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Abstract We construct a higher derivative theory involv-

ing an axionic field and the Weyl tensor in four dimensional

spacetime. Up to the first order of the coupling parameters,

the charged black brane solution with momentum dissipation

in a perturbative manner is constructed. Metal–insulator tran-

sitions are implemented when varying the system parameters

at zero temperature. Also, we study the transports including

DC conductivity and optical conductivity at zero charge den-

sity. We observe the exact particle–vortex duality for some

specific momentum dissipation strength.

1 Introduction

The quantum critical (QC) system has long been a central

and challenging subject in condensed matter physics [1]. It

is believed to account for the most interesting phenomena,

such as the strange metal and pseudo-gap phase, in strongly

correlated quantum materials. The QC system is associated

with a QC phase transition and a QC phase. Since the QC sys-

tem is strongly correlated, the conventional perturbative tools

in traditional field theory, unfortunately, lose their power. We

need to develop novel non-perturbative techniques and meth-

ods.

The AdS/CFT correspondence [2–5], mapping a strongly

coupled quantum field theory to a weakly coupled gravita-

tional theory in the large N limit, provides a powerful tool

to the study of QC physics and has led to great progress.

Especially, the metal–insulator transition (MIT), a special

example of the QC phase transition, has been widely stud-

ied in the holographic framework; for instance see [6–19]

and the references therein. To implement an MIT in a holo-

graphic framework, the key point is to deform the infrared

(IR) geometry to a new fixed point by the introduction of

momentum dissipation [6,7].

a e-mail: jianpinwu@mail.bnu.edu.cn

Holographic QC phase at zero density has also been

intensely explored in [20–31]. By studying transport phe-

nomena, in particular the optical conductivity, from a probe

Maxwell field coupled to the Weyl tensor Cμνρσ on top of the

Schwarzschild–AdS (SS–AdS) black brane background [20–

28], one observed a non-trivial frequency dependent con-

ductivity attributed to the introduction of the Weyl tensor. It

exhibits a peak, which resembles the particle response and we

refer to this as the Damle–Sachdev (DS) peak [32], or a dip,

which is similar to the behavior of the vortex response, and

is analogous to the one in the superfluid–insulator quantum

critical point (QCP)1 [20–22].

But the peak is not the standard Drude peak and the DC

conductivity has a bound which cannot approach zero. When

higher derivative (HD) terms are introduced, an arbitrarily

sharp Drude-like peak can be observed at low frequency in the

optical conductivity and the bound of conductivity is violated

such that a zero DC conductivity can be obtained at a specific

parameter2 [27]. Another step forward is the construction

of a neutral scalar hair black brane by coupling the Weyl

tensor with a neutral scalar field, which provides a framework

to describe the QC phase and a transition away from QCP

[30,31].

In this paper, we shall construct a higher derivative theory

including the four derivative terms, a simple summation of

the Weyl tensor as well as a term from the trace of axions

coupling with the gauge field, and a six derivative term, a

mixed term of the product of the Weyl tensor and the axionic

field coupling with the gauge field, and we obtain a charged

black brane solution in a perturbative manner. By using a per-

turbative method, some charged black brane solutions from

1 Those kinds of peak and dip features have also been observed in probe

branes and DBI action [33] and just higher terms in F2 with F being

the Maxwell field strength [17].

2 We would like to point out that this bound in the conductivity is

formalized in “almost” general theories in [34,35]. But in more generic

theories [16,36,37], this bound is also violated.
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higher derivative gravity theory have been constructed; for

instance see [14,38–42] and the references therein. Espe-

cially, in [14], it is the first time that an MIT is realized in

the framework of higher derivative gravity. Along the line of

[14], we shall study the MIT physics of our present model.

Also, we explore the QC phase of this model at zero charge

density.

We organize this paper as follows. In Sect. 2, we construct

the higher derivative model coupling axionic field and Weyl

tensor with the gauge field. Then the perturbative black brane

solution is obtained in Sect. 3. In Sect. 4, we calculate the

DC conductivity at finite charge density and study the MIT

at zero temperature. The conductivity at zero charge den-

sity is explored in Sect. 5. A brief discussion is presented in

Sect. 6. The constraint on the coupling parameters is obtained

in Appendix A.

2 Holographic model

We construct a higher derivative holographic effective theory

including metric, axions and gauge field as follows:

S0 =
∫

d4x
√

−g

(
R + 6

L2
− �̄

)
, (1a)

SA =
∫

d4x
√

−g

(
− L2

8g2
F

Fμν Xμνρσ Fρσ

)
, (1b)

where

X ρσ
μν = I ρσ

μν − 4γ1,0 L2�̄I ρσ
μν − 8γ0,1L2C ρσ

μν

− 8γ1,1L4�̄C ρσ
μν , (2a)

�̄ ≡ T r [�] ≡ �μ
μ, �μ

ν = 1

2

∑

I=x,y

∂μφI ∂νφI . (2b)

A pair of spatial linear dependent axionic fields, φI = αx I

with I = x, y and α being a constant, are introduced in

the above action, which are responsible for dissipating the

momentum of the dual boundary field. L is the radius of

the AdS spacetimes. gF and γm,n with m, n = 0, 1 are the

dimensionless coupling parameters. In what follows, we shall

set gF = 1. �
μ
ν is the second order derivative term with

respect to axions. The first term in the tensor X gives the

standard Maxwell term. I
ρσ

μν is an identity matrix defined as

I
ρσ

μν = δ
ρ

μ δ σ
ν − δ σ

μ δ
ρ

ν . The second term can be classified

as a four derivative term, which is the term with n = 0, m =
1 in [36,37] (Eq. (2.13) in [36]). The third term is also a

four derivative one, constructed by the Weyl tensor, which

has been well studied in [14,43]. For consistency with the

current literature [20,43,44], we denote γ0,1 = γ in what

follows. The last term is a 6 derivative term constructed by

axions and the Weyl tensor. More higher derivative terms can

be constructed in terms of axions, the Weyl tensor and the

gauge field, which we leave for future study. It is easy to

see that the new tensor X possesses the same symmetry as

Xμνρσ = X[μν][ρσ ] = Xρσμν , like in [20,43,44].

The equations of motion (EOMs) can be straightforwardly

derived from the above action (1),

∇μ[∇μφI (1 − γ1,0 L4 F2 − γ1,1L6Cμνρσ Fμν Fρσ )] = 0,

(3a)

∇ν(Xμνρσ Fρσ ) = 0, (3b)

Rμν − 1

2
Rgμν − 3

L2
gμν − L2

2
(1 − 4γ1,0 L2�̄)

(
Fμρ F ρ

ν

− 1

4
gμν Fρσ Fρσ

)

− L2

2
(1 − γ1,0 L4 F2 − γ1,1L6Cμνρσ Fμν Fρσ )

×

⎛
⎝ ∑

I=x,y

∂μφI ∂νφI

⎞
⎠ + 1

2
gμν�̄

− L4(γ + γ1,1L2�̄)(G1μν + G2μν + G3μν) = 0, (3c)

where

G1μν = 1

2
gμν Rαβρσ Fαβ Fρσ − 3R(μ|αβλ|F

α
ν) Fβλ

− 2∇α∇β

(
Fα

(ν F
β

μ)

)
, (4a)

G2μν = −gμν Rαβ FαλF
β
λ + gμν∇α∇β(Fα

λFβλ)

+�(F λ
μ Fνλ) − 2∇α∇(μ(Fν)β Fαβ)

+ 2Rνα F β
μ Fα

β + 2Rαβ Fα
μFβ

ν + 2RαμFαβ Fνβ ,

(4b)

G3μν = 1

6
gμν RF2 − 1

3
Rμν F2 − 2

3
RFα

μFαν

+ 1

3
∇(ν∇μ)F2 − 1

3
gμν�F2. (4c)

Following Ref. [20], we can construct the electromagnetic

(EM) dual theory of (1) with (2), which is

SB =
∫

d4x
√

−g

(
− L2

8ĝF

Gμν X̂μνρσ Gρσ

)
, (5)

where ĝ2
F ≡ 1/g2

F and Gμν ≡ ∂μ Bν − ∂ν Bμ. The tensor X̂

is defined by

X̂ ρσ
μν = −1

4
ε αβ
μν (X−1)

γ λ

αβ ε
ρσ

γλ , (6)

1

2
(X−1) ρσ

μν X αβ
ρσ ≡ I αβ

μν , (7)

where εμνρσ is a volume element. The tensor X̂ possesses

the same symmetry as X , i.e., X̂μνρσ = X̂[μν][ρσ ] = X̂ρσμν .

When X
ρσ

μν = I
ρσ

μν , the modified Maxwell theory (1b) is

reduced the standard Maxwell one. In this case, one can easily
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deduce that X−1 = X and so X̂
ρσ

μν = I
ρσ

μν from Eqs. (7)

and (6). Hence, the actions (1b) and (5) are identical, which

demonstrates that the standard Maxwell theory is self-dual.

It has been shown in [20] that, when the higher derivative

termγ is introduced, the EM self-duality is violated. Here, we

demonstrate that even if only the γ1,0 coupling term is intro-

duced, the EM self-duality is also violated. We first evaluate

the inverse of X in terms of (7), which is

(X−1) ρσ
μν = 1

1 − 4γ1,0 L2�̄
I ρσ
μν . (8)

Immediately, from Eq. (6), we find

X̂ ρσ
μν = (X−1) ρσ

μν = 1

1 − 4γ1,0 L2�̄
I ρσ
μν . (9)

Since X̂ �= X , the EM self-duality is violated.

3 Black brane solution

Since the EOM (3) are a set of third order differential equa-

tions with high nonlinearity, it has been hard to solve it ana-

lytically or even numerically so far. So following the strategy

in [14] (also see [38–42]), we shall construct analytical solu-

tions up to the first order of those coupling parameters.3 To

this end, we take the following ansatz:

ds2 = − r2

L2
f (r)dt2 + L2

r2 f (r)
dr2 + r2

L2
g(r)(dx2 + dy2),

(10a)

A = At (r)dt, (10b)

where the UV boundary is at r → ∞. Note that, when we

take the following ansatz ofφI :φI = αx I , Eq. (3a) is satisfied

automatically. So we only need to expand the functions f (r),

g(r) and At (r) in powers of γ0,1, γ and γ1,1 up to the first

order as

f (r) = f0(r) + γ1,0Y1,0(r) + γ Y (r) + γ1,1Y1,1(r), (11a)

g(r) = 1 + γ G(r) + γ1,1G1,1(r), (11b)

At (r) = At0(r) + γ1,0 H1,0(r) + γ H(r) + γ1,1 H1,1(r),

(11c)

where f0(r) and At0(r) are the zeroth order solutions, which

have been worked out in [45], while Yi, j (r), Gi, j (r) and

Hi, j (r) are the first order solutions of γi, j . Note that we do

3 When the Weyl terms are turned off, i.e., γ = 0 and γ1,1 = 0, the

black brane can be worked out analytically [36,37]. We shall make a

qualitative comparison on the DC conductivity between [36,37] and our

present results in Sect. 4.2.

not include the correction from γ0,1 into the function of g(r),

so that we can make a direct comparison with the analytical

solution in [36,37].

By directly solving Eq. (3) to the zeroth and first order of

the coupling parameters, we can determine these functions:

f0(r) = 1 − M

r3
+ q2

r4
− α2L4

2r2
, At0(r) = μ − 2q

r L2
,

(12a)

Y1,0(r) = −4α2q2 L4

3r6
, H1,0(r) = 8α2q L2

3r3
, (12b)

Y (r) = c0q2

r5
− c0 M

2r4
+ c1α

2L4

2r2
− c0

r
+ 20Mq2

9r7

− 104q4

45r8
+ 10α2q2 L4

9r6
− 32q2

9r4
,

G(r) = −c0

r
+ c1 + 4q2

9r4
,

H(r) = − c0q

r2L2
− 4Mq

r4L2
+ 296q3

45r5L2
− 8α2q L2

9r3
, (12c)

Y1,1(r) = d0 M

2r4
− d0q2

r5
+ α2d1L4

2r2
+ d0

r

+ 64α2 Mq2 L4

45r9
− 496α2q4L4

315r10

+ 28α4q2 L8

45r8
− 32α2q2 L4

45r6
,

G1,1(r) = d0

r
+ d1 + 8α2q2 L4

45r6
,

H1,1(r) = d0q

r2L2
− 8α2 Mq L2

3r6
+ 208α2q3L2

45r7
− 8α4q L6

15r5
.

(12d)

(μ, q, M, c0, c1, d0, d1) are seven integration constants, which

are not independent from one another. Below, we shall derive

the relations among them.

First, we can make the coordinate transformations

r → r + 1

2
γ c0 − 1

2
d0γ1,1, (13a)

(x, y) → (x, y)

(
−1

2
d1γ1,1 − γ c1

2
+ 1

)
, (13b)

and a redefinition of the axionic charge α

α → α

(
1

2
d1γ1,1 + γ c1

2
+ 1

)
, (14)

such that the integration constants (c0, c1, d0, d1) can be

eliminated. Using the conditions that f and At vanish at

the horizon r = rh , we obtain the relations for (μ, q, M):
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q = μrh L2

2
− γ1,0

2α2μL6

3rh

+ γ

(
5α2μL6

18rh

+ 29μ3L6

180rh

− μL2rh

)

+ γ1,1

(
α4μL10

5r3
h

+ 11α2μ3L10

90r3
h

− 2α2μL6

3rh

)
, (15a)

M = r3
h − 1

2
α2 L4rh + 1

4
μ2L4rh − γ1,0

α2μ2 L8

3rh

+ γ

(
5α2μ2L8

18rh

+ 7μ4L8

45rh

− 4

3
μ2L4rh

)

+ γ1,1

(
8α4μ2L12

45r3
h

+ 71α2μ4L12

630r3
h

− 22α2μ2L8

45rh

)
.

(15b)

It is convenient to work with dimensionless quantities. So

we make the following rescaling:

r → rhr, (t, x) → L2

rh

(t, x), At → rh

L2
At ,

M → Mr2
h , Q → Qr2

h , α → rh

L2
α. (16)

Under this rescaling, we can set L = 1 and rh = 1. Then the

dimensionless temperature can be given by

T = −2α2 + μ2 − 12

16π
− γ1,0

α2μ2

12π
+ γ

μ2
(
μ2 − 60

)

720π

+ γ1,1

α2μ2
(
8α2 + 3μ2 − 84

)

360π
. (17)

Note that all the above quantities q, M and T have been

expanded to the first order of the coupling parameters

(γ1,0, γ, γ1,1). This black brane is characterized by two

parameters, i.e., the temperature T/μ and the strength of the

momentum dissipation α/μ. μ is interpreted as the chemical

potential of the dual field and can be treated as the unit for

the grand canonical system. For later convenience, we denote

T̄ ≡ T/μ and ᾱ ≡ α/T .

In addition, for the convenience of calculation, we shall

work with the coordinate u = 1/r . Then, in terms of μ, we

reexpress f (u), g(u) and At (u) as follows:

f (u) = (1 − u)p(u), (18a)

p(u) = −1

4
μ2u3 − α2u2

2
+ u2 + u + 1

− 1

3
γ1,0α

2μ2u3(u2 + u − 1)

+ γ
1

180
μ2u3(2μ2(13u4 − 14) + 50α2(u3 − 1)

+(μ2 − 100)(u3 + u2 + u) + 240)

+ γ1,1
1

630
α2μ2u3(14α2(8u5 + u4 + u3 + u2 + u

− 8) − 28(8u5 + 8u4 + 8u3 + 4u2 + 4u − 11)

+μ2(62u6 + 6u5 + 6u4 + 6u3 + 6u2

+ 6u − 71)), (18b)

g(u) = 2

45
α2μ2u6γ1,1 + 1

9
γμ2u4 + 1, (18c)

At (u) = μ(1 − u)

[
1 + 4

3
α2u(u + 1)γ1,0

+ γ (2u(u2 + u + 1) − 1

9
α2u(u(9u + 5) + 5)

− 1

90
μ2u(u(u(74u + 29) + 29) + 29))

+ 1

45
α2uγ1,1(60(u4 + u3 + u2 + u + 1)

− 6α2(u(u(u(5u + 3) + 3) + 3) + 3)

−μ2(u(u(u(u(26u + 11) + 11) + 11)

+ 11) + 11))

]
. (18d)

4 DC conductivity at finite density

4.1 The derivation of the DC conductivity

In this section, we follow the procedure in [8,14,46,47] to

calculate the DC conductivity. To this end, we turn on the

following consistent perturbations:

δgt x = 1

u2
ht x (u)[1 + γ G(u) + γ1,1G1,1(u)],

δAx = −Ex t + ax (u), δφx = χx (u). (19)

Then one can define a radial conserved current in the bulk as

J x = 1

2

√
−gXμνρσ Fρσ . (20)

Up to the first order of the coupling parameters, this con-

served current can be evaluated as

J x = −Qht x (u) + f (u)a′
x (u) − 4α2u2γ1,0 f (u)a′

x (u)

− 2

3
u2 f (u)(α2u2γ1,1 + γ )

×( f ′′(u)a′
x (u) + 3A′

t (u)h′′
t x (u)). (21)

We have defined Q = J t in the above equation. It is the

conserved electric charge density. Once J x is at hand, the

DC conductivity can be evaluated in terms of Ohm’s law,

σDC = J x

Ex

. (22)

Since J x is a radial conserved quantity, the DC conduc-

tivity can be evaluated at the horizon u = 1. First, we extract

the value of ht x at the horizon from the t, x component of

the Einstein equation, which reads
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γ1,0

(
1

4
ht x (G1,1((A′)2

t − 2 f ′′ + 8 f ′ + 12) − 2 f ′G ′
1,1)

+ 1

3
α2u2 A′

t (2 f f ′′a′
x + ht x A′

t ( f ′′ − 2 f ′))

)

− 1

6
f a′

x A′
t (4α2u2γ1,1 f ′′ + 4γ f ′′ + 3)

+ ht x

(
1

6
(3γ1,1 f ′G ′

1,1−2γ (A′)2
t ( f ′′ − 2 f ′)+3γ f ′G ′)

+ 1

6
α2(2u2γ1,1(A′)2

t (2 f ′ − f ′′) + 3)

− 1

4
(A′)2

t + f ′′

2
− 2 f ′ − 3

)
= 0. (23)

Notice that the above equation has taken value at u = 1. In

addition, we also need to add a regular boundary condition

of ax at the horizon, which is

a′
x = Ex

f
. (24)

Collecting Eqs. (21)–(24), we can obtain the DC conductiv-

ity:

σ0 = 1 + 1

ᾱ2
+ γ1,0

(
28μ2

3
− 8

3
μ4ᾱ2 − 3μ4

5ᾱ2
− 4μ2ᾱ2 − 4μ2

5ᾱ2

− 38μ4

15

)
+ γ

⎛
⎝4 − 4

3
μ2ᾱ2 +

8μ2

15
− 4

ᾱ2
+ μ2

9

⎞
⎠

+ γ1,1

(
−4

3
μ4ᾱ4 − 1

5
μ4ᾱ2 + μ4

3ᾱ2
+ 4μ2ᾱ2

− 4μ2

ᾱ2
+ 10μ4

9
− 8μ2

3

)
. (25)

When γ1,0 = 0 and γ1,1 = 0, the result (25) reduces

to Eq. (37) in [14]. To compare with our present results,

involving more coupling terms, we would like to present a

brief review [14]:

• There is a relation,

σ0(γ, T ) ≃ const. − σ0(−γ, T ), (26)

which can be seen to hold when ᾱ is fixed. It can be

viewed as a special particle–vortex duality in [48,49].

• A metal–insulator transition (MIT) happens at zero tem-

perature for a given nonzero γ when we change the

axionic charge ᾱ.

• There is a mirror symmetry at zero temperature4

∂σ0

∂ T̄
(γ, ᾱ) = −∂σ0

∂ T̄
(−γ, ᾱ). (27)

4 This mirror symmetry also may be applicable at finite temperature.

Next, we shall analyze the behavior of the DC conductivity

and explore the MIT. Before proceeding, we introduce the

definition of metallic phase and insulating phase adopted in

many holography references [6–19,50]:

• Metallic phase: ∂T σ0 < 0.

• Insulating phase: ∂T σ0 > 0.

• Critical point (line): ∂T σ0 = 0.

4.2 DC conductivity without Weyl term

In Appendix A, we analyze the causality and instabilities of

the vector modes at zero density. When we only consider the

γ1,0 term, the analysis and the requirement of the positive DC

conductivity indicate −3/40 ≤ γ1,0 ≤ 1/40. But it is hard

to analyze the causality and instabilities of the vector modes

at finite density even if we have an analytical perturbative

black brane solution. We shall leave this problem for future

study. Here, we only approximately impose a further con-

straint from the requirement of the positive DC conductivity

at finite density.

Figure 1 show the DC conductivity σ0 as a function of the

temperature T̄ with different γ1,0 and ᾱ. We find that, when

γ1,0 = 0.025, σ0 is negative for small ᾱ and low temperature

T̄ . Further detailed exploration indicates that the positive

definiteness of the DC conductivity constrains γ1,0 in the

range

− 3/40 ≤ γ1,0 ≤ 1/100. (28)

Also, we, respectively, show the DC conductivity as a

function of ᾱ for γ1,0 belonging to the range (28) at zero

temperature and finite temperature in Fig. 2. Figures 1 and 2

show that our result is qualitatively the same as that found in

[36]:

• At zero temperature, the DC conductivity monotonously

decreases in terms of ᾱ.

• At finite temperature, the DC conductivity is qualitatively

similar to that at zero temperature when γ1,0 > 0. Mean-

while for −3/40 ≤ γ1,0 < 0, the DC conductivity no

longer monotonously decreases but has a minimum at

some finite value of ᾱ.

• When ᾱ is fixed, the DC conductivity monotonously

decreases in terms of T̄ for γ1,0 > 0, which demon-

strates a metal phase. When the sign of γ1,0 changes, an

opposite behavior is found, which is an insulator phase.

Therefore, our system up to the first order of the coupling

parameters captures the main properties as shown in [36].

Finally, we present some comments on comparing with

the 4 derivative Weyl term studied in [14].

123



292 Page 6 of 18 Eur. Phys. J. C (2018) 78 :292

Fig. 1 DC conductivity σ0 as a function of the temperature T̄ with different γ1,0 and ᾱ

Fig. 2 DC conductivity σ0 as a function of ᾱ with different γ1,0 at zero temperature (left plot) and finite temperature (right plot), respectively

Fig. 3 ∂T̄ σ0 as a function of ᾱ at zero temperature for different γ1,0

• Different from that for the four derivative Weyl term, no

MIT happens for a given nonzero γ1,0 when changing ᾱ

(see Fig. 3). But the mirror symmetry on ∂σ0

∂ T̄
(ᾱ) (27) at

zero temperature holds when the sign of γ1,0 changes.

• Equation (26) holds when the sign of γ1,0 changes and ᾱ

is fixed.

4.3 DC conductivity from four derivative theory

When only the four derivative Weyl term γ is involved, an

MIT occurs at zero temperature by varying the axionic charge

ᾱ. In particular, the quantum critical line is independent of

the coupling parameter γ [14].

Fig. 4 Left plot: σ0 as a function of T̄ with γ1,0 = 0.0005, ᾱ = 2.5

and for different γ . Right plot: σ0 as a function of T̄ with γ = 10−4,

ᾱ = 2.5 and for different γ1,0

In this section, we consider the mixed effect on DC con-

ductivity in the four derivative theory including both γ1,0 and

γ terms. The main properties are summarized as follows:

• Equations (26) and (27) hold for fixed ᾱ and changing

the signs of γ and γ1,0 (Fig. 4 and left plot in Fig. 5).

• For positive (negative) small γ1,0, an MIT can be

observed for negative (positive) γ (see right plot in

Fig. 5). But different from the case only involving the

four derivative term in [14], the quantum critical line is

dependent on γ (Fig. 6). It provides a new platform of

QCP such that we can study the holographic entangle-
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Fig. 5 ∂T̄ σ0 as a function of ᾱ at zero temperature

ment entropy and the butterfly effect close to QCP as in

[13,14,51]. We shall explore them in our present model

in the future.

Before proceeding, we present some comments on the

phase diagram for the MIT from four derivative theory at

zero temperature (Fig. 6). For γ1,0 < 0 and γ > 0, with the

increase of the strength of momentum dissipation, there is a

phase transition from metallic phase to insulating one. This

phenomenon is consistent with that of the usual charged par-

ticle excitations. On the other hand, for γ1,0 > 0 and γ < 0,

we find that with the increase of the strength of momentum

dissipation, the phase transition is opposite, i.e., the stronger

momentum dissipates, the more insulating is the material. A

better description of this phenomenon is provided by consid-

ering the excitations of vortices. Just as described [20], the

EM duality of the bulk theory, which is related by changing

the sign of γ , corresponds to the particle–vortex duality in

the dual holographic CFT. Figure 6 shows such a duality;

when we change the sign of γ , there is a duality between

metallic and insulating phase. In fact, the phenomena can be

easily concluded from Eq. (26). Finally, we would like to

mention two corresponding examples. One is the transition

observed in [20] from the Drude-like peak at low frequency

optical conductivity, which is interpreted as the charged par-

ticle excitations, to the dip, which resembles the excitations

of vortices. Another one is the observation in [43] that the

momentum dissipation drives the Drude-like peak into the

dip of the low frequency optical conductivity for γ > 0.

Meanwhile for γ < 0, the opposite scenario appears. When

the sign of γ changes, an approximate duality in optical con-

ductivity is also observed for fixed strength of momentum

dissipation. This duality is also observed in the next section.

4.4 DC conductivity from six derivative theory

Now, we turn to a study of the effect of the six derivative

term. For simplicity, we turn off the four derivative terms,

i.e., we set γ1,0 = 0 and γ = 0. Figure 7 exhibits the DC

conductivity σ0 as a function of the temperature T̄ for some

representative ᾱ and γ1,1. The left plot in Fig. 8 shows ∂T̄ σ0

as a function of ᾱ at zero temperature, while the right plot

shows the phase diagram in the (γ1,1, ᾱ) plane for the MIT at

zero temperature. We find that the properties of DC transport

from six derivative theory is very similar to that from four

derivative theory only involving the Weyl term [14]; here

the mirror symmetries (26) and (27) hold for fixed ᾱ and

changing the signs of γ1,1 in the phase diagram in the (γ1,1, ᾱ)

plane for the MIT at zero temperature. One difference is that

the quantum critical line is shifted to ᾱ ≃ 0.9.5 It is also

interesting to explore the DC conductivity at finite density

from the six derivative theory only involving Weyl terms and

compare the results with present results, including the mixed

effect of both axions and Weyl tensor. We leave this problem

for future study.

5 Transports at zero density

In this section, we study the transports at zero density. In this

case, the black brane solution reduces to the neutral one [45],

ds2 = 1

u2

(
− f (u)dt2 + 1

f (u)
du2 + dx2 + dy2

)
,

f (u) = (1 − u)p(u), (29)

p(u) =
√

1 + 6α̂2 − 2α̂2 − 1

α̂2
u2 + u + 1.

Note that we have parameterized this black brane solution

by one scaling-invariant quantity α̂ = α/4πT with T =
p(1)/4π . Based on this neutral geometry background, we

shall study the transport starting from four derivative and six

derivative theory, respectively.

5.1 Four derivative theory

In this section, we study the properties of the conductivity in

four derivative theory and see how the new higher derivative

coupling term γ1,0 affects them. Figure 9 shows the optical

5 The quantum critical line from four derivative theory only involving

the Weyl term is located at ᾱ ≃ 0.82.
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Fig. 6 Phase diagram over (γ, ᾱ) plane for the MIT from four derivative theory at zero temperature (left plot for γ1,0 = −10−4 and right plot for

γ1,0 = 10−4)

Fig. 7 DC conductivity σ0 as a function of the temperature T̄ for some representative ᾱ and γ1,1

Fig. 8 Left plot: ∂T̄ σ0 as a function of ᾱ at zero temperature. Right plot: Phase diagram over (γ1,1, ᾱ) plane for the MIT from six derivative theory

at zero temperature

conductivity σ(ω̂) as a function of ω̂ with representative γ1,0,

γ and α̂. Comparing Fig. 9 with Fig. 1 in our previous work

[43], we observe that, for the system with positive (nega-

tive) γ and γ1,0, the transition from peak (dip) to dip (peak)

appears to go easier with the increase of α̂.

As revealed in [43], particle–vortex duality is recovered

with the change of γ → −γ for a specific value of α̂ =
2/

√
3. Now we want to explore if this phenomenon is generic

when a new higher derivative coupling term γ1,0 is taken

into account. Figure 10 shows the DC conductivity σ0 as a

function of α̂ for the representative γ and γ1,0. We find that,

for a given γ1,0, all the lines of σ0(α̂) with different γ intersect

at one point α̂ = 2/
√

3, which is similar to that found for

only the Weyl term γ being involved. It indicates that σ0(α̂) is

independent of γ for α̂ = 2/
√

3, which can also be deduced

from the expression for DC conductivity (A16). But we note

that the value of σ0(α̂ = 2/
√

3, γ ) is not equal to unity.

Also, the relation σ0(α̂ = 2/
√

3, γ ) = 1

σ0(α̂=2/
√

3,−γ )
does

not hold. It indicates the exact duality of the DC conductivity

only with the Weyl term for α̂ = 2/
√

3 is violated when the

γ1,0 term is taken into account. Furthermore, we study the

optical conductivities of both the original EM theory and its

dual theory for the specific value of α̂ = 2/
√

3, shown in

Fig. 11, and we find that the exact particle–vortex duality is
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Fig. 9 The optical conductivity σ(ω̂) as a function of ω̂ with representative γ1,0, γ and α̂

Fig. 10 The DC conductivity σ0 versus α̂ for the representative γ and γ1,0

Fig. 11 The optical conductivity as a function of ω̂ for various values

of γ , γ1,0 and fixed α̂ = 2/
√

3. The solid and dashed curves are the

conductivity of the original EM theory and its dual theory, respectively

(red for γ = 1/12 and γ1,0 = 1/100 and blue for γ = −1/12 and

γ1,0 = −1/100)

indeed violated when γ → −γ and γ1,0 → −γ1,0. It is easy

to check that if we fix γ1,0, the particle–vortex duality is also

violated when γ → −γ .

5.2 Six derivative theory

Now, we turn to a study of the case in six derivative the-

ory. Figure 12 shows the optical conductivity with γ1,1 being

turned on. We observe that, for positive γ1,1 and small α̂, a

small peak is displayed in the low frequency region. With the

increase of α̂, the small peak starts to develop into a dip (left

plot in Fig. 12). Meanwhile for negative γ1,1, an opposite

scenario is found (right plot in Fig. 12). The phenomenon is

similar to that with the γ term.

Also, we note that, for the specific value of α̂ = 2/
√

3,

the DC conductivity σ0 = 1 and is independent of γ1,1 (see

Fig. 23), which is similar to that with only the Weyl term

[43]. Furthermore, we study the particle–vortex duality of

this case, shown in Fig. 13. It is obvious that, for small γ1,1,

the particle–vortex duality approximately holds. Meanwhile,

for the specific value of α̂ = 2/
√

3, the duality exactly holds.

Though here we do not work out the analytical understand-

ing on the particle–vortex duality for the specific value of

α̂ = 2/
√

3, it seems to originate from the Weyl term. The

additional γ1,0 term violates this exact duality. Further, we

examine the duality from another six derivative term with

X
ρσ

μν = −4γ1C2 I
ρσ

μν , of which the original theory has been

studied in our previous work [44]. Again, the particle–vortex
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Fig. 12 The optical conductivity σ(ω̂) as the function of ω̂ with representative γ1,1 and α̂

Fig. 13 The optical conductivity as a function of ω̂ for various values of γ1,1 and α̂. The solid and dashed curves are the conductivity of the original

EM theory and its dual theory, respectively (red for γ1,1 = 1/50 and blue for γ1,1 = −1/50)

Fig. 14 The optical conductivity as a function of ω̂ for γ1 = ±0.02 and α̂ = 2/
√

3. The solid and dashed curves are the conductivity of the

original EM theory and its dual theory, respectively (red for γ1 = 0.02 and blue for γ1 = −0.02)

duality exactly holds for α̂ = 2/
√

3 when γ1 → −γ1 (see

Fig. 14). In future, we will further test the robustness of this

phenomenon by exploring that with the higher order terms

of the Weyl coupling.
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6 Discussions

In this work, we extend our previous work [14,43] to con-

structing a higher derivative theory including the coupling

among the axionic field, the Weyl tensor and the gauge field.

To be more specific, we construct four derivative terms, a

simple summation of the Weyl term Cμνρσ coupling with

the gauge field, as well as a term from the trace of axions

coupling with the gauge field, and a six derivative term, a

mixed term by the product of Weyl tensor and the axionic

field, coupling with the gauge field.

Following the strategy in [14], we construct the charged

black brane solution with momentum dissipation in a pertur-

bative manner up to the first order of the coupling parameters.

We study the QCP from 4 and six derivative theory, respec-

tively. For four derivative theory, because of the introduction

of γ1,0, the quantum critical line is independent of γ , which is

different from the case only involving the 4 derivative term

in [43]. It provides a new platform of QCP such that we

can study holographic entanglement entropy and the butter-

fly effect close to QCP, which may inspire new insight. For

six derivative theory, the quantum critical line is independent

of the coupling parameter γ1,1, which is similar that in [14].

Also, we study the transport phenomena including DC

conductivity and optical conductivity at zero charge density,

which is away from the QC phase. For four derivative theory,

the momentum dissipation makes the transition from peak

(dip) to dip (peak) easier, comparing with that in our previous

work [43]. In addition, we find that for the specific value of

α̂ = 2/
√

3, the exact particle–vortex duality, holding for only

the γ term, survives [43] and is violated when the γ1,0 term

is turned on. For the six derivative theory, particle–vortex

duality exactly holds for α̂ = 2/
√

3. Meanwhile the effect

of the momentum dissipation on the transition between the

gap and the dip is similar to that in four derivative theory.

It is definitely a novelty and an interesting matter to com-

pute the optical conductivity at finite chemical potential μ.

However, even if we have obtained the perturbative black

brane solution to the first order of γ in Sect. 3, we still need

to solve the linear perturbative differential equations beyond

the second order to obtain the optical conductivity. It is a hard

task and so we shall leave it for the future. In addition, this

simple model including the mixed terms between the Weyl

tensor and the axions can be straightforwardly generalized to

include the charge complex scalar field such that we can study

the superconducting phase. It is also interesting and valuable

to further explore the transport of our present model at full

momentum and energy spaces, which certainly will reveal

more information of the systems. This work deserves further

study and we plan to publish our results in the near future.
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Appendix A: Bounds on the coupling

In this appendix, we explore the constraints on the coupling

parameters. We mainly examine the causality of the dual

boundary theory, the instabilities of the vector modes and the

positive definiteness of the DC conductivity at zero charge

density. We also discuss the constraint from the requirement

that the graviton mass is real, i.e., m2
g > 0.

1. Bounds on the coupling at zero charge density

To examine the causality of the dual boundary theory and the

instabilities of the vector modes, we decompose the perturba-

tions of gauge field in the Fourier space as Aμ(t, x, y, u) ∼
eiq·x Aμ(u, q), with q · x = −ωt + qx x + q y y, and write

down the EOMs as follows:

A′
t + q̂ f

ω̂

X5

X3
A′

x = 0, (A1)

A′′
t + X ′

3

X3
A′

t − p2q̂

f

X1

X3
(q̂ At + ω̂Ax ) = 0, (A2)

A′′
x +

(
f ′

f
+

X ′
5

X5

)
A′

x + p2ω̂

f 2

X1

X5
(q̂ At + ω̂Ax ) = 0,

(A3)

A′′
y +

(
f ′

f
+ X ′

6

X6

)
A′

y + p2

f 2

(
ω̂2 X2

X6
−q̂2 f

X4

X6

)
Ay =0,

(A4)

where the prime denotes the derivative with respect to u and

the dimensionless frequency and momentum ω̂ ≡ ω
4πT

=
ω
p
, q̂ ≡ q

4πT
= q

p
, with p ≡ p(1) = 4πT , are intro-

duced. Due to the rotational symmetry in xy-plane, we

have set qμ = (ω, q, 0). Also we choose the gauge as

Au(u, q) = 0. At the same time, a tensor X
ρσ

μν defined as

X B
A = {X1(u), X2(u), X3(u), X4(u), X5(u), X6(u)}, with

A, B ∈ {t x, t y, tu, xy, xu, yu}, has been introduced to sim-

plify the expression of the perturbative EOMs. Since the

background is rotationally symmetric in the xy-plane, we

have X1(u) = X2(u) and X5(u) = X6(u). Combining
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Eqs. (A1) and (A2), one has a decoupled EOM for At (u, q̂),

which is

A′′′
t +

(
f ′

f
− X ′

1

X1
+ 2

X ′
3

X3

)
A′′

t

+
(

−p2q̂2 X1

f X3
+ p2ω̂2 X1

f 2 X5

+ f ′ X ′
3

f X3
− X ′

1 X ′
3

X1 X3
+ X ′′

3

X3

)
A′

t = 0.

(A5)

By making a transform as Aμ → Bμ and X i → X̂ i , we

can obtain the EOMs of the dual EM theory from the above

equations. Note that from Eq. (6), it is easy to deduce that

X̂ B
A is also diagonal with X̂ i = 1/X i .

Since Ax can be expressed by At in terms of Eq. (A1), there

are only two independent vector modes, At and Ay , which

correspond to EOMs (A5) and (A4). They can be formulated

in Schrödinger form as

− ∂2
z ψi (z) + Vi (u)ψi (z) = ω̂2ψi (z). (A6)

Notice that we have made a coordinate transformation,

dz/du = p/ f , and a separation of variable, Ai (u) =
Gi (u)ψi (u), where At̄ (u) := A′

t (u) and i = t̄, y. For later

convenience, we decompose the effective potential Vi (u) into

both a momentum dependent part and an independent one,

Vi (u) = q̂2V0i (u) + V1i (u), (A7)

where [27]

V0t̄ = f
X1

X3
, V0y = f

X3

X1
, (A8)

V1t̄ = f

4p2 X2
1

[3 f (X ′
1)

2 − 2X1( f X ′
1)

′], (A9)

V1y = f

4p2 X2
1

[− f (X ′
1)

2 + 2X1( f X ′
1)

′]. (A10)

Before proceeding, we present the main ingredients con-

straining the coupling parameters as follows.

• If Vi (u) satisfies

0 ≤ Vi (u) ≤ 1, (A11)

the modes meet the requirements of both causality and

the stability of the dual boundary theory [52–54].

• When Vi (u) violates the lower bound, the modes may be

instable. We need further analyze the zero energy bound

state of the potential.

• An additional condition is the requirement of positive

definiteness of the real part of the conductivity, especially

the DC conductivity.

Next, we analyze the constraint on the coupling parameters.

a. Four derivative theory

When only the coupling parameter γ1,0 survives, some

related discussions have been explored in [36]. But here one

only discusses the Schrödinger potential of the perturbation

Ax . Here, we shall present a more detailed discussion in our

present framework.

In terms of the expression of the DC conductivity [20,23]

σ0 =
√

−ggxx
√

−gt t guu X1 X5 |u=1, (A12)

we can explicitly write it down when only γ1,0 survives,

σ0 = 1 − 24γ1,0 − 8γ1,0

α̂2
+ 8

√
1 + 6α̂2γ1,0

α̂2
. (A13)

Figure 15 shows σ0 as a function of α̂ for sample values

of γ1,0. We see that, for γ1,0 ≤ 1/24, σ0 is positive for all

values of α̂. Meanwhile, for γ1,0 > 1/24, it vanishes for

some finite α̂. This can also be seen from the following:

when α̂ → +∞, σ0 = 1−24γ1,0. Therefore, a non-negative

σ0 gives a constraint on γ1,0 as γ1,0 ≤ 1/24.

Next, we turn to a discussion of the bounds of γ1,0

imposed by the causality and the instabilities. First, it is

easy to find that in the limit of large momentum, since

X1 = X3 = 1 − 4p2α̂2γ1,0u2 for only γ1,0 we have sur-

viving V0t̄ = V0y = f (u), which are the dominant terms.

Obviously, V0t̄ and V0y are independent of the parameter

γ1,0 and satisfy the constraint (A11). Meanwhile for the case

of the small momentum region, the dominant terms are V1,i

(i = t̄, y), which are shown for representative values of γ1,0

and α̂ in Fig. 16. We can see that there is a negative minimum

in V1i . So we need to analyze the zero energy bound state of

the potentials, which is [54]

ñ1t̄ = I/π + 1/2,

I ≡
(

n − 1

2

)
π =

∫ u1

u0

p

f (u)

√
−V1t̄ (u)du, (A14)

where n is a positive integer and the potential well in the

integral interval [u0, u1] is negative. Both ñ1t̄ and ñ1y as a

function γ1,0 for representative α̂ are exhibited in Fig. 17.

The detailed analysis indicates that, when γ1,0 belongs to the

Fig. 15 The DC conductivity as a function of α̂ for only γ1,0 surviving
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Fig. 16 The potentials V1t̄ (u) (plots above) and V1y(u) (plots below) with different γ1,0 and α̂

Fig. 17 ñ1t̄ and ñ1y as a function of γ1,0 for representative α̂

Fig. 18 The DC conductivity as a function of α̂ when both γ1,0 and γ are turned on

region γ1,0 < −3/40 and 1/40 < γ1,0 < 1/24, the ñ1i are

greater than unit and unstable modes develop. Combining

the observation from DC conductivity, we can infer that the

allowed region for γ1,0 is

− 3/40 ≤ γ1,0 ≤ 1/40. (A15)

Also, we have checked that, for finite momentum, no unstable

mode appears for the constraint (A15). Note that the lower

bound of γ1,0 is consistent with that found in [36], but the

upper bound becomes tighter than that in [36], which results

from the instability of the mode At .

Now, we begin to discuss the bounds on the coupling when

both γ1,0 and γ are turned on. We mainly restrict γ to the

region −1/12 ≤ γ ≤ 1/12 and explore the constraint of

γ1,0. First, in this case we derive the DC conductivity as

σ0 = 1 + 2

3

(
2 + 4(−1 − 2α̂2 +

√
1 + 6α̂2)

α̂2

)
γ
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Fig. 19 The potentials V0t̄ (u) with representative γ1,0, γ and α̂

− 4α̂2

(
2 + −1 − 2α̂2 +

√
1 + 6α̂2

α̂2

)2

γ1,0, (A16)

which we plot as a function of α̂ for sample values of γ1,0

and γ in Fig. 18. Since with the increases of α̂ the positive

γ lowers the DC conductivity, it gives a tighter constraint

on γ1,0. Specially, when γ = 1/12, to have positive σ0,

γ1,0 ≤ 1/36 should be imposed. It can also be deduced thus:

in the limit of α̂ → +∞, σ0 = 1 − 4γ − 24γ1,0. Second, we

examine the potential V0,t̄ , which is shown in Fig. 19. We see

that, for γ1,0 = 1/36 and γ = −1/12, an infinite positive

and negative well appears in the limit of α̂, which signals

an instability. This instability is due to turning on of γ1,0 for

γ = −1/12. We find that, when we tune γ1,0 to become

smaller, so that γ1,0 ≤ 7/500, the infinite well gradually

disappears (see Fig. 20). Therefore, if we set −1/12 ≤ γ ≤
1/12, then the constraint −3/40 ≤ γ1,0 ≤ 7/500 should be

imposed. At the same time, it is easy to see that, for the above

range of γ and γ1,0, the potential V0,y satisfies the constraint

(A11). Third, we analyze the potential V1t̄ , which is shown

in Fig. 21. We see that V1t̄ develops a negative minimum. So

to determine the range of the parameter γ1,0, we study ñ1t̄

as a function of γ1,0 for the representative values of γ and

α̂, which are plotted in Fig. 22. A detailed analysis indicates

that, when γ1,0 belongs to the region −3/40 ≤ γ1,0 ≤ 1/100,

no unstable mode appears. Therefore, the constraint on γ1,0

and γ is

− 1/12 ≤ γ ≤ 1/12, −3/40 ≤ γ1,0 ≤ 1/100. (A17)

Fig. 20 The potentials V0t̄ (u) with γ = −1/12 and α̂ = +∞ and

different γ1,0

b. Six derivative theory

In this section, we study the bounds on the coupling γ1,1 with

other coupling vanishing. First, we derive the DC conductiv-

ity:

σ0 = 1 − 2

3
α̂2

(
−2 − 4(−1 − 2α̂2 +

√
1 + 6α̂2)

α̂2

)

×
(

2 + −1 − 2α̂2 +
√

1 + 6α̂2

α̂2

)
γ1,1. (A18)

We plot it as a function of α̂ for sample values of γ1,1 in

Fig. 23, in which we see that there are lower and upper bounds

set by DC conductivity. By detailed analyzing, we find that

−1/3 ≤ γ1,1 ≤ 1/24. Specially, the upper bound can be

deduced from that in the limit of α̂ → +∞, σ0 = 1−24γ1,1.
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Fig. 21 The potentials (4πT )2V1t̄ (u) with representative γ1,0, γ and α̂

Fig. 22 ñ1t̄ as a function γ1,0 for representative γ and α̂

Then we consider the constraint from V0t̄ , which is shown

in Fig. 24. We see that, for γ1,1 = −1/3, with the increase

of α̂, the condition (A11) is violated, which indicates that a

tighter lower bound should be imposed on γ1,1. A detailed

examination indicates that −1/50 ≤ γ1,1 ≤ 1/24. Also, we

examine V0y for this range γ1,1 ∈ [−1/50, 1/24] and find

that it satisfies the condition (A11).

Now, we examine the potential V1,t̄ , which we plot in

Fig. 25. As in the previous case, a negative minimum appears

in V1,t̄ . So we further plot ñ1t̄ as a function of γ1,1 for the

representative values of α̂, which are shown in Fig. 26. We

find that, for the range

− 1/50 ≤ γ1,1 ≤ 1/50, (A19)

no unstable mode appears. A similar analysis also indicates

that, for γ1,1 satisfying the constraint (A19), ñ1y ≤ 1. In

addition, this range of γ1,1 is also a physically viable region

for finite momentum.

Fig. 23 The DC conductivity as a function of α̂ when only γ1,1 is

turned on

2. Bounds on the coupling at finite charge density

In this section, we discuss the bounds on the coupling at finite

charge density on top of the perturbative black brane geom-

etry in Sect. 3. Since the perturbative equations of vectors

involve a set of third order differential equations with high
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Fig. 24 The potentials V0t̄ (u) with representative γ1,1 and α̂

Fig. 25 The potentials (4πT )2V1t̄ (u) with representative γ1,1 and α̂

Fig. 26 ñ1t̄ as a function γ1,1 for representative α̂

nonlinearity, it is hard to decoupling them at finite charge den-

sity, like that at zero charge density. Therefore, it is difficult

to study the bounds on the coupling at finite charge density

by the method of Schrödinger potentials at zero charge den-

sity as Appendix A.1 or the quasi-normal modes of vector

modes. We hope that these problems can be worked out in

the future. Here, we only give the constraints on the coupling

parameters at finite charge density from the requirement that

the mass of the graviton is real.

It has been demonstrated in [55] (also refer to [15,56]) that

the holographic lattices give the graviton an effective mass.

In our present model (1), the effective graviton mass is

m2
g = 1 − 1

2
γ1,0 I ρσ

μν Fμν Fρσ − γ1,1C ρσ
μν Fμν Fρσ .

(A20)

Fig. 27 m2
g as a function of u at zero temperature for representative ᾱ

and γ1,0 (γ = 0 and γ1,1 = 0)

Obviously, m2
g > 0 for the case of zero charge density. In

what follows, we shall discuss the bounds on the coupling

parameters at finite charge density.

We first turn on γ1,0. Figure 27 shows m2
g as a function

of u at zero temperature for representative ᾱ and γ1,0. We

can see that m2
g > 0 when γ1,0 satisfies the constraint (A15),

which is the constraint at zero charge density.

Second, we turn on both γ1,0 and γ . Figure 28 shows

that if γ1,0 and γ satisfy the constraint (A17), set at zero

charge density, m2
g > 0 for large ᾱ (right plot in Fig. 28),

but m2
g > 0 is violated for small ᾱ (left plot in Fig. 28). By

detailed analysis, we constrain γ1,0 and γ in the region

− 1/12 ≤ γ ≤ 1/12, −3/40 ≤ γ1,0 ≤ 6/1000. (A21)

Finally, we analyze the constraint on γ1,1 (γ1,0 and γ

are turned off). The left plot in Fig. 29 shows that, when

123



Eur. Phys. J. C (2018) 78 :292 Page 17 of 18 292

Fig. 28 m2
g as a function of u at zero temperature for representative ᾱ, γ1,0 and γ (γ1,1 = 0)

Fig. 29 Left plot: m2
g as a function of u at zero temperature for representative ᾱ and γ1,1 (γ1,0 = 0 and γ = 0). Right plot: m2

g as a function of u

at zero temperature for γ1,1 = −1/100 and different ᾱ (γ1,0 = 0 and γ = 0)

γ1,1 reaches its lower bound set at zero charge density, m2
g

becomes negative for u approaching the horizon. Further

analysis indicates that if γ1,1 satisfies

− 1/100 ≤ γ1,1 ≤ 1/50, (A22)

m2
g > 0 (see the right plot in Fig. 29).
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