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TRANSPORT OF TURBULENCE ENERGY DECAY RATE

by

Francis H. Harlow and Paul I. Nakayama

ABSTRACT

The second of two previously-proposed turbulence transport
equatlons 1s here derived so as to determine the variastion

nf spvpral nf the universal functions.

The derivation alse

extends the usefulness of the eguations, strcngbthens their
validity, and clarifies the interpretations of the turbu-

lence fields variables.

I. INTRODUCTION

In a recent paper,1 hereinafter referred to as
I, we proposed a coupled pair of transport equa-

tions to describe the transient dynamics of a tur-
bulent fluid. The mean flow of the fluid is simul-
taneously described by the Navier-Stokes equations
with an eddy viscosity function. The equations are
written in universal, invariant form, expressing

the Eulerian derivatives of the turbulence functions
in terms of convective and diffusive fluxes, and in
The turbu-

lence functions for the effective eddy viscosity,

terms of creation and decay processes.

o, and the size-scale function, s, are postulated
to relate to the specitic turbulence energy, g,
through the Prandtl-Wieghardt formula

=1 @2
= 27 ) s .

in which 7 is a universal constant of magnitude

(M)

near unity. ) .

One of the transport.equations waslderived
directly from the Navier-Stokes equations, uti};z-
ing some approﬁriate moment approximations. _The
second equation was proposed on purély heuristié
groundo, and wes shown tn he valid in several ap-
plications. The purpose of this report is to de-
rive the second equation in the same manner as the

first, and thereby to determine more rigorously

the behavior of several universal functions that
have not previously been spécified, and to streng-
then considerably the validity of the theory.

The first of the two equations expresses the
transport of turbulence energy. "In the nomencla-
.ture of I, this can be written [see Eq. (I-18)],

9q |, = - oz aﬁj 6 9 3
BT*“kFia;"’eJk %, 7 ox, ("WQ
+§ax; [(v + Qq) E%J - 2vh (2)

A basic assumption of this derivation is that

1 6u3 2 Aq
1 g,.ﬁ_)ﬂse (3)

s

in which 8= B(1 + 8t), B 1s a constant whose value
is 5.0, ® is a constant of order 0.01, and § = g/v,
The other universal constants in Eq. (2), 7, 6, and
@, have magnitudes expected to be near unity.

The second of the two transpoft equations was
proposed in the form [see Eq. (I-29)]
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in vwhich A is the Loits:{a.nsky funetion, 0255, and
¥ is a universal constant of mégnitude near unity.
F(t) and g(t) are universal functions for which
thé detailed behavior was unknown, but which were
determined empirically over a rather restricted
range of values of §.

A

II. DERIVATION OF DECAY-RATE TRANSPORT EQUATION

It is now evident that A is not an appro-
priate variable for which to derive the second
transport equation. (We could, however, convert
the results of this paper to an equation for A,
to correspond with the previously proposed equa-
tion.) Instead, it is 8 for which the second
transport equation should be derived, since it is
this energy decay term that serves primarily to
introduce the scale function, s.

The sterting point for the present derivation
is Eq. (I-6), describing the dynamics of the fluc-

tuating part of the flow:

auj du _ Bu3 au3 gﬂl
+u' + -+ u! = -
3t "k&'k‘ u‘k§xk "‘k&ﬁ .xJ
2 (v 3+ )
+ v - + u' . (5)
AN S
Differentigting this with respect to xl, multiply~
ing by Bu'/axl, and taking the ensemble average
yields
SEY] 3 2l en gty
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This, then, is the exact transport equation for 8,
It is the result that we make tractable by the
- introduction of appropriate moment approximations,
thereby obtaining the required second equation for
turbulence transport.
Equation (6) can be rewritten in the form
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The terms are labeled separately for reference to
the manner in which each is approximated below.

Udnsistent with the procedure in I, we approxi-
mate the bracketed factor in Term (7a.) by the
following

[W'er 3%
\ L .
?k 3;; constant}x o 5;;3%; + Ajskl
+ BkBJl + Ctsjk ejkl’ (8)

in which A 42 By» Cpp and D are undetermined func-
tions and ejkl is the levi-Civita tensor. These
undetermined functions can be found by examining
the appropriate contractions of Eq. (8), and by
multiplying through by EJ and solving. The only
Possibly contributing functlon, hcwever, is A
for which we. find

3’



A, = 1%

378 &3 ’ _ (9)
but this gives a higher-order coupling to the mean
field that we now consider to be negligible, and
thus ignore.

The Terms (7b) and (7c) can both be found from
contractions of the more general tensor

Q

ul
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S

Thioc vo ascume can be deoompoged into properly eyme
metric products‘of the available second-order ten-

sors, o and these same tensors with the var-

13 %43
ilous other indices. The scalar cocfficients of
these products can then be delermlned Ly cxawliye
tion of sppropriate contractions, two of which must
vanish because of the incompressibility condition,
and one of which must reduce to the definition of

8 in EqQ. (3). The result can be written

a Ao du

Term (7b) = —s— e (10)
Dy
b, A0 Bt_zd

Term (7o) = —3 ® 3k 3;; s (1)

in which a, and b1 are universal constants, and the

magnitude of a, is expected to be near unity. (The
derivation suggests nothing about the magnitude of
b1,
reasochable.)

Reduction of Term (7d) is easily accomplished:

but a value near unity is later shown to be

Term (7d) = i 5—— kﬂ;)--uk S - (12)

Term (7e) is treated in a manner analogous to

the assumption in Eq. (3):
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In similar fashion,

Term (7f) :

A
B
2

(14)

2 term (78)
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In these expressions, and ah are again uni-

8y, a3,
versal constants with magnitudes near unity.
Finally, Term (7h) is reduced through a two-

step process like those used above.
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it
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in which At=8"' (1 + sg); and B' is a universal
constant with magnitude near that of B.

Combining these results and dropping bars, we
obtain

B o
T Y
A
RN
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d g d
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Bxk_ )
where a = a, + b..

1 1

This, then, is our principal result, the pro-
posed second transport equation to be coupled with
the energy equation of I.



III. DISCUSSION

In what follows, we examine the properties of
Eq. (17) and compare it with the previously pro-
The first and last terms on
the right side of Eq. (17) are of primary signifi-

posed forw, Eg. (4).
cance for the comparison. Ignoring for a moment
the other terms, we combine Eq. (17) with Eq. (2)
to show that

<§f +u x;) (o &

c'sn+2 { 4
%}I’SE 8+ 2n - (k+ 2;) a

auJ
+ [8 + 3n'- (4 + 2n) &]55}'63k 3;;
- vsscrzsn'2 1 T 25) {? +2n - (4 + 2n) ——
th)
+ [8 +3n - (4 + 2n) B Jag
+ diffusion and pressure terms. (18)

As discussed in I, o is a decay invariant when
¢ is small, indicating that g = 2P.
arises as to whether this relationship is consistent

The question

with other properties that the equations should
have. To partially answer this, we compare the
creation and decay terms in Eq. (18) with the cor-
responding terms in Eq. (4). With n = 3, this

leads to the identifications

gF(g):%_:_gé;'[ ‘g—-1u+Qo -17)5;;;)
19

efe) = PR (10a - 14 + (10 a -17) 8;].(20)

With ' = 28, we see that for Bt << 1,

EF(E) =B ,

e(e) w;- (5a-1),
while for &t >> 1,

F(E) -5 ,

g(t) » (102 -17).

In the low intensity limit, EF(%) thus has the

value 5.0, which is exactly the value deduced em-
pirically in I.
order of magnitude &. If a =

For intense turbulence,F(£) is of

2, then g(t) = 7, but

this leads to ¢ being a creation invariant for all

It thus appears that 1.7 < a < 2.0.
The predicted behaviors of F(£) and g(t) are

Qualitatively as expected' from prcvious empirical

values of E.-

evidence and quéﬁtitatively in agréement in the
low-intensity limit, but somewhat higher than pre-
‘viously proposed for the ‘high-intensity limit.
We are now inclined to believe that the presently
derived valucs arc correct, and we are further in-
vectigating this mattcr with detailed numerical
solutions of the equations. '

In summary, the proposed pair of turbulence

transport equations now becomes

o] °) d
Roeu i =oedkﬁ+gx(‘,g§)
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F % T2 kT T2
8t 3 ( 3 3 [ i
c a8 e L e &
d (Acd
+ 8 = (22)
L §§; (52 x;)
with
A
9w F, (23)
g
2
s
wg(";) s (24)
&= m(1 +BE) . (25)

The initial and boundary conditions for these

equations, together with their solutions for a

_variety of applications, are being prepared for

publication. Successful applications to such
problems as free-vortex-layer transition, thc tur-
bulent Bénard problem, intermittency, boundary
layer turbulence, and wall-induced decay support
the validity of the equations, and allow determina-
tion of the universal constants they contain. The
decay-rate transport equation is further supported
by the derivation by Chou? of a "vorticity decay"

equation that closely resembles our Eq. (22) when



the latter is specialized to his circumstances.
Chou's equation was shown to apply to a channel

flow problem;3

in general, however, the more exten-
" sive form given by our Eq. (22) would be required.
Our derivations are also supported by the work of
Schubauer and Tchen,h who derive flux approxima-
tions like ours from a postulated Boltzmann equa-
tion for the turbulence field,

Finally, the derivations clarify the meaning
of the scale function, s, showing that this is pro-
portional to the turbtmlence integral scale for all
levels of turbulence intensity, but equal to the
microscale in the limit of weak turbulence. [This
follows from the use of s in the Loitsiansky func-
tion, which 1s known Lu be pruperly cstimated with
the integral scale, rather than the microscale.

It is also dictated by the requirement for intensc
turbulence thag the decay term in Eq. (3) be pro-
portional to g“/(integral scale).]

From Eq. (3)
LA _ B
52 ke

where A is the Taylor microscale, so that

s = AT FEL . (26)

As discussed in I, & is the turbulence
Reynolds number based on s, the integral scale.
Thus, the result in Eg. (26) is in agreement with
that of Hinze,5 who shows that the ratio of inte-
gral scale to microscale is proportional to the tur-
bulence Reynolds number based on microscale and,
accordingly, to the square root of the Reynolds num-
ber based on the integral scale,
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