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Many transport processes on networks depend crucially on the underlying network geometry,
although the exact relationship between the structure of the network and the properties of
transport processes remain elusive. In this paper, we address this question by using numerical
models in which both structure and dynamics are controlled systematically. We consider the
traffic of information packets that include driving, searching and queuing. We present the results
of extensive simulations on two classes of networks; a correlated cyclic scale-free network and an
uncorrelated homogeneous weakly clustered network. By measuring different dynamical variables
in the free flow regime we show how the global statistical properties of the transport are related
to the temporal fluctuations at individual nodes (the traffic noise) and the links (the traffic
flow). We then demonstrate that these two network classes appear as representative topologies
for optimal traffic flow in the regimes of low density and high density traffic, respectively. We also
determine statistical indicators of the pre-jamming regime on different network geometries and
discuss the role of queuing and dynamical betweenness for the traffic congestion. The transition
to the jammed traffic regime at a critical posting rate on different network topologies is studied as
a phase transition with an appropriate order parameter. We also address several open theoretical
problems related to the network dynamics.

Keywords : Information traffic; correlated scale-free networks; jamming indicators; dynamic
betweenness.

1. Introduction

1.1. Motivation

Networks form part of the basic model for virtu-
ally every known co-operative phenomenon, and
the study of processes on networks is funda-
mental to a large part of the physical, biolog-
ical, social, economic and engineering sciences
[Boccaletti et al., 2006]. Most technological, bio-
logical, economical or social networks support a

number of transport processes, such as the traf-

fic of information packets [Tadić & Rodgers, 2002;

Tadić & Thurner, 2004; Tadić et al., 2004; Arenas

et al., 2001; Guimerà et al., 2002a; Sole & Valverde,

2001; Valverde & Solé, 2002; Ohira & Sawatari,

1998; Moreno et al., 2003; Rosvall et al., 2005;

Rosvall & Sneppen, 2003; Valverde & Sole, 2004;

Wang et al., 2006], signals, molecules [Agrawal,

2002], finance and wealth [Thurner et al., 2003;
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Boss et al., 2004; Coelho et al., 2005], rumors
[Moreno et al., 2004] or diseases [Newman, 2002;
Boguñá et al., 2003]. One can model these processes
in many different ways, from simple interacting ran-
dom walkers [Tadić, 2001a; Noh & Rieger, 2004;
Eisler & Kertesz, 2005], to interacting random walks
with random traps [Gallos, 2004] on the network
that serve as destinations, to richer models in which
the traps are walker specific. Some of the models
we discuss here allow an even wider range of behav-
ior; each walker has a destination which is known
and fixed at the start, potentially allowing both
local and global search and navigation strategies
to be introduced to improve the efficiency of the
transport.

In recent years, studies of different networks
have revealed that the dynamic processes crucially
depend on the topology of the underlying network
structure [Tadić et al., 2004; Guimerà et al., 2002a].
However, the precise interdependencies between the
functional properties and the relevant structural
parameters, which define network classes, remain
largely unknown. In naturally evolved networks,
such as the cytoskeleton in cells, which serve as
a backbone of molecular transport within the cell,
efficient functioning emerges through an optimiza-
tion of function via the evolutionary adjustment
of the structure. This structure — function opti-
mization — is an imperative in artificial networks
because of the need for increased efficiency [Latora
& Marchiori, 2001; Jarrett et al., 2005], low risk of
information loss, low levels of congestion [Guimerà
et al., 2002b; Moreno et al., 2003] and low risk of
critical malfunction [Holme, 2003; Echenique et al.,
2005; Ashton et al., 2005]. Therefore, understanding
a network’s functional properties and their depen-
dence on a reduced set of its structural parame-
ters is of paramount importance. This understand-
ing is being developed through the systematic col-
lection of empirical data, and through the intro-
duction, simulation and solution of new algorithms
that seek to improve one or more aspects of the
functional performance of the network. This work
provides the basis for a deeper theoretical under-
standing of transport on networks, that allows the
identification of universality classes of both network
topologies and transport processes.

1.2. Methodology

This paper reviews some of the work that has been
carried out to progress this agenda. In our approach

both the network structure and the dynamics on
the network are controlled systematically within
a numerical model of information traffic. In this
model the posting, navigation and queuing of
packets are parameterized by a set of control param-
eters. Then the properties of the traffic are deter-
mined for different underlying network structures.
Two approaches are available to optimize traffic.
When the network structure is fixed on the time
scale of the transport, one can find sets of optimal
paths between nodes and specify the traffic along
these paths. Alternatively, when the network struc-
ture is allowed to evolve on the same time scale
as the transport, an optimal network structure is
found that depends on the traffic conditions.

1.3. Properties of information

traffic

The traffic of information packets is defined via sev-
eral properties and parameters. Here we summarize
these properties, which are later realized in the sim-
ulations.

• Creation & Assignment. An information packet is
created, at some rate, at a node i and is assigned
the address of another node j where it should be
delivered; When a packet arrives at its destina-
tion it is removed from the network;

• Traffic Queues. Packets form queues when two or
more packets are at same node at the same time;
The queue length at node i at time t is denoted
by Qi(t);

• Queuing Discipline. This determines the order in
which packets leave a queue; In this work we use
the last-in-first-out (LIFO) queuing discipline for
traffic simulations;

• Waiting Time tw. Is the time that a packet spends
in a particular queue waiting to leave;

• Travel Time T . Is the total time that a packet
spends in the network from its creation to its
delivery at its destination. This time is equal to
the summation of the path length and the wait-
ing time at each queue along the path; The travel
time of a packet is related to its travel costs, some-
times called the search costs.

• Navigation & Search Depth. Information about
a packet’s destination is required if one wishes
to reduce its travel time by using a navigation
process; Global navigation is a costly procedure
in which a shortest (or the best) path for each
packet is determined; A much less costly alterna-
tive is to use local search algorithms in which each



Transport on Complex Networks: Flow, Jamming and Optimization 2365

packet explores the neighborhood of its current
node for its destination address or for an optimum
direction; A search depth of d = 1 corresponds to
the nearest-neighborhood of a node and d = 2
corresponds to the next-nearest-neighborhood of
a node, sometimes called nnn-search; A search
depth of d = 0 corresponds to random process-
ing; In this paper we employ d = 2, nnn-search;

• Dynamic Load. The number of packets trans-
ported by a node i, or along a link ij, at time
t defines the dynamic load of the node hi(t) and
the link fij(t); The total number of packets in
the network Np(t) is the network load, obviously
Np(t) =

∑

i Qi(t), the sum of all queue lengths at
time t;

• Traffic Noise. The time signals of temporally
fluctuating variables such as hi(t), Np(t), the
number of simultaneously active nodes n(t), etc.
are often called traffic noise signals. In particu-
lar, the set of signals {hi(t)} recorded at each
of i = 1, 2, . . . , N nodes simultaneously form
the basis for multichannel noise analysis; Anal-
ogously, traffic flow is the same quantity defined
for links rather than nodes;

• Free Flow Regime. Refers to the free (uncon-
gested) flow of packets, which is compatible with
stationarity of the traffic noise time-series;

• Congested Regime. Corresponds to a partial or
complete jamming in networks when packets can
get stuck for an indefinite time; The network load
increases steadily with time, making the time-
series non-stationary.

1.4. Concepts

We investigate our numerical model for information
packet transport on two types of networks; a clus-
tered scale-free network and a homogeneous net-
work, which are, respectively, representatives of the
causal and homogeneous [Burda et al., 2004] net-
work classes. The topological properties of these
networks that are relevant to transport process are
discussed in detail in Sec. 2, along with the trans-
port rules. We then present the results of simu-
lations of traffic on these networks. These results
consist of statistical properties of traffic collected
on the global network level (such as probability
distributions of packet travel times and waiting
time, etc.), and local (individual nodes and links)
activity during transport, sometimes called multi-
channel noise and flow analysis. In Sec. 3 the sta-
tistical signatures of traffic jamming are discussed

numerically for both network types. In addition,
we consider the transition to the congested traf-
fic phase, where travel and waiting times tend to
diverge, as a dynamical phase transition. Section 4
discusses two optimization procedures, one with
fixed network geometry, as above, and the other
which involves the network restructuring in order to
minimize the packet travel times. We show that the
emergent optimized structures in low and high den-
sity traffic are statistically similar to the structures
discussed in Sec. 2. In Sec. 5 we give a summary
of the results and some open theoretical problems
posed by the numerical simulations and by empiri-
cal measurements in real communication networks.

2. Stationary Traffic Flow

In the first part of this section we introduce two
networks — a grown scale-free correlated network,
which we call the Webgraph, and a homogeneous
network with a stretched-exponential degree distri-
bution, which we call Statnet. We briefly summa-
rize the structural properties of these networks that
are relevant to their transport processes. We then
introduce the model of packet transport and per-
form simulations on these networks with N = 1000
nodes. The results we obtain for the statistical prop-
erties of the transport in the free flow regime are
presented.

2.1. Structural properties of

the networks

We consider two networks assembled by preferen-
tial attachment [Dorogovtsev & Mendes, 2003] and
in which rewiring [Tadic, 2001b] occurs.

The Webgraph is grown by sequentially adding
nodes from i = 1, 2, . . . , N , with linking rules
that involve preferential attachment and prefer-
ential rewiring according to the time dependent
probabilities pin and pout. They are applied in the
subset of preexisting nodes at each growth step i.
The linking probabilities depend on the current
number of incoming qin and outgoing qout links at a
node [Tadic, 2001b]

pin(k, i) =
α +

qin(k, i)

M
(1 + α)i

pout(n, i) =
α +

qout(n, i)

M
(1 + α)i

.

(1)
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(a) (b)

Fig. 1. (a) The cyclic scale-free Webgraph, and (b) homogeneous Statnet.

Linking to a new node occurs with probability α̃
and rewiring or adding a link from a previously
existing node occurs with probability 1 − α̃. These
competing processes lead to an emergent struc-
ture [Tadic, 2001b] which is different to the struc-
ture obtained by common preferential attachment,
[Albert & Barabasi, 2002; Dorogovtsev & Mendes,
2003]. The parameters of the model α̃, α, and M
are responsible for the graph’s flexibility, connectiv-
ity profile and clustering. In particular, when α̃ = 1
the graph is rigid (rewiring cannot occur) and scale-
free, i.e. for M = 1 a scale-free tree and when M > 1
a weakly clustered uncorrelated scale-free graph
emerges as known in [Albert & Barabasi, 2002;
Dorogovtsev & Mendes, 2003]. However, when α̃ <
1, these rules lead to power-law distributions of both
in-degree and out-degree [Tadic, 2001b], a large
clustering coefficient and link correlations [Tadić,
2003], even for M = 1. When α̃ = α = 1/4 the
structure is very similar to the world wide web
[Tadic, 2001b]. This is why we call this network the
Webgraph. An example of the emergent structure
is shown in Fig. 1(a).

To grow the Statnet we apply the same rules
with the probabilities in Eq. (1), however, with the
fixed number of nodes i = N , among which links
are added sequentially. Multiple linking between the
same pair of nodes is not allowed. The Statnet emer-
gent structure, with L = N = 1000, is also shown
in Fig. 1(b).

A detailed quantitative analysis of the struc-
ture reveals that both incoming and outgoing
links behave the same statistically, and exhibit a
stretched-exponential degree distribution. In addi-
tion, the clustering in this graph is small compared
to the Webgraph and link correlations are entirely
absent. A comparison of the structural properties
of both networks is given below.

Connectivity : The emergent connectivity of nodes
in the evolving Webgraph can be obtained analyt-
ically using linking probabilities in Eqs. (1). Both
for in-coming and out-going connectivity we have a
power-law profile according to [Tadić & Priezzhev,
2002]

qκ(s,N) = Aκ

[(

N

s

)γκ

− Bκ

]

; (2)

after N nodes are added, s being the addition time.
Here κ indicates “in”, “out”, or “total” links, for
which different exponents are found [Tadić & Priez-
zhev, 2002; Tadić, 2002]. For the purposes of this
work, we consider that the transport along a link
in both directions is symmetrical. Therefore, the
total node connectivity qtot ≡ qin + qout is relevant.
In Fig. 2(a) we show the connectivity profile of all
nodes in one Webgraph sample [shown in Fig. 1(a)].
It exhibits a power-law decay with rank n ≡ n(i) of
a node i according to

X(n) ∼ n−γtot ; (3)
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Fig. 2. (a) Node ranking of the total connectivity qtot = qin + qout, and (b) node ranking of the topological centrality B(i)
in the Webgraph (�) and Statnet (©) structures. The fits are explained in the text.

with γtot = 0.867. This indicates a power-law con-
nectivity distribution with the exponent τtot =
1/γtot + 1 = 2.153. Similarly, node ranking accord-
ing to the total connectivity in the Statnet, also
shown in Fig. 2(a), is well fitted by a stretched-
exponential curve

X(n) = An−τ exp

[

−

(

n

n0

)σ]

; (4)

with τ ≈ 0.22, σ ≈ 0.78, and n0 ≈ 200. The emer-
gent probability distribution also obeys this law,
Eq. (4).

Centrality : Further quantitative differences be-
tween these two networks are found in the node
ranking using the topological centrality measure
[Newman, 2001; Zhou et al., 2005; Latora & Mar-
chiori, 2004]. In Fig. 2(b) the ranked profile of topo-
logical betweenness of nodes are shown. For the
Webgraph the profile is a power-law Eq. (3) with
the exponent γB = 1, indicating the distribution
of node betweenness as P (B) ∼ B−2. In the case
of Statnet the profile is again closer to a stretched-
exponential form Eq. (4). In Fig. 2(b) one can also
identify the nodes belonging to the giant cluster,
whose size is 403 nodes in the Webgraph, and 571
in the Statnet (jump).

Clustering : Due to the rewiring, some nodes and/or
smaller clusters remain disconnected from the giant
component, whereas other nodes gain large connec-
tivity and clustering. When the average number
of links per node is M ≡ L/N = 1 the average
clustering coefficient in the Webgraph appears to
be cc = 0.3601. In contrast Statnet, with same
average connectivity M = 1, has a much lower
average clustering cc = 0.0075, which increases
with M . The clustering profile is inhomogeneous
in both networks. It obeys a power-law, shown in
Fig. 3(bottom) with an exponent close to γ =
0.85 in the Webgraph, where most of the elemen-
tary triangles are attached to the main hubs. In
the case of Statnet a stretched-exponential profile
is found.

Correlations : Another interesting feature which
might influence the transport processes with search
is found in the link correlations of the Webgraph,
which are entirely absent in Statnet. The com-
puted correlation property measured by the aver-
age out-degree of nodes attached to a node of given
in-degree, is shown in Fig. 3(top). The power-law
decay with the exponent γc = 0.42 in the Web-
graph indicates disassortative [Newman, 2003] link
correlations.
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Fig. 3. Link-correlations (top) and ranked clustering profile (bottom) for the Webgraph (�) with L/N = 1, and Statnet (©)
with L/N = 20 corresponding to the same average clustering coefficient, cc = 0.36.

2.2. Implementation of

constant-density traffic

We model the traffic of information packets on a
network as a guided random walk between specified
pairs of nodes [Tadić & Thurner, 2004; Tadić et al.,
2004; Tadić, 2003] — the origin and destination
(delivery address) of a packet. Once created, pack-
ets navigate through the network using a local nnn-
search rule [Tadić & Thurner, 2004, 2005; Tadić
2003], in which the next-nearest-neighborhood is
searched for the destination node. If a node finds
that a packet’s destination node is in its near-
est neighborhood, it moves the packet directly to
its destination. If the destination node is in the
next-nearest-neighborhood, but not the nearest-
neighborhood, the packet moves in the correct
direction. If the destination node is not found in
the next-nearest-neighborhood, the packet moves to
a randomly chosen neighboring node. Packets are
removed when they arrive at their destinations. In
this section we model traffic with a fixed number of
moving packets, which is set at the start of the sim-
ulation, so that Np(t) = ρ, fixed for all t. Packets
that arrive at their destinations and are removed
from the network are replaced in the next time step
by the creation of the same number of new packets

at randomly chosen nodes. Of course, these pack-
ets are given new destinations. When ρ = 1, this
corresponds to the sequential random walk prob-
lem. At density ρ > 1, packets interact by forming
queues at nodes along their paths. We assume finite
maximum queue lengths of H = 1000 at all nodes,
and we employ a LIFO (last-in-first-out) queuing
discipline.

Constant-density traffic is interesting because
the limit of noninteracting packets ρ = 1 is math-
ematically correctly implemented. This enables
quantitative analysis of the structure–dynamics
interdependences without additional dynamic
effects [Tadić & Thurner, 2005]. Also, at finite
traffic density ρ > 1, the system is driven self-
consistently, without external forcing. This situa-
tion is suitable for the analysis of time-series and
noise fluctuations (see later), which are sensitive
to driving modes. Other driving conditions, e.g.
constant posting rate R [Tadić & Thurner, 2004;
Tadić et al., 2004; Arenas et al., 2001; Arenas et al.,
2003], will be considered in Sec. 3 in connection
with traffic jamming. When the traffic is driven
by creating at each time step a number of packets
which is larger than network’s output rate, the net-
work experiences congestion [Guimerà et al., 2002a].
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Driving at constant rate R is appropriate for a
quantitative study of the congestion problem (see
Sec. 3).

For the numerical implementation of the trans-
port, we first generate the network and its adjacency
matrix is stored and remains fixed throughout the
transport process. If the graph is disconnected, as
is the case with both Webgraph and Statnet, we
take care that the creation and destination nodes
are within the same cluster. We study networks con-
sisting of N = 1000 nodes. Starting with ρ = 100
packets, which are created at random positions, the
network is updated in parallel. At each time step a
node with a packet on it tries to move the top packet
in its queue towards that packet’s destination node.
A packet is moved to one of node’s neighbors, and
joins the top of its queue. If that neighbor is the
packet’s destination node, the packet is considered
as delivered and disappears from the network. Dur-
ing the transport process, for each packet we keep
track of its destination, current position and posi-
tion in the current queue. In addition, for a subset
of labeled, NM = 2000, packets we keep track of
the time that they spend in each queue before they
arrive at their destination. We compute the statisti-
cal properties of the transport from the data gath-
ered from the labeled packets once all of them have
arrived at their destinations.

2.3. Global transport characteristics

The statistical properties of traffic depend on both
the network structure and traffic conditions. For a
fixed navigation protocol (nnn-search in this case),
the efficiency of transport depends on the structural
characteristics of the underlying network and on the
overall traffic density. In particular, the travel time
of packets is determined by the length of the path
selected between the origin and destination node,
and the waiting times at nodes along that path.
That is, for a packet traveling along a path of length
k, the travel time is given by

Tk =

k
∑

i=1

tw(i), (5)

where tw(i) is a packet’s waiting time on node i
on that path. It should be stressed that both path
lengths and set of waiting times {tw} which con-
tribute to the travel time T are outcomes of a
stochastic process. Then the functional central-limit
theorem [Whitt, 2001] applies to the distribution of
travel times P (T ), computed along all paths on the

network [Tadić & Thurner, 2004]. The fact that on
structured networks the waiting times along a par-
ticular path depend on the identity of nodes along
that path adds to the complexity of the problem
[Tadić & Thurner, 2004].

In the limit of noninteracting packets ρ = 1,
the waiting times are tw = 1 for all nodes, thus
the entire travel time is determined by the geom-
etry. The suitability of the navigation algorithm
for a given topology can then be measured by the
deviation of the actual path of the packet from the
shortest path between the pair of nodes. In Fig. 4
we show the distributions of the travel times for
the Webgraph and Statnet geometries and ρ = 100
packets. For nnn-search these distributions exhibit
power-law tails with different exponents on the two
networks. However, the largest difference appears
for short travel times, where packets follow more
closely the topological shortest path on the under-
lying network. In this respect the node connectivity
and centrality play an important role (see Fig. 2).
The deviations from the shortest paths are experi-
enced by packets which, i.e. local search being inef-
fective, appear to perform a random walk in parts
of the graph far away from their destinations. The
distributions of travel times at large density ρ = 100
appear to be well fitted with a power-law

P (T ) = AT−τT ; (6)

with τT ≈ 1.5 and an exponential cut-off (due to the
finite network size) for packets on the Webgraph,
and a q-exponential distribution

P (T ) = Bq

[

1 + (1 − q)
T

T0

]1/(1−q)

; (7)

with q = 1.47, for the case of transport on the Stat-
net (cf. Fig. 4).

In processes in which diffusion dominates, the
topology of actual paths gives another view of
the process. In particular, on structured networks,
apart from the inhomogeneous connectivity, the
number of short and long cycles may effect the dif-
fusion of packets. The network profile of the short
cycles (triangles) in the Webgraph and Statnet are
shown in Fig. 3. The packets that perform a ran-
dom diffusion, i.e. when the local search is ineffec-
tive for them, may return to a node, which had
already been visited in the past. The distribution
of the return-time intervals, ∆ti, for each node
i = 1, 2, . . . , N on the network, is given in Fig. 5 for
both network types. Broad distributions with char-
acteristic power-law tails, suggest correlated events.
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Again the main difference between the two network
types appears in the small return times of pack-
ets. A power-law with small slope τ∆ = 0.66 for
∆t � 800 can be related with an uneven popula-
tion of short cycles and the active role of individ-
ual nodes in the case of Webgraph. In the case of
Statnet the distribution can be fitted to the general
expression in Eq. (7), with q = 1.26. On the Web-
graph, the probability of long return times falls off

as P (∆t) ∼ (∆t)−3.26. When the packet density is
finite, the return time of node activity (where gener-
ally a different packet is involved) is different on the
two networks. The distribution is shifted towards
shorter values in the case of Webgraph. On Statnet
the form of the distribution changes.

For large packet density ρ ≫ 1, the motion
of a packet will be affected by other packets mov-
ing through the same node, as mentioned above.
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Queues of packets then occur and a queuing dis-
cipline sets the order of processing (LIFO, in this
particular case). Apart from the traffic density, the
neighborhood of the node determines the length
of the queue at that node. In particular, on inho-
mogeneous networks, hubs appear to receive more
packets compared to other nodes, due to their large
connectivity. Since in the algorithm one packet is
processed per time step, other packets remain in
the queue to be processed later (when no new
packet has been received). The distribution of queue
lengths therefore reflects the network structure in a
particular way. A snapshot of queue-lengths Q, for
traffic density ρ = 100 in the two network structures
leads to the distributions shown in Fig. 6.

In the homogeneous Statnet most of the nodes
are processing a similar number of packets, which
leads to a flat distribution of queues and a cut-off
indicating that queues longer than Q ≈ 40 rarely
occur. On the other hand, a large queue of Q = 80
to 90, packets can be found on the hubs on the inho-
mogeneous Webgraph with high probability. On the
rest of the nodes the queues are distributed with
a power-law distribution, apart from very small
queues at boundary nodes.

The queuing times of packets extend their
travel times, thus reducing the overall traffic

efficiency [Tadić et al., 2004]. Note, that in the cur-
rent implementation, with a constant number of
moving packets, jamming cannot occur as long as
the traffic density ρ < H, where H is the maximum
allowed queue length. However, due to long waiting
times in queues, the travel times of packets given by
Eq. (5), can become very long, given by a power-law
distribution, as shown in Fig. 4 (see also [Tadić &
Thurner, 2004, 2005] for different types of graphs
and search algorithms). The distributions of wait-
ing times of packets on two network geometries are
given in Fig. 7, for the traffic density ρ = 100. They
can be described as power-law distributions,

P (tw) ∼ At−τw

w ; (8)

with different exponents, closely related to the tails
of the travel-time distributions in Fig. 4. Specifi-
cally, in the case of Statnet the numerical value
of the exponent is τw ≥ 2, suggesting finite aver-
age waiting times, and thus finite travel times for
packets on this network structure. In contrast, the
average waiting time on the Webgraph for this traf-
fic density is not bounded in a mathematical sense,
with τw < 2. This implies a systematic increase of
the travel times of packets on a large network with
this structure (with large measurement time). The
distribution of waiting times and travel times of
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Fig. 7. Distribution of waiting times in the Webgraph and the Statnet for a density ρ = 100.

individual packets provide a quantitative measure
that supports the conclusion that the Webgraph
class of networks, although much more efficient
compared to other scale-free network types [Tadić
& Thurner, 2004; Tadić et al., 2004], is the less effi-
cient of the two networks at high constant density of
packets. More homogeneous structures, such as the
Statnet, appear to perform better under these traf-
fic conditions. It should be stressed that the waiting
times as well as travel times are traffic properties
measured for individual packets, which will depend
on the type of queuing discipline used.

2.4. Noise and flow on networks

The observed queue lengths are compatible with the
temporal properties of node activity on the two net-
works, shown in Fig. 8. While queues at important
nodes in the inhomogeneous Webgraph are long, the
number of nodes that are simultaneously active is
small, fluctuating about an average value na ≈ 8.
Compared to the more homogeneous Statnet for the
same traffic density, on average na ≈ 80 nodes are
processing a packet simultaneously, leading to short
queues at all nodes.

Further quantitative analysis of the time-series
reveals the differences in the packet processing
of the two classes of networks. In particular,

long-range correlations (anti-persistence) in the
number of active nodes develops on both networks.
However, in the conditions of constant packet den-
sity the fluctuations on the Statnet appear to be
more correlated compared to the Webgraph. The
power spectrum exhibits an asymptotic power-law
behavior

S(f) ∼ f−φ, (9)

shown in Fig. 8 (top panel), with φ = 1.1 for Stat-
net and φ = 1.4 for the Webgraph. Therefore, an
increased traffic density leads to stronger correla-
tions in node activity on the more homogeneous
Statnet [Tadić & Thurner, 2006].

The observed differences that individual nodes
on each network play in the transport processes are
further quantified by analysis of the noise fluctua-
tions. We measure the number of packets hi(t) that
a node i processes within a fixed time window of
TWIN = 1000 time steps. We consider simultane-
ously (multichannel noise analysis) a set of time-
series {hi(t)} for all i = 1, 2, . . . , N nodes and
t = 1, 2, . . . , 500 successive time windows. We deter-
mine the standard deviation σ(i) for each of N
time-series (i.e. for each node) and plot it against
the time-averaged value 〈h(i)〉 ≡ 〈hi(t)〉t, where the
average is taken over all time windows for each node
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Fig. 8. Temporal fluctuations of the number of active nodes in Webgraph and Statnet (lower panel) and their power spectra
(top panel) for a density of ρ = 100 packets (from [Tadic & Thurner, 2006]).

separately. The general scaling relation [Argollo de
Menezes & Barabási, 2004]

σ(i) ∼ 〈h(i)〉µ, (10)

holds for all nodes in the network for our constant-
density traffic. However, we find that the scaling
exponents may depend on the traffic density in the
inhomogeneous Webgraph. The results are shown
in Fig. 9 for the two network structures and three
different traffic densities ρ. In particular, when the
packet density is high, the number of packets pro-
cessed by the hub nodes increases, resulting in the
increased fluctuations at these nodes. When density
is comparable with the maximum buffer size (in our
case ρ = H = 1000), temporary congestion may
occur at the main hubs and at other nodes of large
connectivity, whereas the rest of the network func-
tions in the free flow regime. In this situation, the
noise fluctuations at more important nodes appear
to be in the µ = 1 class, as opposed to the rest of the
network, where the fluctuations follow the law with
µ = 1/2, as shown in Fig. 9. Due to the absence of
hubs in the Statnet the fluctuations remain homo-
geneous and in the µ = 1/2 class for all packet
densities.

Our results demonstrate that inhomogeneous
noise fluctuations may occur in the self-regulated

(constant density) traffic away from the two uni-
versality classes defined in [Argollo de Menezes &
Barabási, 2004]. (See also [Valverde & Sole, 2004]
for traffic self-regulation with a local feedback.) In
our study the explanation of these nonuniversal
noise fluctuations is found in how the network struc-
ture handles high density traffic. These findings are
in agreement with a recent detailed study of the
empirical data of the Internet traffic and in a specif-
ically designed model in [Duch & Arenas, 2006],
which revealed that when the traffic density is high
“enough”, then other parameters of the dynamics
and structure play a role in determining the noise
properties. In particular, the exponent values may
vary between 0.5 and 1, depending critically on
the width of the time window and on the queu-
ing times of packets [Duch & Arenas, 2006]. (Sim-
ilar time-window effects are discovered in [Eisler &
Kertesz, 2006] in the stock market dynamics). Com-
pared with earlier models which tackle the scaling of
traffic noise in the Internet [Sole & Valverde, 2001;
Argollo de Menezes & Barabási, 2004; Valverde &
Sole, 2004; Duch & Arenas, 2006], the traffic model
that we study here is more complex in that pack-
ets are navigated to specified destinations, and that
both travel times and queuing times of packets
are self-consistently determined and appear to have
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power-law distributions (cf. Figs. 4 and 7). In the
future, we would hope to determine how these traffic
properties contribute to the observed nonuniversal-
ity in noise fluctuations.

3. Traffic Jamming and Structure

A crucial feature of transport networks is that
they cease to function efficiently when jamming of
nodes occurs. Jamming is characterized by a drastic
decrease of efficiency, in particular a nonstationary
increase of the load as a function of R. Jamming
occurs as a transition at a critical rate Rc. It is of rel-
evance to find alternative indicators or signatures,
which are able to signal the occurrence of jamming.
In particular we focus on exploring the possibility
to predict the “distance” to the jamming transition
from the activity time-series of individual nodes.

As will be discussed in Sec. 4, networks of dif-
ferent structures perform differently when the traf-
fic density is varied. In the constant-density traffic
ρ = 100 we show here that the network output,
defined as the number of packets delivered per time
step nd(t), is larger in the homogeneous Statnet
compared with the scale-free Webgraph. In Fig. 10
we display the time variation of the network output
nd(t) rate for the two networks. The average output
rate λ is defined as

λ ≡

〈

dnd(t)

dt

〉

. (11)

In the Webgraph λ = 0.37 we find packets per time
step, compared with Statnet, where λ = 0.71. This
difference suggests that with an imposed traffic den-
sity and a constant number of moving packets of
ρ = 100, the traffic on the Webgraph topology is
closer to jamming than the Statnet topology. In this
section we will explore in more detail the statistical
signature of traffic near jamming.

3.1. Queuing and jamming at

different topologies

The approach to the jamming regime is most appro-
priately studied with a constant posting rate R.
Then the temporal variations in the network load
Np(t) are given by

Np(t) = Rt − nd(t). (12)

When the posting rate R increases so that it exceeds
the average output rate, R > λ, the excess packets
accumulate on the network leading to a systematic
increase in the network load Np(t), although the
network continues to deliver packets in some way.
The average accumulation rate is then obtained
from Eq. (12) as

J ≡

〈

dNp(t)

dt

〉

= R − λ, (13)

which is reminiscent of the congestion condition
J/R = 1 − λ/R, often found in queuing theory
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for a single-server queue [Allen, 1990; Whitt, 2001].
It should be stressed, however, that here the load
Np(t) applies to the whole network, which con-
sists of many interacting queues. The excess load
increases the queues at different nodes, depending
on each node’s topological centrality and its impor-
tance in the particular transport process. There-
fore, subtle interactions between different queues
and their dynamical correlations contribute to the
jamming process, which are different for different
network topologies. This aspect of network conges-
tion will be discussed in detail later. We first demon-
strate how the statistical properties of the traffic
change with increased posting rate by simulating
traffic on the Webgraph.

In Fig. 11(a) we show the time-series of the
network load Np(t) for three representative post-
ing rates R =0.25, 0.35 and 0.45 on the Webgraph.
Compared to the time-series of the number of active
nodes in Fig. 8, here we take into account that
each active node has a queue of packets of a length
Qi(t) ≥ 1, which contributes to the overall network

load, Np(t) =
∑N

i Qi(t). Two of the time-series
in Fig. 11(a) are stationary, however, the average
load is increasing with the posting rate R. Another
qualitative difference is that, for the larger posting
rate, R = 0.35 in this case, a temporary jamming
may occur that lasts for approximately 60000 time
steps, and eventually resolved by the system itself.
This “crisis”-like behavior is one of the manifesta-
tions of the approach to a congested flow regime
at a critical posting rate Rc. A systematic analysis

of the traffic on Statnet for different posting rates
R reveals that the average load 〈Np(t)〉 is much
larger, compared to the Webgraph, but also that
the critical rate where the jamming occurs is twice
the critical rate of the Webgraph (see below). In
Fig. 12 network-load time-series are shown for two
representative posting rates just below the respec-
tive jamming point in both networks.

As shown in [Tadić et al., 2004], on approach-
ing the jamming point, numerous manifestations of
developing congestion can be measured statistically.
In particular, increased waiting times of packets and
characteristic changes in the distribution of waiting
times and network loads are detected, as well as in
the correlations of the activity and load time-series.
For the purpose of this work, we discuss only the
systematic changes in the network-load time-series.
The power-spectra of the network-load time-series
for the traffic on Webgraph are shown in Fig. 11(b)
for different values of the posting rate in the range
R = 0.005 to R = 0.4. The remarkable feature of
the spectra is the systematic decrease in the correla-
tions (antipersistency), measured by the increased
scaling exponent φ in Eq. (9) from φ = 1.18 at low-
est considered posting rate, to φ = 2, at the jam-
ming threshold. This gives the numerical evidence
that the onset of congested state is characterized by
a loss of long-range correlations in packet streams.
This feature seems to apply generally. The transi-
tion to the congested state and the properties of the
traffic in the congested regime, however, depend on
the topological details of the network.
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In order to avoid possible confusion regarding
the role of the transition point to the congested
state, here we would like to stress that the network-
load time series in our model exhibits long-range
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Fig. 12. Network-load time-series close to jamming transi-
tions in Webgraph and Statnet.

correlations (with an exponent φ < 2) in a wide
range of posting rates below the jamming transition.
As we show in the next subsection, these correla-
tions are strictly related to the structural complex-
ity of the network.

3.2. Transition to congested

traffic state

Technically, the transition point can be identified
with φ(Rc) → 2 for a given network geometry.
A characteristic slow-down of the dynamics at a
congested node, typically a hub in the Webgraph,
occurs in that only one packet can move-in from
one of the neighbor nodes, and a large number of
packets at other neighboring nodes are waiting until
one packet moves out of the hub in the next time
step. Study of long time-series for different posting
rates reveals how the decorrelation occurs on differ-
ent network structures. In Fig. 13 we show values of
the exponent φ against R in the case of Webgraph
and Statnet. It shows first that large variations in
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the strength of correlation occur in load time-series
on the Webgraph, in contrast to the time-series on
the Statnet, which exhibit weaker but stable cor-
relations over a wider range of posting rates. The
values of the critical rates are Rc ≈ 0.4 for traffic
on the Webgraph, whereas Rc ≈ 0.8 for the Statnet,
that roughly coincide with the time-series decorre-
lation rates.

Additional quantitative characteristics of the
transition to the congested state can be obtained
by measuring the average jamming rate, J , which
is defined in Eq. (13). In Fig. 13 we show system-
atic dependences of the jamming rate J from the
externally imposed posting rate R for traffic on
both types of networks. It reveals that the criti-
cal posting rates Rc = 0.4375 ± 0.0125 for traffic
on the Webgraph, and Rc = 0.75 ± 0.0125 in the
case of Statnet, at which the jamming transition
starts to appear are closely associated with a com-
plete decorrelation in the respective time-series (φ
reaches the value of 2 in both cases). Apart from
the differences in values of the critical rates Rc,
the onset of jamming seems to occur abruptly in
both networks. Additional differences due to net-
work topology are seen in the character of the
jammed traffic. Namely, the slopes of the curves
for J(R) above the jamming point in each case are
different. This suggests that in the congested state
the delivery rate λ, according to Eq. (13) drops to
λ/R = 1 − J/R, where J/R = 0.7 for the case of
Webgraph, and J/R = 0.5 for the case of Statnet,

are slopes of the curves J(R) in Fig. 13. Therefore,
in the congested state the Webgraph continues to
process about 30% of posted packets, whereas the
Statnet manages to deliver about 50%.

At this point, it is interesting to compare the
constant density traffic, ρ = 100 studied in pre-
vious section, with the picture of jamming on the
two topologies. In the constant density traffic an
effective posting rate 〈R〉 emerges, which keeps the
balance of the network’s output rate. According to
Fig. 10, for ρ = 100 the effective posting rates,
〈R〉 = λ = 0.37 for the Webgraph, and 〈R〉 = λ =
0.71 in the case of Statnet, are below the respective
jamming point in both topologies.

4. Optimized Transport

Perhaps the most important question in transport
optimization is to identify the optimal performance
of a network, once certain constraints such as search
mode and queue protocols are specified. Here we
review two ideas that address this question from
different standpoints. The first develops a method
to identify optimal paths in different networks by
using maximum flow trees [Tadić & Thurner, 2006],
the other actually optimizes network structure for
a given protocol and search depth [Guimerà et al.,
2002b].

4.1. Optimal paths on fixed

topologies

By simulating a large number of packets we record
the number of walks along each link (dynamic
flow) and through each node (dynamic noise) in
the network. Obviously, the inhomogeneity of nodes
with respect to their local network environment, as
shown in Fig. 2, makes the flow and noise fluctua-
tions different on each network structure. To obtain
a quantitative analysis of flow on the network links,
here we construct a maximum-flow spanning tree,
on which each node is connected to the rest of the
network nodes via its maximum-flow link. Imple-
menting a greedy algorithm, we determine the trees
from maximum-flow in the ρ = 1 limit on the two
networks. The trees are shown in Fig. 14.

The structure of these trees reflects both the
underlying network geometry and how that geom-
etry affects transport with given navigation rules–
local nnn-search. In the case of the Webgraph the
tree exhibits a scale-free topology, suggesting a cer-
tain degree of compatibility between the traffic and
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(a) (b)

Fig. 14. Dynamic maximum-flow spanning tree for traffic density ρ = 1 on the (a) cyclic scale-free Webgraph, and (b)
homogeneous Statnet.

the structure. Similarly, for the Statnet the tree
shows some degree of inhomogeneity that corre-
sponds to the weaker inhomogeneity of the under-
lying graph.

The maximum-flow spanning trees represent
the union of maximum-flow paths on the underlying
network structure. In Fig. 15 we show distribution
of the lengths of all such paths on the two trees that
are shown in Fig. 14. Once again, differences in the
graph topologies and thus in their maximum traf-
fic trees manifest themselves in the statistics of the
maximum-flow paths. For instance, the average dis-
tance along such paths on the Webgraph and Stat-
net differs by a factor of about 5, the maximum
distance differs by a factor of about 3.

The message is that for a fixed navigation pro-
tocol the underlying network structure determines
the topology of optimal paths for packet trans-
port. These paths consist of links that appeared
to be locally optimal choices for packets, without
any global feedback. The quantitative differences in
these topologies can be determined in the limit of
noninteracting packets (as shown in Fig. 14). How-
ever, how these optimal paths are used by packets
when the traffic density is increased, again depends
on the properties of the network queues. In partic-
ular, the traffic efficiency due to very short paths
between pairs of nodes, as on scale-free topologies,
can be hindered by the occurrence of large queues
at hubs, discussed in Sec. 3. In the following we
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Fig. 15. Distance distributions on the maximum-flow span-
ning trees for the Webgraph and the Statnet for ρ = 1, and
nnn-search [Tadic & Thurner, 2006].

show what network topologies emerge as globally
optimal structures in relation to varying traffic den-
sity [Guimerà et al., 2002b].

4.2. Traffic optimization by

network restructuring

In Secs. 2 and 3 we have demonstrated that trans-
port efficiency on a given network topology may
crucially depend on the traffic density. Specifically
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in strongly inhomogeneous networks, such as the
Webgraph, the structural characteristics which are
advantageous at low traffic density — occurrence
of powerful central nodes, may appear as weak-
nesses at high density traffic. In this subsection we
would like to draw attention to a more systematic
way to obtain an optimal structure for a given den-
sity using network reconstruction. The suitable for-
malism was introduced in [Guimerà et al., 2002b],
where global structure optimization is performed
starting from data about individual packet flow. In
this respect, the formalism simultaneously accounts
for both search and congestion aspects of the infor-
mation flow on networks. The basic arguments are
presented below. For more details see the original
reference [Guimerà et al., 2002b].

As before the focus is on a single information
packet at node i whose destination is node k. The
probability for the packet to go from i to a new

node j in its next movement is pk
ij. In particular,

pk
kj = 0, ∀j so that the packet is removed as soon

as it arrives at its destination. The probability pk
ij

depends on the network topology, given by the ele-
ments of the adjacency matrix cij , and on the search
algorithm. The three cases with local search modify
the transition probability pk

ij in the following way:
For a random walk (searched depth zero) we have

pk
ij =

cij
∑

j

cij

, (14)

and for a random walk with nearest neighbor search

pk
ij = cikδjk + (1 − cik)

cij
∑

j

cij

. (15)

Finally, for the the nnn-search used in Secs. 2 and
3, it corresponds to

pk
ij =











































δjk if cik = 1

cijcjk
∑

j

cijcjk

if cik = 0 and
∑

j

cijcjk > 0

cij
∑

j

cij

if cik = 0 and
∑

j

cijcjk = 0

(16)

Following [Guimerà et al., 2002b], one can then
determine the dynamic betweenness of nodes and,
subsequently, the network load Np(t), under certain
fairly general conditions. When the search is Marko-
vian, i.e. pk

ij does not depend on previous positions
of the packet, the probability of going from i to j
in n steps is given by

P k
ij(n) =

∑

l1,l2,...,ln−1

pk
il1p

k
l1l2 . . . pk

ln−1j . (17)

This definition allows calculation of the average
number of times, bk

ij , that a packet generated at
i and with destination at k passes through j. This
can be expressed in matrix notation as

bk =

∞
∑

n=1

P k(n) =

∞
∑

n=1

(pk)n = (I − pk)−1pk, (18)

where the matrices bk, P k(n) and pk have elements
bk
ij, P k

ij(n) and pk
ij respectively and I is the iden-

tity matrix. The effective (dynamic) betweenness,
Bj, of node j is then defined as the sum over all

possible origins and destinations of the packets on
the graph,

Bj =
∑

i,k

bk
ij . (19)

When the search algorithm is able to find the
minimum paths between the origin and destina-
tion nodes, the effective betweenness will coincide
with the topological betweenness [Newman, 2001;
Zhou et al., 2005; Latora & Marchiori, 2004], con-
sidered in Sec. 2.

If packets are generated at random and inde-
pendently with a probability R, or at each node
with probability r = R/N , and if the queuing dis-
cipline is given by a random queue M/M/1, rather
than the more complicated LIFO used in Sec. 2, it
can be shown that the time averaged load of the
network is [Allen, 1990; Guimerà et al., 2002b]

Np =
N

∑

j=1

rBj

N − 1

1 −
rBj

N − 1

. (20)
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Fig. 16. Optimal networks for (a) low-density traffic, and (b) high-density traffic. (Data: courtesy A. Dı́az-Guilera.)

This solution has two interesting limiting cases: For
small values of r the average load is proportional
to the average effective distance [Guimerà et al.,
2002b]. On the other hand, when r approaches a
critical rate rc, most of the load of the network
comes from the most congested node, and therefore

Np ≈
1

1 −
rB∗

N − 1

; r → rc, (21)

where B∗ is the effective betweenness of the most
central node, and assuming that the jump proba-
bilities pk

ij do not depend on the congestion state of
the network.

Equation (20) relates a dynamical variable, the
load, with topological properties of the network
and of the search algorithm. Hence, the dynam-
ical optimization procedure of finding the struc-
ture that gives the minimum load is reduced to
a topological optimization procedure where the
network structure is characterized by its effective
(dynamic) betweenness distribution. In [Guimerà
et al., 2002b] the problem of finding optimal struc-
tures was considered for a purely local search,
Eq. (14), using a generalized simulated annealing
procedure, as described in [Tsallis & Stariolo, 1994;
Penna, 1995]. Surprisingly, it was found that there
are only two types of structures that can be opti-
mal for a local search process: star-like networks for
posting rates below a characteristic rate R∗, r < r∗

and homogeneous networks for r > r∗. The net-
works are shown in Fig. 16.

The network structures which result from the
optimization process for two limits of the traffic
density, Fig. 16, exhibit a remarkable similarity with
graphs considered in Sec. 2, in particular, with their
core-graphs (graphs without single-link nodes). This
comparison helps us to identify the main topologi-
cal property of the graphs in Fig. 1 that is respon-
sible for the transport efficiency. In particular, it
suggests that the large clustering in the Webgraph
near the main hubs is responsible for the increased
efficiency of transport at low traffic density [Tadić
& Thurner, 2004; Tadić et al., 2004] (see also Sec. 3)
compared to other scale-free networks. Similarly,
the absence of clustering and a narrow distribution
of the connectivity in the Statnet, makes it suitable
to support a large-density traffic, in analogy to the
homogeneous network in Fig. 16.

5. Open Problems and Conclusions

5.1. Summary

We have shown using two complementary
approaches that two different classes of network
structure give rise to different traffic properties.
The classes of network structures we considered
were scale-free graphs with a significant hub node
and high clustering (called Webgraph), and a much
more homogeneous network with a quickly decaying
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degree distribution (called Statnet). These classes
were identified in two ways. Firstly, by directly
implementing a fairly realistic protocol for packet
transport on these networks we demonstrated with
a number of quantitative characteristics that the
traffic behaves differently on the two networks. Sec-
ondly, making use of the results of network opti-
mization in [Guimerà et al., 2002b], we concluded
that these two network classes appear to be rep-
resentative of optimal structures for low and high
traffic density, respectively.

A comparative study of packet transport on
these two networks revealed how traffic properties
depend on the network structure and on the packet
density. We considered both free moving and con-
gested traffic, and driving conditions with both a
constant packet density and with a constant post-
ing rate. A summary of the traffic characteristics
identified is given below:

Power-law tails : In the statistics of individual
packets the distributions of travel time, P (T ), and
waiting time, P (tw), exhibit power-law tails on both
network types, however, with different slopes (cf.
Figs. 4 and 7). Further differences appear at short
travel times, where transport on the Webgraph
mostly follows the shortest path between source and
destination nodes, while the times up to a charac-
teristic time T0 ≈ 10 steps are all equally probable
on Statnet. Consequently, the distribution P (T ) fits
a q-exponential [Tsallis, 1988] in the homogeneous
Statnet and a true power-law in the scale-free Web-
graph. The distributions of return-time, P (∆t), has
power-law tails with a large slope on both networks.
The main differences between the networks appear
at short return times (see Fig. 5), where the inho-
mogeneous betweenness of nodes in the Webgraph
play an important role.

Universal noise fluctuations : The traffic noise aver-
aged over a suitably chosen time window follows the
universal law in Eq. (10) in both network classes.
In the free flow regime we find µ = 1/2 law in
both network types, regardless of the differences
in their homogeneity and clustering characteristics.
However, when the traffic jamming occurs at large
density, the law changes towards µ = 1, for the busi-
est hub nodes in the inhomogeneous scale-free Web-
graph, whereas no qualitative changes are observed
in the homogeneous Statnet.

Antipersistent time-series : The network load time-
series Np(t) in both network types are found to be
antipersistent in the free flow regime. The degree

of correlations, however, are considerably different
(Fig. 13), depending on traffic density (or post-
ing rate). The noise correlations on Webgraph vary
from very strong, at low density, to weak corre-
lations, at the jamming threshold Rc ≈ 0.4. In
the case of homogeneous Statnet the noise corre-
lations are generally weaker but stable in a wide
range of posting rates until the jamming thresh-
old, Rc ≈ 0.8, when only short-range correlations
survive.

Jamming transition : A jammed traffic regime,
characterized by unbalanced increase of network
load occurs on both networks at their critical post-
ing rates Rc, mentioned above, Fig. 13. The appear-
ance of the nonzero jamming rate λ Eq. (11) is quite
sudden for finite sized networks of both classes. For
a given network type the value of the critical thresh-
old Rc depends strongly on the efficiency of the
search algorithm [Tadić & Thurner, 2004]. Specif-
ically, the critical rate Rc ≈ 0.4 in traffic with
nnn-search on the Webgraph is particularly high
compared to random diffusion on the same graph or
traffic on scale-free trees, where the critical jamming
rate is of the order Rc ≈ 10−3 [Tadić & Thurner,
2004].

Traffic in the congested state : The advantage of the
homogeneous structure at high traffic density con-
tinues to be seen in the congested regime. However,
the difference in the efficiency is only about 20%.
This can again be attributed to the efficient nnn-
search of the Webgraph geometry.

Optimal flow paths : The union of the optimal paths
learnt from the traffic history, summarized at the
maximum-flow spanning trees of the two network
types in Fig. 14 shows the advantage of the scale-
free structure at low density traffic. Due to the
efficient search, the maximum-flow tree retains the
scale-free character and the statistics of the optimal
path lengths in Fig. 15 resemble those of the topo-
logically shortest paths on the graph. On the other
hand, paths are much longer on the homogeneous
Statnet, independent of the traffic density.

For a fixed network geometry further, although
limited, optimization may be achieved by improv-
ing the search algorithms [Kujawski et al., 2006].
Transport processes on other types of networks, cel-
lular networks [Suvakov & Tadić, 2006], gradient
networks [Toroczkai & Bassler, 2004; Park & Lai,
2005], river networks [Banavar et al., 1999], or gen-
erally trees and directed graphs, are subject of addi-
tional constraints that may result in qualitatively
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different behavior. These networks are not consid-
ered in the current work.

5.2. A comment regarding

“realistic” protocols

Among various transport networks the Internet is
a particularly accessible and attractive example.
In recent years measurements in both the Inter-
net structure and the information packet TCP/IP
traffic dynamics on the Internet have been car-
ried out and their inter-relations discussed [Csabai,
1994; Takayasu et al., 1996; Takayasu et al., 2000;
Willinger et al., 2002; Abe & Suzuki, 2003; Doyle
et al., 2005]. These have either considered ping time
statistics, that is a packet’s round trip time from
source to destination and back again, or the statis-
tics of the load on a particular server, router or
cable. Almost all these studies have found scaling
laws and long range correlations in a range of traf-
fic time-series [Csabai, 1994; Takayasu et al., 1996;
Takayasu et al., 2000]. Examination of the power
spectra has allowed the identification of two dif-
ferent regimes with free flow or jammed traffic. It
was shown [Willinger et al., 1997] that the power-
law behavior of the distribution of packet inter-
arrival times has a significant impact on packet
queue statistics, and consequently on the overall
traffic performance.

In addition, the scale-free nature of the Internet
structure [Vázquez et al., 2002; Doyle et al., 2005]
has been fully characterized. The structural charac-
teristics on the autonomous systems level, in par-
ticular, the degree distribution, high clustering and
link-correlations, are statistically similar to those
of the prototype network Webgraph discussed in
Sec. 2. Beyond the practical importance of research
into the properties of the Internet, the underlying
cause of self-similarity and criticality in the Inter-
net’s structure and information traffic is still a sub-
ject of debate involving researchers in a broad range
of scientific disciplines. Among the goals of this
research is to determine universality classes of the
scale-free behavior and to unravel the mechanisms
of the structure — dynamics interdependences.

Examining our results in Sec. 2, obtained with
the local nnn-navigation algorithm, we can con-
clude that the statistical features of the traf-
fic, in particular the power-law distributions, the
degree of correlations in the packet streams, and
the onset of jamming, are related to the actual
Internet structure. Furthermore, our results suggest

that no substantial improvement in traffic efficiency
will be achieved by implementing a long-range
search beyond the “critical horizon” of the scale-
free network, which is depth level two in our Web-
graph (more detailed analysis is given in [Tadić &
Thurner, 2005]). In the study by [Valverde & Sole,
2004], who first introduced the term “critical path
horizon” in this context, the sharp transition was
found at the depth level four. The difference in the
critical horizons in these two scale-free networks can
be attributed to the better “searchability” of the
correlated scale-free Webgraph, compared to uncor-
related scale-free network used in [Valverde & Sole,
2004].

Of crucial importance is the centrality of nodes,
which pre-determines the size of queues, and hence
the traffic jamming and an increased risk of packet
loss. The onset of traffic congestion seems to occur
suddenly in the prototype network, and is proba-
bly related to the size of the giant cluster. However,
we observed a kind of traffic “crisis” behavior with
large load fluctuations before the actual jamming
starts. The statistical indicators of the traffic behav-
ior, determined in previous sections, systematically
change with the increased network load (traffic den-
sity). Hence, the following four phases can be clearly
identified: free flow, crisis, jamming threshold and
congested traffic. Therefore, an effective control
mechanism, that would eventually lead to increased
traffic efficiency and security, may be developed
through a systematic monitoring of one or more of
these indicators.

5.3. Some open theoretical problems

in transport on networks

Quantitative properties of transport on a network
topology depend in different ways on the network
geometry and on search algorithm and type of queues
on that geometry. The actual dependence on the
search and queuing cannot be considered indepen-
dently of the underlying network structure [Tadić
& Thurner, 2005]. Another subtle factor which
determines the transport properties is the driving
mode. Specifically, large fluctuations of the posting
rate may influence noise properties. More seriously,
they may drive the network out of a stationary flow,
where some statistical properties cannot be deter-
mined mathematically correctly.

For the theoretical purposes we have imple-
mented in Sec. 2 a noninvasive self-consistent driv-
ing, which preserves the number ρ of moving packets



Transport on Complex Networks: Flow, Jamming and Optimization 2383

in time. The stationarity of time-series is thus guar-
anteed, and jamming does not occur when ρ is not
too big, as shown above. In this regime we can deter-
mine numerically the correct statistical properties
of the traffic. In the limit ρ → 1 the outcomes are
directly attributed to the network structure. The
results of numerical simulations are given in Sec. 2.
However, clear theoretical concepts behind these
numerical results still remain elusive, in particular
related to the following questions:

• Universality classes of travel time distributions.
• Power-laws in the waiting time distribution.
• Queue interactions in the correlated network

environment.
• Return-time distributions structural dependences

and occurrence of the q-exponential.
• Robustness of the universal noise fluctuations,

related to traffic density and network structure.
• Universality of the dynamic jamming transition.

In traffic models, as in many other dynami-
cal systems, power-law behavior is often attributed
to (dynamic) phase transitions, separating differ-
ent attractors of the dynamics. A particular exam-
ple of this is the jamming transition in the traffic
model on a compact lattice studied by Sole and
Valverde [2001]. However, when the underlying
network is sparse and strongly inhomogeneous,
additional mechanisms of correlations may become
active, leading to the attractive states with self-
similar dynamics away from the phase transition.
In this paper, by comparing traffic on different
networks, we have found substantial evidence that
the self-similar dynamic properties (at and away of
the jamming transition) are shaped by the network
geometry.

In conclusion, the dynamic characteristic of
transport processes on networks, appear to be, to a
large extent, predesigned by the underlying network
structure, where certain structural characteristics
play a dominant role. However, these structure–
function interdependences are strongly determined
by the dynamic conditions, in particular, traffic den-
sity. In this respect, two large classes of networks
with an optimal function are now identified —
clustered scale-free networks, and homogeneous, or
weakly structured, unclustered networks. With the
large-scale numerical simulations in this work we
have shown that different quantitative character-
istics of the traffic emerge in these two network
classes. This leaves open the question about the
active principle which shapes the dynamics within

each of these network classes. We hope that our
investigations will initiate further theoretical and
practical research to address this question.
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