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TRANSPORT OF ANIS<Yl'ROPIC OR LGT·INTENSITY TURBULENCE 

by 

Francis H. Harlow 

ABSTRACT 

This report describes some extensions to the theory of 
·turbulence transport, generalizing the theory to Rpply 
to flows with regions of weak turbulence or with strong 
departures from isotropy. 

I. INTRODUCTION 

1-3 Generalized transport equations have been proposed 

for the theoretical investigation of turbulence in 

·transient fluid flow problems. The validity of 

these equations is greatest for flows in which the 

turbulence is strong (the inertial range) and nearly·· 

isotropic; however, significant modifications are 

·necessary for the low intensity (viscous) range and 

for regions of strong creation in which the turbu

lence is not isotropic. 

In this report, detailed consideration is given to 

these and.related matters, using the nomenclature of 

References 1 and 2, which we assume are available to 

the reader. For convenience, the transport equations 

are summarized from Reference 1. 

Clul 9 (I ( N~>) 
oe ~ + - --- o ~ 

jk (I~ y (I~ (1'1t 

+ _L [< V + a.O) .2.9, J - 2v.Q 
Cl'1t_ Clxk ' 

( 1) 

(2) 

with 

Iii• ~ 
2 

s 

q"' !....:rc:.J 
2Y \s 

6. = s(l + lis) 

t;,.' = a'(l + 6 'g). (3) 

.The ~anings of these quantities are as follows: 

q is the specific ~ur~ulence energy, .Q is a dissipa

tion function, o is the eddy viscosity, s is a tur

bulence scale fUnction, cp is the pressure, ejk is 

the rate of strain, uj is the mean fluid velocity, 

g = o/v, and various universal constants are also 

present, as explained in Refs. 1 through 3. 

The boundary conditions at.a rigid wall are that 

q = 0, o = 0 1 and .Q = 0. To see that this last is 

required, suppose that .Q does not vanish at a rigid 

wall. Then, from the definition of .Q 1 Eq_. (3), s · 

must vanish there. But in the .Q equation, near the 

wall, 

(lfij 1 I · 

(lt = ~og_- 2Vt;,. .Q) + ••• 1 

s 

where terms irrelevant for the discussion have been 

dropped. ·aere g is that part of the creation term 

that is fin:l,te ·at the wan·, so that" og ... 0 there. 

Accordingly, if. fil·does not vanish ·at the wall, then 

o&/at ... ~,·and the value of~ decays· infinitely 

fast to zero. 
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II • I.J:Yt1 INTENSITY FLUX MODIFICATIONS 

When the turbulence int~nsity is small, we ~st ex

pect diffusive effects to modify significantly the 

transport of such imbedded propert~es as. heat, so

lute, and mo~ntum. To se~ wha~ is involve~,.con

sider ~he ~ensity, Q, of some scalar quapti~y, fpr 

which there is a mean part, Q, and a fluctuating 

part, Q I. The turbl,ll~nce ~lux of this ~s u~ Q
1

, 

for which we pave introduced tpe approximatiq~ 

The constant is universal, dimensionless, ang of 

magni tud~ near unity. 

(4) 

Several qeuristic justifications for this approxi

mation have already been discussed. The following 

alternative is usefUl af? a basi.s for generalization. 

We assume that a turbulence "eddy" I!IOves in steps of 

length s 1
, and that at eacr step the prob~bl~ vall,le 

of Q in it differs from the loca.+ mean by the s~ 

amount as the local mean differs at the two ends of 

the step. Thus 

(5) 

where tj is a unit vect9r in the direction of motion. 

Then, to lowest order,. 

and 

oQ 
,.s~t. ox '· 

J j 

(\Q 
~ Q 1 = • - -~'T/ -s"""l""'t-j oX j 

- constant JC: o ~~ :• 

The fallacy of this derivation becomes appare~t in 

the limit as the diffUsion coefficient, ~. for Q be

comes large. We then .would expect ·the value of Q 

in the eddy to follow closely that of the surround

·ing mean, so· that Q' ,... 0 and ~ L. 0. The values 
- J 

of o and ?JQ/?Jxj''· however, are independ~nt of ~. S? 

that. while th~ lef~ side of Eq. ( 4) ~c;>.es to zero, 

t):l~ right side ·remains finite. The problem, there

fore, is to modify j;he heuristic. model so as to .-in

corporate this tendency for Q' to be decreased by· 

its 4iffusion into the adjacent mean. 
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To accomplish this, c~nsider in some detail the dif

fUsion of Q from ap eddy during its motion from an 

initial point of equilibriu~ to a nearbY point. En 

route, 

dQ 3~ 
dt = 2 (Qo - Q) ' 

R 

in which R is the eddy radi~s and Q
0 

is the a~~acent 

mean. Indeed, tO the appropriate order of approxi

..... mation, 

· · · u 1 ?JQ t 
Qo ~. ·k ax 

. k 

·in which 'u{ is the 'translation~! velocity relative 

to the mean, and Q has been (irrelevantly) scaled 

to vanish at t = 0. 

The so~ution is easily shown to be · ...... .. 

But 

.• : 2 ·. - ('.- :)~~·: 
' · R oQ · R · 

Ql = Q - Qo =. 3~ u~ ~ e. . 
.. k 

. ii"Q' = 
. j 

. . . 

ij7ur = g q 6 + higher order terms, 
j k .3 ... jk 

so tl:iat 

u'Q'· = 
j 

3At 

. R202 oQ ~- .R2 \ 
= -.-2- axe -:1 ) 

9YS -~ j . I 

From Ref. 2, ~q. (?4),. 

R
2 

1 
2=29', 
9s 

and ou~ r~sult becomes 

2 _· ( - '~~ ) -:-:r;;r o ?JQ · R · . 
u.Q· = =-:'T

28 
~ e - 1 . 

J i:!.DYA .oXj , 
(6) 

To complete the derivation, it is only necessAry to 



determine t, the elapsed time for the motion. This 

must be related closely to the ratio of eddy size 

to mean fluctuating velocity, ·which,. in turn, is 

measure~ by ofs. Thus, we take 

2 
t ... ~ 

0 

leading to the exponential term in Eq. (6) in the 

form 

exp (-

or 

( 26~) exp - constant x '"30 , 

in which the constant is of order unity. 

Thus, Eq. (6) becomes 

r a2 ( - f;Qa~)a-
u~Q' = ~y). 1 - e. 

0 

~ ( 7) 

in which TQ and £Q are constants with magnitudes of 

order unity, which are universal for each identifi-

cation of Q, but may differ among the various possi

ble identifications. (The derivation suggests TQ < 

1 and £Q < 1, which, however, will require specific 

investigation of detailed circumstances to substan-· 

tiate.) 

Note that as of~ ~ 0 

u'Q' ~ 
J ' . (8) 

while as of~ ~ "', 

(9) 

In this latter limit, the transport flux is inde

pendent of ~ and reduces to Eq. (4) as expected. We 

shall see that the former limit takes a form that 

is crucial to the existence of critical conditions 

for turbulence onset and also is necessary to 

achieve agreement with a variety of weak-turbulence 

data. 

If Q is a diffusive vector (such as velocity), then 

we expect a similar equation to hold for the flux 

tensor, modified only by an additive term to make 

the contraction correct. Thus 

(10) 

If, indeed, Qk 5 ~, the proper symmetry requirements 

lead to 

TUO'!; ( - £~B) 
6Jk - ~ 1 - e ejk , (11) 

where q 5 ~ u~u~ and g 5 ofv. This form differs 

from the proposal in Ref. 2, Eq. ( 8) , but agreement 

with that proposal in the limit as s ~ "' means that 

£u T u = Y. Note that we also expect euB 6 ""' 1 ,· in 

order to place the transition intensity from viscous 

to inertial at the same level as that indicated for 

the ~ transition. 

In case the scalar Q refers to temperature, then 

( 12) 

in which pn is the molecular Prandtl number. Accord

ingly, the turbulence Prandtl number, p~, is given 

by 

( 13) 

which varies with turbulence intensity if eupn I ~· 
For g ~ 0, 

while for !!; ~ "', 

£ T 
uu pn.... ~ 

'l' ~ TT 

Since experiments show that p~ decreases with s, 
(see Schlichting,

4 
p. 499), we therefore expect 

£upn < ~· Indeed, the data discussed by Schlichting 

suggest that p~ = 1.0 for !!; = O, and p~ ""0.5 for 

!!; ~ "', g1v1ng, thererore 
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(14) 

and 

(1~) 

As noted before, we also have 

(16) 

and 

{17) 

The solution of these for equations for e:u' ~T' Tu 

and·TT' however, gives coefficient values that de

pend upon pn, a conflict with universality th~t 

needs further.investigation for resolution. Perhaps 

it is the interpretation. of th~ experimental data· 

that needs revision. 

III. INCLUSION OF THE TRANSPORT· OF Q 

Several extensions are required to calculate the 

transport of Q. First, there must be a transport 

equation for Q itself. This may be a simple diffu

sion equation, or it may be a complicated Liouville 

equatio~ for a distribution function. Second, the 

mean momentum equation req~ires an interaction term, 

such as a mean buoyancy term if Q is heat, or a mean 

drag term if Q is dust density. ~hird, the two tur

bulence transport equations require creation terms 

describing such interactions as the creation of tur

bulence by buoyancy or flow past grains, and the cre

ation of ~ by similar processes. 

For the transport of Q, we assume, for· example, an 

equation of the type 

in which ~ is an internal source such as that of heat 

from a chemical reaction.. Averaging, we find 

oQ aQ a r. oQ ~) -
- + uj ,...-- = ,...-- , II. ,...-- - ujQ + S , 
ot oxj uxj ' oxj 

which, together with Eq. (7), constitutes there

quired equation. 

(18) 

The equation for mean momentum is similar. We start 

6 

from the Boussine.sq approximation 

:::.J. + u. -IL + 22... = -cg (Q-Q ) + g + - v _J_ 
:~u au; 0 ( ou.) 

at .K a~ axJ J o J a~ a~ ' 

in ~hich gj is the body acceleration, ~ is the ratio 

·of pressure to (constant) den~ity, and c is a coef

ficient of density change accompanying the :variations 

.of Q from the reference value, Q
0

• (Thus if Q i-s 

temperat~re, then c is the bulk expansion coefficient; 

i~ Q is solute concentration, then c relates this to 

the corresponding density cha~ges. If Q is density 

of suspended particles, then an additional term tila.y 

be required to describe drag, which is.-.a function of 

the difference between fluid and dust velocities; 

but for now t~is possibility is ignored.) 

Averaging the momentum equation, we obtain 

(19) 

which, together with Eq. (11), constitutes the appro

priate result. 

Following Ref. 2, we may derive the first of the two 

turbulence transport equati~ns, that of the turbu

lence energy per unit mass, q. An intermediate step 

is 

wher.e 

aii 
u'u' .::.:..l. - 2Vl9 

j k 0~ 

~ = .!(~)2 
. 2 0~ 

- cgj ujQ' , 

{20) 

Into this are to be inserted the flux expressions, 

Eqs. {7) and (11), with v bein.g the diffusion co

efficient for q and ~· 

In similar fashion, the second turbulence transport 

equation, for~. follows the deve1opment in Ref. 1, 



with the result 

- 0~ (~} 

- .l._ c~ u.' ~ ') 
OXk S2 K 

02fJ 'iN/:1, fJ +'V2 ___ 2_ 

oxk s 

~ 9'a6g ( 1 - ~) o<P 
~~ .. - -£- - e ~ ' (25) 

[When this is used in Eq. (20}' e I • 9/y; i~ Eq. (21)' 

9'=a4.] 

( 26} 

and 

(27) 

[If Q is identified as temperature, then when this 

(21) is used in Eq. (20), TQ = T
1 

while in Eq. (21), 

Again, the approximations, Eqs.. ( 7} and ( 11}, are to 

be used, with the additional condition that the 

diffUsion coefficient for fj be v. · 

The three occurrences of ~' in Eq. (21) are implied 

to be the same, but may, in fact, differ slightly 

among themselves. Use of 6 1 in the first and last 

terms on·the right side is a modification from the 

proposal in Ref. 1; it enables a~ 1.0 (actually 

a::_ 1.0) and also T
2 
~ T

1 
[of Eq. (27), .below], 

(actually, T 
2 

;:_ T 
1

}. It also enables meaningfUl 

results to be obtained for all levels of turbulenc'e 

with fixed values of a and T 
2

, which turns out to 

be impossible if 6. is used in those terms, rather 

than 6.'. 

To transform to usable notation, consistent with 

pr~vluue Ullage, we oummnr:l.ll.e the11e vP.rJ.,nR i'lux 

approximations as derived from Eqs. (7) and (11). 

We assume for now that all of the eQ values are the 

same, namely 

(22) 

Then 

uj~= ~q ojk- o~;(l- e- :;)ejk' (23) 

u.'q' = a.'oo!; ( _ e- ~)29.... 
K - -£- 1 OXk 

(24} 

[When this is used in Eq. (20), a.' a.; in Eq. (21}, 

TQ = T
2
.] 

IV. TURBUIERCE DECAY THROUGH THE INERTIAL-VISCOUS 
TRANSITION 

Reference 1 clarified the meaning of the scale fUnc

tion, s, showing it to be·proportional to the inte

gral scale and related to the microsca].e, }.. , by the 

equation 

Thus the derivation in Ref. 2 is in error when it 
. 2 . 

compares ds /dt with the experimental results for 

the -microscale during low intensity decay. Instead, 

we may derfve the decay result 

0},2 0 ·cs2) . C6.' ) 
- = a = - = 2av - - 1 ot ot 6 . 6 

Thus, to agree with the experimental results, 6' 

cannot be directly proportional to 6, as suggested 

in Ref. 1. Indeed, with 6' = a'(l + o';), the low 

and high intensity limits can be achieved if a = 5 

(as before), a'= 7, and o' = 106/7. This, then, 

gives d}.. 
2 /dt = 4v as ; ... 0 and d2.,../dt ... lOv as g ... <», 

in agreement with the_requir~ments discussed in Ref. 

2. Actually, there is evidence to support the eon-

. tention that the 6. and 6' functions ·should vary more 

rapidly from a (or a') to a6; (or S'o's} than is 

indicated by the expressions 

6 = a(l + og) , 

6.' = a'(l + o's} . 
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Experimentally, the transition in dA 
2

/ dt from 4 to 

lOv is quite abrupt_, near s = 7, rather than as 

gradual as the above functional forms predict. In 

addition, the transitions· predicted by the modified 

flux approximations are also relatively sudden, 

suggesting the same for 6. and /:;' by analogy. Final

ly, it appears that· the laminar instability regime· 

discussed in Section VII requires this abrupt tran

sition~- ·1~· order that the small-S solUtions · ~ hold 

over an appreciable range of Rayleigh or Reynolds 

(or similar} number. Thus, for example, in the .· 

Benard problem, independence of the solution from 

Prandtl-number variations requires the turbulence 

to be in the viscous range, which in turn allows 

prediction of a critical Rayleigh number. Persis~ 

'tence of this viscous range up to the Rayleigh num

ber for sudden Nusselt number transition {Ra ~4 x 
4 . 

10 ) then requires also the abruptness of the vari-

'ous functional transit':i.ons near s = 7
1 

the viscous

inertial boundary. 

From a heuristic, physical viewpoint,. the transition 

may be related to a basic change in flow details, 

closely anaiogous to the onset of separated flow 

that occurs about a cylinder at Reynolds number of 

order 5. (The turbulence Reynolds numb.er, s, has 

magnitude of about 7 at the viscous-inertial tran

sition, so that the correspondence in Reynolds num

ber magnitudes is quite close. ) Thus the abruptness 

of transition may correspond to the suddenness of 

the onset of flow separations within the field of 

eddies. Unfortunately,' there has not yet been de

veloped a technique for deriving this, to obtain 

more realistic expressions for 6. and 6.', so that 

only empirical relationships can now be proposed. 

The transition value for s, incidentaily, ~t be 

closely associated with having 6g ~ 1. In Ref. 2, 

Eq'. ( 24}, the heuristic derivations predict 

which was there thought to be too large. In con

trast, I now think that this value may b~ nearly 

correct. 

There is another error regarding the interpretation 

of s found in Ref. 2. Equation (17), there, pro

poses a relationship among q, a, and a, which is 

8 

.said to disagree with that proposed by Hinze.5 Ac

tually, the two proposals are equivalent for high 

intensity turbulence, as can be seen by a careful 

examination·of the meaning of each. Thus, while we 

write 

for large g, Hinze puts (in our nomenclature} 

X
. 2q}.. 2 

q = const v 

which is equivalent to our proposal. 

V. A REMARK ,ON EQUii.J:HUUM FLOWS 

In the momen~um e9uation~ we have 

~= a 2 ·· 
dt gj - oxj (~ + 3· q) + 

plus other terms not entering the discuss'ion of this 

section. We now consider the case of a turbulent' 

fluid with no mean velocity, for which, then 

a - 2·-
- (~ +- q) 
oxj 3 

If we suppose, for the moment, that' g. has a fluctu-
. J 

ating part correlated with the fluid turbulence fluc-

tuations, then deri vat.ion of the q equation· proceeds 

as follows 

If, in addition, we make the (r.idiculous} assumption 

that such a gj could be derived from a potential, 

i.e., 

then 

... ' 

and our approximation procedure produces,,for intense 

turbule.nce (in which os >> 1) 
1 



9 - . 
= ~ ( - a ~ - K a 8) + 

oXj Y oXj j 

For the case of no velocity, then, 

Now, we do not expect the gj term to contribute to 

the ener'gy equation. (Por the ~nard problem, for 

example, this contribution is quickly observed to 

be nonsense.) Its absence, however, requires 

K = 9/Y, which would be reasonable except for the 

meaningless basis on which the K term was derived. 

The implication, then, is that K = 0 and that the 

term 9ag/Y also should not have appeared. Appar

ently the presence of this latter term arises from 

an impropriety of the SBsumption ujl~l .. - !!. a ~ • 
_ Y oXj 

The ~ that appears in this assumption should relate 

only to that part of the pressure that is capable 

of fluctuations correlated to the turbulence field, 

and not to the part that is related to maintaining 

equilibrium with the constant body acceleration. 

VI. STE.ADY -STATE SOLtJriONS 

Strength of creation is characteriz.ed by a 1110lecul.ar 

Reynolds number, Rayleigh number, or oth~r similar 

parameter; we call Rg some appropriate me·asure of 

this, as defined more specifically below. The ge

ometry may be that of a pipe, the space between 

piates, or other configuration, in general char

acterized by a dimension, h. If a nontrivial steady

state solution exists, then thi.s is characterized 

by mean or cent~al values of a and s, which, in di

mensionless form, are denoted by g (= a /v) and 
s s 

z (= s /h), where subscripts refers to steady 
s s 

state. 

In addition, there may be other significant param

eters such as the Prandtl number, but their effects 

are ignored for the present q~alitative diocusoion. 

(In the Benard problem, for example, the influence 

of Prandtl-number variations comes naturally from 

the analysis.) 

In general, we expect that the two transport equa

t,:l.nns will allow the unique determination of gs and 

z
1

, each separately a t'Unction of Rg. Figure .1 

illustrates a hypothetical example. For Rg < A, the 

.only steady-state solution is gs • o, the steady 

,laminar flow. 

For A< Rg·< B, the steady-state solution corresponds 

to equilibrium laminar instability fluctuations. 

This ·is the viscous range in which the flux terms are 

proportional to g
2 

.. In the &e~ard problem, for ex

ample, it would correspond to the regime of uniform, 

steady convective cells. For cylindrical Couette 

flow, it would also represent the steady-cell con

figuration. 

For Rg > B, the flow is fully turbulent and the 

variations of g and z with Rg are abruptly some-
s · S 

what.different. The transition at B is also mani-

fested in such functionals as the surface .drag in its 

variation with Reynolds number, or the Nusselt number 

in its variation with Rayleigh number. 

In addition to this steady-state flow, however, there 

is the 1110re delicate consideration of stability as an 

initial-value problem. Usually the question of sta

bility is treated only in the limit of infinitesimal 

(linear) perturbations. More generally, initial

value stability can be represented as an additional 

curve in the s-Rg plot. Figures 2 through 4 show 

some possibilities .for this. 

In each figure, the dashed line shows the variation 

of g , a critical initial value such that if the . c . 

initial value g
0 

exceeds gc' then the turbulence 

grows to the steady-state value S , but if s
0 

< S , 
. s c 

then g decays to zero. 

Infinitesimal stability theory in effect. examines 

the behavior of g for values just above the abscissa. 

In Fig. 2 is a case in which the analysis would pre

dict stability for all values of Rg. (Plane Couette .. 
- 6 

flow is an example.) Hasen has examined such a 

flow from quite a different theoretical point of 

view~ deriving the sc variation with Reynolds num

ber in the form 

su 
(Ampl) ""'---.!!. x constant, 

c h Re
1

3 

2 
where Re

1 
= 

. Thus 

~ is assumed large and (Ampl)c 
hV 

a /s. 
c 

g ~ ~ x cuna~a.nt , 
c hV Rei 
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Fig. 1. Hypothetical va,riations of steady.,.state 
val~es·9f z·~nd S· 

( 

\ 

F.ig. 3. An example with a critical val~~ of R~. 

0! 

where Re = Uh/v. 

·Figure 3 is an example in which a criti~al value· 

of Rg would be" predicted by the analysis. The mean

~ng here is that for sufficien~ly small perturba

tions, tqere is. a limiting.Rg below which the per

turbations will ~ways damp; but for finite~ampli

t~de perturbations, the critical value of Rg for 

tr~sition to turbulence de·creases with s
0

• Many 

10 

( 

-·-r-
~- ...... I ...,_ "( 

I -...,:c 

I ' 
I ', 
I ', 
I .......... _ 

"':-

B RQ' 

Fig. 2. An example with no critical value of Rg. 

( 

Fig. 4. The degeneration of critical Rg. 

physical examples can be cited in which the critical 

conditions for transition to turbulence depend in 

this fashion upon the in;!. tial "noise'~ level. In

deed, the example in Fig. 2 also sho~s this. 

Figure 4·differs in that the linear theory wouid 

show lami~ar inst~bility for ~g > A, ~d ~ Pe~

turbation would grow to ss as ;Long as Rg > f>.. An 

example is that of wake flow behind a circular cyl

inder, ,characterized by a Reynolds number, Rg = Re. 

For Re <A(~ 4o), the flow is stead¥. For A~ Re 

< B, the regular von Kar~ vortex street occurs. 

For Re > B, the flow becomes more nearly truly tur~ 

bulent. (Th~s the regular two.,.dimensional vortex 

street beqomes ~nstable to three-dimensional per

turbations, and the flo:w becomes.~irregu:).ar.") 

~-



It should be remarked that the g line varies some-
c ' 

what with z
0

, but the qualitative conclusions re-

main, altered only in the detailed quantitative 

values. Linear stability theory, for example, usu

ally looks for the critical value of Rg by mini

mizing its variations as a function of z
0

• The 

dashed sc lines in Figs. 2 through 4 are meant to 

denote the minimum sc as a function of z
0 

for each 

Rg. 

If we standardize the meaning of Rg in such a way 

as to have only a linear dissipative·coefficlent 

in the denominator, then it appears that many of 

the curves become closely similar for various types 

of phenomena. Thus, for shear flows, Rg = Re, the 

Reynolds number; for the Benard problem, Rg = &, 

where Ra is the Rayleigh number; for cylindrical 

Couette flow, Rg = /T, where T is' the Taylor number. 

Circumstances with behavior like that in Fig. 4 

(flow past a cylinder, Benard convection, narrow-gap 

cylindrical Couette flow, etc.) then all exhibit 

critical values of Rg at A ~ 41, and we may suppose 

that this is indicative of a nearly universal magni

tude for all types of flows (Figs. 2 and 3, also). 

The point B appears also to be universal in this . 

system of measuring Rg, occurring ~t B ~ 200. [There 

is, for example, a flexure in Nusselt number vari

ation in the Benard problem at Ra ~ ( 200) 
2

• ) Thil;l 

is the point at which laminar fluctuations (cells, 

regular vortices, etc.) begin to degenerate into 

full turbulence. Here, too, is the transition from 

the viscous range of turbulence to the inertial. 

VII. INTERMITTENCY 

The int'e:i:-pretation of intermittency in turbulence 

has an important bearing on the assumption that weak 

turbulence in our transport equations does, in fact, 

represent the regular laminar instability state for 

those circumstances in which such should occur. 

Consider first a region of intense turbulence adja

cent to a laminar region. If there is shear between 

the two regions, the Kelvin-Helmholtz instability 

may amplify large scale perturbations, producing 

large eddies with scales independent of the turbu

lence scale. Accordingly, the interface between the 

regions becomes irregular, and intermittency can be 

observed as the fluid cweeps by. This is an example· 

in which the large scale distortions of the flow are 

not at all.included in the turbulence spectrum, and 

are .calculated only by the mean-flow equations. 

{Of course, the presence of the turbulence introduces 

·eddy viscosity whicrr can affect profoundly the growth 

rate of the large scale disturbance, and thereby 

·contribute to determination of maximum-growth-rate 

wave length.) Thus, the observed intermittency is 

manifested as a succession of. periods of very rapid 

fluctuations, separated by pauses of calm, the rap

id fluctuations corresponding to the small turbu

lence scale and the periods of calm to the large 

scale instability. 

Consider now a succession of experiments in which 

the turbulence is progressively weaker. In general, 

its scale is correspondingly progressively larger. 

For sufficiently weak turbulence (6s ~ 1), the scale 

approaches that of the perturbing influence,· so that 

the mean-flow instability is amplified with a scale 

spectrum nearly the same as that of the turbulence 

itself. In this case, the two phenomena are no 

longer separable, and it is reasonable to combine 

the effects into a net flow that can be considered 

all turbulence (in our turbulence transport approach) 

£!: all mean flow (in the approaches that solve the 

full ~equations of unst·able laminar flow). In such 

cases, intermittency has rio meaning. 

Thus, in the framework of our interpretation, two 

distinctly different processes in regions of in

tense .turbulence merge into one when the turbulence 

is weak. In the latter case the scale distribution 

has converged into one for which a single scale func

tion is appropriate, and the results can be repre

sented either by the low intensity transport equa

tions or by solutions in detail of the full laminar 

instability problem. 

VIII. NONISOTROPIC TURBUlENCE 

We assume that the full burden of the nonisotropy 

can be placed upon a and q, but that s remains a 

scalar function. This assumption appears not to be 

strictly valid, as th~re is much evidence to suggest 

the existence of elongated or otherwise distorted 

eddies. As a first approximation to the study of 

nonisotropic turbulence, however, the assumption 

leads to a considerably simplified formulation 

· worth testing in some representative applications. 

The basic task is to find·an approximation for the 
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. Reynolds stress, which is taken to have the form 

The last term is introducea in such a way that 

q ·= ~ uiui = qii does not depend upon the rate of 

.strain; the form also is chosen to ensur~ symmetry. 

We further assume that· 

1 
qij = --2 °ik0 'k 
· 6ys J 

~29) 

In this formulation, the tensor eddy viscosity, 

oij' is assumed to be symmetric, so that the tensor 

· edci¥ energy is correspondingly symmetric. (In_-~ome 

. kinds of problems 1 the two tensors are everywhere 

diagonal, and may even have only two di-ffering 

components. The Benard problem is_ one in which this 

convenien~ situation oc~urs.) Equations (28) and 

(29) reduce to our previous. formulations for isotrop

ic t~bulenc.e, for which· o ij = o6ij. (Note that for 

isotropic turbulence .the o for each direction must 

be t~e same as the total o, which also relates to 

the effect that occurs in each individual direction, 

rather than.to a summation of effects. Thus, 

oijoij = 30 •. ) 

For high intensity turbulence, the flux approximation 

for a scaler likewise can be generalized to sho~ the 

effects of this nonisotropy model. We write' 

For l~w intensity turbulence, modifications like 

those described in the first sections of this re

port are needed, but.such are not proposed here. 

( 30) 

To find the energy transport equations, insert the 

flux approximations into Eq. (7) of Rei' .. 2. We 

choose an example with both shear and buoyancy cre

ation, the last with coefficient of volume expansion 
. -1 
To .• 

Qt· + ·~ a~)>qij .- ¥:0itett0Jteti) ! 0 tn~tn 6 ij] 
(a) 

5r v '· 1 ] - o~l 2 qik- ~ 0 itetk+ 0 kteti;r J 0 tmetm 6 i~ (b) 

oiiir v 
- ~ 2 qjk- ~ 0 jtetk+ 0 ktetj)! 0tmetm6jk](c) 
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(e) 

(f) 

(g) 

(31) 

Note that shear effects create ~urbulence for the 

energy component along the direction of flow, while 

buoyancy effects produce turpulence along the di

rection of the temperattire gradient and gravity. 

The dominant coupling among the directions comes 

from.the triple-correlation ~erm (31-d) and from 

the pressure terms (31-e). Tw9 of the terms can be 

transformed immediately. Thus, for the second part 

of (31-f) we write 

(}2) 

from which the rate-of-strain terms have been 

dropped [just as one might also drop them in (31-a)], 

and in which 

( 33) 

Also 

( 34) 

In addition, the first part of (31-d) becomes 

Consider now the special case of buoyancy turbulence, 

in which the mean velocity vanishes. For this we 

may write 

+ ~ 0 (0 ~+ 0 ~) 
. 2y ax;\: ki oxj kj ~ 



+ ~ iJ ·' ( 36) 

in which ~iJ is the residual from the pressure and 

triple-correlation terms, chosen in such a way that 

~ii = o. For the ~ gradients in Eq. (36) we invoke 

the momentum equilibrium condition 

which is to be used in both Eqs. ·(36) and (39). 

so, with 

we may write, consistent with the assumption of 

scalar s, a single equation for ~ in the form 

(37) 

Al-

(38) 

which closely resembles the previous proposal and 

reduces to it for isotropic turbulence •. 

Thus, the crucial remaining question is how to 

approximate ~ij' For this, diligent investigation 

has not produced a satisfactory answer.. Instead, we 

have been. forced to construct ~iJ on a heuristic 

basis, from a combination of all available tensors 

satisfying certain physical and mathematical require

ments. The result is 

~ij 

(40) 

tn whi.r.h 111 Rnd (; ~~.re univereal, dJ.mep1:1ionless., posi-

tive constants with magnitudes near unity. The 

guidelines for choosing this form are as follows. 

1. We require ~ii = 0. 

2. When the source terms to the qiJ equation are 

diagonal, then ~ij should be diagonal. 

3. Part of ~ij should represent the conversion of 

q to~ as an eddy stops in a distance s, then 

4. 

5. 

· reaccelerates in the other directions. This 

is the w part. 

Part of ~ ij should represent the conversion o.f 

q to other directions when the component of q 

is decreasing in its own direction, as near a 

wall. This is the C part. 

The conversion terms in t~e C.part must be 

positive (or negative) definite, when the cir

cumstances are appropriate. This can be most 

conveniently tested for circumstances in which 

~ ij is diagonal. 

6. The correct dimensionality of the C term 

should not require inverse contracted tensors. 

7. The C term should not remove energy from a di

rection as a result of gradients in that di

rection of the energy in ~other direction, nor 

as a result of gradients in another direction 

of energy in that direction. 

The w term depends upon the difference in o-q prod

ucts, rather than upon q differences, in order to 

relate the conversion timing for each direction to 

the time scale appropriate for that direction. Con

ditions 5 and 6 above dictate that the C term be 

formed of o derivatives rather than q derivatives. 

Note that the w and C coupling terms produce quite 

different effects. Suppose that energy is created 

predominantly in only one direction; then the w term 

tends to create isotropy by pressure coupling to the 

other directions, working effectively even in regions 

of homogeneity. In contrast, the C term, which is 

effective only in regions of inhomogeneity, describes 

especially the effect of a wall in converting the 

normal component of energy to the tangential direc

tions. The C term can therefore contribute to ~

creasing anisotropy, an essential feature for dupli

cating experimental results in a variety of circum

stances. 

(It should be noted, however, that conceivable cir

cumstances may arise in which the C-term coupling 
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is not appropriate, as for example, near the front 

of a turbulence diffusion wave. For such problems, 

the ~ .. tensor may require significant modification.) 
1J . 

The full effects of these equations for ·nonisotropic 

turbulence can be illustrated much more effectively 

through ·application to examples and cc:imparbons with. 

experiments. For this purpose we have studied ex

tensively the example of the tUrbulence between hori

zontal plates heated from below {the ~nard pr~blem), 

and report the details elsewhere. 

IX. COMPARISON WITH THE THEORY OF RO'rl'A 

J. Rotta,7 '
8 

has proposed a theoretical approacp that 

resemb1es ours in several respects. The first of his 
. . 7 

two papers concerns the energy equation, and in 

particular the effects of ~ress\u-e-velocity corre

lations on , the redistr.i but ion of ~ner~ among the 

various directions. His proposed form, which always 

enhances isotropy, is· quit_e similar t9 the w term in 

. Eq. (tO), differing principally in the rate coeffi

cient. Rotta· factors this outside of the e~ergy 

difference, while Eq. (40) proposes that the trans

fer rate of energy from.a direction should depend 

_upon the turbulence strength, in that direction.. A 

more important difference be~ween the two forms is 

in the C coupling terms, which Rotta omits entirely, . . 
'and which may contribute to nonisotropy. 

The energy dissipation term of Rotta is essentially 

identical to ours. It is.likely, however, that 

nei t.h~r is sufficiently abrupt in representing the 

transition from low to.high intensity. 

Rotta's first paper7 shows, application of the theory 

to a specific problem, but neglects the energy dif

fusion and sca,le transport ._that are certainly, ne.ces

sary for general applicability. His second paper8 

proposes correct:l.ons for these deficiencies. 
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The scale equation is derived.by Rotta from a two-
. ' ' 

point-correlation-furiction. equation·. The technique 

rese~bles that of Chou,9 but differs in several sig-

., nificant respects. It seems that. our derivation, 

based directly upon the decay-rate definition of 

scale, 
1 

is' l.ike'ii t~· be more realistic in its repre

'sent"at"ion ·or the processes of turbulence transport. 

·"1'!le"llllitter 'can be settled, however, only when rig

orous derivations have. been accomplished, or there

sults compared in detail with experiments. 

. ··In summary, it is apparent ~hat·Rott~ contributed 

significantly to the foundations of this type of 

.. ·turbu:lence,-:theo.ry •. Our. approach and results do not 

seriously conflict with his; instead, they extend 

his ~deas in a manner that should_prove more widely 

applicable and somewhat more tr~ctable., at the same 

time utilizing field variables with more direct physi

ce.l significance to the .engineer. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9· 
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