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Transport of charged small molecules after
electropermeabilization — drift and
diffusion
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Abstract

Background: Applications of electric-field-induced permeabilization of cells range from cancer therapy to wastewater

treatment. A unified understanding of the underlying mechanisms of membrane electropermeabilization, however, has not

been achieved. Protocols are empirical, and models are descriptive rather than predictive, which hampers the optimization

and expansion of electroporation-based technologies. A common feature of existing models is the assumption that the

permeabilized membrane is passive, and that transport through it is entirely diffusive. To demonstrate the necessity to go

beyond that assumption, we present here a quantitative analysis of the post-permeabilization transport of three small

molecules commonly used in electroporation research— YO-PRO-1, propidium, and calcein— after exposure of cells to

minimally perturbing, 6 ns electric pulses.

Results: Influx of YO-PRO-1 from the external medium into the cell exceeds that of propidium, consistent with

many published studies. Both are much greater than the influx of calcein. In contrast, the normalized molar

efflux of calcein from pre-loaded cells into the medium after electropermeabilization is roughly equivalent to

the influx of YO-PRO-1 and propidium. These relative transport rates are correlated not with molecular size or

cross-section, but rather with molecular charge polarity.

Conclusions: This comparison of the kinetics of molecular transport of three small, charged molecules across

electropermeabilized cell membranes reveals a component of the mechanism of electroporation that is customarily

taken into account only for the time during electric pulse delivery. The large differences between the influx rates of

propidium and YO-PRO-1 (cations) and calcein (anion), and between the influx and efflux of calcein, suggest a

significant role for the post-pulse transmembrane potential in the migration of ions and charged small molecules

across permeabilized cell membranes, which has been largely neglected in models of electroporation.
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Electrodiffusion, Membrane transport

Background
Biomedical, industrial, and environmental applications
based on electroporation — the electric-field-driven
breakdown of the cell membrane barrier function — in-
clude electrochemotherapy [1], gene electrotransfer ther-
apy [2], calcium electroporation [3, 4], tumor ablation
[5, 6], food processing [7], and waste-water treatment
[8]. Optimization and extension of these technologies is
hindered by the present lack of knowledge of the

biomolecular structure of the electropermeabilized
membrane and of the mechanisms of electroporative
molecular transport [9]. For plasmid DNA, a multi-
stage, multi-component scheme for electrotransfer has
been proposed [10], but except for the relatively small
amount of material transferred during pulse delivery,
electroporative transport of inorganic ions and small
molecules, which occurs largely across the permeabilized
membrane after pulse exposure [11–14] is still com-
monly considered to be essentially passive diffusion
through aqueous pores similar to those observed in
molecular dynamics simulations [15, 16].
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The fluorescent dyes propidium and calcein have
been used for decades as implicitly equivalent small-
molecule indicators of electroporation [17, 18], even
though one is a cation with a fluorescence that is
greatly enhanced after polynucleotide binding and
the other is an anion, natively fluorescent in aqueous
solution. YO-PRO-1, a more sensitive detector of
membrane permeabilization by ultra-short (nanosec-
ond) electric pulses (and a cation and a nucleic acid
intercalator like propidium), has become the nanoe-
lectroporation indicator of choice [19, 20]. Experi-
mental studies and models of electroporative small
molecule transport rarely mention, however, the large
quantitative differences between the influx of propi-
dium (and YO-PRO-1) and that of calcein into cells
after similar pulsed electric field exposures, and (with
one exception [18])) the large difference between cal-
cein influx from the medium into a permeabilized cell
and calcein efflux from a pre-loaded cell that is then
permeabilized.
Previous studies reporting quantitative measurements

of electroporative transport (quantitative in terms of
amounts of material, not fluorescence intensity) have in
general looked at only one small-molecule species, typ-
ically propidium (or related compounds like ethidium),
calcein (or Lucifer yellow, another natively fluorescent
anion), or more recently YO-PRO-1, so there has been
no direct comparison of the electroporative transport
of cationic, nucleic acid-binding dyes with anionic,
natively fluorescent dyes. And because of the lack of
consistency in pulse exposures, cell types, dye concen-
trations and loading protocols, and imaging and photo-
metric procedures, a given published quantitative study
of propidium transport, for example, can be compared
with another study of calcein transport only in relative
and very approximate terms. The (mostly overlooked)
clue in the literature that there is something very
different about the transport of these two classes of
compounds is that protocols call for much higher
concentrations of calcein (or Lucifer yellow) than for
propidium (or YO-PRO-1) [11, 21].
With this narrow methodological focus, it has thus

been possible without too much difficulty to interpret
individual studies of small molecule electroporative
transport in the framework of the “standard model” of
electroporation — passive diffusion through electric-
field-generated, transient, aqueous pores in the cell
membrane [22–24] — with ad hoc adjustments of
model parameters. This perpetuates the status quo, in
which the various implementations of this “standard
model” remain descriptive (they can represent experi-
mental observations after the fact, case by case) instead
of becoming predictive (which would greatly enhance
the practical value of the models).

A recent modeling study simulated transport of both
propidium and calcein, but, in the absence of compar-
able reports on experimental observations, fell prey to
the longstanding treatment of propidium and calcein as
implicitly equivalent [25]. That is, in the computations
for post-pulse transport, the electrical charge of these
molecules (propidium: + 2; calcein: − 4) was assumed to
effect only the partitioning between the aqueous
medium and the lower permittivity membrane interior,
and this in turn was assumed to depend only on the
Born energy, determined by the electrostatic energies in
the two regions [26]. This analysis neglects two, import-
ant, charge-dependent phenomena.
First, in addition to the Born energy, which comes

from the dielectric properties of the pore and mem-
brane material, the contribution of the membrane di-
pole potential (potential in the membrane interior
relative to the bulk medium, arising from water and
phospholipid dipole orientation) should not be over-
looked. Commonly accepted to be on the order of
several hundred millivolts positive, the membrane di-
pole potential increases the transport energy barrier
for cations and lowers it for anions [27].
Second, the effect of even a small, non-zero, post-

pulse transmembrane potential cannot be ignored, and
accumulating experimental evidence indicates that sub-
stantial recovery of membrane resting potential occurs
within seconds after electropermeabilization [14, 28].
Why has this not received more attention from both

experimentalists and modelers?
Modelers can only confront and represent experi-

mental data when it is available to them. The dearth
of reports of quantitative comparisons of cationic and
anionic small molecule transport (e.g., propidium and
calcein) is at least partly responsible for the widely-
accepted assumption that the transmembrane poten-
tial in electropermeabilized cells can be ignored after
the porating pulse has ended, and that therefore there
is no drift (electrophoretic) component to post-pulse
transport [21, 25, 29–32].
Despite one early warning to the contrary [33], an in-

correct assumption — membrane conductivity increases
and remains elevated after electroporation, therefore the
voltage across the membrane must be negligible — has
dominated thinking about post-pulse transport of
charged species. This assumption is still commonly held,
even when models take account of charge in the interac-
tions of transported molecules with the membrane and
pore interface.
The transmembrane potential at any instant is deter-

mined by both the conductivity of the membrane and

the current across the membrane. The cellular response
to membrane permeabilization includes, among many
other stress- and damage-induced processes, restoration
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of osmotic balance and physiological K+, Na+, Ca2+, and
Cl− concentration gradients. This involves ion pump and
channel activation and associated ion currents. If the
permeabilized cell has sufficient energy reserves, it is
reasonable to expect that it can achieve a new homeo-
stasis that includes a significant non-zero membrane
resting potential long before the compromised mem-
brane barrier functions have been repaired and normal
conductivity has been established [14, 28]. Rigorous
quantitative studies that confirm or refute this hypoth-
esis are needed.
Recently we reported quantitative measurements of

YO-PRO-1 transport kinetics following membrane
permeabilization by a single 6 ns electric pulse [12].
Here we extend these observations to compare transport
of YO-PRO-1, propidium, and calcein, three molecules
of similar size, but different charge polarity (Fig. 1). In
our imaging-based experiments, detection of YO-PRO-1
and propidium transport into the cell requires that the
dye molecule cross the membrane, migrate in the intra-
cellular medium until it contacts a polynucleotide helical
region (RNA or DNA), intercalate between base pairs of
the polynucleotide helix, and exhibit the resulting fluores-
cence enhancement. We expected that YO-PRO-1 and pro-
pidium influx kinetics would be similar, and we wondered
whether calcein influx data, which is not dependent on the
transported molecule locating and binding to a target,
might be a more direct measure of transmembrane traffic
of small molecules after membrane permeabilization.
We provide a direct quantitative comparison of mo-

lecular transport of three similarly sized but chem-
ically different fluorescent indicators of membrane
permeabilization — two cationic molecules (YO-PRO-
1 and propidium), and one anionic molecule (calcein).
Our results show that the influx of YO-PRO-1 and
propidium (both cations) into electropermeabilized
cells is an order of magnitude greater than that of
calcein (an anion) after the same pulse exposure. Cal-
cein efflux from cells loaded before permeabilization,
however, is similar in magnitude to YO-PRO-1 and
propidium influx. These results are consistent with a
significant drift component of post-pulse transport of

small charged molecules across electropermeabilized cell
membranes, driven by the rapid recovery of transmem-
brane potential after permeabilization as shown by analyt-
ical calculations based on Nernst-Planck electrodiffusion.

Methods

Cells

U-937 (human histiocytic lymphoma monocyte; ATCC
CRL-1593.2) cells [34] were cultured in RPMI-1640
medium (Corning® glutagro™ 10–104-CV) with 10% fetal
bovine serum (Corning, 35–010-CV) and 1% penicillin/
streptomycin at 37 °C in a humidified, 5% CO2 atmosphere.

Pulsed electric field exposure

6 ns, 20 MV/m pulses (FID pulse generator FPG 10-
10NK) were delivered to cells in suspension in cover glass
chambers (Nunc™ Lab-Tek™ II) through parallel tungsten
wire electrodes with a 100 μm gap [35]. Cells were ob-
served at laboratory temperature on the stage of a laser
scanning confocal microscope (Leica TCS SP8), 8–10 min
after they were transferred to the cover glass chambers. A
typical pulse waveform can be seen in Fig. 2.

Imaging

Laser scanning confocal fluorescence microscope images
were captured (LeicaTCS SP8) every 100 ms (YO-PRO-1
and propidium) or every 200 ms (calcein) for two mi-
nutes (1200/600 frames) from cell suspensions at room
temperature in ambient atmosphere on the microscope
stage. Emission/excitation peaks are 491/509 nm for
YO-PRO-1, 535/617 nm for propidium, and 495/515 nm
for calcein. Cells were exposed to electrical pulses five
seconds after the start of the recording unless otherwise
stated. For z-stack measurements with calcein in Tyr-
ode’s solutions, cells were imaged ±12.5 μm from their
approximate central focal plane for 26, 1.5 μm thick z-
steps separated by 1 μm. Acquisition of each z-stack
takes 70 s; a total of 7 z-stacks are recorded in 530 s.

Image processing

Cells visible in the microscope field between the electrodes
were manually selected for fluorescence photometric

Fig. 1 Molecular structures of YO-PRO-1 (a), propidium (b), and calcein (c)
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image analysis before each pulse exposure. Fluorescence
intensities of each region of interest were extracted using
custom MATLAB routines that allow tracking of cells in a
series of frames. The following built-in MATLAB func-
tions were used in custom image processing routines:
‘imroi’, for manually choosing regions of interest; ‘region-
props’, for evaluating geometric properties of regions of
interest.

Molecular transport imaging

For imaging of fluorescent dye influx, cells were
washed and suspended at approximately 5 × 105 cells/
mL in fresh medium containing either 2 μM YO-
PRO-1, 30 μM propidium, or 200 μM calcein. For
calcein efflux imaging, cells were loaded in fresh
medium containing 0.5 μM calcein-AM for 15 min at
37 °C in a humidified, 5% CO2 atmosphere, then re-
suspended in fresh RPMI 1640 medium. Fig. 1 shows
the molecular structure and size of each dye. For
experiments with regular and high-K+ Tyrode’s solu-
tions, cells were washed and suspended in either
regular Tyrode’s with 140 mM NaCl, 5.4 mM KCl,
10 mM glucose, 2 mM CaCl2, 1.5 mM MgCl2, or
high-K+ Tyrode’s where NaCl is replaced with KCl
with a final KCl concentration of 145 mM. About
10 min after resuspension, imaging was initiated and
pulses were delivered to the cells. At least 30 cells
from three independent experiments are analyzed for
each reported data set unless otherwise indicated.

Calibration

The procedure for correlating propidium and YO-
PRO-1 fluorescence to molar concentration closely
follows a method previously described [12, 20]. Dense
lysates were created from U-937 cells (8 × 107 cells/
mL) by adding 0.1% Triton X-100 and then sonicating

for 2 min with a Misonix Sonicator S-4000, 1 s alter-
nating on-off cycles, amplitude 20. Calibration curves
were generated by adding known concentrations of
the dye to the lysate (Fig. 3a). Each point on the
curves represents measurements taken in triplicate
from three separate preparations. For calcein influx
measurements, the fluorescence of the extracellular
medium (200 μM calcein) in each experiment was
measured in three cell-free regions; the mean of these
measurements was taken to be the fluorescence inten-
sity of 200 μM calcein. Measurements for other cal-
cein concentrations in cell-free preparations show
that calcein fluorescence is linear with concentration
up to approximately 1 mM (Fig. 3b). Quenching is
observed at higher concentrations. The linear region
was used for calibration of concentration in calcein
efflux experiments, where cells were loaded with
calcein-AM as described above.

Z-stack measurements

To report as accurately as possible the changes in intracel-
lular concentrations of the three dyes, cell volume changes
resulting from nanosecond pulse permeabilization-induced
swelling [36–38] and osmoregulatory responses to high K
+medium must be incorporated into the calculations.
We used confocal z-stack-based measurements of cell
volume from calcein-loaded cells (where the cell outline
is sharply defined by the fluorescence boundaries) for
volume normalization in all data sets, since the electro-
permeabilizing pulse doses were the same for the obser-
vations with all three dyes. Here we summarize this
procedure.
Cell regions in each z-step were isolated by threshold-

ing the fluorescence images using the built-in Matlab
function ‘graythresh’. First, the total cell area for each
cell over the z-stack is added to get the initial, cell-
volume-proportional sum of pixels (V c; pixelsum; t0 ). This
value is related to the initial cell volume by a propor-
tionality constant α.

V c; pixelsum; t0 ¼
X

zsteps
Ac; pixel; t0 ð1Þ

V c; t0 ¼ αV c; pixelsum; t0 ð2Þ

The cell volume change Vc, t at any time point t rela-
tive to the volume V c; t0 at the initial time t0 is then given
by V c; t =V c; t0 ¼ V c; pixelsum; t =V c; pixelsum; t0 . From the cal-
cein z-stacks we extracted the relationship between these
volume changes and the changes in area observed for the
mid-cell confocal slices, which under the conditions of
these experiments is V2/V1 = (A2/A1)

1.2. This relationship
was used to estimate volume changes for the cells in the

Fig. 2 Typical 6 ns waveform recorded during application to a

cell suspension
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propidium and YO-PRO-1 experiments, where volumes
could not be accurately determined from z-stacks, and for
the cells in the calcein experiments shown in Fig. 4 [see
Additional file 1].
For calcein influx measurements in regular and high-K+

Tyrode’s solutions, where z-stacks were available for each
cell in the data set, the volume and concentration are de-
termined more directly. First, the mean fluorescence for
each cell slice at each z-step is normalized to the extracel-
lular fluorescence, resulting in a mean calcein concentra-
tion for that cell at that z-step (Cc, z-step, t).

Cc;z-step;t ¼
Fc;z-step

Fextracellular;z-step
� 200 μM ð3Þ

Then, a summation of the mean calcein concentra-
tion multiplied by the cell area from all the z-steps
gives the total number of molecules in the cell at
each time point (Nc,t).

N c;pixelsum;t ¼
X

z-step
Cc;calcein;z-step;t Ac;pixel;t ð4Þ

N c;t ¼ α N c;pixelsum;t ð5Þ

Finally, the total number of intracellular calcein mole-
cules is normalized to the initial volume of each cell, to
get the change in concentration (∆cc) for a cell that does
not change volume.

Δcc ¼
N c;t−N c;t0

V c;t0

¼
N c;pixelsum;t−N c;pixelsum;t0

V c;pixelsum;t0

ð6Þ

Normalization of changes in molecular concentration

For each of the three molecules, the change in intracel-
lular concentration (∆ci,t) is calculated at each measure-
ment time point by subtracting the intracellular
concentration at time zero (∆ci,0) from the concentra-
tion at time t. The normalization of the concentration
∆ci, t is done with respect to the reference (t = 0) con-
centration for each measurement — that is, the initial
extracellular dye concentration for influx measure-
ments, and the initial intracellular dye concentration
for efflux measurements.

Membrane potential measurements

Cells were incubated with the membrane-potential-
sensitive dye FluoVolt™ (Molecular Probes (Thermo
Fisher Scientific)) at 1:500 dilution at room temperature
for 30 min before washing and resuspension in RPMI
1640 for pulse exposure. For image analysis, a ring-
shaped region enclosing the cell membrane was selected
as the region of interest (ROI) for each cell. The change
in membrane potential is proportional to the ratio of the
change in mean fluorescence to the initial fluorescence
(∆F/F0) in the ROI. Sham exposures were recorded with
cells treated with the same protocol but without delivery
of the pulsed electric field. Sham exposures were sub-
tracted from each data point.

Results

Molecular transport of YO-PRO-1, propidium, and calcein

Figure 4 shows molecular transport, normalized in each
case against the initial concentration difference, for YO-
PRO-1, propidium, and calcein influx, and calcein efflux,
following membrane permeabilization with 10, 6 ns, 20
MV/m pulses delivered at 1 kHz. We chose this electric
field exposure to allow a measurable calcein influx. A
comparison of the ratios of intracellular concentration
change to the initial concentration difference is plotted
in Fig. 4. To assure greatest accuracy, cell volume

Fig. 3 Calibration curves for (a) YO-PRO-1 (top x-axis) and propidium (bottom x-axis), and (b) calcein. The non-linearity for calcein at higher con-

centrations is caused by fluorescence quenching. Error bars are standard deviation
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changes resulting from pulse-induced osmotic imbalance
are taken into account in the calculation of dye concen-
trations [see Additional file 1]. Under these conditions,
influx for the two positively charged dyes (YO-PRO-1,
propidium) is significantly greater than influx of the
negatively charged dye (calcein). By a similar factor, cal-
cein efflux is greater than calcein influx.
Figure 5 compares YO-PRO-1 influx, propidium in-

flux, calcein influx, and calcein efflux after exposure to

10, 6 ns pulses delivered at 1 Hz and 1 kHz. (The 1 kHz
data is the data plotted also in Fig. 4.) Concentration
changes are given both normalized to the initial concen-
tration difference (left y-axis) and in absolute concentra-
tion units (right y-axis).
Two minutes after pulse exposure the YO-PRO-1

intracellular concentration is about 1.1 μM for the
1 kHz case, and 0.75 μM for the 1 Hz case, correspond-
ing to concentration change fractions of 0.55 and 0.38.
([YO-PRO-1]extracellular = 2 μM.) Note the increase in the
rate of YO-PRO-1 uptake after the tenth pulse delivered
at 1 Hz (15 s into the recording). Similar increases in in-
flux rate after the tenth pulse occur in the 1 Hz propi-
dium and calcein data.
The intracellular propidium concentration reaches 13

μM after pulses delivered at 1 kHz, and 2.5 μM for 1 Hz
pulses, corresponding to concentration change fractions
of 0.43 and 0.08. ([propidium]extracellular = 30 μM.)
Calcein influx is similar for 1 Hz and 1 kHz pulse

repetition rates, with the intracellular calcein concentra-
tion after 2 min reaching 10–12 μM, a concentration
change fraction of about 0.05. ([calcein]extracellular =
200 μM.) Calcein efflux, however, is significantly greater
for pulses delivered at 1 kHz (like propidium influx).
The intracellular calcein concentration drops from
900 μM to 830 μM after the 1 Hz pulses, and to 660 μM
after 1 kHz pulses, with corresponding normalized con-
centration change fractions 0.08 and 0.27.

Fig. 5 Measured molecular transport for U-937 cells after 10, 6 ns, 20 MV/m pulses at 1 Hz and 1 kHz repetition rates. Pulse delivery begins at t = 5 s.

a YO-PRO-1 influx, (b) propidium influx, (c) calcein influx, (d) calcein efflux. Each curve represents three independent experiments with 20–34 cells

measured for each condition

Fig. 4 YO-PRO-1 (YP1), propidium (Pr), and calcein influx, and calcein

efflux after 10 pulses, 20 MV/m, 1 kHz repetition rate. Pulse delivery

begins at t = 5 s. n ≥ 30, in 3 experiments
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Membrane potential measurement with FluoVolt

Although current electroporation models assume that
the transmembrane potential following a permeabilizing
electric pulse exposure is effectively zero (cf. Introduc-
tion), the low level of calcein influx relative to YO-PRO-
1 and propidium influx and to calcein efflux is consistent
with a rapid, post-pulse reestablishment of the mem-
brane resting potential. The recovering transmembrane
potential, which is negative when the extracellular
medium is taken as the reference potential, 0 V, favors
the entry of cations into the cell but impedes the entry
of anions (and facilitates their efflux).
To examine this hypothesis more directly, membrane po-

tential measurements were carried out using the potential-
sensitive fluorescent dye FluoVolt [39]. Figure 6 shows the
measured fluorescence change after 1 and 10, 6 ns pulses at
1 Hz and 1 kHz repetition rates. Depolarization (fluores-
cence increase) is observed immediately after the pulse
exposure in each case. 10 pulses (at 1 Hz) cause more
depolarization than a single pulse. An initial partial recov-
ery is observed 5 s after the exposure (10 s into the record-
ing) in all cases. This partial recovery level is maintained for
about twenty seconds, after which the fluorescence inten-
sity returns to the pre-permeabilization level (less than 60 s
after permeabilization). The FluoVolt fluorescence response
after 10 pulses at 1 kHz — a much stronger permeabilizing
dose than 10 pulses at 1 Hz (Fig. 5) — is difficult to inter-
pret. It very likely indicates a more extreme disordering of
the membrane, and of the FluoVolt molecules embedded in
the membrane, which can no longer report in concert the
composite transmembrane potential.

Molecular transport in high K+ medium

To investigate further the contribution of membrane po-
tential to post-pulse transport, calcein and YO-PRO-1

uptake experiments were carried out in physiological
and high-potassium Tyrode’s solutions. Replacing so-
dium with potassium (145 mM K+) in the external
medium impedes the cell’s ability to maintain its normal
membrane resting potential [40]. High extracellular K+

also affects cell volume regulation [41], so it is essential
to take volume changes into account when calculating
the intracellular dye concentration. To reduce volume
change and minimize blebbing and other morphological
changes, we used a lower exposure dose (5, 6 ns, 20
MV/m pulses instead of 10), and we measured the cell
volume using confocal z-stack measurements with cal-
cein, as described in Methods. The average volume
change after a 10-pulse exposure is 30%, compared to
5–10% after a 5-pulse exposure, as shown in supplemen-
tal Additional file 1: Figures S2 and S3, respectively.
Figure 7 shows calcein and YO-PRO-1 influx with high

and physiological [K+], corrected for changes in cell vol-
ume. Five minutes after pulse delivery, calcein uptake is
3–4 times higher in high-K+ Tyrode’s than in standard
Tyrode’s, and YO-PRO-1 uptake is seven times lower,
consistent with a role for transmembrane potential in
driving the post-pulse transport of these charged species.

Discussion
Transport of charged small molecules across

electropermeabilized membranes

Large differences between calcein efflux and influx have
been reported previously [18, 42, 43], but without com-
ment on the possible significance of the observation. To
explain electroporation-induced cationic and anionic dye
influx into cells, and influx and efflux of the anionic dye
calcein, we propose that, contrary to the common as-
sumption that the transmembrane potential is effectively
zero after electroporation, the transport of charged sub-
stances across electropermeabilized membranes is driven
by both concentration gradients and electric potential
gradients. To our knowledge, although there are many
descriptions of the kinetics of post-permeabilization
membrane conductance, there are only two reports
containing measurements of post-permeabilization
membrane potential. One shows that the membrane
resting potential in a patch-clamped cell can recover to
at least 80% of its normal value within 90 s of the porat-
ing electric field exposure [14]. In the other, FluoVolt
fluorescence indicates significant repolarization of the
membrane within just a few seconds [28], consistent
with the FluoVolt data presented here, and with one the-
oretical model [24].
Even a small non-zero membrane potential can have a

large effect on the transport of charged molecules. To il-
lustrate this, we calculate the pore-mediated transport of
calcein using a simple electro-diffusive transport model.
The Nernst-Planck equation combines two components

Fig. 6 FluoVolt fluorescence change after exposure to a single pulse,

or 10, 6 ns, 20 MV/m pulses at 1 Hz and 1 kHz repetition rates.

Increased fluorescence indicates a decrease in the magnitude of the

transmembrane potential. Pulse delivery begins at t = 5 s
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of the current density, Js: diffusive (first term) and elec-
trophoretic (drift, second term) [44]:

J s ¼ −Ds

dcs

dx
þ
qezcs

kT

dψ

dx

� �

ð7Þ

where Ds is the diffusion coefficient, cs is the local con-
centration, qe is the elementary charge, z is the valence,
and ψ is the membrane potential. Thus, we define Jp,
electrodiffusive transport through a single cylindrical
pore (without any interaction of the solute with the pore
walls), as the sum of two corresponding components,
the diffusion term (Jdiffusion) and the drift term (Jdrift):

Jp ¼ Jdiffusion þ Jdrift ð8Þ

Jdiffusion ¼
π rpore

2Ds c

lpore þ
π rpore

2

ð9Þ

where rpore is the pore radius, lpore is the length of the
pore (4.5 nm in these calculations), and c is the concen-
tration difference from one side of the membrane to the
other. And,

Jdrift ¼
1
2
π rpore

2Ds c

lpore

qezVm

kT
ð10Þ

where Vm is the transmembrane potential.
Js,p, electrodiffusive uptake accounting for solute-pore

interactions can be described as [25, 32]:

J s;p pore−1 s−1
� �

¼ HK Jp ð11Þ

where H and K are hindrance and partitioning factors
respectively [32, 45] [Additional file 1].

The total solute transport for the entire cell mem-
brane, Js,m, can be represented by including the exponen-
tial factor Npore(t), the time-dependent number of pores.

Npore tð Þ ¼ Npore;0e
−t=τ ð12Þ

J s;m tð Þ ¼ J s;p Npore tð Þ ð13Þ

For illustrative purposes, we choose an initial popu-
lation of 6000 pores with a radius of 1.2 nm. The
number of pores decays exponentially with a time
constant τ = 50 s. These values, which fall within the
wide boundaries predicted by current models, were
chosen to produce a reasonable fit to our experimen-
tal data [see Additional file 1].
Given these not unreasonable assumptions, a trans-

membrane potential of − 6 mV produces calcein trans-
port (influx and efflux) comparable to our experimental
observations (Fig. 8). Note that the set of permeabilizing
structures in a real experimental population are very
likely much more complex than a homogenous popula-
tion of lipid pores with a single radius. For this example,
however, it is sufficient to consider that the effective
transport behavior is similar.

Visualizing membrane depolarization and repolarization

with FluoVolt

The immediate increase and subsequent rapid decrease
in FluoVolt fluorescence observed after a permeabilizing
pulse exposure is consistent with a pulse-induced
depolarization of the membrane followed by repolariza-
tion within seconds. This interpretation, however, must
be qualified. FluoVolt is an amphiphilic molecule with a
hydrophilic fluorescent reporter that is connected to a
hydrophobic electron-rich donor through a “molecular
wire” [39]. To respond linearly and monotonically to the
transmembrane potential, the FluoVolt molecule must
be oriented with its long axis perpendicular to the plane

Fig. 7 Influx in high and standard K+ Tyrode’s solutions after 5, 6 ns 20 MV/m pulses. (a) calcein (b) YO-PRO-1. Red arrows show the pulse

delivery time
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of the membrane, and the fluorophore end of the mol-
ecule must be located at either the extracellular or intra-
cellular face of the membrane, not both [39]. The
disorganization of the membrane caused by a porating
electric field very likely scrambles the orientation of the
FluoVolt molecules along with other membrane constit-
uents. For this reason, we cannot assume that FluoVolt
reliably indicates membrane potential after an electro-
permeabilizing event.

Modulating membrane potential and small molecule

transport with high-K+ medium

YO-PRO-1 influx into electropermeabilized cells is
greatly decreased in high-K+ medium, consistent with
the hypothesis that transmembrane potential contributes
to the post-permeabilization transport of charged small
molecules by driving drift (electrophoretic) currents,
both cationic and anionic.
Calcein influx, although greater in high-K+ medium, is

affected less than that of YO-PRO-1. This may result
from differences in molecular interactions of the two
dyes with the membrane. A potentially useful index for
these interactions is the molecular polar surface area
(PSA). The PSA, which is used in drug discovery appli-
cations to predict molecular transport across mem-
branes, is the sum of the surface areas of polar atoms in
a molecule. In general, the higher the polar surface area,
the lower the interaction with a lipid bilayer. Molecules
with high polar surface area tend to be impermeant.
Calcein’s higher polar surface area (230 Å2 versus 16 Å2

for YO-PRO-1) makes interactions with the membrane
less favorable [46].
We have previously observed a significant dissimilarity

in transport patterns for calcein and YO-PRO-1, and we

have suggested that the electrostatic modifications in the
membrane interface resulting from pulse-induced phos-
phatidylserine (PS) externalization [47–49] may in part
be responsible for polarized transport patterns that
were seen with YO-PRO-1 but not with calcein [50].
PS externalization may be partially blocked in high-K
+(145 mM) buffer [51, 52], which would affect YO-
PRO-1 transport more than calcein.

Electroporation models and the electropermeome

Electroporation models that predict diffusive molecular
transport based on evolution of a pore population that is
governed by a pore energy landscape have provided
mechanistic insights and guidance for investigations, and
in response have evolved over the last three decades to
accommodate experimental findings [25, 33, 53–56].
These models, to become not only descriptive but also
predictive, must address, among other things, their inabil-
ity to represent long permeabilization lifetimes in cells
[14, 57], unreconciled estimates of pore sizes [20, 32, 36],
and varying degrees and localization of permeability based
on transport molecule identity [50, 58–60]. The evidence
presented here indicates that electroporation transport
models must also include the drift component of post-
permeabilization electrodiffusion, which until now has
been considered to be negligible. This could be done by
adding a drift (electrophoretic) component to the model
transport equations, and by incorporating parameters for
the recovery of the transmembrane potential after the per-
meabilizing event.
It is very likely that the models will require further

expansion, additional transport terms, and more pa-
rameters, especially for accurate representation of the
long-lasting permeabilization observed with most elec-
troporation protocols. Candidates for these persistent
permeabilizing structures and processes include multi-
drug resistance protein channels and organic anion trans-
porters, which are known to transport small molecules
like calcein [61, 62], purinergic receptor channels [63],
transient receptor potential (TRP) channels [64], pannexin
channels [65], and other physiological components of a
cell under stress.
This call for a substantial overhaul of existing electro-

poration models reflects a recognition of the need to
accept and embrace the complexity of the system under
analysis. The physical model of electric-field-induced de-
fects in a dielectric shell is instructive and foundational,
but it cannot begin to represent a living cell responding
to the stress of abrupt osmotic imbalance, ion and me-
tabolite leakage, membrane depolarization, and the loss
of regulatory and structural compartmentalization. We
call all the electropermeabilization-induced transport
structures, and the resulting repair and restoration pro-
cesses, and all the associated transmembrane traffic, the

Fig. 8 Measured and calculated electrodiffusive calcein transport.

Solid lines are fit to the data shown in Fig. 4, using Eqs. 8–13, with

rpore = 1.2 nm, Npore,0 = 6000, τ = 50 s and Vm = − 6 mV. Dashed lines

show the same calculations with Vm = 0 mV
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electropermeome. This is complexity that evolves,
from the initial water defects and lipid pores observed
in lipid bilayers, to the largely unexplored effects of
porating electric fields on membrane proteins, to the
stress- and damage-related activation of multiple sig-
naling, repair, and reconstruction pathways that follow
the loss of membrane integrity and the disruption of
homeostasis [12].

Conclusions

Post-electroporation influx of the cationic dyes YO-PRO-1
and propidium, and efflux of the anionic dye calcein, are
all much greater than the influx of calcein after the same
permeabilizing electric pulse exposure. These observations
are consistent with a rapid recovery of the transmembrane
potential in electropermeabilized cells, and a significant
contribution from electrodiffusive transport. The kinetics
of membrane depolarization and repolarization monitored
with FluoVolt, and the effect of high-K+ medium on
cationic and anionic small-molecule transport provide add-
itional support for the hypothesis that post-electroporation
transport includes a significant drift (electrophoretic) com-
ponent, a feature not represented in current electropor-
ation models.

Additional file

Additional file 1: Cell volume change corrections and Electrodiffusive

calculations: Details of image processing methods used for cell volume

calculations and corrections; and detailed analytical calculations and

parameters used to generate Fig. 8. (PDF 1192 kb)
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