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TRANSPORT OF TURBULENCE ENERGY DECAY RATE 

by 

Francis H. Harlow and Paul I. Nakayama 

ABSTRACT 

The second of two previously-proposed turbulence transport  
equaLlur~s 1s  here derived so a s  t o  determine thc var ia t ion  
nf spvpr~l nf t , h ~  i i n i v e r s ~ ~ l  fi~nr.t , inns.  The derivation also 
e d e r d s  the usefulness of the equtrtious, strcngthcno t h e i r  
va l id i ty ,  and c l a r i f i e s  the  in terpre ta t ions  of the turbu- 
lence f i e u s  variables. 

In  a recent paper,' hereinafter  referred t o  a s  

I, we proposed a coupled pai r  of transport  equa- 

t i ons  t o  describe the t rans ient  dynamics of a t u r -  

bulent f l u id .  The mean flow of the f l u i d  i s  simul- 

taneously described by the  Navier-Stokes equations 

with an eddy viscos i ty  function. The equations a re  

wr i t ten  i n  universal, invariant  form, expressing 

the  Eulerian derivatives o f t h e  turbulence functions 

i n  terms of convective and diffusive fluxes, and i n  

terms of crea t ion  and decay processes. The turbu- 

lence functions for  the ef fec t ive  eddy viscosity,  

a ,  and the size-scale function, s, a re  postulated - 
t o  r e l a t e  t o  the specific turbulence energy, q, 

through the Prandtl-Wieghardt f o m h  

i n  which y i s  a universal  constant of magnitude. 

near unity.  . . 

One of the transport '  equations was derived 

directxy from the  Navier-Stokes equations, u t i l i z -  

ing  some appropriate moment approximations. The 

second equation was proposed on purely heur is t ic  

groundo, end aros shmn t.n he val id  i n  several  ap- 

pl ications.  The gurpwe of t h i s  report  i s  t o  de- 

r i v e  the  second equation i n  the same manner a s  the 

f i r s t ,  and thereby t o  determine more rigorously 

the  behavior of several  universal  functions t h a t  

have not previously been specified, and t o  streng- 

then considerably the va l id i ty  of the  theory. 

The f i r s t  of the two equations expresses the  

transport  of turbulence energy. . I n  the  nomencla- 

. ture  of I, t h i s  can be writ ten [see Eq. (I-18)], 

A basic assumption of t h i s  derivation i s  t h a t  

i n  which A = ~ ( 1  + 65), f3' i s  a constant whose value 

i s  5.0) .6 is  a constant of order 0.01, and 5 = o /v .  

The other universal  constants i n  Eq. (2), y, 9, and 

a, have magnitudes expected t o  be near unity. 

The second of t h e  two transport  equations was 

proposed i n  the  form [see Eq. (I-29)]  



2 3 i n  which A i s  the Loitsiansky function, o s , and 
i s  a universal constant of magnitude near unity. - - 

~ ( 6 )  and g(6) a re  universal functions for  which 

the detailed behavior was unknown, but which were 

determined empirically w e r  a rather res t r ic ted 

range of values of 6 .  

11. DERIVATION OF DECAY-RATE TRANSPORT EQUATION 

It i s  now evident t h a t  A i s  not an appro- 

p r i a te  variable f o r  which t o  derive the secoqd 

transport  equation. (we could, however, convert 

the  r e s u l t s  of t h i s  paper t o  an equation f o r  A, 

t o  correspond with the previously proposed equa- 

t ion.)  Instead, it i s  8 f o r  which the second 

transport  equation should be derived, since it i s  

t h i s  energy decay tern  that  serves primarily t o  

introduce the scale function, s. 

The s t a r t ing  point f o r  the present derivation 

i s  Eq. (I-6), describing the  dynamics of the fluc- 

tuat ing part  of the flow: 

Differentiating t h i s  with respect t o  xi, multiply- 

ing by au1/axp, and taking the  ensemble average 

yie lds  

This, then, i s  the exact transport equation for  8 .  
It i s  the resu l t  t h a t  we make tractable by the 

introduction of appropriate moment approximations, 

thereby obtaining the  required second equation fo r  

turbulence transport. 

Equation (6) can be rewritten i n  the form 

The terms are labeled separately for  reference t o  

the manner i n  which each i s  approximated below. 

Consistent with the procedure i n  I, we agproxi- 

mate thc bracketed factor iu Term (7a) by the 

f oll*n@; 

- 3 7 7  
[% 41- -constant x a 

i n  which Aj, Bk, Cr,  and D are undetermined func- 

t ions  and E is Che Levi-Civita tensor. These 
3kL 

undetermined functions c q  be fa& bgr examining 

the appropriate contractions of Eq. (8), and by 

multiplying through by E jkl and solving. The only 

possibly contribyting function, however, i s  A3, 

fo r  which we find 



but t h i s  gives a. higher-order coupllng t o  the  mean 

f i e l d  t h a t  we now consider t o  be negligible, and 

thus  ignore. 

The Terms (7b) and (7c) can both be found from 

contractions of the more general tensor 

Thio \ro aooume oan be deompo~nd !.nto mnpesly e p -  

metric products of the  available second-order ten- 

sors, 6 e and these same tensors with the  var- 
ij' i j  

fous other indices. The scalar  coefficients of 

these praauczs can .chef! be drltrrulllecl by emlu t r -  

t i o n  of appropriate contractions, two of which must 

vanish because of the  incompressibility condition, 

and one of which must reduce t o  the def in i t ion  of 

Q i n  Eq. (3) .  The r e s u l t  can be writ ten 

a A U  aii 
Term (7%) = 

blAU 
Term (70) = 7 gjk % a;j 

i n  which a l  and bl axe universal  constants, and the 

magnitude of al  i s  expected t o  be near unity.  h he 
derivation suggests nothing about the  magnitude of 

b l ,  but a value near uni ty  i s  l a t e r  shown t o  be 

reasohible . ) 
Reduction of Term (7d) i s  ea s i ly  accomplished: 

Term (7e) i s  t rea ted  i n  a manner analogous t o  

the assumption i n  Eq. (3)  : 

I n  similar fashion, 

and Term (7g) = - &e 9 
J 

I n  these expressions, a2, aj, and a axe again uni- 4 
versa1 constants with magnitudes near unity. 

Finally, Term (7h) i s  reduced through a two- 

s tep  process l i k e  those used above. 

i n  which A t =  B'  (1 + 6 ~ ) ,  and B '  i s  a universal  

constant with magnitude near t h a t  of B. 
Combining these  r e s u l t s  and dropping bars, we 

obtain 

a21~ 2 ~ ~ 5 9  * y --.-.,- .,.......- 

a;. 
2 '  

where a = a + b 
1 1' 

This, then, i s  our pr inc ipal  ~ . c s ~ t l t ,  the pro- 

posed second transport  equation t o  be coupled with 

t h e  energy equation of I. 



111. DISCUSSION 

I n  what follows, we examine the properties of 

Eq. (17) and compare it with the previously pro- 

posed form, Eq. (4) .  The f i r s t  and last terms on 

the  r ight  side of E ~ .  (17) are  of primary signifi-  

cance fo r  the comparison. Ignoring for  a moment 

the  other terms, we combine Eq. (17) with Eq. (2 )  

t o  show that 

+ diffusion and pressure terms. (18) 

A s  discussed i n  I, a i s  a decay invariant when 

5 i s  small, indicating t h a t  B ' = 28. The question 

a r i s e s  a s  t o  whether t h i s  relationship i s  consistent 

with other properties tha t  the equations should 

have. To par t i a l ly  answer t h i s ,  we compare the 

creation and decay terms i n  Eq. (18) with the cor- 

responding terms i n  Eq. (4) .  With n = 3, t h i s  

leads t o  the identifications 

With = 28, we see that  fo r  65 << 1, 

while fo r  65 >> 1 ,  

d!.) +$ ( 1 0  a - 17). 

I n  the  low intensi ty  l i m i t ,  C F ( ~ ' )  thus has the 

value 5.0, which i s  exactly the value deduced em- 

p i r i c a l l y  i n  I. For intense turbulence, ~ ( 5 )  i s  of 

order of magnitude 6. I f  a = 2, then g(E) f 7, but 

t h i s  leads t o  a being a creation invariant for  a l l  

values of 5.. It thus appears that 1.7 < a < 2.0. 

The predicted behaviors of ~ ( 5 )  and g(5) are 

qualitatively a s  expected' from prcvious empirical 

evidence and quk;ititatively i n  agreement i n  the 

low-intensity l i m i t ,  but somewhat higher than pre- 

viously proposed for tlie 'high-intensity l i m i t .  

We are now ihclined t o  believe that  the presently 

derived valuca arc  correct, and we are  further In-  

vectigating th i3  mattcr wit11 detailed numerical 

solutions of the equations. 

In  summary, the proposed pair  of turbulence 

transport equations now becomes 

with 

fl-y. (23) 

a - 6(1 + s t )  . (25) 

The i n i t i a l  and b o u n d q  conditions for t.hcsc 

equations, together with t h e i r  sohitions for  a 

variety of applications, are being prepared fo r  

publication. Successful appblcstions t o  si~rh 

problems a s  free-vortex-layer transit ion, thc tur-  

bulent ~gnard problem, intermittency, boundary 

layer turbulence, and wall-induced decay support 

the val idi ty  of the equations, and allow determina- 

t ion  of the universal constants they contain. The 

decay-rate transport equation i s  further supported 

by the  derivation by chou2 of a "vorticity decay" 

equation that  closely resembles our Eq. (22) when 



t he  l a t t e r  i s  specialized t o  h i s  circumstances. 

Chou's equation was shown t o  apply t o  a channel 

flow problem; i n  general, however, the more exten- 

s ive  form given by our Eq. (22) would be required. 

Our derivations are  a l so  supported by the  work of 

Schubauer and ~ c h e n , ~  who derive f l u  approxima- 

t i ons  l i k e  ours from a postulated Boltzmann equa- 

t i on  f o r  the turbulence f i e ld .  

F i ra l ly ,  the derivations clarify the  meaning 

of the  scale function, s, showing t h a t  t h i s  i s  pro- 

portione.1 to +.he tl.lrhii.'l.ence l.nt.egra.1 ccale for a l l  

levels  of turbulence intensity,  but equal t o  the  

microscale i n  the l i m i t  of weak turbulence. [This 

follows from the uoe of G i n  the  Loitsiansky f'unc- 

tlori, wllicli 1s lu~uwii 'Lu be pr.opcl'l.~ ~sblril~~cd vi6h 

the in t eg ra l  scale, ra ther  than the  microscale. 

It i s  a l so  dictated by the requirement f o r  intense 

turbulence tha t  the decay term i n  Eq. (3 )  be pro- 

port ional  t o  $ / ( in tegra l  scale).] 

From Eq. (3 )  

where h i s  t he  Taylor microscale, so that 

As discussed i n  I, 5 i s  the  turbulence 

Reynolds number based on s, the in t eg ra l  scale. 

Thus, the  r e s u l t  i n  Eq. (26) i s  i n  agreement with 

t h a t  of ~ i n z e , ~  who shows that the  r a t i o  of i n t e -  

g r a l  scale t o  microscale i s  proportional t o  the  tur- 

bulence Reynolds number based on microscale and, 

accordingly, t o  t he  square root  of the  Reynolds num- 

ber based on the in t eg ra l  scale. 
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