conductive metal on their surfaces, exhibit a bending defor-
mation when a voltage is applied across the thickness.1 Con-
versely, the materials exhibit a sensing response under the
application of a mechanical deformation.2,3 These properties
allow them to be used as electromechanical sensors and ac-
tuators. In comparison with other types of materials that ex-
hibit electromechanical coupling, such as piezoelectric mate-
rials, ionomeric materials have been shown to produce
bending strains on the order of 2% under the application of
potentials on the order of 1–5 V. Recent advances in the
development of “dry” materials have also enabled the use of

these ionomeric materials in air,4,5 thus increasing the prac-
ticality of using these materials in environments that do not
require control over hydration or humidity.

Although a number of advances have been made in the
development of ionomeric transducers in recent years, there
still remains a gap in understanding the fundamental mecha-
nisms that promote electromechanical coupling. It has been
well established for a number of years that ion conduction in
the polymer due to the existence of mobile charged species
accounts for the existence of electromechanical coupling.
Beyond that, though, there have been a number of models
based on different physical phenomena that can closely
match experimental data. The models that provide a direct
comparison between experiment and theory can generally be
separated into phenomenological models based on curvefits
of experimental data6–9 and physics-based models that at-
tempt to predict the material response from governing equa-
tions.

The purpose of this paper is to develop a computational
a�Electronic mail: wallmers@isd.uni-stuttgart.de
b�Electronic mail: donleo@vt.edu
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methodology that solves for the electromechanical response
of ionomeric transducers. The computational framework that
we develop in this paper is based on the solution of the
one-dimensional Nernst-Planck equations for charge conduc-
tion considering the effects of concentration gradient and
electric field. The computational methodology computes the
spatiotemporal charge density as a function of applied field
and boundary conditions. The computational framework is
able to account for the existence of both mobile and immo-
bile charge species in the polymer. The mechanical response
of the polymer is computed by assuming a series relationship
between charge density and local stress. Euler-Bernoulli
beam mechanics are then applied to compute the bending
moment and deflection of the polymer as a function of time
and applied field.

The benefit of the computational framework developed
in this paper is that it can be readily extended to multidimen-
sional analysis and to materials with more complicated prop-
erties. For instance, there is mounting evidence that the in-
terface between the metal electrode and the ionomeric
polymer plays a critical role in the electromechanical
transduction.10 Modeling the spatially dependent diffusion
properties and geometric properties of the polymer-metal in-
terface is very difficult with a closed-form analysis, but it is
a straightforward extension of the computational framework
developed in this paper. Similarly, modeling the effects of
ion blocking boundary conditions or boundary conditions
with nonzero flux terms can be accomodated within the
present framework, whereas it would be difficult to easily
model these effects with a closed-form solution.

In this paper we present the one-dimensional transport
model and couple it to the mechanics of beam deflection.
Simulation results for the current response and bending re-
sponse of the transducer are compared to experimental data
to determine the validity of the model assumptions and de-
termine if experimental trends can be accurately predicted
with the computational model.

II. COMPUTATIONAL MODEL OF ION TRANSPORT

The system under analysis in this work is a bending
beam transducer fabricated from an ionomer substrate with
conductive metal electrodes on the outer surfaces. The beam
is assumed to be clamped at one end and free at the other.
The total length of the beam is denoted Lt and the free length
is denoted Lf, as shown in Fig. 1. The thickness of the beam

is 2h and the total width is w. For the purposes of this analy-
sis we assume that the only nonzero charge transport is in the
x direction and the only significant bending occurs along the
z axis. The potential is denoted ��x� and is applied at the
electrodes. It is assumed that the resistance of the electrodes
in the z direction is negligible, therefore the applied potential
is equivalent at any point along the length of the beam. The
electrodes are assumed to be ion blocking electrodes, mean-
ing that the charged species cannot cross the boundary at x
= ±h. Furthermore we assume that there are no electrochemi-
cal reactions at the electrodes.

A coupled chemoelectrical formulation describing the
ion distribution and the electric potential in the material is
applied11,12 to compute the charge density as a function of
space and time.

A. Chemical field

The formulation for the chemical field is based on the
balance equation for the flux of the mobile ions and fixed
charges. Neglecting the convective flux—due to an applied
�convective� velocity of the solvent—the one-dimensional
Nernst-Planck-Equation is given by

�1�

where J�x�x , t� is the flux for each species � in the x direc-
tion.

Using the conservation of mass �while neglecting the
source terms�,

ċ��x,t� = − J�x,x�x,t� , �2�

and Eq. �1�, the convection-diffusion equation for each spe-
cies �,

ċ��x,t� = �D�c�,x�x,t� + z�c��x,t����,x�x,t��,x, �3�

is obtained. The variable c� is the concentration of the spe-
cies �, D� the diffusion constant, ��= �F /RT�D� is the un-
signed mobility, z� the valence of the ions, and � is the
electric potential. The notation ,x=� /�x denotes a partial de-
rivative with respect to x.

B. Electrical field

The electric field is described by the one-dimensional
Poisson equation,

FIG. 1. Transducer geometry for the
computational and experimental
analysis.
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�,xx�x,t� = −
F

��0
�
�=1

Nf+Nb

�z�c��x,t�� . �4�

Due to the much larger propagation speed in the electric field
compared to the diffusion speed in the chemical field, the
quasistatic form of the Poisson equation is sufficient. Equa-
tion �4� is based on the second and fourth Maxwell equa-
tions,

Ex = − �,x, Dx,x = � , �5�

where �0 is the permittivity of free space, � the relative di-
electric constant, e the electric elementary charge, F the Far-
aday constant �F=NAe=96 487 C/mol�, Dx the electric dis-
placement vector, Ex the vector of the electric field strength,
and � the density of volume charge. Nf and Nb denote the
number of freely movable species and the number of bound
species, respectively.

C. Coupling of the chemoelectric field

The chemoelectric multifield consists of two coupled
partial diferential equations:

• the convection-diffusion equations, Eq. �3�, which are
partial differential equations �PDEs� of first order in
time for the concentrations c� of all the species �, and

• the Poisson equation, Eq. �4�, a PDE in space for the
electric potential �.

A coupling method, in which the convection-diffusion
equations for all Nf +Nb species and the Poisson equation for
the electric field are solved simultaneously, has been consid-
ered, see scheme of the coupling method in Fig. 2. This
results in a total number of nodal unknowns in space of Nf

+Nb+1, for more details see Ref. 13. For the computations in
this work only one mobile species and one fixed charge is
employed.

D. Boundary conditions

Boundary conditions �BCs� for the electrical field and
chemical field must be specified to solve the governing equa-
tions. For the electric field we prescribe the electric potential
at both domain boundaries as fixed values �Dirichlet bound-
ary conditions �DBC��. For the chemical field different ap-
proaches are possible.

• First, we can apply at both domain boundaries fixed
values for the concentration.

• A second possibility is to apply prescribed fluxes over
the domain boundaries �Flux boundary conditions
�FBC��; in this case for each species a distinct flux J�

may be prescribed as

− D�c�,x −
F

RT
z�D�c��,x = J̄�x. �6�

• The third possibility is to apply combined BCs: at one
boundary a DBC can be applied, and at the other one a
FBC.

In this work we have specified a zero flux boundary condi-
tion at x= ±h to model the ion blocking electrode at each
surface.

E. Electric current

The electric current density jx can be determined by the
Faraday equation,

jx�x,t� = F�
�=1

Nf �z��− D�

�c�

�x
�x,t� − z���c��x,t�

��

�x
�x,t��	 .

�7�

The calculation of jx may be done in a postprocessing step
using the nodal values and the local gradients in the whole
domain.

F. Current density computation

The numerical simulation of ion transport in the polymer
produces the spatiotemporal distribution of charge density
and potential. The charge density is defined as

��x,t� = F �
�=1

Nf+Nb

�z�c��x,t�� . �8�

The distribution of charge density within the polymer gives
rise to image charges which collect at the faces of the elec-
trodes. In the absence of ion flux across the boundary, the
electrode forms an ion blocking boundary and the image
charges that accumulate at the surface induce the current that
can be measured across the thickness of the polymer. This
effect has been denoted as the isothermal transient ionic cur-
rent, or ITIC, by Ref. 14. The surface charge per unit area,
qs�t�, induced by the existence of a nonzero charge density
��x , t� within the sample is

qs�t� =
1

2h



−h

h

x��x,t�dx . �9�

The resulting current per unit area is the time derivative of
the induced surface charge,

i�t� =
dqs�t�

dt
. �10�

The surface charge and current are computed by Eqs. �9� and
�10�, respectively, using the discretized solution of the trans-
port analysis. The integration in Eq. �9� is performed using a

FIG. 2. Chemoelectric coupling scheme.

024912-3 Wallmersperger, Leo, and Kothera J. Appl. Phys. 101, 024912 �2007�

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.173.126.47 On: Tue, 05 May 2015 16:15:25



trapezoidal numerical integration and the differential of the
surface charge is computed using a first-order approximation
for the time derivative.

G. Electromechanical transduction

The electromechanical transduction models studied in
this paper focus on the relationship between charge density
and localized stress within the polymer. Physics-based mod-
els of local stresses using a micromechanics approach have
derived a set of relationships between the charge density and
the mechanical stress and strain generated.15

The transduction model proposed in this paper is an ex-
pansion of the form

��x,t� = ���x,t� + 	�2�x,t� , �11�

where � and 	 are coefficients that define the linear and
quadratic terms of the electromechanical transduction model.
The bending moment produced in the beam due to this stress
distribution is

M�t� = 

−w/2

w/2 

−h

h

x��x,t�dxdy

= 

−w/2

w/2 

−h

h

x����x,t� + 	�2�x,t��dxdy . �12�

To analyze the effect of the linear and quadratic terms on the
response, we decompose the bending moment into two
terms,

M��t� = ��w

−h

h

x��x,t�dx� ,

�13�

M	�t� = 	�w

−h

h

x�2�x,t�dx� ,

and rewrite M�t�=M��t�+M	�t�. Assuming that the Euler-
Bernoulli beam theory applies to the material, the expression
for the curvature is

K�t� =
M�t�
EI

, �14�

where EI is the effective bending stiffness of the beam. The
strain at any point in the beam can be written as


�t� = − xK�t� , �15�

and the maximum strain is equal to hK�t� at the outer fibers
of the transducer.

III. COMPUTATIONAL METHODS

The coupled multifield problem has been solved on an
adaptive multigrid with variable discretization to find the op-
timal mesh, i.e., maximal accuracy of the numerical results
for a minimal computational effort. The refinement of the
mesh g is defined by the ratio of the lengths l of two subse-
quent elements k and k+1,

g =
lk+1

lk
� 1. �16�

By using a geometric series, the length �xmin of the first
element �which is the smallest element� may be calculated by

�xmin�1 + g + g2 + g3 + ¯ + gn�

= �xmin�
k=0

n

gk = �xmin
gn+1 − 1

g − 1
= lx, �17�

where lx=2 h is the domain length and nel=n+1 is the num-
ber of elements. To obtain a consistent refinement, a different
refinement factor g�level� has to be chosen for all multigrid
levels,

g�level� = �g�0��0.5level
where level = 0,1,2, . . . . �18�

In Fig. 3 a multigrid consisting of four levels—adaptively
refined where g�0�=4—is depicted.

To find the optimal mesh geometry, the following
meshes G0 are investigated:

• equidistant meshes: meshes with constant element
lengths �g=1� with 50, 100, 200, 400, … elements and

• meshes with refinement factors g�0�=1.05 and g�0�
=1.10 with 50, 100, 200, 400, … elements.

As an example, a mesh with 100 elements divided in
three subdomains with a refinement factor of g�0�=1.1 on
both sides of each subdomain is given in Fig. 4.

In Fig. 5 the normalized mobile concentrations c /c−

=c /cfix over the number of total elements on the finest mesh
at the position x=−h �Fig. 5�a�� and x= +h �Fig. 5�b�� are
plotted for the different refinement factors. The convergence
for the different mesh geometries, i.e., the error of the nor-
malized concentration 
= �c−cexact� /cexact over the number of
total elements nel, at x=−h is given in Fig. 6�a� and at x
= +h in Fig. 6�b�.

As we can see in Fig. 5, the results of the concentrations
of the different discretizations converge to approximately the
same value for both the concentrations at the top �x= +h� and
the ones at the bottom �x=−h�. The convergence is quadratic

FIG. 3. �Color online� Adaptive refinement of a four-level multigrid where
g�0�=4.

FIG. 4. Adaptively refined mesh comprising three subdomains.
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�����l̄�2� for g=1 and of higher order for the adaptively

refined geometries, see Fig. 6. l̄ is the mean value of the

element lengths, l̄=2h /nel.
Note, for the refined geometries the ratio of r

=�xmax/�xmin is increasing for large numbers of elements,
see Table I. This large ratio causes numerical difficulties and
thus the error � is not falling below a certain limit.

For a prescribed error of ��0.1%, we have chosen a
discretization on the finest mesh of 400 elements and a re-
finement factor g�0�=1.05 to have a minimal computational
effort and also a not too high ratio r. These mesh parameters
have been used for all of the remaining analyses presented in
this work.

IV. EXPERIMENTAL PROCEDURES

This section will present experimental results to validate
the model development that was discussed previously. The
experimental methods and laboratory setup will be discussed
first, followed by the measured results.

Experimental Setup

The cantilever polymer actuator used in these experi-
ments had a total length of 29 mm, a width of 3 mm, and a
thickness of approximately 0.5 mm. Being a cantilever
sample, 9 mm of the material was placed in the clamp, leav-
ing a free length of 20 mm. This polymer sample was pre-
pared using a direct assembly process as outlined in Ref. 16.
The particular makeup of this actuator includes Nafion®-117
as the base ionomer, lithium as the cation, and nearly
100 wt % uptake of formamide for the solvent. Each of the
two electrodes is 25 �m thick and is composed of 30 vol %
RuO2 and a thin layer of gold foil. The direct assembly pro-

cess enables higher performance actuators with the possibili-
ties of incorporating large solvent uptakes.

Experiments were performed with this sample using the
test setup shown in Fig. 7. A dSPACE DS2103 12 bit digital-
to-analog converter �±5 V� supplied the voltage wave form,
which passed through a Hewlett-Packard 6825A bipolar
supply/amplifier to amplify the current before reaching the
polymer. Voltage and current measurements were collected at
this point, with the help of a current sensing circuit made
from an operational amplifier and two resistors. This signal
then excited the polymer sample. The clamp that holds the
cantilever actuator is made of Delrin® and applies the volt-
age to the polymer through gold foil electrodes. A Polytec
OFV 3001 laser vibrometer controller and 303 sensor head
were used to measure the mechanical response of the poly-
mer actuator, with the measurement point taken in the middle
of the beam, 10 mm from the base. All the data were col-
lected using a dSPACE DS2003 16 bit analog-to-digital con-
verter set to ±5 V. In each set of experiments, two electrical
signals �voltage and current� and two mechanical signals
�displacement and velocity� were measured. Also included in
Fig. 7 are arrows to show the flow of these signals and the
polymer dimensions of free length Lf, width w, and total
thickness 2h.

Two sets of experiments were conducted on the cantile-
ver actuator. The first set were step responses testing six
different voltage levels: 50, 100, 250, 500, 750, and
1000 mV. Three averages were taken at each voltage to as-
sure repeatable results. The sample rate here was set to its
maximum of 10 kHz to get the closest estimation possible of
the peak current. Incidentally, a set of tests was run with the
sample rate at 1 kHz and they showed peak currents at nearly
half those measured at 10 kHz. For the second set of experi-
ments, single-tone sine wave responses were measured at

FIG. 5. Normalized concentration
c /cfix over number of elements nel at
�a� x=−h and �b� x= +h.

FIG. 6. Error of the normalized con-
centration �= �c−cexact� /cexact over the
number of total elements nel at �a� x=
−h and �b� x= +h.
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various frequency and amplitude settings. The frequency
range spanned four decades from 0.01 up to 100 Hz at half-
decade increments, giving nine total frequencies, with four
different voltage amplitudes tested at each: 50, 100, 500, and
1000 mV. The sample rate for the sine experiments was ad-
justed at each frequency to give a constant number of data
points per cycle, and in order to maximize the available rate,
this number was set to 100.

V. STEP RESPONSE ANALYSIS

Step response measurements are used to determine the
diffusion coefficient and permittivity associated with the
equations for charge transport due to an applied electric po-
tential. The diffusion coefficient and permittivity are chosen
by plotting the peak current density and the charge density of
the each data set for the measured response. The charge den-
sity of the measured response is computed by integrating the
measured current density over the time period of 0–10 s.
The peak current density and charge density are computed
using simulations of the charge density response using Eqs.
�9� and �10�. The diffusion coefficient and permittivity are
then chosen to match the simulated response to the measured
data over the voltage range of 50–500 mV. The results of
this analysis are shown in Figs. 8�a� and 8�b�. The results
demonstrate that the simulations are able to accurately pre-
dict the peak current density and the total charge density. The
parameters used in the simulation and the resulting diffusion
coefficient and permittivity are shown in Table II.

Determination of the diffusion coefficient and permittiv-
ity allows us to analyze the spatiotemporal charge density
profile predicted by the simulation. At an applied step poten-
tial of 50 mV, the steady-state charge density profile is ap-
proximately symmetric through the thickness of the polymer,
as shown in Fig. 9�a�. Increasing the amplitude of the step
change produces a charge density profile that exhibits a
“depletion region” at the anode due to the fixed anion con-
centration c−. Plotting the normalized charge density results
in a region of charge depletion that saturates at −1. At the
opposing electrode �the cathode� the charge accumulates to a
value much larger than the initial cation concentration of the

polymer. Increasing the voltage amplitude increases the
depletion region at the anode and increases the charge accu-
mulation at the cathode. These results are consistent with
those of Refs. 14 and 15 for single-ion transport.

The time response of the current density to a step change
in potential is computed and compared to the measured data
using the parameters determined from the analysis of the
peak current and charge density. The results shown in Fig.
9�b� demonstrate that fitting the diffusion coefficient and per-
mittivity of the material produces excellent agreement be-
tween the predicted current response to a step change in po-
tential and the measured data. The model accurately predicts
the time constant associated with the discharge of current for
all four voltage levels tested. One noticeable discrepancy be-
tween the measured data and the model is the steady-state
current that occurs for the 500 mV step change in potential.
The model assumption that the electrode is ion blocking pre-
cludes the development of a steady-state current in the simu-
lations.

The strain response to a step change in voltage is also
simulated by choosing the parameters that correlate charge
density to local stress response. Combining Eqs. �12�, �14�,
and �15� we can write the maximum strain response as


max�t� = − �
wh

EI



−h

h

x��x,t�dx − 	
wh

EI



−h

h

x�2�x,t�dx .

�19�

Equation �19� can be nondimensionalized by substituting x
=h
 into the expression and rewriting

FIG. 7. �Color online� Laboratory setup for cantilever ionic polymer actua-
tor experiments.

FIG. 8. �a� Peak current density as a
function of voltage and �b� charge
density as a function of voltage.

TABLE I. Ratio of largest to smallest element length for different numbers
of elements; refinement factor g�0�=1.1.

No. of elements nel 50 100 400 800 1600
r=�xmax/�xmin �2 �4 �400 �105 �1010
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max�t� = − �
wh3c−

EI



−1

1


�̂�
,t�d
 − 	
wh2c−2

EI



−1

1


�̂2�
,t�d
 ,

�20�

where �̂=� /c−. The terms in the integrals are computed from
the simulated spatiotemporal charge density profile. To
eliminate the need to measure the geometric and elastic prop-
erties of the transducer, we define

�̂ = �
wh3c−

EI
,

	̂ = 	
wh2c−2

EI
,

�21�


̂lin�t� = 

−1

1


�̂�
,t�d
 ,


̂quad�t� = 

−1

1


�̂2�
,t�d
 .

Substituting these definitions into Eq. �20� produces the re-
lationship


max�t� = − �̂
̂lin�t� − 	̂
̂quad�t� . �22�

Defining the strain relationship in terms of the assumed ma-

terial parameters �̂ and 	̂ and the charge density profile al-
lows us to analyze the relative importance of the linear and
quadratic terms in the strain response of the material. Recall-
ing Fig. 9 we note that the charge density profile is approxi-
mately symmetric at low applied potentials and becomes in-
creasingly asymmetric at higher potentials due to the

depletion of the anode caused by the immobility of the an-
ions. The terms 
̂lin�t� and 
̂quad�t� are computed for the
steady-state charge density profiles for applied voltages of
50, 100, 200, and 500 mV. The results shown in Fig. 10�a�
illustrate that 
̂lin�t��
̂quad�t� for voltage amplitude on the
order of 50 mV, but that 
̂quad�t��
̂lin�t� when the potential
increases to 500 mV. This is consistent with the fact that

̂quad�t� would be equal to zero if the charge density profile
was perfectly symmetric about the middle of the beam.

The relationship between the linear and quadratic strain
term is used to determine the two-parameter model for the
strain response. The parameter �̂ is chosen to match the
strain response at the smallest potential �50 mV� due to the
fact that the charge density is nearly symmetric at this volt-
age level, thus minimizing the effect of the quadratic term in

the stress-to-charge density model. The parameter 	̂ is then
chosen to fit the strain response at the higher voltage levels.
The resulting parameters are listed in Table II.

The comparison between the simulated strain response
and the measurements illustrates that the two-parameter
model is able to accurately fit the data. Figure 10�b� demon-
strates that the choice of parameters produces a model that
fits the measured data over the potential range of
50–500 mV. The time constant of the step response in strain
is also accurately predicted, supporting the model assump-
tion that the local stress is correlated with the charge density
profile that arises due to the step change in potential applied
to the material. Also shown in Fig. 10�b� is the predicted

response for a model in which 	̂=0. The results demonstrate
the importance of the quadratic term in predicting the strain
response. Although a linear model would be able to fit any
one of the four measurements, it is clear that choosing the

one-parameter model, i.e., �̂�0, 	̂=0, would not be able to
accurately predict the measured step response at multiple
values of potential. In contrast, a two-parameter model is
able to accurately represent the data over a range of potential
values and the measurements support the assumption that the
quadratic term in the two-parameter model will become
more prominent as the voltage increases.

VI. HARMONIC RESPONSE ANALYSIS

The transport model and mechanics model were also
correlated to the measured harmonic response of the trans-
ducer. The comparisons were performed over the frequency

FIG. 9. �Color online� �a� Spatiotem-
poral charge density profile predicted
by the simulation for a step change in
the applied voltage: 500 mV �solid�,
200 mV �dashed�, and 50 mV �dot-
ted�. �b� Current response to a step
change in potential: model �solid� and
measured �dashed� for 50, 100, 200,
and 500 mV

TABLE II. Simulation parameters.

Parameter Variable Value

Polymer thickness 2h 180 �m
Anion concentration c− 1073 mol/m3

Diffusion coefficient D� 6�10−11 m2/s
Dielectric constant ��0 17.7 mF/m

Temperature T 293 K
�̂ 8600

	̂ 850
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range of 0.1–10 Hz using the model parameters determined
from the step response correlation. These parameters are
listed in Table II.

The volumetric charge density was computed as a func-
tion of time for the applied boundary potential

��h� = A cos
2�

T
t�, ��− h� = 0, �23�

where A is the amplitude of the applied harmonic excitation
and T is the period. An important feature of the temporal
response of the volumetric charge density is the saturation
that occurs at large voltage and large excitation periods. For
large enough applied potentials and large periods, a depletion
region appears on one of the electrodes due to the motion of
mobile charges. This result is shown in Fig. 11�a� for the
case of A=500 mV and T=10 s. The large accumulation of
charge on one electrode causes full depletion of mobile
charges on the opposite electrode, resulting in a normalized
volumetric charge density that saturates at −1. Thus, the
asymmetry that is computed for step changes in potential
also occurs in the harmonic response at sufficiently high ap-
plied potentials and sufficiently long excitation periods.

Simulations also demonstrate that the asymmetry in the
volumetric charge density does not occur at sufficiently short
excitation periods. Simulations for the case of A=500 mV
and T=0.1 s illustrate that the volumetric charge density is
symmetric at each instant of time when the excitation period
is decreased to 0.1 s, see Fig. 11�b�. For the diffusion and
permittivity parameters identified for this model, the transi-
tion from asymmetric to symmetric profiles occurs at an ex-
citation period between 1 and 2 s.

The peak-to-peak current density simulated by the model
was compared to measured values for two values of potential
amplitude. The frequency response of the peak-to-peak cur-
rent density is compared for 100 and 500 mV in Fig. 12�a�.
The simulation accurately predicts the magnitude of the cur-
rent density as well as the trends with frequency. The accu-
racy of the model is lowest at frequencies of approximately
0.1 Hz for the 500 mV amplitude, although the accuracy in-
creases at higher frequencies. The lower accuracy at high
electric voltages and at low frequencies may be attributed to
the fact that the model does not include the actual electrode
architecture �geometry and surface area�. Therefore it is be-
lieved that the model is overemphasizing the asymmetry of
the charge.

The time response of the maximium strain in the trans-
ducer is also computed using the values of the two-parameter
mechanical model identified from the step response analysis.
Comparing the predicted peak-to-peak strain with the mea-
sured values for two amplitudes of the applied potential �100
and 500 mV� illustrates that the same parameters identified
by the step response analysis can accurately predict the mag-
nitude as well as the trends associated with decreasing the
excitation period, see Fig. 12�b�. The model predicts a de-
creasing strain response over the frequency range of
0.1–10 Hz �T=10 s to T=0.1 s� and this prediction accu-
rately represents the trends in the measured data. Further-
more, the accuracy of the model increases at higher frequen-
cies. We attribute this increase in accuracy to the reduced
effect of the quadratic term in the strain response of the
transducer. As discussed in the previous section, a nearly

FIG. 10. �Color online� �a� Computa-
tion of the steady-state values of 
̂lin

��� and 
̂quad ��� as a function of ap-
plied potential. �b� Strain response to a
step change in potential: two-
parameter model �solid�, measured
�dashed�, and two-parameter model

with 	̂=0 �dotted� for 50, 100, 200,
and 500 mV.

FIG. 11. Normalized charge density
on each of the electrodes for a har-
monic excitation: �a� amplitude equals
500 mV and period equals 10 s and
�b� amplitude equals 500 mV and pe-
riod equals 0.1 s.
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symmetric volumetric charge density profile results in a me-
chanical strain response that is dominated by the linear term
in Eq. �22�.

VII. SUMMARY AND CONCLUSIONS

The combination of a one-dimensional transport model
with a parametric model of the beam response produces a
predictive model of the electromechanical response of iono-
meric polymer transducers. The one-dimensional model is
parametrized by the diffusion coefficient and the permittivity
of the polymer, which, in turn, determine the peak response
and time constant of the current due to an applied step volt-
age. Determining these two parameters from measured data
produces a model that accurately predicts the current dis-
charge over a wide range of voltage levels. The model as-
sumption that the stress induced by charge transport is re-
lated to the integral of the charge density and charge density
squared accurately predicts the strain response of the poly-
mer for step changes in applied voltage. The amplitude of the
strain response as a function of frequency is also accurately
predicted over two decades in frequency �0.1–10 Hz�. In
addition to accurately predicting the amplitude, the decrease
in strain response for increasing frequency is also predicted,
supporting the use of the two-parameter model that relates
induced stress-to-charge density.
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FIG. 12. �Color online� �a� Frequency
response of current density for har-
monic excitation: experimental inves-
tigations ��� and numerical simulation
���. �b� Frequency response of strain
for harmonic excitation: experiment
��� and simulation ���.
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