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Abstract

Turbulence transportation across permeable interfaces is investigated using direct numeri-

cal simulation, and the connection between the turbulent surface flow and the pore flow is 

explored. The porous media domain is constructed with an in-line arranged circular cylin-

der array. The effects of Reynolds number and porosity are also investigated by compar-

ing cases with two Reynolds numbers ( Re ≈ 3000, 6000 ) and two porosities ( � = 0.5, 0.8 ). 

It was found that the change of porosity leads to the variation of flow motions near the 

interface region, which further affect turbulence transportation below the interface. The 

turbulent kinetic energy (TKE) budget shows that turbulent diffusion and pressure trans-

portation work as energy sink and source alternatively, which suggests a possible route for 

turbulence transferring into porous region. Further analysis on the spectral TKE budget 

reveals the role of modes of different wavelengths. A major finding is that mean convection 

not only affects the distribution of TKE in spatial space, but also in scale space. The per-

meability of the wall also have an major impact on the occurrence ratio between blow and 

suction events as well as their corresponding flow structures, which can be related to the 

change of the Kármán constant of the mean velocity profile.
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⟨⋅⟩
ca

  Conditional average

⋅
′  Instantaneous turbulent fluctuation

⋅̃  Form-induced fluctuation

⋅̂   Fourier transformation

u, v, w  Streamwise, wall-normal, and spanwise velocity

x, y, z  Streamwise, wall-normal, and spanwise direction

P, C, T ,Π, D
�
, �  Production, convection, turbulent diffusion, velocity-pressure diffusion, 

viscous diffusion, and dissipation

Lx, Ly, Lz  Dimension of the computation domain

Δx,Δy,Δz  Spatial resolution of the computation domain

H  Half height of the computation domain

h  Half height of the free flow channel

D  Distance between cylinders

D
c
  Diameter of the cylinders

u
p

�
,ut

�
  Friction velocities at permeable wall and top wall

⋅
+  Normalized by friction velocity and kinematic viscosity �

⋅
t+  Normalized by friction velocity of top wall and kinematic viscosity �

1 Introduction

Turbulent shear flows bounded by porous materials are encountered in various engineer-

ing applications such as transpiration cooling and additive manufacturing (3D printing). 

The success of additive manufacturing encourages the use of porous walls to achieve vari-

ous flow control purposes. Understanding and manipulating the influence of the porous 

characteristics (e.g., morphology, topology) on turbulence owns strong significance in 

industry (Bottaro 2019), serving for drag reduction (Gómez-de Segura and García-Mayoral 

2019; Li et al. 2020), enhanced heat transfer and mixing. Recent experiences show that as 

a high-fidelity numerical method, direct numerical simulation (DNS) enables microscopic 

visualization and analysis (Jin et al. 2015; Jin and Kuznetsov 2017; Chu et al. 2018, 2019, 

2020; He et al. 2018; Wood et al. 2020) in porous media, which is hardly achievable within 

experiments in such confined and tortuous spaces.

Existing experiments provide information about the optically accessible areas. The 

modulation of turbulence by a permeable surface has been confirmed in experiments with 

different configurations, such as turbulent open channel flows over porous media composed 

of spheres. Suga et al. (2017) investigated spanwise turbulence structures over permeable 

walls by using particle image velocimetry (PIV) measurements. Three different kinds of 

anisotropic porous media are constructed to form a permeable bottom wall of a channel. 

Their wall permeability tensor is designed to own a larger wall-normal diagonal compo-

nent (wall-normal permeability) than the other components and the spanwise turbulent 

structures are investigated. However, because of the difficulty in performing measurements 

inside the narrow and tortuous space, it is generally not easy to perform high-resolution 

measurement inside porous media (Kuwata and Suga 2016). Efstathiou and Luhar (2018) 

designed a boundary layer experiment over high-porosity foams ( � = 0.97 ), where the 

friction Reynolds number upstream of the porous section was Re
�
≈ 1960 . Mean statistics 

showed the presence of a substantial slip velocity at the porous interface ( > 30% mean 

velocity). While the magnitude of the mean velocity deficit increased with average pore 

size, the slip velocity remained approximately constant. Terzis et  al. (2019) examined 
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experimentally the hydrodynamic interaction between a regular porous medium and an 

adjacent free-flow channel at low Reynolds numbers. In their study, the porous medium 

consisted of evenly spaced micro-structured rectangular pillars arranged in a uniform pat-

tern, which enabled a direct measurement of the flow inside the porous structure. Guo 

et  al. (2020) investigate the velocity distribution for a high Reynolds number above and 

the inside porous media. A visual flume test bench is built to simulate porous media as an 

accumulation of spherical glass beads. They found that the thickness of the transition layer 

in the porous-medium region is not sensitive to changes in the Reynolds number increases 

with the growing porosity.

Direct numerical simulation (DNS) exhibits an edge of observing and analyzing turbu-

lent physics in a confined small space, such as turbulent flow inside a representative ele-

mentary volume (REV) of a porous medium (Chu et al. 2018, 2019; He et al. 2018). How-

ever, an adequate resolving of the smallest length scales of the flow in the interface region 

requires enormous computational resources. To limit the computational costs, appropriate 

modeling instead of direct resolving must be used in early years. Jimenez et  al. (2001) 

belong to one of the pioneers to perform DNS with a special boundary condition: They 

identified no-slip boundary conditions for streamwise and spanwise velocities and set the 

wall-normal velocity for the permeable wall to be proportional to the local pressure fluc-

tuations. The friction is increased by up to 40% over the walls, which was associated with 

the presence of large spanwise rollers.

Another approach is to describe the flow inside the porous structure with the volume-

averaged Navier–Stokes (VANS) equations (Whitaker 2013) and to couple them with the 

Navier–Stokes equations used for the free flow. Breugem and Boersma (2005) are one of 

the first to utilize this method. They found a decrease in the peak value of the stream-

wise turbulence intensity normalized by the friction velocity at the permeable wall and an 

increase in the peak values of the spanwise and wall-normal ones. This can be explained 

by large scale spanwise rollers originated from Kelvin–Helmholtz instability near a highly 

permeable wall. This process exhibits a significant contribution to the Reynolds-shear 

stress and leads therefore to a large increase in the skin friction, which is supported by the 

recent research of (Manes et al. 2011; Kim et al. 2018, 2020). Rosti et al. (2018) explored 

the potential of drag reduction by porous materials. They systematically adjusted the per-

meability tensor on the walls of a turbulent channel flow via VANS-DNS coupling. The 

total drag could be either reduced or increased by more than 20% through adjusting direc-

tional properties of the permeability. Configuring the permeability in the vertical direc-

tion lower than the one in the wall-parallel planes led to significant streaky turbulent struc-

tures (quasi 1-dimensional turbulence) and hence achieved a drag reduction. Recent studies 

achieved to resolve the porous media structures coupled with turbulent flows despite of its 

enormous computational costs. Kuwata and Suga (2016) used a Lattice-Boltzmann method 

(LBM) to resolve the porous structures coupled with turbulent flows. The porous media is 

composed with interconnected staggered cube arrays. The difference between a rough wall 

and a permeable wall is elucidated that turbulence is more isotropic near the porous wall 

due to the significant re-distribution effect of pressure fluctuation.

Despite numerous works have been conducted regarding flows over porous media, 

there are still a lot of open questions. The mechanism of turbulence transportation across 

the interface is still not fully understood, and the role of turbulent flow motions of differ-

ent scales in the transportation process is rarely inspected. The current study is intended 

to explore the process of turbulence transportation in both spatial and spectral domain 

with the interface-resolved DNS, which provides an adequate resolution of the flow field 

between the porous structure and the free-flow. The purpose is to find the physical links 
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between the geometrical feature of the porous media and the characteristics of the turbu-

lence transfer process at the permeable interface, which helps the design of porous struc-

tures that generate specific flow properties. The turbulent statistics acquired here can be 

also used to support different levels of modeling like large-eddy-simulation (LES), Reyn-

olds-averaged-Navier–Stokes (RANS) (Weihaupt et al. 2019; Yang et al. 2018, 2019) mod-

elling or modal-based reduced order modeling (Wang et  al. 2018, 2019a, 2019b). In the 

following, Sect. 2 will describe the numerical setup of the DNS cases. Section 3 introduces 

the basic statistics of the flow fields. Section 4 presents the TKE budget near the interface 

in both spatial and spectral domain, where the turbulence transportation process is thor-

oughly explored. Section 5 is devoted to the analysis of the instantaneous fluid exchang-

ing motions at the interface, i.e., blow and suctions events, which explains the variation of 

mean statistics with porosity. A conclusive remark will be given in Sect. 6.

2  Numerical Method

2.1  Simulation Method

The three-dimensional incompressible Navier–Stokes equations, given by Eqn.  1 and 

Eqn. 2, are solved in non-dimensional form, where Π is the corresponding source term in 

the momentum equation to maintain a constant pressure gradient in the flow direction.

The spectral/hp element solver Nektar++ (Cantwell et  al. 2011, 2015; Pandey et  al. 

2020) is used to numerically resolve the complex geometrical structures. The solver frame-

work allows arbitrary-order spectral/hp element discretizations with hybrid shaped ele-

ments. Both modal and nodal polynomial functions are available for the high-order repre-

sentation. The spectral-accurate discretization combined with meshing flexibility is optimal 

to deal with complex porous structures and to resolve the interface region. The time-step-

ping is treated with a second-order mixed implicit-explicit (IMEX) scheme. The fixed time 

step is defined with ΔT∕(h∕U
b
) = 0.0005 − 0.001 , where h is the half width of free flow 

channel and U
b
 is the averaged bulk velocity in the channel flow. A total of 10 flow through 

time is used for developing the flow and another 5 flow through times to collect statistics.

In the following discussion, the velocity components in the streamwise x-, wall nor-

mal y- and spanwise z-directions are denoted as u, v and w, respectively. Fig. 1 illustrates 

a two-dimensional x − y sketch of the simulation domain, where the dimensions are nor-

malized by half height H of the computational domain. The domain size Lx × Ly × Lz is 

100 × 20 × 8� , where the lower half −10 < y < 0 is the porous media domain and the 

upper half 0 < y < 10 is the free-flow channel. The porous media layer consists of circular 

cylinders arranged in-line. The porous layer consists of 50 cylinder elements in streamwise 

direction and 5 elements in wall-normal direction, which gives 250 elements in total. The 

distance D between two cylinders is fixed at L
x
∕50 = 2 in all cases. Two cylinder diameters 

(1)
�uj

�xj

= 0

(2)
�ui

�t
+

�uiuj

�xj

= −
�p

�xi

+
1

Re

�
2uj

�xi�xj

+ Π�i1
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D
c
= 1.6 and D

c
= 1 are given, corresponding to porosity � = 0.5 and 0.8, respectively, 

which is defined by the ratio of the void volume V
V
 to the total volume V

T
 of the porous 

structure. A no-slip boundary condition is defined for all surfaces of the porous structure 

(e.g., on the surfaces of the circular cylinders) as well as for the upper wall ( y = 10 ) and for 

the lower wall ( y = −10 ). Periodic boundary conditions are defined in x-direction between 

x = 0 and x = 100 . The second pair of periodicity is defined in the spanwise direction 

z = 0 and z = 8�.

The geometry is discretized with full quadrilateral elements on the x − y plane with 

local refinement near the interface, as shown by an illustration in Fig. 2. The third direction 

(z-direction) is extended with a Fourier-based spectral method. High-order Lagrange poly-

nomials through the modified base are applied within each elements. The numerical solver 

enables a flexible non-identical polynomial order based on the conforming elements, which 

offers enhanced meshing flexibility corresponding to different regimes according to prior 

knowledge. For instance, the polynomial orders of the elements in different mesh regions 

can be set as P = 7 in Ω
1
 , P = 7 in Ω

2
 and P = 3 in Ω

3
 (Fig. 2), corresponding to the chan-

nel, interface region and laminar porous media flow region.

2.2  Simulation Conditions

The characteristic parameters of the boundary layer for all simulation cases are summa-

rized in Table 1. Four cases are introduced here covering two porosities and two Reyn-

olds numbers. Cases with low and high porosity regions are differentiated with A and 

B in the case name, and the following number indicates the change of viscosity, hence 

Fig. 1  Cross section of the computational domain in the x − y plane. Depicted is a snapshot of the wall 

normal velocity v. The coordinates are normalized by the half height of the computational domain H = 10

Fig. 2  An illustration of compu-

tational elements in the compu-

tational domain, the polynomial 

discretization is not shown for 

clarity. The regions defined for 

the local polynomial refinement 

are Ω1,Ω2 and Ω
3
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the Reynolds number. The bulk Reynolds number in the channel flow is defined using 

the bulk averaged velocity U
b
 , channel half height h = 5 and kinematic viscosity � , i.e., 

Re = U
b
h∕� . The Reynolds number based on friction velocity is defined as Re

t

�
= u

t

�
�

t∕� 

and Re
p
� = u

p
��

p∕� , where u
�
 is the friction velocity, i.e., u

�
=
√
��

w
�∕� , and the super-

scripts t and p refer to the evaluation at the top wall and permeable wall of the channel, 

respectively. �t and �p denote the thickness of the boundary layers, and the border of 

them corresponds to the location of the maximum mean streamwise velocity.

An arbitrary instantaneous flow variable � can be decomposed as follows:

Equation 3 is Reynolds decomposition where the over bar ⋅ denotes temporal average, i.e., 

� = 1∕T ∫ T

0
�dt , and the prime denotes the instantaneous turbulent fluctuation. Eqn. 4 is 

the double-averaging decomposition, where the brackets ⟨⋅⟩ indicate intrinsic spatial aver-

age on a wall-parallel plane, which is defined as ⟨�⟩ = 1∕Af ∫Af
�dA , Af  being the fluid 

occupied area, and �̃ = � − ⟨�⟩ is the form-induced fluctuation. The spatial averaging can 

also be carried out as ⟨�⟩s = 1∕A
0
∫

Af
�dA , which is termed superficial area averaging, 

where A
0
 is the total area of fluid and solid.

From the time-averaged and x − z plane averaged momentum equation, the total shear 

stress can be written as:

where U = ⟨u⟩ is the mean streamwise velocity (Suga et al. 2020). At the top non-permea-

ble wall, Eqn. 5 can be simplified as � t
xy
= ��U∕�y , which is identical with the canonical 

turbulent channel flow, and the friction velocity can be obtained with ut

�
=
√

� t
xy
∕� . Close 

to the permeable wall, and geometry of pores leads to spatial heterogeneity of time-aver-

aged variables, so the dispersion stress ⟨ũṽ⟩ is non-zero. The total shear stress �
p

xy and fric-

tion velocity u
p

� =
√

�
p

xy∕� are measured at the crest height.

The non-dimensional mesh size in each direction Δx , Δy and Δz is given in Table 2. 

The superscripts (⋅)p+ and (⋅)t+ represent variables scaled by �∕u
p

�
 and �∕u

t

�
 , respectively. 

For instance, Δx
t+ = Δxu

t

�
∕� . The total mesh resolution ranges from 98 × 10

6 (case B1) 

to 485 × 106 for the high Reynolds number condition (case A2). On the top smooth side, 

the streamwise cell size ranges from 6.3 ≤ Δx
t+ ≤ 9.0 , where the spanwise cell size is 

kept constant at Δx
t+ = 4.9 . This resolution is comparable with other DNS of channel 

flow (Lee and Moser 2019). On the porous media side, the spanwise resolution Δz
p+ is 

(3)�(x, t) = �(x) + ��(x, t)

(4)= ⟨�⟩(y) + �̃(x) + ��(x, t)

(5)�xy(y) = �
�U

�y
− �⟨u�v�⟩ − �⟨u⟩⟨v⟩ − �⟨ũṽ⟩,

Table 1  Summary of boundary 

layer parameters for all the cases
Case � U

b � Re u
p

�
Re

p
�

Hp
u

t

�
Re

t

�
H

t

A1 0.50 4.36 5.92e-3 3680 0.33 335 1.50 0.28 193 1.61

B1 0.80 2.98 5.92e-3 2519 0.42 503 1.43 0.22 123 1.78

A2 0.50 4.62 2.96e-3 7804 0.33 667 1.49 0.27 367 1.46

B2 0.80 3.02 2.96e-3 5088 0.41 979 1.44 0.20 231 1.44
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decreased due to the higher u
p

�
 as given in Table 1. The resolution in the other directions 

Δx
p+ and Δy

p+ is, however, enhanced by local mesh refinement (Fig.  2), specially the 

streamwise one ( 2.2 ≤ Δx
p+ ≤ 3.5).

3  Basic Properties of the Flow Fields

3.1  Mean Statistics and Fluctuation

In this section, the mean statistics of different cases will be compared to understand the 

effect of interface characteristics and Reynolds number.

Fig. 3 shows the mean streamwise velocity U profiles, where U = ⟨u⟩ . The inner-scaled 

U
+ profiles of both sides are compared in Fig. 3a, which are normalized by friction veloci-

ties of the porous wall u
p

�
 or top wall ut

�
 , correspondingly. All the velocity profiles on the 

smooth top wall (dashed lines) follow the linear and log law fairly well regardless their 

difference in porosities and Reynolds numbers, which indicates a marginal influence of the 

porous media on this side. On the other hand, the velocity profiles above the permeable 

wall differ significantly from the canonical boundary layer profiles. The U+ profiles of the 

Table 2  Summary of simulation details for all the cases

Case Total mesh Num. of ele-

ments on xy 

plane

Number of 

modes in z

Polynomial 

order ( P
Ω1

 , P
Ω2

 , 

P
Ω3

)

Δx
t+ Δyt+ Δz

t+ Δx
p+ Δy

p+ Δz
p+

A1 133 × 10
6 16206 240 (5,5,3) 6.3 0.43 4.9 2.2 0.38 5.7

B1 98 × 10
6 25441 240 (4,4,4) 7.9 0.47 4.9 3.0 0.45 7.2

A2 485 × 106 16206 480 (7,7,3) 9.0 0.61 4.9 3.0 0.53 5.7

B2 406 × 10
6 25441 480 (7,7,4) 9.0 0.54 4.9 3.5 0.51 7.2

Fig. 3  Mean streamwise velocity profiles U. a U+ profiles above the porous wall and smooth wall. The U+ 

profiles are normalized by the friction velocities of their respective side, i.e., u
p

�
 and ut

�
 ; b Ut+ profiles of the 

whole domain normalized by the friction velocity of the top wall ut

�
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porous media side are much lower than the smooth wall side, owing to the increase in the 

friction velocity u
p

�
 . Moreover, the friction velocity u

p

�
 shows an increase around 32% from 

low porosity cases (A1 and A2) to the high porosity ones (B1 and B2), resulting in a much 

lower magnitude of U+ for the latter.

It is also noted that the slope of the logarithmic region is severely changed for the per-

meable side. To illustrate this more clearly, Fig. 4 shows the log-law diagnose function, 

Ξ = (y + d)+dU+∕dy+ , whose constancy implies the presence of a logarithmic layer in the 

mean velocity profile (Pirozzoli 2014). The location of the zero-plane displacement, d, and 

the von Kármán constant � of the wall-bounded flow is determined by fitting U(y) profile to 

the logarithmic law,

where B is the intercept of the logarithmic profile. The diagnose function Ξ above the 

smooth wall meet with the canonical value of 1∕� = 1∕0.4 in the region y+ ≈ 50 − 100 for 

the low porosity cases (A1 and A2), Fig. 4a. The logarithmic region for case B1 and B2 

is not wide enough to execute the fitting process due to their very low Reynolds number. 

As to the permeable wall side, the fitted value of � is 0.26 and 0.32 for cases A1 and A2, 

respectively, which is smaller than that of the impermeable wall. This result is consistent 

with previous works (Breugem and Boersma 2005; Kuwata and Suga 2016). In contrast, 

for cases B1 and B2, the value of � is much higher than 0.4 for the smooth wall. This is 

rarely seen in previous studies, but can be related to the work of Kametani and Fukagata 

(2011) where they found that � increases with the strength of suction on the wall. It is rea-

sonable to infer that suction motion might dominate the momentum exchange at the inter-

face for cases B1 and B2. This conjecture will be verified in the later discussion in Sect. 5.

The velocity profiles Ut+ in the entire domain are shown in Fig. 3b, which are normal-

ized by the friction velocity of the smooth wall side ut

�
 . There are several important dif-

ferences between the low and the high porosity cases. First, the thickness of the bound-

ary layer is larger for walls with higher permeability, indicating a larger impact area 

in the channel. Second, the velocity within the porous media increases with porosity 

(6)U+ =
1

�

log(y + d)+ + B

Fig. 4  The log-law diagnose function for the U+ profiles near the a smooth wall and b porous wall sides
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� . Third, the velocity in the vicinity of the interface is negative with a small value for 

cases A1 and A2, which is related to the recirculation region between the cylinders. 

In contrast, the velocity above the smaller cylinders (cases B1 and B2) is monotonic, 

indicating an absence of such a rotational region. This will be more clearly shown in the 

later discussion. Increasing the Reynolds number, the magnitude of the Ut+ within the 

porous media is enhanced, which may indicate more active momentum exchange near 

the interface.

The contours of the time averaged velocities u and v of the interface region are 

depicted in Fig. 5. A pair of counter-rotating vortices are observed between two circular 

cylinders in the low-porosity cases A1 and A2 (Fig. 5a, c), which is absent in the high-

porosity cases (Fig. 5b, d). The recirculation induced by the vortices leads to the back-

flow near the interface of the U profile (Fig. 3b). The upper vortex is driven by the main 

stream velocity and restricted by the narrow void between cylinders, which results in a 

classical lid-driven cavity flow here. The upper and lower vortex are separated by the 

narrow throat between the cylinders, which blocks the convection from below. In com-

parison, the mean streamwise and vertical velocity within the porous media are higher 

in case B1 (Fig.  5b) and B2 (Fig.  5d). Between two neighbouring cylinders, a blow 

event (positive v ) is followed by a suction event (negative v ) in the downstream direc-

tion, which exchanges fluid between the interface and positions below the cylinder.

The wall normal variation of turbulent kinetic energy (TKE) and Reynolds shear 

stress, i.e., ⟨u�
i
u�

j
⟩t+

s
 , are depicted in Fig. 6, which are averaged in x − z plane and normal-

ized by ut

�
 . Note that the subscript s denotes superficial area averaging (see definition in 

Sect. 2.2). For the cases studied, all the components of the TKE and the Reynolds shear 

stress are intensified on the porous media side compared to its counter part of the non-

permeable wall, and the high porosity cases (B1, B2) have even higher magnitude than 

the lower ones. Increasing the Reynolds number results in a further increment of all four 

Reynolds stress components.

Fig. 5  Ensemble averaged velocity fields u (row 1) and v (row 2). Column a: case A1; Column b: case B1; 

Column c: case A2; Column d: case B2. The wall normal origin is set at the crest of the cylinders. Stream-

lines are superimposed for a comparison
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Despite sharing similar features above, the high and low porosity cases show clear dif-

ferences at the interface and below. For cases A1 and A2, the TKE components approach 

zero quickly as moving from the permeable interface into the porous media domain, which 

suggests that disturbances in the free-flow result only in a marginal penetration into the 

porous media domain. In contrast, turbulent fluctuations are still relatively energetic below 

the interface for cases B1 and B2. The streamwise component ⟨u�u�⟩t+

s
 shows a periodic 

distribution in the porous media domain due to the blockage of the cylinders, while the 

other two components show a smooth descending trend as moving toward the bottom wall. 

Nevertheless, the Reynolds shear stress ⟨u�v�⟩t+

s
 becomes quite weak below the first row of 

cylinders for all the cases.

To show the spatial variation of TKE and Reynolds shear stress, contours of u
′
u
′ , 

v
′
v
′ , w′

w
′ , u′v′ close to the permeable interface are depicted in Fig. 7. The magnitude of 

u
′
u
′ fades quickly below the porous bed in all four cases. As for v′v′ , w′

w
′ , and u′v′ , the 

momentum flux represented by these terms has a deeper impact region in the high porosity 

cases. A positive peak of the Reynolds shear stress u′v′ is observed at the impinging posi-

tion B in all four cases, which differs from the negative Reynolds shear stress above the 

porous bed. For cases B1 and B2, an area of positive Reynolds shear stress reaches even 

below the first layer of cylinder. As will be discussed in Sect. 4, these positive u′v′ regions 

will enhance the energy exchange at the interface region.

3.2  Spectral Analysis of Turbulent Kinetic Energy

In addition to the one-point statistics, the porous media may also change the energetic scale 

in the free flow, which further influences the sustaining process of turbulence. Fig. 8 shows 

one-dimensional pre-multiplied spectra of turbulent kinetic energy kxq̂/kzq̂ as a function of 

the streamwise/spanwise wave lengths �
x
, �

z
 and wall distance yt+ . Here, ⋅̂ stands for the 

Fourier coefficients that have been transformed in x- or z-direction. The wave length �
x
 

and �
z
 are normalized with the distance between two cylinders (pore unit length) D. The 

streamwise spectra are averaged in time and spanwise dimension, while spanwise spectra 

are averaged in time and streamwise dimension. The spectra above the non-permeable wall 

are superimposed (as solid lines) on the spectra above of permeable wall (color contour) 

for comparison.

A series of high-energy spikes are observed in the streamwise spectra of all cases, 

which are originated from the porous wall and reach as far as yt+
≈ 60 . The wave length of 

Fig. 6  Superficial area averaged 

Reynolds stresses ⟨u�
i
u
�

i
⟩t+

s
 nor-

malized by the friction velocity 

u
t

�
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the spikes feature a series of harmonic waves with a maximal wave length of the pore unit 

length D, which indicates these spikes stand for the highly regulated fluctuation stemming 

from the porous units. In addition to the spikes, the remaining of the spectra represents 

the energy of ‘background’ turbulence. In cases A1 and A2, the peak of the ‘background’ 

spectra above the porous wall is �t+

x
≈ 150 in inner scale at yt+

≈ 20 , which is slightly 

smaller than �t+

x
≈ 200 of the smooth wall side. In case A2, with higher Reynolds number, 

there is a strong trend that the peak the ‘background turbulence’ spectra is synchronized 

with the porous unit spikes. The energy concentrates between �
x
≈ 2D or �t+

x
≈ 400 and 

�
x
≈ 0.2D or �t+

x
≈ 40 . For the cases B1 and B2, the turbulent spectra also bias toward 

spikes at �
x
≈ 1 ∼ 2D obviously, especially for the high Reynolds number case B2. Moreo-

ver, energetic peaks at large scales �
x
≥ 10D are observed for spectra on both sides that 

correspond to shear instability eddies (Breugem and Boersma 2005). It appears that the 

Fig. 7  Contours of the Reynolds stress components u′
i
u′

j
 . Rows 1-4 are u′u′ , v′v′ , w′

w
′ , and u′v′ , respec-

tively. Column a-d represent cases A1, B1, A2, and B2, respectively. The four positions A, B, C, and D in 

(c1) indicate the positions of the cylinder array gap, the impinging position ( 45◦ upstream), the top of the 

cylinder, and the separation position ( 45◦ downstream), respectively
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periodic fluctuations originated from the permeable wall perform as an additional source 

in the energy cascade of turbulence. By introducing additional energetic modes into the 

spectra, the porous wall can efficiently biased the peak of streamwise spectra toward the 

pore unit length.

In contrast to the streamwise spectra, spanwise spectra are less affected by the periodic 

porous units. The spanwise spectra of cases A1 and A2 show basically identical pattern on 

the permeable and non-permeable side, with inner peaks at �t+

z
≈ 100 ( �z∕D ≈ 1 for case 

A1 and 0.5 for case A2). This is consistent with the value of a canonical wall-bounded flow 

(Wang et al. 2019a). In contrast, cases B1 and B2 biased from the spectra of a wall-bounded 

flow, with a considerable portion of energy residing at large scale modes �z∕D ≥ 5 . In the 

meantime, the inner-scaled energetic modes �t+

z
≈ 100 ( �z∕D ≈ 1.3 for case B1 and 0.7 for 

case B2) remain strong till outer layer of the boundary layer ( y+ > 200).

The TKE spectra show the significant impact of porous media on scale energy, espe-

cially for the streamwise modes. This indicates that the coherent structures above the 

porous media can be quite different from those of a canonical wall-bounded flow in terms 

of length scale and evolution dynamics. Further effort is needed to shed light on this 

problem.

4  Turbulent Kinetic Energy Budget

4.1  Profiles of TKE Budget Terms

In this section, the budget of TKE will be analyzed in detail to visualize the turbu-

lence transport under the impact of the porous wall. Derived from the momentum 

equation, the Reynolds-averaged transport equation for the turbulence kinetic energy 

q = (u�2 + v�2 + w�2)∕2 can be written as:

Fig. 8  Pre-multiplied one-dimensional TKE spectra. Row 1: kxq̂(�x) ; Row 2: kzq̂(�z) . Column a-d repre-

sents the cases A1, B1, A2, and B2, respectively. The color contours are the energy spectra from the porous 

media side, while the solid isolines representing spectra of the non-permeable side which are superimposed 

as a reference
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with

The terms defined above in Eqn.(8) are convection C, turbulence production P, turbulent 

diffusion T, velocity-pressure-gradient Π , viscous diffusion of turbulent kinetic energy D
�
 

and turbulence dissipation � , respectively. To show the transportation of energy in the wall-

normal direction, budget terms averaged in wall-parallel planes (superficial average ⟨⋅⟩
s
 ) 

are depicted in Fig. 9. Note that spatial-averaged budget terms shown here are originated 

from Eqn.(7), which only considers turbulent fluctuations and does not involve dispersion 

effect. Focus is set here on the permeable interface, since the energy budget over a non-

permeable wall is well known. The behavior of production and dissipation is quite similar 

for all cases. The peak of production ⟨P⟩
s
 is slightly above the crest of the cylinders, while 

the peak of dissipation ⟨�⟩
s
 is even closer to the permeable wall. For the low porosity cases 

(A1, A2), production ceases below the throats of the first layer of cylinders. In contrast, 

there is still active production below the first layer of cylinders in case of small cylinders 

(B1, B2). In addition, there is a negative ⟨P⟩
s
 peak slightly below the main positive peak 

(7)
�q

�t
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�
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Fig. 9  Distribution of TKE budget close to the permeable interface. The terms are spatially averaged on 

x − z plane. The y origin is set at the crest of the cylinders. Subfigures a, b, c and d correspond to cases A1, 

B1, A2 and B2, respectively



178 X. Chu et al.

1 3

in Fig.  9b and d, which corresponds to the strong positive Reynolds shear stress u′v′ at 

the up-front surface of the cylinders (Fig. 7b4, d4). The mean production then turns to be 

positive below the negative peak due to the contribution of lower surface of the small cyl-

inders. A more detailed illustration of the spatial distribution of P will be given in the next 

subsection.

For the wall-normal transportation of TKE, the behavior of the large cylinder cases is 

similar to a non-permeable wall. As the strong mean vortex and fluctuation at the inter-

face is confined in the cavity above the cylinder gap (Fig. 5a,c and 7a,c), the TKE flux can 

hardly reach below that. In contrast, the high porosity cases show active wall-normal trans-

port in both the free flow and in the porous media region. Nearby the interface, turbulent 

and viscous diffusion transport TKE from the production peak both up to the free flow and 

down to the first layer of cylinders, while pressure transportation carries a large fraction of 

TKE from a high position (up to 1D above the crest height) into the porous domain, which 

is the similar to the low porosity cases. The mean convection ⟨C⟩
s
 carries a small portion 

of TKE from top half of cylinder to both directions. Below the first layer of cylinders, the 

turbulence produced at the lower surface of the cylinders is transported to the crest of the 

second row of cylinders through turbulent diffusion, then deeper inside the porous media 

by pressure transportation. This shows a clear picture that TKE is carried to the inside of 

porous domain by turbulent diffusion and pressure transportation alternatively.

4.2  Spatial Distribution of TKE Budget Terms

The profiles of spatial-averaged budget terms reveal the route of TKE transportation in 

wall-normal direction. To illustrate the transportation of turbulent fluctuation on the x − y 

plane, Fig. 10 shows contours of budget terms of TKE near the interface. For all the cases, 

the bulk of production P locates above the cylinder array, and mostly between the cylin-

ders. Negative production areas are found attaching the up-front surfaces of the cylinders, 

which can be related to the positive Reynolds shear stress there (Fig. 7a4–d4). The high 

porosity cases have an additional positive region attaching the lower surface of the first 

layer of cylinders, in consistency with the observations made in Fig. 9b,d.

The second row of Fig. 10 shows complex spatial distributions of the mean convection 

C in the streamwise direction. In the high porosity cases B1 and B2, the energy is extracted 

from the upstream position of the cylinder to the downstream, and the streamwise length 

scale of the source/sink area is roughly the diameter of the cylinder D. There is also a 

strong source attaching the lower surface of the cylinders, which corresponds to a strong 

vertical mean velocity v and fluctuation v′v′ there (see Figs. 5b2, d2, and 7 b2, d2). For the 

cases A1 and A2, the structures of the convection C are smaller and weaker, suggesting a 

marginal impact on the energy flux.

The patterns of the turbulent diffusion term T (3rd row of Fig.  10) and the pressure 

transportation term Π (4th row of Fig. 10) are roughly the same with the production P and 

the convection C, but with different sign. For example, both T and Π have strong sinks 

locating between the cylinders and sources at the up-front surface of the cylinders, which 

are the opposite of P and C. For T in case B1 and B2, there is an additional sink attaching 

the lower surface of the cylinder, corresponding to the source area in P and C. These obser-

vations demonstrate that T and Π are re-distributing energy in space and smoothing out the 

non-homogeneity introduced by P and C, which is originated from the circular geometry of 

the cylinders.
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Fig. 10  Contours of the energy budget terms. From above to below are production P, convection C, turbu-

lent diffusion T, velocity-pressure-gradient Π , viscous diffusion of turbulent kinetic energy D
�
 , turbulence 

dissipation � , normalized with the spatial maximum of P 
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The fifth row of Fig. 10 reflects that the gradient in wall-normal direction dominates the 

viscous diffusion term D
�
 . In all four cases, a negative layer lies on top of the positive one sur-

rounding the upper surface of the cylinders, which shows that the TKE is diffusing from the 

strong production area to the interface due to viscosity. The magnitude of D
�
 is relatively low 

compared with T and Π , and its impact in the porous domain is negligible. The dissipation of 

energy � in the last row of Fig. 10 is observed with its minimum on the top side of the cylin-

ders, suggesting most TKE is dissipated above the interface before reaching inside the porous 

domain. The high porosity cases show larger dissipation below the interface, which proves 

indirectly that more energy is transported to the porous domain.

With the discussions above, it is clear that the high porosity cases enhance the exchange 

of energy between the free flow and porous media. This is realised in three folds. Firstly, the 

geometry of the small cylinders allows additional production peaks below the cylinders. Sec-

ondly, the mean convection enhances the vertical transport, which brings the energy at the 

interface to the inside of the porous domain. Thirdly, turbulent diffusion T and pressure trans-

portation Π homogenize the energy distribution in the spatial space, which enables the TKE to 

be carried further to the porous domain.

4.3  Spectral Analysis of Energy Budget

The spatial transportation of TKE near the interface has been illustrated in previous subsec-

tions. The inter-scale energy transfer may also be affected by the porous wall. As shown in 

Sect. 3, the spanwise spectra are less effected by the periodic geometry of the porous wall. 

Therefore, it is more reasonable to conduct spectral TKE analysis in spanwise as the fluctua-

tions are homogeneous in this direction without the influence of local energetic spikes. Fol-

lowing Mizuno (2016), Lee and Moser (2019), spectral analysis of the energy transport equa-

tion is conducted. The budget equation of the spectral TKE q̂ = |û|2 + |̂v|2 + |ŵ|2∕2 is given 

by:

where

(9)
�q̂

�t
+ Ĉ = P̂ + T̂ + Π̂ + D̂� + �̂,
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In the equations above, ⋅̂ denotes the Fourier-transformed coefficient, the superscript 

 denotes the complex conjugate and the overlines ⋅ denote averaging in time. Fig. 11 

shows pre-multiplied spanwise spectra of the turbulent kinetic energy budget, i.e., P̂ , Ĉ , 

T̂  , Π̂ , D̂� and �̂  at different streamwise locations for the case A2. Columns a-d denote 

four streamwise locations A, B, C, and D, respectively, which are illustrated in Fig. 7. 

The other cases are not shown here due to their similarity.

The most significant contribution of production P̂ comes from position B (Fig. 11b1), 

i.e., the upper-front surface of the cylinder. The peak of the P̂ locates at �z∕D = 0.6 

( �+
z
= 120 ) close to the surface, and the length scale of production mode increases with 

wall normal height y. The position of the peak and the growing trend are also shared by 

other three positions and agree with the observation in channel flows by Lee and Moser 

(2019). Note that at position A, where there is no solid surface below, the y-position 

of the peak is still similar with the other positions. On the other hand, the spectrum at 

position D is detached from the surface. This illustrates that the turbulence production 

process above the interface is mostly unchanged comparing to canonical channel flows 

(Mizuno 2016). However, differences can still be seen among different streamwise posi-

tions. At positions B and C, negative production modes are found at the large scale part 

( �z∕D > 1 ) close to the solid surface, resulting in a energy sink there. In other words, 

energy are extracted from the TKE to the mean flow through its interaction with struc-

tures of large spanwise scale.

The convection spectra Ĉ reflect the change of scale energy due to spatial convection. 

At position A (Fig. 11a2), the modes are found to be mostly negative for y∕D = 0 ∼ 0.2 

and positive below, suggesting the TKE are convected to the porous domain at the gap. 

On the other hand, spectra Ĉ at positions B and C show a complex scenario (Fig. 11b2 

and c2) with positive and negative modes appearing at the same y-positions. It should 

be noted that these negative and positive patches in the convection spectra are caused 

by spatial convection rather than inter-scale energy transfer, referring to Eqn.  (10). In 

fact, the modes of different signs indicate convection discriminate the structures by their 

scale. The negative patch at small scale modes at position B are losing energy to the 

downstream (position C), while the strong positive modes at position B are receiving 

energy from position C due to the re-circulation. At position D, the negative modes are 

detached from the solid wall with no significant positive mode around, suggesting the 

energy is mainly convected downstream.
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Similar to the production spectra, the spectra of turbulent diffusion T̂  (Fig.  11a2–d2) 

also mimic those in channel flows. It can be observed from the spectra that mainly two 

roles are played by T̂  . First, close to the fluid–solid interface ( y∕D = 0 ), TKE is trans-

ported vertically from the sources in the production spectrum P̂ (e.g., positions A, B, D) or 

convection spectrum Ĉ (e.g., position C) to lower and higher y-positions. Second, at higher 

positions ( y∕D > 0 ), the recipient and donor modes almost balance at each y position, sug-

gesting inter-scale energy transfer is the dominant transfer scheme there.

The pressure–strain interaction is another important mechanism for spatial trans-

portation of energy. Compared to the other terms, the pressure spectra show almost no 

Fig. 11  Spanwise spectral TKE budget for case A2. Rows 1-6 are P̂ , Ĉ , T̂  , Π̂ , D̂� , and �̂  , respectively. Col-

umns a-d denote four streamwise locations A, B, C, and D, respectively, which are illustrated in Fig. 7. The 

area occupied by the cylinder is masked by gray patches
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discrimination of signs on scale, suggesting that it is only affected by the spatial distribu-

tion of the TKE. At position A (Fig. 11a4), pressure transport changes sign alternatively 

as y decreases from y∕D = 0 , which delivers energy deeper below the interface. For posi-

tion B, the pressure transportation spectrum in Fig. 11b4 counteracts the effect of convec-

tion to some extent, with an intensive negative patch around y∕D = 0 and a positive layer 

attached to the surface of the cylinder. The spectrum at position C is mainly positive, corre-

sponding to the negative modes at position B, which suggests that energy is brought down-

stream by pressure transportation. The spectrum at position D features only weak positive 

modes.

In the fifth row, the viscous diffusion spectra D̂� show only a small magnitude in all four 

locations with no distinction between different scales. Energy is transported from the flow 

toward the solid surface. In the last row, the peaks of the dissipation spectra �̂  are seen at 

approximately �z∕D = 0.4 or �+
z
= 80 at y∕D ≈ 0 . This scale of the peak dissipation is 

smaller than that of the production and is consistent with the scale in channel flows (Lee 

and Moser 2019).

In summary, the observations above show that the spanwise scale of energy transfer, 

e.g., production scale and dissipation scale, persists despite the presence of a porous wall. 

In the meantime, the transportation terms Ĉ , T̂  and Π̂ are significantly complicated by the 

geometry of the porous wall. Besides the turbulent diffusion terms, the convection terms 

can also change the local scale energy. The importance of the pressure term should also be 

stressed as it plays an important role in the vertical transportation of energy.

5  Blow and Suction Events

5.1  Quadrant Analysis

One of the essential differences between a porous wall and a non-permeable wall is that, 

the permeable wall allows fluid exchange between both sides. Therefore, it is necessary 

to evaluate the behavior of such a mass transfer. The probability density functions (PDF) 

of the fluctuations, u′ and v′ , at different y− (wall-normal) positions are shown in Fig. 12. 

The streamwise coordinate of the events is chosen to be in the middle of the cylinders, 

i.e., aligned with point A in Fig. 7. As defined in Wallace (2016), the combination of the 

fluctuations can be classified into four categories, Q
1
 ( u′ > 0, v

′
> 0 ), Q

2
 ( u′ > 0, v

′
< 0 ), 

Q
3
 ( u′ < 0, v

′
< 0 ), and Q

4
 ( u′ < 0, v

′
> 0 ), which is illustrated in Fig. 12a. The Reynolds 

number only has a marginal influence on the distribution; thus, only cases A2 and B2 are 

compared. Within the porous media ( y∕Dc = −1 , Fig. 12a), both A2 and B2, show large 

amounts of Q
2
 and Q

4
 events. Case B2 also exhibits quite a number of Q3 events. The most 

possible event for both cases is with positive v′.

At the gap between two cylinders in the first layer ( y∕Dc = −0.5 , Fig. 12b), the PDF of 

case A2 exhibits a ‘tear drop’ shape, where the most probable event locates at v′ > 0 . This 

means a more frequent observation of blow events at the gap. The longer tail of v′ > 0 also 

suggests the blow event can be intensive. The PDF of the case B2 also shows little skew-

ness in the u′ axis, but the most probable point poses a negative v′ , i.e., a suction event. 

This difference may explain the deviation of � of the mean profiles. It is shown by Kam-

etani and Fukagata (2011) that � increases when there is a uniform suction on the wall and 

decreases when there is a blow. This is similar to the current observation. A ejection would 
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bring the low speed flow from inside the porous domain to the free flow, which increase the 

velocity deficit between wall and center of the channel. The slope of U(y) thus increases, 

which corresponds to a decrease of � . In the opposite, the slope of U(y) decreases when the 

fluid near the wall is absorbed into the porous domain. The explanation for the preference 

of blow/suction events is still unveiled and need further investigation.

For positions at or above the interface ( y∕Dc = 0, 0.5 , Fig. 12c, d), the distribution of 

the two cases is similar showing a clear preference for Q2 and Q4 events. This is also close 

to the scenario of non-permeable wall turbulence, where sweep (Q4) and ejection (Q2) 

events are deemed essential for the turbulence production process in the near wall region 

(Kim et al. 1971).

5.2  Statistical Structure of Blow/Suction Events

In the last subsection, it has been established that the occurrence ratio between blow/suc-

tion events at the gap varies between different porosity cases. The flow structure associ-

ated with these events is hence of great interest since it is either inducing the events or 

enforced by them. The conditional averaged blow and suction events in case A2 and B2 are 

depicted in Figs. 13 and  14, respectively. The results for the low Reynolds number cases 

Fig. 12  Joint distribution of fluctuations u′ and v′ at different y positions. a y∕Dc = −1 , b y∕Dc = −0.5 , c 

y∕Dc = 0 , and d y∕Dc = 0.5 . The origin y = 0 is at the crest height, and D
c
 is the diameter of the cylin-

der. The color contours are shown for case A2 and solid isolines denote case B2. The levels the isolines are 

from 3 × 10
−4 to 2.4 × 10

−3 with a step of 3 × 10
−4
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are quite similar, thus are not shown for simplicity. The conditional average is based on 

the net vertical mass flux M = � ∫ v�dAf  at the gap between two cylinders in the first row 

( y∕Dc = −0.5 ), and it is defined as a blow event when M > 0 and a suction event when 

M < 0 . The flow field around the events is then averaged with the events aligned to the 

same point.

The statistical structures of the two cases shown here are similar. For both bases, it is 

observed that the influential area of blow/suction events can reach as far as the top wall. A 

Fig. 13  Conditional averaged 

structures around blow and suc-

tion events, case A2

Fig. 14  Conditional averaged 

structures around blow and suc-

tion events, case B2
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blow event corresponds to a large scale Q2 motion above the interface, the extent of which 

exceeds 10D. On the other hand, a suction event is related to a large Q4 motion with a 

vortex structure following downstream. The blow and suction events appear alternatively 

streamwise, which forms very large scale circulations influencing both the free flow and 

the flow in the porous domain.

There are also differences between the two cases. The high porosity wall is subject to 

a larger influential extent and deeper penetration of the blow/suction events. In fact, the 

upper boundary layer is completely dominated by a fluctuation of Q2 and Q4 motion in 

case B2. In comparison, the upper boundary layer remains observable although severely 

invaded. Moreover, there is a clearer periodic pattern of large scale Q2/Q4 motion arrang-

ing in the streamwise direction for case B2, which may be related to large scale mode in the 

streamwise spectra (Fig. 8d1). In contrast, the border of Q2/Q4 event in case A2 cannot be 

defined so clearly.

6  Conclusions

Direct numerical simulations (DNS) are conducted for a turbulent channel flow over porous 

domain. By investigating four cases covering two Reynolds number up to Re ≈ 6000 and 

two porosity of � = 0.5 and 0.8, the impact of Re and � on transportation of turbulence 

across the interface is explored.

The porous domain with high or low porosity exhibits distinct features in both the 

free flow and porous media region. In comparison, the impact of Re on flow structures is 

not so prominent. The unsteady flow is observed deep inside the porous domain for the 

high-porosity cases, while turbulent fluctuations are not able to penetrate deep into the 

low-porosity porous media. This difference is partly attributed to the flow structures at 

the interface. For the low porosity cases, the first layer of cylindrical structures leads to a 

strong vortex occupying the cavity above the gap, which prevents turbulence convecting 

through. In the high porosity cases, the flow remains attached to the cylinders, leading to 

strong vertical convection around the cylinders which transport turbulence from the inter-

face deep into the porous region.

More details about the spatial transport of turbulent kinematic energy (TKE) are 

revealed by budget analysis, which shows that the transport scheme of TKE is fundamen-

tally changed for different porosity. The scenario in low porosity cases is quite close to 

that of a non-permeable wall, with the peaks of production and dissipation remain above 

the interface, and wall normal transportation ceased at y∕Dc = −0.5 . In contrast, the high 

porosity media allows more TKE to be transported into the porous media region. Besides, 

a second production peak is observed adhere to the low surface of the cylinders. Below the 

first layer of cylinders, turbulent diffusion and pressure transportation work as energy sink 

and source alternatively, bringing considerable TKE downward.

The role of different scale modes is then revealed by the budget of spectral TKE. The 

spanwise wavelength peaks of production and dissipation spectra are similar to those of 

impermeable wall-bounded turbulence. Turbulent diffusion and viscous diffusion spectra 

above the cylinder surface are also similar to those of a canonical boundary layer. However, 

it is interesting to notice that mean convection can also vary the energy distribution among 

scales. The pressure transportation also exhibits a strong ability in spatial transportation, 

but has no contribution to inter-scale energy transfer. In general, the spanwise spectral TKE 

and its budget are only marginally effected by the porous media. On the other hand, the 
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streamwise TKE spectra show a series of harmonic waves in the porous domain side with a 

main spike at �
x
∕D = 1 , owing to strong fluctuations induced by the porous media. For the 

low porosity cases, there is an additional peak at �
x
∕D ≈ 10 , which may be associated with 

the large-scale Q2/Q4 structure related to shear instability.

The change of statistics of turbulence by the porous wall is a reflection of its impact 

on the instantaneous behavior of the flow. The quadrant analysis of fluctuations at the gap 

between cylinders suggests blow events occur more frequently for low porosity cases, 

while suction events are more likely to happen in high porosity ones. This feature may be 

used to explain the difference of mean shear at the interface for different porosity cases and 

is also associated with the change of Kármán constant in the mean profile. Further investi-

gation is needed in order to fully reveal the mechanism behind this phenomenon.
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