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Abstract—In this study, we have analyzed the transport of analytes
under a two dimensional steady incompressible flow of power-law
fluids through rectangular nanochannel. A mathematical model
based on the Cauchy momentum-Nernst-Planck-Poisson equations is
considered to study the combined effect of mixed electroosmotic
(EO) and pressure driven (PD) flow. The coupled governing
equations are solved numerically by finite volume method. We
have studied extensively the effect of key parameters, e.g., flow
behavior index, concentration of the electrolyte, surface potential,
imposed pressure gradient and imposed electric field strength on
the net average flow across the channel. In addition to study
the effect of mixed EOF and PD on the analyte distribution
across the channel, we consider a nonlinear model based on
general convective-diffusion-electromigration equation. We have also
presented the retention factor for various values of electrolyte
concentration and flow behavior index.

Keywords—Electric double layer, finite volume method,
flow behavior index, mixed electroosmotic/pressure driven flow,
Non-Newtonian power-law fluids, numerical simulation.

I. INTRODUCTION

W
HEN the electrolyte in a channel comes in contact

with a solid wall, a static charge develops along

the solid surface. The charged surface attracts counterions

and an electric double layer (EDL) forms along the surface.

An EDL consisting of a stern layer and a diffuse layer in

which the ions are loosely connected under the action of an

externally imposed electric field tangential to the surface, the

surplus counterions in the diffused double layer experiences

a Columbic force and starts moving towards the electrode of

opposite sign, which in turn results in an electroosmotic flow

[1]- [3]. From last decade, the study on Electroosmotic flow

(EOF) paid great attention due to its numerous applications

in the field of biological analysis and chemical process. In

addition the floe behaviour can also be applied in microfluidic

and nanofluidic devices as a pumping method with the fast

development of the lab-on-a-chip technology [4], [5].

There have been a number of investigations on EOF due

to non-Newtonian fluids with various type of non-Newtonian

constitutive models such as power-law model [6], Carreau

model [7], Bingham model [8] and Moldflow first-order

model [9] etc. The power-law model is most preferred

because of its simplicity and its ability to characterize a

wide range of non-Newtonian fluids [10]. This model can
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properly describe the effects of apparent viscosity of a

sample non-Newtonian fluid on the flow behavior. Several

authors studied the EOF based on the Poisson-Boltzmann

model in which the distribution of ions is assumed to

governed by the equilibrium Boltzman distribution. Das and

Chakraborty [11] obtained an analytical solution to describe

the electrokinetic transport of a non-Newtonian fluid flow

in a microchannel. Zhao et al. [12] analyzed the EOF of

power-law fluids in a silt microchannel and derived analytical

solutions for the share stress, effective viscosity and velocity

profile distribution through the Debye-Hückel approximation

under a low surface potential assumption [13]. Tang et al.

[14] analyzed numerically the EOF of non-Newtonian fluids

by using the Lattice-Boltzmann method and found that a

significant effect of the fluid rheological behavior on the flow

pattern. Vasu and De [15] presented a mathematical model for

pure EOF of power-law fluids in a rectangular microchannel

at high zeta potential without invoking the Debye-Hückel

approximation.

Recently several authors studied the mixed EOF and

pressure driven (PD) flow. One important aspect of mixed EOF

and PD flow is to regulate the flow behaviour by imposing

the external pressure gradient. Babaie et al. [16] solved

numerically the combined EOF and PD flow of power-law

fluids in a silt microchannel. The seperation of analytes ions

in nanochannels systems with mixed EOF and PD flow studied

by Pennathur and Santiago [17], Griffiths and Nilson [18]

and Xuan et al. [19]. They determined the general trends

and conditions to achieve maximum separation in nanofluidic

channels using this combined EOF and PD flow approach.

In the present study, we have analyzed the transport of

analytes under mixed EOF and PD flow of power law fluid.

We have studied extensively the effect of key parameters, e.g.,

flow behavior index, concentration of the electrolyte, surface

potential, imposed pressure gradient and imposed electric field

strength on the net average flow across the channel. We also

studied the variation of retention factor with concentration

of electrolyte for various values of flow behavior index.

The characteristics of the electrokinetic flow are obtained

by numerically solving the Nernst-Planck equation, Poisson

equation and the general Cauchy momentum equation, instead

of the Navier-Stokes equation, simultaneously.

II. MATHEMATICAL MODEL

In this study we consider the transport of analytes under

a two dimensional steady incompressible flow of Power law

fluid through rectangular nanochannel (Fig. 1). The channel
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walls are considered to bear a constant surface potential ζ. The

electric field of strength E0 applied externally along the axis of

the channel. To neglect the channel edge effect we consider the

channel width (w) is much higher than the channel height (H).
The fluid flow considered to be generated due to the externally

applied electric field and applied pressure gradient. Below we

summarize the governing equations for mixed electrosmotic

and pressure driven (PD) flow.

Fig. 1 Schematic representation of the nanochannel used for the analysis

The nondimensioanal form of the governing equation for

electric potential can be written as

∇
2φ = −

(κH)2

2
(n1 − n2) (1)

Here the electric potential φ is scaled by φ0 = RT/F , where

R, T and F are gas constant, absolute temperature and Faraday

constant, respectively. The spatial coordinates are scaled by H .

We have chosen binary symmetric electrolyte with valence

zi(i = 1, 2) = ±1. The ion concentrations are scaled by

the bulk number concentration of ions n0. Here ni(i = 1, 2)
are the number concentration and zi is the valence of the ith

ionic species. The Debye length thickness κ−1 is defined as

κ−1 =
√

εekBT
2e2n0

, where kB is the Boltzmann constant, e is

the elementary electric charge and εe is the permittivity of the

medium.

The concentration of ionic species are governed by the

general convective-diffusive-electromigration process i.e., by

Nernst-Plank equation. The nondimensional form of transport

equation of ith ionic species can be written as

Pe
∂ni

∂t
−∇

2ni − zi∇.ni∇(φ−Λx) + Pe∇.(niu ) = 0 (2)

Here time is scaled by H/us and u = (u, v) is the velocity

vector scaled by us, where us = nκ
1−n

n

(

−εeE0ζ

m

)
1
n

is the

generalized Helmholtz-Smoluchowski (HS) velocity for power

law fluid, where m is the flow consistency index and n
is the flow behavior index. Depending on the values of n,

the shear thinning (n < 1), shear thickening (n > 1) and

Newtonian (n = 1) behavior can be observed. We denote

u0 as the corresponding HS velocity for Newtonian fluid

(n=1). The Peclet number is defined as Pe = Re.Sc with

Re = ρu2−n
s Hn/m is the Reynolds number and Schimdt

number Sc = m(us

H
)n−1/ρDi where Di is the diffusivity

of the ith type species, ρ is the density of the fluid and

Λ = E0H/φ0 is the scaled applied strength.

The non-dimensional form of fluid flow equation for power

law fluid can be written as

∂u

∂x
+

∂v

∂y
= 0 (3)

Re(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = −

∂p

∂x
+ η(

∂2u

∂x2
+

∂2u

∂y2
) + 2

∂η

∂x

∂u

∂x

+
∂η

∂y
(
∂u

∂y
+

∂v

∂x
) +

(κH)n+1

2Λζnn
(n1 − n2)(

∂φ

∂x
− Λ) (4)

Re(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) = −

∂p

∂y
+ η(

∂2v

∂x2
+

∂2v

∂y2
) + 2

∂η

∂y

∂v

∂y

+
∂η

∂x
(
∂u

∂y
+

∂v

∂x
) +

(κH)n+1

2Λζnn
(n1 − n2)

∂φ

∂y
(5)

We consider m(us

H
)n as the pressure scale. The

non-dimensional form of dynamic viscosity (η) of the

power-law fluid can be written as

η =

[

2(
∂u

∂x
)2 + 2(

∂v

∂y
)2 + (

∂u

∂y
+

∂v

∂x
)2
]

(n−1)
2

(6)

where η is scaled by m
(

us

H

)n−1
.

We impose no slip boundary condition along the channel

walls. The channel walls are kept as a constant surface

potential ζ and walls are considered to be ion impenetrable,

i.e., the molar flux of the ionic species is considered to be

zero along the channel walls. We consider a fully developed

boundary conditions along the inlet and outlet of the channel.

For mixed EOF and PD flow, we consider an external

pressure gradient G imposed along x- direction where the

nondimensional pressure gradient, scaled by mun
s /H

n+1, is

given by

G = −

(

n

n+ 1

)n
Hn+1

mUn
s

dp

dx
(7)

A. Analyte Distribution

The analytes we are investing are at trace concentration

compared to the buffer electrolyte. The governing equation for

analyte distribution can be written in nondimensional form as

Pe
∂ns

∂t
−∇

2ns − zs∇.ns∇φ+ Pe∇.(nsu ) = 0 (8)

where ns and zs are the ionic concentration and valence

of the analyte, respectively. We consider bulk value of the

analyte concentration n0
s as we scale for ionic concentration

of the analyte. To neglect the effect of analyte concentration on

the overall electrolyte concentration, we consider the analyte

concentration much lower than the buffer electrolyte. The

governing equation of analyte concentration is solved with the

known potential and velocity distribution across the channel.

We impose a symmetry boundary condition along the inlet and

outlet of the channel. The molar flux of the analyte species is

taken to zero along the channel wall.
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III. NUMERICAL METHODS

The governing equations for ionic concentration, induced

potential and fluid flow are solved numerically using a control

volume approach [20] over a staggered grid where the velocity

components are stored at the midpoints of the cell sides to

which they are normal. The scalar quantities such as the

pressure and concentrations are stored at the center of the cell.

The discretized form of the governing equations is obtained by

integrating the governing equations over each control volume.

The fluid flow equations are coupled with equations for

ionic concentration, induced potential equation through the

electric body force term. On the other hand, Poisson equation

for potential field is coupled with the Nernst-Planck equation

via the net charge density as its source term. In addition

Nernst-Planck equations are also coupled with both the

potential and velocity field. Hence, to solve the governing

equations in a coupled manner, we need to develop an iterative

scheme. The successive steps for solving the governing

equations can be summarized as:

1) Solve the Poisson equation for induced potential.

2) With known potential and guessed velocity field, solve

the Nernst-Planck equations for for ionic concentration.

3) With known potential and concentration field solve

the the equation fluid flow equations using SIMPLE

algorithm (Patankar, [21]).

4) Repeat steps 1-3 until it meets the tolerance limit (10−6)

to get required velocity, potential and concentration field.

5) Repeat steps 1-4 until we achieve a steady state velocity,

potential and concentration field.

With the known velocity and potential field we have

solved the governing equation for analyte distribution. In

order to validate our numerical scheme, a comparison of the

streamwise velocity component for fully developed EOF for

power law fluid is made with analytical result due to Zhao

et al. [12]. It may be noted that the results of Zhao et al.

[12] are based on Poisson- Boltzman (PB) model under low

potential limit where the ionic concentrations of are followed

from Boltzman distribution. We found our computed results

(Fig. 2) based on Poisson-Nernst-Planck (PNP) model are in

good agreement with the results due to Zhao et al. [12] for

strong electrolyte solution. In addition we have also shown a

comparison (Fig. 4) for the retention factor for the analyte

distribution with the existing solution due to Griffiths and

Nilson [18] for Newtonian case (n = 1). A detailed discussion

on retention can be found later to this article.

IV. RESULTS AND DISCUSSION

In the present study, we consider the height of the channel

as 50 nm. The flow consistency index is taken to be m=0.001

pa.sn with fluid density ρ = 1000 kg/m3. The mass diffusion

coefficient for both the ions are assumed to be same as D+ =
D

−
= D = 2 × 10−9 m2/s. We consider surface potential

along the channel walls as -0.025 v and the range for the

applied electric field strength E0 is varied from cases to case

in between 104 to 106 v/m. The Debye Huckel parameter κh
is varried from 1 to 50 by varrying the solution concentration

for fixed channel height (H= 50 nm). The flow behavior index

(n) is considered to be ranges from 0.8 to 1.5.

y

u

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

κH

(a) n = 0.8

y

u

0 0.2 0.4 0.6 0.8 1-0.05

0

0.05

0.1

0.15

κH

(b) n = 1.0

y

u

0 0.2 0.4 0.6 0.8 1-0.005

0

0.005

0.01

0.015

κH

(c) n = 1.5

Fig. 2 Comparison of the present axial velocity (lines) with the analytic
results (symbols) presented by Zhao et al. [12] for various values of flow
behavior index (a) n=0.8, (b) n=1.0 and (c) n= 1.5 with fixed values of
κH=0.1, 0.5, 1, ζ=-1, E0 = 104 v/m and channel height H = 50 nm

To start with we first consider the pure EOF (in absence

of external pressure gradient). We present the stremwise

velocity u(y) for three different values of Debye Huckel

parameter (κH=0.1, 0.5 and 1) in Figs. 2(a)-(c). For the sake

of simplicity, we consider the Newtonian HS velocity u0,

as the velocity scale for all results. Here we consider three

different types of fluids, i.e., n = 0.8(< 1, for pseudoplastic

fluids ); n = 1 (for Newtonian fluid) and n = 1.5(> 1, for

dilatant fluids). In each case we found a nearly parabolic shape

of the axial velocity profile for purely EOF case at lower

values of the electrolyte concentration. We have also presented

corresponding analytical solution based on Poison Boltzmann

(PB) model due to Zhao et al. [12] under a low potential limit.
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We see that our results overpredict with the analytic results for

lower values of electrolyte concentration. From Figs. 2(a)-(c),

we see that a discrepancy between the PNP model and PB

model occurs at low electrolyte concentration (lower values

of κH) and it occurs due to the overlapping of the adjacent

EDLs.

E
0

u av
g

104 105 106

0

0.5

1

1.5

κH

(a) n = 0.8

E
0

u av
g

104 105 106-0.05

0

0.05

0.1

κH

(b) n = 1.0

E
0

u av
g

104 105 106-0.005

0

0.005

0.01
κH

(c) n = 1.5

Fig. 3 Variation of average velocity (uavg) with external electric field (E0)
for different values of flow behavior index with fixed κH =0.1, 0.5 and 1,
E0 = 104 v/m, G = 0 and channel height H = 50nm. Here dashed lines

present the analytic results presented by Zhao et al. [12]

Fig. 3 presents the variation of average velocity with the

external electric field for different values of κH = with

three values of flow behavior index (n). The average velocity

(uavg) increases monotonically for increasing electrolyte

concentration. For flow behavior index n ≤ 1, the increase

in κH leads to an increment in electric driving force and

decrease in wall viscosity and results an increment in average

velocity. On the otherhand n >1, the wall viscosity is enough

to overcome the increasing body force with the increase in

electrolyte concentration and it leads to a relative smaller value

of uavg . We also found an increment in the value of uavg with

E0 for n <1. On the otherhand for n >1, the value of uavg

decreases with the increase in E0.

G

u av
g

-4 -2 0 2 4-6

-4

-2

0

2

4

6

8
κH

(a) n = 0.8

G

u av
g

-4 -2 0 2 4-1

-0.5

0

0.5

1
κH

(b) n = 1.0

G

u av
g

-4 -2 0 2 4-0.1

-0.05

0

0.05

0.1

κH

(c) n = 1.5

Fig. 4 Variation of average velocity (uavg) with pressure gradient (G) for
different values of flow behavior index with fixed ζ = −1, κH =0.1, 0.5

and 1, E0 = 104 v/m and channel height H = 50nm

Here we consider the mixed pressure driven (PD) and EOF.

We represent the variation of uavg with imposed pressure

gradient G in Fig. 4 for different values of flow behavior index

n. We see that uavg increases with the increase of imposed

pressure gradient G. From Fig. 4 we found a decrease in the

axial velocity with the increase of flow behavior index n at

a given G. The decrease in magnitude of the axial velocity

can be justified through the effective viscosity. For increasing

values of n, the value of the effective viscosity increases and

it leads to a decrement in magnitude of the axial velocity.

An interesting feature can be observed from Fig. 4 that the

axial velocity increases with the increases in κH for n ≤1

while its decreases with an increment in κH for n >1. It
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may be noted that for increasing values of κH , the value of

the electric body force increases for all the values of flow

behavior index parameter n. On the otherhand, the value of

wall viscosity is a decreasing function of κH for flow behavior

index n <1, while its value increases with the increase in

κH for n > 1. Due to combined effect of decreasing wall

viscosity and increasing electric driving force with increasing

κH , the axial velocity increases for n <1. On contrary the

axial velocity becomes an decreasing function of κH for n > 1
as the wall viscosity increases significantly with the increase

in κH and it dominates over the electric driving force, and

hence leads to a reduction in average flow rate.

In this section, we have studied extensively the combined

effect of mixed EOF and PD flow on the analyte distribution.

We consider the trace analyte as monovalent charged species

with valence zs = +1 or −1. To study the effect of

externally applied electric field and imposed pressure gradient,

we varied the values of E0 and G from case to case. To

present a quantitative study on effect of fluid velocity on the

electrophoretic migration of analyte though nanochannel, we

need to consider the retention factor Rs as the ratio of analytes

velocity to the fluid velocity (Pennathur, [22]).

Rs =
<< utotal

s (y) >>

< u(y) >
(9)

Here utotal
s = uep + u(y), u(y) is the axial velocity under

mixed EOF and PD flow, uep = zsωsE0 is the electrophoretic

velocity of the analyte, ωs = DsF/RT is the electrophoretic

mobility with Ds is the diffusivity of the analyte.

Here < χ > represent the averaged value of the physical

quantity and is defined as

< χ >=
1

2

∫ 1

−1

χdy (10)

In order to present a systematic study of analyte distribution

under mixed EOF and PD flow, we compare our results with

the exiting model (Griffiths and Nilson [18]), where we set

Ds = 0. From the Fig. 5, it is clear that our computed solution

agrees well with the existing studies by Griffiths and Nilson

[18] for Newtonian case.

To understand the effect of the combined EOF and PD

flow on the analyte migration, previous authors [22], [18]

considered the retention factor Rs as the measure of the mass

transfer rate under the mixed EOF and PD flow. It may be

noted that Rs involves the ratio of analyte velocity as well as

average flow rate. In the present scenario for Power law fluid,

the average flow rate strongly depends on the flow behavior

index n, and it may takes a smaller values for higher values of

n, which leads to significantly large values of Rs. From Fig.

5 we see that our results agrees well with the analytic results

presented by Griffiths and Nilson [18].

log(λ/h)

R
s

-1.5 -1 -0.5 0 0.5 10.7

0.8

0.9

1

1.1

1.2

1.3

n

zs =-1

zs =1

(a) G = −1

log(λ/h)
R

s

-1.5 -1 -0.5 0 0.5 10.85

0.9

0.95

1

1.05

1.1

zs =-1

zs =1

n

(b) G = 0

log(λ/h)

R
s

-1.5 -1 -0.5 0 0.5 10.85

0.9

0.95

1

1.05

1.1

zs =-1

zs =1

n

(c) G = 1

Fig. 5 Retention versus λ
H

profile of mixed EOF and PD (G = −1, 0, 1)
flow for different values of flow behavior index (n = 0.8, 1.0 and 1.5)

when D = 0, ζ = −1.0 and E0 = 104 v/m. Here line and symbol present
the present model and Griffiths and Nilson [18], respectively

V. CONCLUSION

In this article, we have studied extensively several

aspects of transport of analytes under the influence

of mixed elctroosmotic and pressure driven flow. To

model the problem we consider the most general

convective-electromigration-diffusion equation for

concentration distribution, modified Navier-Stokes equation

for fluid flow and Poisson equation for double layer potential

equation. We employed a numerical scheme based on finite

volume method for solving the governing equation though

a coupled manner. We found a significant difference in the

computed solution from the analytical solution based on

several assumptions. In addition we have also considered

the transport of analytes under the influence of combined

elctroosmotic and pressure driven flow. The results presented

in this article suggested that the nonlinear effect due to the
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fluid convection has significant effect on the flow profile and

hence the analyte distribution across the channel.
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