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TRANSPORT OF ANISOTROPIC OR LOW-INTENSITY TURBULENCE
by
Francis H. Harlow

ABSTRACT

_This report describes some extensions to the theory of

turbulence transport, generalizing the theory to apply

to flows with regions of weak turbulence or with strong

departures from isotropy.

I. INTRODUCTION -
1-3

Generalized transport equations have been proposed -
for the theoretical investigation of turbulence in

“transient fluid flow problems. The validity of

these equations is greatest for flows in which the

turbulence is strong (the inertial range) and nearly "

isotropic; however, significant modifications are

'neceseary for the low intensity (viscous) range and

for regions of strong creation in which the turbu-

lence 1s not isotropic.

" In this report, detailed consideration is given to

these and related matters, using the nomenclature of

References 1 and 2, which we essume are available to
the reader. For convenience, the transport equations

are summarized from Reference 1.

du
3q 29 _ 4,803 (3
T ke T Tk ax Ty ax <? axk>
-1 99 7 _
" 5 [(v+a0) axk] 2v8, @
8, 2 _ano, My 2w's
3t " %k 3, T 2 S T2
a,A
23 (53 3 1
tEE VY ax [(Y+°5°) axk]
d AC dp
voe (58D (2)

vith

=M
8 2
8

L Ll.ro¥
q 2Y \s

: 8(1 + §g)

=4
]

[
]

B'(L+88). - C(3)

-The meanings of these quantities are as follows:

q is the specific @urbulence energy, 0 is a dissipa-
tion function, O is the eddy viscosity, s is a tur-
bulence'scale function, ¢ is the pressure, eJk is
the rate of strain, uJ is the mean fluid velocity,
€ = o/v, and various universal constants are also

present, as explained in Refs. 1 through 3.

The boundary conditions at .a rigid wall are that
q=0, 0= 0, and § = 0. To see that this last is
required, suppose that § does not vanish at a rigid
wall. Then, from the definition of 8; Eq. (3}, s
must vanish there. But in the 8 equation, near the
wall,

a8 1 ’
a—t=—§(08--2VAO)+. ..y

s

vhere terms irrelevent for the discussion have been
dropped. :Here 8 is that part of the creation term
fhat is finite ‘at the wall, so that 03 = O there.
Accordingly, 1fj£’d¢¢s not venish ‘at the wall, then
a8/at ~ -, and the velue of § decays infinitely
fast to zero. -



II. 1LOW INTENSITY FLUX MODIFICATIONS

When the turbulence intensity is small, we must ex-
pect diffusive effects to modify significantly the
transport of such imbedded properties as heat, so-
lute, and momentum. To see what is involyeq,'con-
sider the density, Q, of some scalar quantity, fpr“
which there is a mean part, @, and a fluctuating
part, Q’. The turbulence flux of this is 53_67,
for which we have introduced the approximation
u’ @’ = - constant x @ E . (%)
3 ' <8 15xj !
The constant is universal, dimensionless, énq of

" magnitude near unity.

Several heuristic justifications for tﬁis approxi-
mation have elready been discussed. The following
alternative is useful as a basis for generalization.
We assume that a turbulence "eddy" moves in steps of
length s’, and that at each step the probqblg value
of @ in it differs from the local mean by the same
amount as the local ﬁeap differs at the two ends of

the step. Thus
ot - . g’ - Q .
Q/(x,) = Qlx; - 8°4y) - Alx,), (5)

where LJ is & unit vector -in the direction of motion.

Then, to lowest order,.

=S I‘C aé

J ox
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Q’(x;) = S
and
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s

- constant x O 39, e
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The fallacy of this derivaetion becomes apparent in
the 1limit as the diffusion coefficient, X, for Q be-
comes large. We then would expect the value of Q
in the eddy to follow closely that of the surround-
ing mean, so that Q’ = O and ng§7 % 0. fThe va;ues
of O and aé/axj,_hovever, are independent of A, so
that.while the left side of Eq. (4) goes to zero,
the right side remains finite. The problem, there-
fore, is to modify the heuristic. model so as to in-
corporaté this tendency for @’ to be decreased by:
its diffusion into the edjacent mean.

To accomplish this, consider in some detail the dif-
fusion of Q from an eddy during its motion from an
. initial point of equiliﬁriu@ to a nearby point. En
route,
4 3
a2 (% -9,
R .
in which R is the eddy radius and Qo is the adjacent
mean. Indeed, to the appropriate ofdep of approxi-

. mation,
Ut

“'in which'gé is the trenslational velocity relative
to the meen, and Q has been (irrelevantly) scaled
to vanish at t = O.

The solution is easily shown to be

. - s

- -j..ﬁ'
" 2 = 2.:-
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s§ ﬁhat. ’
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But
ugui = % q 6jk + higher order terms,
so.tﬁat‘ o
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From Ref. 2, Eq. (24),
R 1
= ’
952 2B
aﬁa our result Secomes
e
g B PR ()
iy = 2By AaxJ. ’ '

To complete the derivation, it is only necessary to



.

determine t, the elapsed time for the motion. This
must be related closely to the ratio of eddy size
to mean fluctuating velocity, which,. in turn; is

measured by O/s. Thus, we take

2
5

tas—o',
ieading to the exponential term in Eq. (6) in the

form

. 2
exp <} constant X 25%— ) N
R"O

or

28X
exp (} constant X =5 )

in which the constant is of order unity.

" Thus, Eq. (6) becomes

=5 TQ°2 CH [

Q7= Em(l-e Pyl (7
in which TQ and eQ are'constaﬁts with magnitudes of

order unity, which are universal for each identifi-

cation of Q, but may differ among the various possi-
ble identifications. (The derivation suggests TQ <

1 and eQ < 1, which, however, will require specific

investigation of detailed circumstances to substan--

tiate.)

Note that as /A =~ 0

u’QI - Q 9Q i (8)

N .

In this latter limit, the transport flux is inde-
pendent of X and reduces to Eq. (4) as expected. We
shall see that the former limit takes a form that

is cruciasl to the existence of critical conditions
for turbulence onset and also is necessary to
acﬁieve agreement with a variety'of weak-turbulence
data.

If Q is a diffusive vector (such as velocity), then
ve expect a similer equation to hold tor the flux

QQ 2§ (9)

tensor, modified only by an additive term to msake

the contraction correct. Thus

If, indeed, Qk = “k’ the proper symmetry requirements
lead to ' -

euB

T 08 -

= _ 2= u 3
ujuk= 34 bjk - Ay l-e e‘jk R (11)

vhere q = % 3333 and € = G/v. This form differs
from the proposal in Ref. 2, Eq. (8), but agreement
with that proposal in the limit as £ = ® means that
AU 8 Note that we also expect eu86 &~ 1, in
order to place the transition intensity from viscous
to inertial at the same level as that indicated for
the A tremsition.

In case the scalar Q refers to temperature, then

qu
e TqPRS0 ~ o \F

UST’ = TY l-e ax‘j ’ . (12)

in which pn is the molecular Prandtl number. Accord-
ingly, the turbulence Prandtl number, Phy, is given
by ’ .

. e B
. .-
T g
u l-e
Im1‘=<-r pn> eB |’ (13)
T _.T
1l -e Spn
vhich varies with turbulence intensity if e pn ¥ Cpe

For £ =0, <

T
u

p b d
oy TP

while for § — =,

Since experiments show that pnT decreases with g,
(see Schlichting,h p. 499), we therefore expect

e Pn < Ep* Indeed, the data discussed by Schlichting
suggest that Phn = 1.0 for § = 0, and 2 =~ 0.5 for

' g ==, giving, therefore



T TePn _ (14)
and

2,7, ~ €xTp - (15)

As noted before, we also have

ET =Y, (16)

uu
and
€y B6 =1, ’ (17)
.The sglution of these for equations for € 0’ eT, Tu
and - TT, hovever, gives coefficient valges that de-

rend upon pn, a conflict with universality that
needs further .investigation for resolutiop. Perhaps
it is the interpretation of the experimentel data -

that needs revision.

III. INCLUSION OF THE TRANSPORT OF Q

Several extensions are required to calculate the
transport of Q.
equation for Q itself.

First, there must be a transport

This may be a simplé diffu-
sion equation, or it may be a complicated Liouville
equation for a distribution function. Second, the

mean momentuh equation requires an interactiop term,
such as a mean buoyancy term if Q is heat, or a mean
drag term if Q is dust density. Third, the two tur-
bulence transport equations require creation terms

describing such interactions as the creation of tur-
bulence by buoyancy or flow past grains, and the cre-

ation of § by similar processes.

For the transport of Q, we assume, for example, an

equation of the type

N, 9q_ _
EC S'" = <§ ’

in which S is an internal source such as that of heat

from a chemical reaction.. Averaging, we find

aq _ - _ =57
3t ' Yy &, T 3x > X ujQ s, (18)
J J J
which, together with Eq. (T), constitutes the re-
quired equation.
The equation for mean momentum is similar. We start

of @ from the reference value, Q.

from the Boussinesq approximation

u a

u du
®_ 3 ]
+ 5 % = o8y(QQp) + 8y *+ 5 (“ ‘a—’lﬁ )

in which gJ is the body écceleration, % is the ratio

-of pressure to (constant) density, and ¢ is a coef-

ficient of density change accompanying the variations
o (Thus if Q is
temperature, then c is the bulk expansion coefficlent;
if Q is solute concentration, then ¢ relates this to
If Q is density
of suspended perticles, then an additional term may

the corresponding density changes.

be required to describe drag, which is.a function of
the difference between fluid and dust velocities;
but for now this possibility is ignored.)

Averaging the momentum equation, we obtain

3u du 55
Jd .3 _;1 *x G- :
5t Yy axk ? 5 CSJ(Q QO) + Sj
. \ - | ]
+ S;; v % - ugui , (19)

which, together with Eq. (ll), constitutes the appro-
priate result.

Following Ref. 2, we may derive the first of the two
turbulence transport equations, that of the turbu-

lence energy per unit mass, q. An intermediate step

is
29, ﬁk 3 _ . u’u’ 3:1 - 2v8 |
it Bxk 3k axk ,
+ 2 v éé— -uwq’ -wWe') - eg, U Q’
Bxk | xk k uk g J >
(20)
vhere

Into this are to be inserted'the flux expressions,
Egs. (7) and (11), with Vv being the ‘diffusion co-
efficient for q and ¢.

In similar fashion, the second turbulence transport

equation, for 8, follows the development in Ref. 1,

gy



with the result
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Again, the approximations, Eqs. (7) and (11), are to
be used, with the additional condition that the
diffusion coefficient for § be V.

The three occurrences of A’ in Eq. (21) are implied
to be the same, but may, in fact, differ slightly
Use of A’ in the first end last
terms on the right side is a modification from the
proposal in Ref. 1; it enables a =~ 1.0 (actually

8 < 1.0) and also T, {of Eq. (2T), belowl,
(actually, s 5’11). It also enables mganingful
results to be obtained for all levels of turbulence
with fixed values of a and 72, which'turns out to

among themselves.

be impossible if A is used in those terms, rather
than A’.

To transform to usable notation, consistént with
previuus usage, we oummarize these varioma flux
approxiﬁ#tions as derived from Egs. (7) and (11).
We assume for now that all 6f the €. values are the

Q

same, namely
(22)
Then
T - 235 988 (1 _ ¢ 88
u,j‘ﬁ(-jqéjk- e (1 e g)ejk’ (23)
- EE -
a’068 68 )13
e -t (B

{When this is used in Eq. (20), o’ = «; in Eq. (21),

a’ = aa-]

. €
6 AL
q_-’a- 26§<1-e g)%:

(25)

" [When this is used in Eq. (20), 6' = 8/y; in Eq. (21),

8’ = ah.]
' 8,088 '%E 39 .
A S G o (26)
and
: 1% SR\
e - - A (1 -e 5")%. (21)

[If Q 1s identified as temperature, then when this
is used in Bq. (20), "= "1 vhile in Eq. (21),

TQ = 72.]

* IV. TURBULENCE DECAY THROUGH THE INERTIAL-VISCOUS

TRANSITION
Reference 1 clarified the meaning of the scale func-
tion, s, showing it to be proportional to the inte-
gral scale and related to the microscale, A, by the
egquation

S
B

SN

Thus the derivation in Ref. 2 is in error when it
compares'dse/dt with the experimental results for
the.microscale‘during lov intensity decay. Insteed,
we may derive the decqy result

2 2 g
el TCORETC EEYE

Thus, to agree with the experimental results, A’
cannot be directly proportional to A, as suggested
in Ref. 1. Indeed, with A’ = B8/(1 4+ 5’€), the low
and high intensity limits can be achieved if 8 = 5
(as before), B’ = 7, and 6’ = 108/7. This, then,
gives A2/dt = 4v as § = 0 and d2A/dt - 10V as € ~ =,
in agreement with the requirements discussed in Ref.
2. Actually, there is evidence t0 support the con-

. tention that the A and A’ functions should vary more

rapldly from B (or B’) to B6E (or B’6’E) then is
indicated by the expressions

A= B(1+ 68) ,

A’ = B’(1 + 8’E) .



Experimentally, the transition in dkz/dt from 4 to
10v is quite abrupt, near § = 7, rather than as
gradual as the above functional forms predict. 1In
addition, the éranéitions'predicted by the modified
flux epproximations are also relatively suddbp,

: ’ : Finel-
ly, it eppears thet the laminar instability reéime

suggesting the same for A and A’ by analogy.

discussed in Section VII requires this abrupt tran-
sitioﬁﬂi;‘order that the smell-§ solutions may hold
over an appreciable range of Rayleigh or Reynolds
(or similer) number. Thus, for example, in the .-
Bénard problem, independence of the solution from
" Prendtl-number variations requires the turbulence
to be in the viscous range, which in turn allows
prediction of a critical Rayleigh number. Persis-
‘tence of this viscous renge up to the Rayleigh num-
ber for sudden Nusselt number trensition (Ra =~ 4 x
10“) then requires also the abruptness of the vari-
bué fhnctidnal transitions nearjg =

inertial boundary

7?.the viscois-

From a heuristic, physical viewpoint, the transition
may be related to a basic change in flow details,
cloéely analogous to the onset of separatea flov
that occurs about a cylinder at Reynolds number of
order 5. (The turbulence Reynolds nqmﬁer, €, has
magnitude of ebout 7 at the viscous-inertial tran-
sition, so that the correspondence in Reynolds num-
ber magnitudes is quite close.) Thus the abruptness
of transition may‘co}respohd.to the suddenness of
' the onset of flow separations within the field of
eddies. Unfortunately, there has not yet been de-
veloped a technique for deriving this, to obtain
more realistic expressions for A and A’, s0 that

only empiricel relationships can now be proposed.

The transition value for §, incidentaily, mhst be
closely associated with having 8 =~ 1. 1In Ref. 2,
Eq. (24), the heuristic derivations predict

5= 9
8/28y

In con-
trast, I now think that this value may be nearly

which was there thought to be too large.

correct.

There is another error regarding the interpretation
of s found in Ref. 2.

poses a relationship among q, s,

Equation (17), there, pro-
end O, which is

saild to disagree with that proposed by Hinze.

> fe-

tually, the two proposals are equivalent for high

' iniensity'turbulence, as can be seen by“a careful

exemination -of the meaning of each. Thus, while we

write

oV
2y6x2

oy _ 1 /o 1 Ng
E) -1 x) (1 + 08/
for large §, Hinze puts (in our nomenclatire)

2n2

@ = const X 5=,

which is equivalent to our proﬁosal.
V. A REMARK ON EQUILIERIUM FLOWS

In the momentum equation, we have

du .
—a% = gj - 5%— (p + §.Q) + ...

J ST ot

plus other terms not enteriﬁg the &iscussionzbf this
section. We now consider the case of e turbulent’

fluid with no meen Qelocity, for which, then

1f we suppose, for the moment that g has a fluctu-
ating pert correleted with the fluid turbulence fluc-
tuatlons, then derivation of the q equation proceeds

as follows

— .
=1/ ey ree 4 i 0’ a& -
uj 1“3" gJuJ J r'f' . e e

1o

If, in addition, we make the (ridiculous) assumption
that such a gJ could be derived from a potentisl,

i.e.,
= _ v
GJ = -5
J
then
- . 3 uv’ 3 ulp’
I S M LR
it ax;j axJ ’

and our approximation procedure pioduces,‘for intenéé
turbulence (in which &€ >> 1),



(34

3 ?%<%o§%+.xo.%>+. -

- I ( % o gg; - K § E;) + ...

For the case of no velocity, then,

5‘1 %[ ?L+(x-—)og3:|+...

Now, we do not expect the g‘j term to contribute to
(Por the Bénerd problem, for
example, this contribution 1is quickly observed to

the enerﬁy equation.

be ndnsénse.) Its absence, however, requires

= 8/Y, which would be reasonable except for the
meaningless basis on which the K term was derived.
The implication, thén, is that K = O and that the
term BOgJ/Y also should not have appeared. Apper-
ently the presence of this latter term arises from

goi.
axy
The ¢ that appears in this assumption should relate

an impropriety of the assumption Jw a -

only to that part of the pressure that is capable
of fluctuations correlated to the turbulence field,
and not to the part that is related to maintaining
equilibrium with the constant body acceleration.

Vi. STEADY-STATE SOLUTIONS

Strength of creation is characterized by a molecular
Reynolds number, Rayleigh number, or other similar
parameter; we call Rg some appropriate measure of
this, as defined more specifically below. The ge-
ometry may be that of a plpe, the space between
plates, or other configuration, in general char-

If a nontrivial steady-

state solution exists, then this is characterized

acterized’by e dimension, h.

by mean or central values of O and s, which, in di-
mensionless form, ere denoted by §_ (= Os/v) and
z, (= se/h), where subscript & refers to steady

state.

In addition, there msy be other significant param-
eters such as the Prandtl number, but their effects
are ignored for the present qualitative discussion.
(In the Bénard problem, for example, the influence
of Prandtl-number variations comes naturally from
the analysis.) »

In general, we expect that the two transport equa-
tinns will ellov the unique determination of §B and

~only steady-state solution is gs

2., esch separately a function of Rg. Figure l
illustrates a hypothetical example. For Rg < A, the
- 0; the steady
Jlaminar flow.

For A < Rg < B, the steady-state solution corresponds
to equilibrium leminar instability fluctuations.
This is the viscous range in which the flux terms are
proportional to 52.
ample, it would correspond to the regime of uniform,
For cylindrical Couette
flow, it would elso represent the steady-cell con-

In the Bénard problem, for ex-
steady convective cells.

figuration.

For Rg > B, the flow is fully turbulent and the
variations of gs and z with Rg are abruptly some-
what different. The transition at B is also msni-
fested in such functionels as the surface drag in its
variation with Reynolds number, or the Nusselt number
in its variation with Rayleigh number.

In addition to this steady-state flow, however, there
is the more delicate consideration of stability as an
initial-value problem. Usually the quesﬁion of ste-
bility is treated only in the limit of infinitesimal
(1inear) perturbations. More generally, initial-
value stability can be represented as an additional
curve in the §-Rg plot. Figures 2 through 4 show

some possibilities for this.

In each figure, the dashed line shows the variation
of ., a eritical initial value such that if the
initial velue §o exceeds §c, then the turbulence
grows to the steasdy-state value §s, but if §O < EC,

then € decays to zero.

Infinitesimal stability theory in effect. examines
the behaviorvof € for values just above the abscissa.
In Fig. 2 is & case in which the analysis would pre-
dict stability for all values of Rg. (Plane Couette.
flow is an example.) Haseh6 has examined such a
flow from quite a different theoretical point of
view, deriving the gc variation with Reynolds num-
ber in the form

gy g X constant,
h Re13

(Ampl), =

.

U -
vhere Re, = <= is assumed large and (Ampl)c = cc/s.

. Thus

seu ¢ x constant ,

3
hv Rel
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Fig. 1. Hypothetical va.,ri_at,ion,s‘ of steady-state
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Fig. 3. An example with a critical valie of Rg.

-

gc %Reé X conétanp 5

or |
3 "
§c A constant X (E) Re ,

vhere Re = Uh/v.

Figure 3 is an example in which a eritical value’

of Rg would b€ predicted by the analysis. The mean-

ing here is that for sufficiently small perturba-
tions, there is. a limiting Rg below which the per-
turbations will always demp; but for finite-ampli-
tude perturbations, the critical value of Rg for

transition to turbulence decreeses with §o. Many

10

A

\\Ec
-

Fig. 4. The degeneration of critical Rg.

physical examples can be cited in which the critical
conditions for transition to turbulence depend in
this fashion upon the initial "noise" level. In-
deed, the example in Fig. 2 also shéys tﬁi_s.

Figure 4 differs in that the linear theory would
show laminar instability for Rg > A, and any per-
turbation would grow to ES as long as Rg > A. An
example is that of wake flow behind a circular cyl-
inder, .characterized by a Reynolds number, Rg = Re.
For Re < A (= 40), the flow is steady. For A < Re
< B, the regular von Karman vortex street occurs.
For Re > B, the flow becomes more nearly truly tur-
bulent. (Thus the regular two-dimensional vortex
street becomes unstable to three-dimensibnal per-

turbation's', and the flow becomes."irregular.")

~—



It should be remarked that the gc line varies some-

what with Z_ , but the qualitative conclusioné re-

’
main, altergd only in the detailed quantitative
values.
ally looks for‘the critical value of Rg by mini-
mizing its variations as a function of Zo. The
dashed §c lines in Figs. 2 through 4 are meant to

denote the minimum §c as a function of Zo for eech

Linear stability theory, for example, usu-

Rg.

If we standardize the meaning of Rg in such a way
as to have only a linear diseipative coefficient '
in the denominator, then it appears that many of
the curves become closely similar for various types
of phenomena. Thus, for shear flows, Rg = Re, the
Reynolds number; for the Bénard problem, Rg = /@EL
where Ra 1s the Rayleigh number; for cylindrical
Couette flow, Rg = /ﬁ, vwhere T is the Taylor number.
Circumstances with behavior like that in Fig. 4
(flov past & cylinder, Bénard convection, narrow-gap
cylindrical Couette flow, etc.) then all exhibit
critical velues of Rg at A = 41, end we may suppose
that this is indicative of a nearly universal magni-
tude for all types of flows (Figs. 2 and 3, also).

The point B appears also to be universal in this
system of measuring Rg, occurring at B ~ 200. [There
is, for example, a flexure in Nusselt number vari-
ation in the Bénard problem at Ra 55(200)2.] This
is the point at which laminar fluctuations (cells,
regular vortices, etc.) begin to degenerate into
full turbulence. Here, too, is the transition from

the viscous range of turbulence to the inertial.

VII. INTERMITTENCY

The interpretation of intermittency in turbulence
has an important bearing on the assumption that weak
turbulence in our transport equations does, in fact,
represent the reguler laminar instability state for
those circumstances in which such should occur.

Consider first a reglion of intense turbulence adja-
cent to a laminar region. If there is shear between
the two regions, the Kelvin-Helmholtz instability
may amplify large scale perturbations, producing
large eddies with scales independent of the turbu-
Accordingly, the interface between the

regione becomes irregular, and intermittency can be

lence scale.

observed as the fluid sweeps by.
in which the large scale distortions of the flow are

This is an example

not at all included in the turbulence spectrum, and
are calculated only by the mean-flow equations.

(0f course, the presence of the turbulence introduces

- eddy viscosity which cen affect profoundly the growth

rate of the large scale disturbance, and thereby

-contribute to determination of maximum-growth-rate

wave length.) Thus, the observed intermittency is
manifested as a succession of periods of very rapid
fluctuations, separated by pauses of calm, the rap-
id fluctuations corresponding to the small turbu-
lence scale and the periods of calm to the large
scale instability.

Consider now & succession of experiments in which
the turbulence is progressively weaker. In general,
its scale is correspondingly progressively larger.

For sufficiently weak turbulence (8§ o 1), the scale
approaches that of the perturbing influence, so that
the mean-flow instability is amplified with a scale
spectrum nearly the same as that of the turbulénce
itself.
longer separable, and it is reasonable to combine

In this case, the two phenomena are no

the effects into & net flow that can be considered
all turbulence (in our turbulence transport approach)
or all mean flow (in the approaches that solve the
full equations of unstable laminar flow). In such

cases, interﬁittency has no meaning.

Thus, in tﬁe framework of our interpretation, two
distinctly different processes in reglons of in-
.tense,turbulence merge into one when the turbulence
is weak. In the latter case the scale distribution
has converged into one for which a single scale func-
tion is appfopriate, and thée results can be repre-
sented elther by the low intensity transport equa-
tions or by solutions in detail of the full laminar
instability problem.

VIII. NONISOTROPIC TURBULENCE

We assume that the full burden of the nonisotropy
cen be placed upon 0 and q, but that s remains a
scalar function.
strictly velid, as there is much evidence to suggest

This assumption appears not to be

the existence of elongated or otherwise distorted
eddies.
nonisotropic turbulence, however, the assumption
leads to a considerably simplified formulation

As a first approximation to the study of

- worth testing in some representative applications.

The besic task is to find an approximation for the

11



. Reynolds stress, which is taken to have the form

N

Tuguy = 2455 - R %kt °Jkek1.> (.28)

Lk Lk iJ

The last term is introduced in such a way that
2 i i q1i does not depend upen tee rate of

.strain, the form also is chosen to ensure symmetry.

We further assume that

qij = &? Uikojk. ‘ (29)

In this formulation, the tensor eddy viscosity,
oij’ is assumed to be symmetric, so thet the tensor
'eddy energy is cqrrespondingly symnetric. (In some
.”kiﬁds of problems, the two tensors are everywvwhere
diagonal, and may even have only two differing
‘cempgnents. The Bénard problem is one in which this
convenient situation occurs.) Equations (28) and .
(29) reduee to our previous formulations for isotrop-
ic turbulence, for which O, 13 = iJ (Note that for
1sotropic turbulence the O for each direction must
be the same as the total 0, which also relates to
_ the effect that occurs in each individuel direction,
5 father than to a summation of effects. Thus,

95%y = 30)

For high intensity turbulence, the flux approximation
for a scaler likewise can be generalized to show the
effects of this nonisotropy model. We write'

TG = i 4
. uJQ = - constant X odk axk . (30)

Fof lqﬁ inteneity turbulence, modifications like
those described in the first sections of this re-

port are needed, but.such are not proposed here.

To find the energy transport equations, insert the
flux epproximations into Eq. (7) of Ref. 2. We
choose an example with both shear and buoyancy cre-
ation, the last with coefficient of volume expansion
o -1

TO) .

@T' * S)a(_kqui_j - %("ueqwgceu)* %‘ °LneLn613]

(a)

du
= - -Jr - l )
: Bkaaqik -12'<°iLeLk+°kLeLi) 3 °Lmel,m61k](b)

3%, %%k %(%Le&kwkbel,g) 3 oLmeLmek](c)

3 7 N1
T, g[eqig - 'é\ciceéjwji,el,i)' 3 o‘f_ameiaméij](d)

(e)

vl -2t (£)

_l_C eyl = ' '
-7 83 wT’ + 8 uJT . (g)

(31)

ANote that shear effects create turbulence for the

energy component along the direction of flod, while
buoyancy effects produce turbulence along the di-
rection of the temperature gradient and gravity.
The dominent coupling emong the directions comes
from the triple-correlation term (31-d) and from
the_pressure terms (3l-e). Two of the terms can be
transformed immediately. Thus, for the second part
of (31-f) we write

=7
du; 3du

-g\,’_i_l_._ﬂq -, (32)
bxk axk 2 i)

from which the rate-of-strain terms have been
dropped [just as one might also drop them in (31-a)],

and in which
) 1NV
A= 3[1 +5 (Til__i;> J, (33)
Also»

1 ! ar 34

In sddition, the first part of (31-d) becomes

I — 34
-2 =, (ugafy) ~ 20 En <kn 3%, ) (35)

Consider now the special case of buoyancy turbulence,
in which the mean velocity vanishes. For this we
may write

dq,, dq, ,-
1 ._.|5 1] _ew
t 3] (Vo + ay) 3%, 1 7 72 %43

g_ 5%; ( ki ax kJ 52{>

e



T
1 T
+—-(g0 +80)__
21‘0 3 ik 173k Bxk

+ ¢

1 (36)

in which @13

triple-correlation terms, chosen in such a way that
Qii = 0.
the momentum equilibrium condition

is the residual from the pressure and

For the ¢ gradients in Eq. (36) we invoke

g‘iL“ -2 _.J_ (37)
3 ax
which is to be used in both Eqs. (36) and (39). Al-
so, with
8q
i
= (38)
s .
ve may write, consistent with the assumption of
scalar s, a single equation for 8 in the form
20 _aws, % 3 (o aqu)
3t ) &2 SE; Jk
B0 2 (o
a 2% S" %3k ax
k J
T A/
2 ar
t o S ( =7 O ax 0 (39)
TOB4 k

which closely resembles the previous proposal and
reduces to it for isotropic turbulence. .

Thus, the crucial remaining question is how to
13" For this, diligent investigation

has not produced a satisfactory answer.,

approximate 3
Instead, we
have been forced to construct Qij on a heuristic
basis, from a combination of all available tensors
satisfying certain physical and mathematical require-

ments. The result is

e -1
RE R AT R clmqu613>
BU

30 , ag a0 't )
axy

.5 nt 2y
' : 2s2 onm <.axi axL axJ

a0 nt a

+£§ 13 an ax (40)

38

in wvhich w and ¢ are universal, dimensionless, posi-

The
guidelines for choosing this form are as follows.

tive constants with magnitudes near unity.

1.
2.

We require éii = Q.

When the source terms to the q1J equation are
diagonal, then § 13 should be diagonal.

Part of Qij should represent the conversion of
q to ® as an eddy stops in a distance s, then
This

3.

- reaccelerates in the other directions.
is the w part.
Part of ¢ij
q to other directions when the component of g

should represent the conversion of

is decreasing in its own direction, as near o
wall, This is the { part.
The conversion terms in tge ¢ part must be
positive (or negative) definite, when the cir-
cumstances are appropriate. This can be most
conveniently tested for circumstances in which
' Qij is diasgonal.
6. The correct dimensionality of the ( term
should not require inverse contraéted tensors.
T. The ¢ term should not remove energy from a di-
rection as a result of gradients in that di-
rection of the energy in another direction, nor
as & result of gradients in another direction
of energy in that direction.

The w term depends upon the difference in 0-q prod-
ucts, rather than upon q differences, in order to
relate the conversion timing for each direction to
the time scale appropriate for that direction.
ditions 5 and 6 above dictate that the ¢ term be

Con-

formed of»O derivatives rather than q derivatives.

Note that the w and coupiing terms produce quite
different effects. Suppose that energy is created

predominantly in only one direction; then the @ term
tends to create isotropy by pressure coupling to the
other directions, working effectively even in regions

of homogeneity. 1In contrast, the { term, which is

. effective only in reglons of inhomogeneity, describes

especially the effect of a wall in converting the
normal component of energy to the tangential direc-
tions. The { term can therefore contribute to in-
creasing anisotropy, an essential feature for dupli-
cating experimentel results in a variety of circum-

stances.

. (1t should be noted, however, that conceivable cir-

cumstances may arise in which the {-term coupling

13



is not appropriate, as for example, near the ftront
of a turbulence diffusion wave.
the 3, .

1)

For such problems,

The full eéffects of these equations for nonisotropic
turbulence can be illustréted much more effectively
through application to examples and comparisons with
exXperiments. PFor this purpose we have studied ex-
tensively the example of the turbulence between hori-
zontal plates heated from below (the Bénard problem),

and report the deteils elsewhere.

COMPARISON WITH THE THEORY OF ROTTA

J. Rotta,7 8

resembles ours in several respects.

IX.

has proposed a theoretical approach that
- two i)apers7 concerns the energy equation, and in
.particula; the effects .of pressﬁre-velocity corre-
" lations on the redistribution of energy among the
various directions. His proposed form, which always
enhances isotropy, is'quité similer to the w term in
_Eq. (40), differing principally in the rate coeffi-
cient. Rotta factors this outside of the energy
difference, while Eq. (40) proposes that the trans-
fef rate of energy ffom.a direction should depend
upon the turbulence strength in that direction.. A
mbre important difference between the two forms is
in the { coupling terums, which Rotta omits entirely,

“and which may contribute to nonisotropy.

The energy dissipation term of Rotta is essentially
: It is likely, however, that
neither is sufficiently abrupt ih representing the
transitiqn from low to high intensity.

identical to ours.

Rotta's first paper7 shows, application of the theory
to a specific problem, but qeglgcts the energy dif-
fusion and scale transport.that are certainly, neces-

. sary fo; general applicebility. His second paper8

proposes corrections for these deficiencies._

pil

tensor may require significant modificgtion.)

The first of his

" nificant respects.

The scale equdtion is derived by Rotta from a two-
point-correlation-fudbtion'équa&ioﬁl
resembles that of Chou,9 but differs in seversl sig-

The technique

It seems that our derivation,

based directly upon the decey-rate definition of

sEalé,l'isrlikeii to be more reslistic in its repre-

‘sentation of the processes of turbulence trensport.

“The matter can be settled, hbwever, only when rig-

s“turbulence, .theory.

»

orous derivations have been accomplished or the. re-
sults compared ih detail with experiments.

In summary, it 1s apparent that-Rottg contributed
significantly to the foundations of fhis type of

.Our. approach and results do not
seriously conflict with his; instead, they extend

his ideas in a manner that should prove more widely
applicable and somewhat more tracfable, at the same
time utilizing field variables with more direct physi-
cel significance to the engineer. o )
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