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1 Introduction

The analysis of thermal degradation of charring solids is complicated by the fact that the charring process results in the release
of gaseous combustible materials at the char-virgin material interface. Initially, the interface is at or near the surfaces of the
material being heated. Under these circumstances, it is often assumed that the gases are instantly expelled from the solid
material into the adjacent oxidizing atmosphere, permitting combustion to take place in the gas phase. However, if the process
goes on long enough, the interface will no longer be adjacent to the heated surfaces. The purpose of this document is to
outline the development of a mathematical model of the transport of gases through the char. In the next section the basic
equations and boundary conditions controlling the gas transport are derived. Following this, the model is used to study the
time-dependent thermal degradation of a semi-infinite charring material heated above the charring temperature. This one-
dimensional transient analysis is the simplest possible configuration for charring studies. A one-dimensional transient model
is also the local approximation currently used in multi-dimensional studies of flame spread over complex surfaces. Then, the
opposed flow flame spread over a plane surface treated by Atreya and Baum [1] is revisited. This permits the gas transport to
be studied in a configuration for which the temperature distribution is already known. It also removes an assumption about the
surface distribution of the gaseous fuel that was needed due to the absence of a physics based model of the transport process.

2 Gas Transport Model

The starting point for the analysis is the choice of dependent variables. Letρv denote the density of the virgin material, and
let ρc be the density of the char, whereρc < ρv. The lower char density is assumed to be caused by the creation of small void
spaces through which the evolved gases pass. The void fractionε is then given by the expression

ε = (ρv − ρc) /ρv (1)

The void fraction is an essential concept in what follows. In order to characterize the thermodynamic state of the gas in terms
of the usual density, temperature, and pressure, we need to haveρ denote the gas density per unit volume of spaceoccupied
by the gas. On the other hand, the velocity~u must be defined such that~m = ρ ~u is the local mass flux of gas through a
macroscopic surface element in the char. The notion of a macroscopic surface element arises because the char will be treated
as a continuum, with gas and solid matter coexisting in the volume occupied by the char. Adopting this approach means that
the equation expressing conservation of mass for the evolved gas takes the form:

∂ (ρ ε)
∂t

+∇ · (ρ ~u) = 0 (2)

The next step is to find a relationship between the local mass flux and the gaseous pressure gradient in the char. This is Darcy’s
Law, whose form can be justified by considering the relationship between mass flux and pressure drop in Poiseuille flow. The
discussion by Batchelor [2] gives a useful insight into the fluid mechanical basis for this relationship in studying the percolation
of water through ground soil. The argument needs to be modified for a gas percolating through the char [3]. A modified version
of Landau’s approach will be followed here. Consider the mass flux through a pipe of elliptical cross-section with semi-axesa
andb. Using the fact that the cross-sectional areaA of the pipe is given by the expressionA = πab, the relation between the
mass flux and pressure gradient takes the form:

~m = − (ab) A

4π (a2 + b2)

(
p∇p

µ(T )RT

)
(3)

Equation (3) shows that the local mass flux is composed of two parts; a shape dependent factor proportional to the cross-
sectional area of the pipe, multiplied by a term which is proportional to the gradient of the pressuresquared, and which depends
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only on the properties of the gas. The shape factor will have to be replaced by an empirical factor, since there is no way of
knowing the actual shape of the passages created by the gasification processes. Moreover, the shapes would be so complex
that it would be impractical to use the information even if it were available. The gas properties, however, can all be readily
measured if samples of the evolved gas can be obtained.

The final form of equation (3) comes from noting that the mass flux averaged over an area that is large compared with any
individual pore passage must account for the fact that only a fraction of the area of orderε(2/3) contains voids, if the char
density is related to that of the virgin material through equation (1). Thus, the form of Darcy’s law that will actually be used is:

ρ ~u = −ε(2/3)K

(
p∇p

µ(T )RT

)
(4)

The permeabilityK has the dimensions of an area. It is clearly an empirical parameter that characterizes the char as a porous
medium. Hopefully, a given virgin material will have a unique value ofK. The mass conservation equation, which controls the
transport of gases through the char then takes the final form:

∂

∂t

( p

RT
ε
)

= ∇ ·
(

ε(2/3)K p

µ(T )RT
∇p

)
(5)

Note that equation (5) is a parabolic equation, in contrast to the elliptic equation that results from using this kind of model to
represent liquid percolation phenomena. Moreover, the domain through which the evolved gases can percolate is not known in
advance, but must be determined as part of the solution for the associated problem for the evolution of the temperature field.

The boundary condition at the interface between the char and the virgin material can be stated as follows: Let~V be the local
velocity of the interface and~n be the unit normal to the surface defined with positive~n pointing into the virgin material. Then:

ε(2/3)K

(
p∇p · ~n
µ(T )RT

)
= (ρv − ρc) ~V · ~n (6)

Physically, equation (6) states that the rate at which evolved gases are created is equal to the product of the velocity of the char
front normal to itself multiplied by the density difference between the char and virgin material. Thus, all the mass lost to the
solid phase is taken up by the gas, with the pressure adjusting accordingly. Finally, at an impermeable boundary between the
char and an inert solid material, the gas cannot penetrate into the inert solid. Thus, if~ν denotes a unit normal to the impermeable
boundary:

∇p · ~ν = 0 (7)

3 Initial Transient

Consider an idealized scenario in which the temperature at the surface of a semi-infinite solid is instantaneously raised from an
initial ambient temperatureT∞ to a surface temperatureTs > Tp. Since the pressure field is determined by the temperature
distribution in the char and the virgin material, we consider this first. The analysis is very similar to that outlined in Ref. [1].
Let Tv(x t) be the temperature,λv be the thermal conductivity, andCpv be the heat capacity of the virgin material, with an
analogous notation in the char. Then:

ρcCpc
∂Tc

∂t
= λc

∂2Tc

∂x2
, 0 6 x 6 X(t) ρvCpv

∂Tv

∂t
= λv

∂2Tv

∂x2
, X(t) 6 x 6∞ (8)

Here,x = X(t) is the position of the interface between materials, withx measured from the heated surface. The boundary
conditions can be stated as follows: At the surfacex = 0, Tc = Ts. Far from the surface, the virgin material is at the ambient
temperature. Thus;Tv = T∞ asx→∞. Finally, at the interfacex = X(t), three conditions must be satisfied.

Tv = Tc = Tp λv
∂Tv

∂x
= λc

∂Tc

∂x
+ ρvX ′(t)Q (9)

The first two conditions require that the temperature at the interface is continuous and equal to the char formation temperature.
The final condition states that the heat flux transmitted from the char must supply an energyQ per unit mass of virgin material
to liberate the gas at the char front, with the excess conducted into the interior of the solid. Solutions satisfying the temperature
boundary conditions at the surface, interface, and in the interior can be obtained by noting that the absence of any independent
length or time scale implies that all physical quantities depend only on a similarity variableη, defined as:

η = x/
√

αv t αv = λv/ (ρvCpv) (10)



This implies that the interface position corresponds to a constant value ofη. Denoting this value asη = C, the interface position
can be expressed as:

X(t) = C
√

αv t (11)

The solutions satisfying the first two of equations (9) can be written in the form:

Tv = Tp F (η) F (η) =
T∞
Tp

+
(

1− T∞
Tp

)
erfc(η/2)
erfc(C/2)

(12)

Tc = Tp G(η) G(η) =
Ts

Tp
−
(

Ts

Tp
− 1
)

erf(η∗/2)
erf(C∗/2)

(13)

C∗ =
√

(αv/αc) C η∗ =
√

(αv/αc) η (14)

The parameterC that determines the location of the interface is found by requiring that the last of equations (9) be satisfied.
The result is identical with that obtained for the interface condition in the flame spread problem considered in [1]. In slightly
different notation it can be expressed as follows:

Q

Cpv (Tp − T∞)
=

λc

λv

(
Ts − Tp

Tp − T∞

)
f1 (C∗)− f1 (C) (15)

f1 (C∗) =
2√

π C∗
exp

(
−(C∗)2/4

)
erf(C∗/2)

(16)

We now turn to the calculation of the mass transport through the char. In what follows, it will be assumed that the interface
is endothermic. The mass transport and hence the pressure distribution is confined to a domain bounded by the interface
x = X(t) = C∗√αc t and the char surfacex = 0. The coefficients in equation (5) depend only on the variableη∗, while the
char interface and surface correspond to the fixed valuesη∗ = C∗ andη∗ = 0 respectively. Thus, it makes sense to assume that
the pressure is a function ofη∗ only. Denoting the pressure at the char surface byps, the pressure in the evolved gas is written
in the form:

p(x, t) = psP (η∗) (17)

Moreover, since the evolved gas viscosity is a function of temperature only, a reasonable assumption is thatµ/µp = (T/Tp)
n.

Using the solution for the temperature field obtained above, equation (5) takes the form:

β
η∗

2
d

dη∗
(P (η∗) /G (η∗)) +

d

dη∗

(
P (η∗) / [G (η∗)]n+1 dP

dη∗

)
= 0 (18)

β = (ε)1/3
αc µp/ (ps K) (19)

The boundary conditions at the interface and the char surface respectively take the form:

P
dP

dη∗
(η∗ = C∗) =

C∗

2
β (ρvTp) / (ρsTs) ≡M P (0) = 1 (20)

Equations (18) - (20) reveal some important physics, even before any solutions are obtained. Clearly, the parameterβ plays a
major role in the mass transport. Small values ofβ correspond to nearly instantaneous transport of the evolved gases from the
interface to the surface, with little accumulation in the interior of the char. Thus, models that postulate instant surface emission
of gases assume (whether consciously or not) that the material in question has small values ofβ. This includes virtually all
charring models developed to date. A natural starting point for the analysis of equations (18) - (20) is the observation that when
β = 0, an analytical solution can be found for any value ofM . Denoting the resulting pressure distribution byP = P (0), the
solution takes the form:

P (0) (η∗) =

(
1 + 2M

∫ η∗

0

[G(x)](1+n)
dx

)1/2

(21)

The integral in equation (21) represents the effect of the temperature dependence of the viscosity of the evolved gases. If it is
further assumed thatµ ∼ T so thatn = 1, the integral can be evaluated explicitly. Figure 1 shows how the pressure distribution
of the evolved gases in the char changes as the mass flux parameter increases, assuming that the transport parameterβ = 0.
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Figure 1: Evolved gas pressure distributionp/ps = P (0)(η∗) in char for different values of mass flux parameterM .
The solutions are valid for values of the transport parameterβ = 0. The remaining parameters areTs/Tp = 2, and
C∗ = 0.5.

Note that sinceP (0) represents a pressure normalized with respect to the ambient pressure at the char surface, the pressure rise
is quite significant. Thus, a linearized treatment of this equation would be very inaccurate.

The above solution, although derived forβ = 0 andM fixed, has a much wider range of validity. Indeed, if we writeM = βM̃

and treatM̃ as a large parameter withβ fixed, then it is easy to see that the same solution holds with an errorO
(
1/
√

M̃
)

. The

accuracy of the analytical solution has been confirmed by testing it against numerical results computed forβ = 1,M = 10, 100,
and1000. The errors are actually much smaller for the cases investigated than the error estimate. This is in fact the most realistic
case for this particular problem, sincẽM takes the form:

M̃ =
C∗

2
(ρvTp) / (ρsTs) (22)

In general,C∗ is a number of order one, as is the temperature ratioTp/Ts. However, the density ratio of the virgin wood to the
gas at the char surface will almost always be large. Finally, as will become evident in the next Section, the solution is also valid
for the pressure distribution in the opposed flow flame spread problem studied in [1].

4 Opposed Flow Flame Spread

The steady progression of a laminar flame over the surface of a combustible material into a stream containing the oxidizer is
one of the oldest and most well studied problems in combustion science. Any analysis of this problem requires the solution
of a coupled problem involving both the gas and condensed phases. Most of the research on this problem has focused on
the description of the combustion phenomena in the gas phase. The thermal degradation of the condensed phase material is
typically treated using a surface pyrolysis model coupled to a simple heat conduction analysis in the interior of the solid. There
has been almost no work on charring materials like wood, where the gaseous “fuel” is liberated at an interior surface whose
location must be found as part of the solution.

Figure 2 (taken from [1]) shows the overall geometry of the flame spread problem in a coordinate system moving with the
flame. While this paper will be concerned only with the condensed phase model, it is important to explain certain features
of the overall problem, in order to understand the sense in which the condensed phase analysis presented below represents
a solution. To begin with, it is assumed that the whole problem can be regarded as a steady state phenomenon in a frame of
reference moving with the flame speedV . The objective of the analysis is to determineV as a function of the material properties
of the solid fuel, the gaseous oxidizer, and the ambient speedU∞ of the opposed flow.



Figure 2:Schematic showing combined gas phase and condensed phase analysis for charring material. The char region
is shaded. Note that both the char and virgin material are heated upstream of the flame front.

Two simplifications are introduced that permit the gas phase and condensed phase analyses to be considered separately, with
the results of each analysis combined at the end to produce the desired results. First, it is assumed that there is no heat or
mass transfer between the gas and condensed phase upstream of the flame front. Note that this doesnot mean that there is no
pre-heating of the gas or solid. In fact, Figure 2 clearly shows that upstream conduction of heat plays a significant role in the
heat transfer process. Moreover, while the gas phase dynamics is not of interest here, it should be noted that both the flow
and temperature distributions depart from their ambient values ahead of the flame. The second assumption is that the surface
temperature of the char is uniform downstream of the flame front. This assumption yields an internally consistent coupled
solution to the heat transfer problem in both phases, provided that the first simplification is accepted. Specification of a value
for this temperature, together with all the material properties and upstream flow conditions, then uniquely determines the flame
speed.

Up to this point, all assumptions and simplifications are contained in the solutions described in [1]. However, that analysis
required a third major assumption, that relates the spatial distribution of the mass flux of gas liberated at the char-virgin material
interface to that at the surface. The analysis presented below removes that assumption, and replaces it with a physics based
model for the evolved gas transport. It will be demonstrated that the results obtained using this model are entirely consistent
with the earlier analysis, and thus complete the solution for the opposed flow flame spread over charring materials.

The starting point for the analysis is the representation of the steady state version of equation (5) in the coordinate system shown
in Figure 2.

V
∂

∂x

( p

RT
ε
)

=
∂

∂x

(
ε2/3Kp

µ(T )RT

∂p

∂x

)
+

∂

∂y

(
ε2/3Kp

µ(T )RT

∂p

∂y

)
(23)

Equation (23) must be solved subject to the following boundary conditions at the gas-solid interfacey = 0.

p (x, 0) = ps x > 0
∂p

∂y
(x, 0) = 0 x < 0 (24)

The boundary condition at the char-virgin material interface will be derived below. The first of equations (24) states that at
the surface of the solid, downstream of the flame front, the pressure must be the surface pressure (essentially ambient pressure
when the flow Mach number is small, as is the case here). This generates the flow of gasified fuel that supports the flame. The
second of these equations states that there is no mass flux of gasified fuel through the surface upstream of the flame front. If
this were not true, the flame would begin upstream of the origin, violating the geometry on which the analysis is based.



Solutions are obtained by recasting the problem in parabolic coordinates defined as follows (see Figure 2):

τ∗ + ı ω∗ =
√

αv

αc
(τ + ı ω) =

√
V

αc
(x + ı y) (25)

The isotherms shown in the figure are lines of constantω∗ (or constantω). The transformation is defined so that the branch
cut is taken to be the positivex axis. Thus,τ∗ = 0 on the negativex axis, andτ∗ = −

√
V x/αc on the positive x axis in the

char. The positivex axis corresponds toω∗ = 0. Assuming all physical quantities to be functions ofω∗ then ensures that the
gradient of all physical quantities in the solid is parallel to the surface forx < 0. Moreover, since the temperature and pressure
take on constant values forx > 0, assigning these values atω∗ = 0 completes the enforcement of the boundary conditions at
the gas-solid interface.

The next step is the transformation of the equations to parabolic coordinates, taking advantage of the fact that the pressure and
temperature depend only onω∗. Introducing the dimensionless variablesT = TpG (ω∗) , µ = µp (T/Tp)

n, andp = psP (ω∗),
the conservation of mass for the evolved gases takes the form:

2β ω∗
d

dω∗
(P/G (ω∗)) +

d

dω∗

(
P/ [G (ω∗)]n+1 dP

dω∗

)
= 0 (26)

Here,β = ε1/3αcµp/ (psK) is the accumulation parameter identified in the previous section in equation (19). A similar (but
less complex) analysis yields the analogous equations for the char temperature functionG (ω∗) and virgin material temperature
Tv = TpF (ω). It is clear from the discussion of the boundary conditions on the temperature that if the identificationω∗ = η∗/2
andω = η/2 is made, then the solutions for the temperature field given in equations (12) and (13) are also the solutions for
the flame spread problem. Since we also require thatP (0) = 1 to enforce the surface pressure boundary condition, if we can
demonstrate that the interface condition for the flame spread problem is identical with that shown in equation (20), then the
equivalence of the two problems is complete.

The mass fluxṁ of evolved gas at the interface is given by the expression:

ṁ = − (ρv − ρc)V~i · ~n = ε2/3K
p∇p · ~n
µ(T )RT

(27)

Here,~i is a unit vector in the flow direction, while~n is a unit normal to the interface pointinginto the virgin material. Since
the pressure and temperature are only functions ofω∗, the interface is a surface defined byω∗ = C∗. Then, introducing the
dimensionless pressureP and using the equation of state for the evolved gas in the formps = ρsRTs, the two expressions for
ṁ can be combined to yield the following condition at the interface:

P
dP

dω∗
= 2C∗ ρvTp

ρsTs
β (28)

This result is identical with that obtained in equation (20) of the previous section if we again make the identificationω∗ = η∗/2
and note that the value ofC∗ obtained here must satisfy the same condition.

This completes the identification of the solution of the one-dimensional impulsively heated problem with the solution of the
condensed phase portion of the opposed flow flame spread problem. The solution obtained in Ref. [1] assumed that the mass
flux of gas emerging at the interface moved along a curve of constantτ∗ without change until it reached the surface of the char
layer where it is oxidized by the gas to produce the flame. That is equivalent to assuming thatβ � 1 in the present analysis.
Thus, the analytical solution forP obtained in the previous section completes the solution obtained by Atreya and Baum, and
provides a self-consistent physics based model of opposed flow flame spread over charring materials.
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