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INTRODUCTION

The results derived from the theoretical study of the plasma serve
to guide the development of the thermionic - converter and form a founda-
tion for both converter diagnostics and the evaluation of techniques which
improve the performance To maintain cantinued progress in converter
development, there must be a continuous interchange between theory

and the experimental data obtained from the converter

Most of the present plasma thsories have considered the inter-
electrode space as being separable into three regions: an emitter
sheath, a neutral plasma, and a collector sheath By assigning differ-
ent physical phenomena to the sheath and plasma regions, it has been
possible to derive solutions which satisfy the emitter and collector
boundary conditions and which give such information as particle con-
centrations, energy flux and electron temperature as a function of
position in the interelectrode space Comparisons of the predictions
of these analyses with experimental results have verified the correct-
ness of some of the predictions Thus, the presence of a region of
strong ionization near the emitter, an inverse dependence of output
voltage on spacing-pressure product, and a near diffusion-dominated
plasma seem to correlate well at wider spacings However, neither
the existence of an optimum spacing nor the discrepancy between the
measured collector work function and the apparent collector work
function under power conditions 1s consistent waith the present under-

standing These phenomena are important for converter optimization.

Extension of the present approaches to the theory requires a more
careful look at the underlying assumptions In the plasma, beth quasi-

neutrality (deviations from neutrality are small compared to the charged

vii



particle density) and quasi-equilibrium (each group of particles is in
local equilibrium) are assumed. The sheathes are assumed to be
collisionless and a few Debye lengths in width, an assumption which
has not been verified. Furthermore, the potential distribution in
the sheaths can be monotonic or non-monotonic, with significantly
different impacts on the plasma boundary conditions. There have
not been any criteria for the formation of a monotonic or non-
monotonic sheath. Since the plasma theories can be made to fit
experimental data with either monotonic or non-monotonic sheath
assumptions, it is not possible to determine which assumption is
correct without a more fundamental approach to the sheath and

plasma problems.

For the interelectrode spacings greater than optimum values,
the computer methods have furnished reasonable descriptions of the
particle densities and related quantities. However, when these
methods are combined with reactor calculations, the costs in com-
puter time and program complexity become too great for practical
use. In addition, because of the numeric nature of the results, it
is difficult to gain insight into the physical phenomena and their
interrelations. Part I of this report presents a technique which,
while providing relatively simple analytic forms for the solutions,
preserves the features observed in the computer analyses. The
results provideA a reasonably simple method for calculating dependence
of the converter J-V characteristics on various parameters and with

further development could be used for design calculations.
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In the plasma, as the pressure spacing product is reduced and
the various particle mean-free paths approach the dimensions of
the plasma width, the quasi-equilibrium condition may no longer
be valid In additive converters, which characteristically operate
at low cesium pressures, such conditions can occur at spacings of
practical interest The analysis must then include the transition
region between the sheath and the quasi-neutral plasma. At smaller
spacings, there may be no quasi-neutral region at all Within the
transition region, the collision processes rnust be added to the
analysis and new boundary conditions determined from the behavior
of the particles. These solutions may then be used to determine the
extent of the validity of the quasi-equilibrium solutions. Part II of
this report is devoted to the analiysis of the sheath and transition
regions of the converter. The simple collisionless sheath approxi-
mation is examined; it proved to be incapable of satisfying all the
required boundary conditions With collisions occurring within the
sheath, the actual shape of {ke particie and poiential distributions
must be known to define the plasma boundary conditions properly.
This is particularly true in the case of ron-monotonic potential dis-
tributions where the height of the barrier 1s determined by the sheath
phenomena. By using an integral method to find solutions for the
Boltzmann equation, 1t was possible to obtain rapid convergence with-
out encountering severe instabilities The study, although only
partially completed, was able to show particle and speed distributions
through the sheath. The physical interpretation of the equations
developed does give some insight into the sheath phenomenas but

the actual solutions must be obtained from numerical integration.
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The overall objective of the more complex plasma theories must
be to give insight into converter behavior and to allow its performance
to be extrapolated into the area for which there are no empirical data
available This insight will permit the development of more efficient
and useful diagnostic techniques and the evaluation of the influence of
design changes on the overall converter performance. It is difficult
to gain insight from many of the mathematical treatments of the
converter, but any simplification necessarily requires neglecting
at least one particular converter phenomenon An important applica-
tion of the complete analysis will be the evaluation of the significance
of particular phenomena in various portions of the J-V characteristic

and under differing converter conditions.



I. THEORY OF THE IGNITED MODE IN
THERMIONIC ENERGY CONVERTERS

A INTRODUCTION

An approximate analytic technique for solving the transport
equations describing the diffusion region of a thermionic energy
converter has been developed. The method involves assuming a
parametric form for the electron production term. The transport
equations are then integrated and the parameters adjusted to give
the best fit to the equation. The method is considerably more
accurate than previous analytic techniques and very much simpler

and more flexible than numerical integration of the eguations.

A preliminary description of the technique was reported in
Reference 1, and 1s repeated in Section B. This analysis included
a number of simphfying assumptions, the most important of which
were: (1) The electron temperature gradient was constant across
the converter, and (2) The electronic heat conduction to the collector
was negligible. While these assumptions can be justified for con-
verters operating near the maximum power point, subsequent analysis
has shown that they are restricted to a very narrow range along the
I-V characteristic and that a more careful treatment of the electron
energy transport is required. We have therefore developed an im-
proved treatment which includes integration of the electron energy
equation. Although this complicates the analysis somewhat, it leads
to a substantial improvement in the results and is still very much
simpler than the currently available numerical methods of integrating
the full set of transport equations. Unfortunately, there has been
insufficient time to complete this work under the current contract;
however, a brief description: of the progress to date is included in
Section C
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B. AN APPROXIMATE ANALYTIC TECHNIQUE FOR DETERMINING
THE OPERATING CHARACTERISTICS OF THERMIONIC
CONVERTERS IN THE IGNITED MODE

1. Introduction

The problem of determining the arc drop in the plasma of a
thermionic energy converter operating in the ignited mode has been
2 . . .
treated by many authors. The basic equations governing the transport
phenomena in the diffusion region of the plasma have been derived by

3
Wilkins and Gyftopoulos and appropriate boundary conditions which

4
apply across the sheaths have been set forth by Wilkins and McCandless.

The solution of these equations has proved to be exceedingly diffi-
cult, however. The analytic technique55 which have been presented
previously employ numerous simplifying approximations which in
general limit them to pressure-spacing products pd considerably
greater than those of practical interest for power converters. On the
other hand, the numerical "shooting" te chniqu.es6 which have been
developed are subject to severe instabilities which make them ex -
ceedingly difficult and expensive to carry out. Moreover, numerical
solutions give very little insight into the relative importance of the
various physical phenomena and parameters which determine converter
performance. Finally, none of the existing treatments, either analytic
or numerical, has predicted the experimentally observed optimum
value of the pd product at which the arc drop across the plasma for

fixed current is a minimum.

In this section we present an approximate analytic method for
solving the converter plasma equations which is very much simpler

than the numerical "shooting" techniques and considerably more
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accurate than previous analytic treatments. It is based on assuming

a paramettrit form for the net electron production in the converter.

The transport equations may then be integrated to obtain the electron
concentration, temperature, and potential energy distributions. These
may in turn be used to calculate the corresponding net electron production
from the ionization equation. Finally, the parameters in the assumed
form are adjusted to make the assumed and calculated production

agree as closely as possible. The success of the technique is deter-
mined by accuracy of the fit obtained. Systematic improvement cf

the results can be made by introducing progressively more complicated

functional forms for the assumed production.

The basic equations and boundary conditions used in our analysis
are presented in section 2. The method of solution and the mathematical
results are given in section 3. The key element in the solution is a
transcendental equation. A graphical method of solving this equation
and some illustrative results are given in section 4. Finally section 5

briefly summarizes our conclusions.

2. Mathematical Model

a. Transport Equations

We shall consider a one dimensional three component plasma
consisting of ion (i), electron (e), and neutrals (n). We assume low

degrees of ionization so that
n =n << n , (2.1)
e i n

where n is the concentration of species ¢, and equality of ion and

neutral temperatures so that

6. = 6 (2.2)



where 90 = ch., For such a plasma, the equation of state is
= R .3
p=n_ (Ge + Gn) + nn Gn nn Gn (2. 3)

and the transport equations are

dI"e d‘_["i
&~ - S (2. 4)
r dp
_e_-._e _ dy
" ax n_ o (2.5)
e
d
i iy & (2. 6)
M. dx e dx
i
5 dee
= = - —_ .7
Qe re 26e+¢] ZneMeeedx (2.7)
dee
Qn—--Znnpnen Pt (2. 8)

where T, Qa,pa and p  are the particle flux, energy flux, pressure
o) a

and mobility of species o, S is the net ionization rate, and ¢ is the

potential energy of an electron. The mobilities are related to the

collision cross-sections ¢ 8 for species ¢ and B by
Q

-1 -
Pen = ™ e (oen nn + Ocs ne)’ (2.9)
M -1 = 4,2m < ¢ n, (2. 10)
in n nin n
i -1 =2 m © o _n (2.11)
nn n n nn n




where m0 is the mass and
- 1
c = (88 /tm ) /2 (2.12)
o o (o4

is the mean thermal speed of species g. Note that in the above
equations we have omitted the thermal diffusion terms and the forces
arising from the transfer of directed momentum from electrons to
ions. We have also assumed that the energy flux carried by ions is

negligible compared to that carried by neutrals.

If we further assume that radiation losses and energy transfer

from electrons to heavy particles are small, then we have for neutrals

dQ /dx = 0 (2.13)
and for electrons

d Qe/dx = - ViS, (2.14)
where Vi is the ionization potential.

For collisional ionization and threebody recombination the net

ionization rate is

S=8 n (nz-nz) (2.15)
r e s e
where
B (cmé/sec) N4 x 10'27 tee (eV)]'g/2 (2.16)

is the threebody recombination rate consta.nt7 and

_, 12
8 n

m 6 3/4 -V /286
(—e—e—) e (2.17)

A hz
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is the Saha electron concentration. Over a reasonable range about ‘

a reference temperature 0%, n_ can be well approximated by

-V*/0
n_~ n¥* e ¢, (2.18)
where 12 2. 72 m_ o 3/4
n% = n (_____...__ > (2.19)
n 2w A !
and
V*=-]:- V+2 8% (2.20)
2 i 4

b. Boundary Conditions

We assume a motive diagram of the type shown in Figure I-1.

Under these conditions the emitter boundary conditions are

reo - rE B Reo ) %reo} © -VE/eeo ! (2.21)
l"io = -2 Rio’ (2.22)
Qeo = I‘E (29E + VE) - (I‘E - I‘eo)(ZGeo + VE) , (2.23)
and the collector boundary conditions are
T, (R, +% T)e ‘Vc/eed, (2.24)
l‘ld=2 Rid’ (2.25)
Qed= T4 (Zeed+vc+'l'd)’ (2.26)
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THERMO ELECTRON
CORPORATION

7012-7

Figure I-1. Schematic Illustration of Motive Diagram
Assumed in the Analysis.
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where I"E is the emitter saturation current and

R =n T /4 (2.27)
is the random current for species o . Note that we have assumed
back emission from the collector is negligible

The arc drop obtained frominspection of Figure I-1 is

Vo=V, - V= VL. V-, (2.28)

where
(2.29)
is the contact potential.

3. Method of Solution

a Temperature Distribution for Neutrals

We shall begin by considering the temperatures of the neutrals
since this determines both the ion temperature and the neutral particle
density which will be needed later. Substituting (2. 3), (2. 11), and

(2.12) into (2. 8) and integrating we find for constant Con

3/2..2/3
= 1 - 1 - 1 3.
0 =0 [l-n(l-e. 177, (3.1)
where

n = x/d (3.2)

is a dimensionless distance and
- 3.3
€ cE QC/OE (3.3)

is the ratio of collector and emitter temperatures.
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The corresponding heat flux carried by the neutrals is

6 (se )1/2

! 3/2
Q = — ;GEd = (1-e’?) (3.4)
6 ./2 "nn

Tm CE

n !

b. Electron Density Distribution

To obtain an approximate analytic solution for the electron con-
centration, we assume that the net electron .production S given by
(2. 15) can be approximated by a function of the form

! \ / )
Sk = A tanh aﬂ—%—a} sech’ ,{—"—’Bt—a—; (3. 5)
. . z

H

where A, a, and b are parameters which will be adjusted later to

give the best fit of S and S*, Obviously, this choice of S* is by no
means unique and more complicated functional forms could be used
which might give better results. The reasons for choosing this particu-
lar form for our initial investigation are 1) it has a shape which is
physically reasonable, 2) it approximates quite well the forms ob-
tained in previous numerical investigations, and 3) it is relatively
simple and convenient to integrate. It should be emphasized, however,
that the success of this or any other form for S* can only be deter-

mined a posterior by assessing the accuracy of the fit to S.

Substituting S* for S in (2. 4) and integrating we obtain

r =T -T
1 e
1 [ 2 m+a 2 1+a]
- 1 - tanh 3,
rid+ > Abd l‘1:anh 5 tan - (3.6)
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where T = J/e is the converter current divided by the electronic
charge. Adding (2.5) and (2.6) and using (2. 9), (2. 10), (2. 12), (2.25),
(2.27) and (3.2) gives

dP _ =
ET + dei P - -din(ri + €, ), (3.7)
where
P = n_ (ee + ei)/ned (6 4+ ec), (3. 8)
1"i = Ti/rid , (3.9)
8T .o . db
d ed "ei e (3. 10)

ei  wc @ +6,)"°
e e i

1/2

4Uin pd {ZGC
d, = 0 106 \9 , (3.11)
e TWed e i
T .o 1/2
€ . = ed “en ed e (3.12)
el Red cin 86C6i

and we used the approximation I‘e a~ I"e Note dei and din are

a4
essentially the converter spacing divided by the electron-ion and ion-
neutral mean free paths respectively while €. is the ratio of the ion-

neutral to electron-neutral mean free paths.

Before attempting to integrate (3. 7) it is useful to estimate the
magnitude of the coefficients dei’ d,ln and eei' Using the cross-sections
summarized in Table I-1 and the reference conditions Teo ~T _~

e

d
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TABLE I-1
SUMMARY OF CROSS SECTIONS8

. = 1200 A2
in
o = 400 A2
en
o = 100 A2
nn

e22

2
Tei = (116') (kTe> In A, ~ 10% 4%
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dei ~ Jd (mil a/cmz)/700, (3.
d, & 1.1 pd (mil torr), (3.
in
and
€, ~ 1/3, (3.

where we have assumed 9,1 a~ K/BE GC .

It can be seen from (3. 13) that for Jd << 700 mil a/cmz, which
is the range of interest for most practical converters, the term
proportional to dei in (3. 7) will be small. It can also be seen from
(3.15) that the dependence on Gei is relatively weak. Thus, since
the temperature dependence of O.n is also relatively weak, itis a
good first approximation to drop the term proportional to de’ and

1
a.ssume'din and €. are constant. (3.7) can then easily be integrated

to give
—_— — ! ! }
P=1+d (1+Bsech2!l+a}}l n1
b [1 n+a
_B{l+a [tanh‘ 5 -tan h b )} , (3
where
d = d .
d={(1+a)(l + eei) in (3
and
B=Abd/2 Tg (L+e, ) (3.

We can now obtain an expression for the electron production in

terms of P by substituting (3. 8) into (2. 15). This gives
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2
— — 2 —
S = (zrid/d) d_ P(PS -P) (3.19)

where
PS = ns (Ge + Gi)/ned (Ged + GC) (3.20)
and
2 3
d
Br ned 6ed * GC\
d = -— . (3.21)
r C. 6 +90,
id \ e i

Note dr is essentially the converter spacing divided by the mean free

path for ion recombination at the collector.

To determine the parameters B, a, and b we require that S given
by (3.19) fit S* given by (3.5) as closely as possible. A simple (but
not necessarily the best) method of doing this is to match S and S*
at the extrapolated end point n = -a and at the point of maximum
electron production n = ny Matching at the extrapolated end point
requires S(-a) = S* (-a) = 0 which gives

l1+a
b

l+a
b

- B tanh

0. (3.22)

1+d [1+Bsech2{ T+a

Matching the positions of the maximum electron production requires

(dS/d'r,)1 = (dS*/d‘n)1 = 0 which gives

- dP.
=2 -2 dP - = S
(PS-3P )dn+2PPS "’L_O (3.23)
and
("1 +a)/b= 8, = coth-l J3 (3.24)

where the subscript 1 denotes quantities evaluated at n = "1" Note

that in differentiating (3.19) we have neglected the temperature
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dependence of dr in comparison with that of ES' Finally, matching the ‘
values of S and S* at the n = "1 gives

2 2

2B (1+<_)/b3.J3= drl’P— (P -’15'1) (3.25)

1 S1

where we have used (3.18) and (3. 24).

The three equations (3.22), (3.23), and (3.25) are sufficient
to determine the unknown parameters B, a, and b. An additional
equation which can be used to determine -1381 can be obtained by
substituting the boundary conditions (2.22) and (2.25) into (3. 6)
and using (2.12), (2.27), (3.8), (3.9), and (3.18). This gives

rio c T Po (eed * GC)/(eeo * GE) ‘CE
2 a 2 1+a)],
_1+B(1+eei) [tanh (b)-tanh ‘ 5 )J (3.26)
To solve this set of equations, it is convenient to introduce the
variable
m+a)/b=8, (3.27)
We then obtain from (3.16) and (3. 22)
B:(Z+1)5d coth ad/E (1-C) (3.28)
and
P= (E/sd) (B tanh § -D§), (3. 29)
where
6d= (1 +a)/b, (3.30)
C=26d/smh26d (3.31)
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and

2
1 + B sech éd

o
It

(d+ C)/d( - C) . (3.32)

Combining (3.29) with (3.17) and (3.25) and using (3.28) and
(3.30) - (3.32) we obtain

-2
P 2
—S) =1+ 2 E (3. 33)
5 _2 _ 2
1 e d (d+1)
where
(1-C)s -3/2
d D
= G {1 -1.14 B] (3.34)
d
and

2
= 1 +
€ drl/din ( eei)

rl ed " ed + GC) (eed i n ed C
- 2 m 6 .+86
WZoy cq PO (e )

w8 . nZ. (0 9_)1/2 m 29 10 )\3
(3.35)

e el il

Note ‘r is essentially the ratio of the ion neutral mean free path
to the ion recombination length at the collector. For the reference

conditions Teo ~ Te ~ 1.5 TE ~4.0 TC ~2800°K and T'~ (ne ce/4)d

d

7

€.~ 3x 10 JZ (az/cm4)/p (torr) (3.36)

so that for typical operating conditions €. is very small. Substituting

(3.33) into (3.23) gives
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Ax=-(d In P/dn)|

E* - e @%@+ 1)’
= F (3.
2 1 =2 = 2
E + > d2 (d+1)
where
1
F = > (d In P/dm)
§. -3 (d+ C)/2 (d+1) coth &
. 4 d 3
- /3 (1 +a)(l-1.14 D/B) )
To obtain the extrapolated end point a, we first observe that for
n=20, (3.28) gives
B = (d/ad) (B tanh 8, - D) (3.
where from (3.27)
a= b&o = 50/(5d - 50). (3.
We next anticipate that for most conditions of interest 50 coth
6-1 <<6d COth_Gd - 1 so that
P (d/ed) (B - D) tanh & _ . (3.
Substituting (3.41) into (3.26) and using (3.30) and (3.40) we obtain
2
tanh -H=0 .
B(1l + eei)tanh 60 + G tan 60 3
which may be solved to give 1/2
4B (1+¢ ) H -
tanh § = s [( + = - 1 (3.
o 2B (1l + ‘ei) GZ 4
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where
6 + 9C

d (B -
G = eed+9 ﬁ(B sD) (3. 44)
eo E CE d
and >
H= B(1+eei) tanh 5d- 1. (3. 45)

For Gz >> 4B (1 + eei) H, which corresponds to 5d << (E +1)/2

JFCE (I+e)s

8~ H/G (3. 46)

13

and

Pom WEp 0o + 0p/04 00 B (3.47)

while for G2 << 4B (1 + eei)H, corresponding to éd >> (E +1)/2 '\/ECE

1
8 w3 ln (4H/G) (3. 48)
and
50R,E+1. (3. 49)

Using (3.28), (3.31) and (3.32) it can be seen from (3.46) and
(3.48) that for d > 1 the approximation 60 coth 60 -1 << 6d coth

6d - 1 used to obtain (3.42) is valid for all 6d.

This completes the determination of the parameters necessary to

specify the electron concentration and we may now use our results to

calculate the electron potential energy and electron temperature dis-

tributions.
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c. Electron Potential Energy

To obtain an equation for the electron potential energy we use
(2.5) and the equation p, = P, Gi/eeto eliminate dpi/dx from (2 6)
Then using (2.9), (2.10), (2.12), (2.25), (2.27), (3.2), (3.8), (3.9),
(3.11), and (3. 12) and the approximation By << b, We find

d. 6.
Q4.8 [T ¢ gl+o {1+ 1) (3. 50)
dn - i e ei i e dn )
P e
We then substitute (3.27), (3.30) and (3. 45) into (3. 6) to obtain
- 2
T'i = -H+ B(1 + Eei) tanh™ §. (3.51)
Using (3.51) and (3.29), (3.50) may now be formally integrated
to give
LI PR PR (3.52)
1 0.
‘=§9 L nf1+ =—=||ldnao_ -0 (3.53)
vy e| dnm 9 ||TM="¢c  "E
0 e
a6 1€ 0,) tanh® § d&
= 3.54
"’2 5 (1 +€ .)(Btanh 8§ - D§) ( )
) ei
o
and 5 >
d (Be H + ‘ei 61) sech § d§
3.55
‘1’3 g (1 + ¢ ){(B tanh &6 - D§) ’ ( )
8 ei
o
where
2 , )
1 =B(l+¢ )sech &, 6 +1, (3.56)
el d
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To evaluate \1:2 we observe that the integrand is a rapidly increasing
function of 8 so that the major contribution to the integral comes from
the vicinity of the end point bd: Thus, it is a good approximation to

set tanh § 4 tanh éd and Gel - € 91 Needl - €, GC and using (3.28) we

obtain 6 I-¢ .6 _
ed ei C 2 d+1
\]JZ o~ ( T fei)D ) (tanh 6d) 1In 1. G (3.57)

where we have assumed 60 << éd.

To evaluate ¢3 we proceed in a similar manner and observe first
the important contribution to the integral in this case comes from the

vicinity of the end point 60 where it is a good approximation to set

tanh § = 86and g H+¢ .6.08 H+¢€¢ .06._.. We thus obtain
e ei 1 eo ei E
Geo H + ‘ei eE . tanh 6d 6. 58)
¥y (1+e¢.)(B-D) tanh 8 |- '

d. Electron Temperature

The electron temperature may now be determined from (2. 7)
which using (2.9), (2.10), (2.12) (2.2%8), (2.27),(3.2), (3.8), (3.10),
(3.11), and (3.12) can be written .

De_1fp, Ao o Y[z, 4y e (3.59)
n - 2 i "3 ei] |2 % ‘”'re : ’

In principle this equation can be integrated using the same techniques
employed in the preceding section. Since this 18 somewhat complicated,
however, we shall not attempt it in the present analysis and instead

we shall assume that to a first approximation:

I-19



do_/dn=- A6 (3. 60)

where Aee a~ Oe - eed is a constant. Then using (3.59), (3.60) and

o
the boundary condition (2. 26) we find
R 2A 06
In red +%)=%+(6 e I T I (3.61)
ed ed c’'€ei %n ei)

From (3.12) we see that € contains the tactor red/Red so that (3.61)
is an implicit rather than explicit equation for Red/red' However, for

2 A8 << (8 +6 Ye.d +d ), itis an excellent approximation to
C' ei 1in el

ed
evaluate ¢ . d, +d ), it is an excellent approximation to evaluate
ei in ei l) 1 s

€2t R /T q=exp |3 2

At this point we note that since ES is a function of Ge we have
in effect three unknowns: eeo’ Aee, and 6d and two equations (3.33)
and (3.37) which relate to them To obtain a third equation which will

permit us to solve the set we subtract (2 26) from (2.23) which gives

Q_-Q =2T (6 -6 )+T _-T )28 +V)

eo E E eo E

+I‘ed(2ABe+VE-VC-¢d). (3 62)

Integrating (2. 4) and (2. 14) we find

red B 1qeo - rid " I;o (3.63)
and
Qeo-Q d=Vi (I'{d—l"io). (3.64)
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Substituting (3.63) and (3. 64) into (3. 62) and using (2.28), (3.6), and
(3.9), then gives

(Vi * 26eo * VE) €m (1 - rio) = 2(.'[qli‘/‘r‘ed)(eE- eeo)
+2A9e+VE-VC-¢d, (3. 65)

where from (2.25), (2.27), and (2.12)

1/2
€ —I‘id=z(R‘°’d Pelc) L (3. 66)
m red \red mn 6ed 500
From (2 21) and (2. 24) we find
R
] ed , 1
VC-Bedln T + > (3.67)
ed
and -1
V_=6 In|=2.-=% T 1 (3. 68)
E  eo r “2/ir ’ '
eo eo
where from (2.12), (2.25), (2.27), (3.6), (3.9), (3.63) and (3.66) we
we have
Reo_ T /e (eeo /2 (Red 1-‘ed (3 69)
T w0 V%E !9 T
eo . \ ed \ ed eo
and
Teo =1 (1-T ) (3. 70)
R R )
ed
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Finally, from (2.18), (2.19), (3.24), (3.28), (3 29), (3.33),
(3.24), (3.37) and (3.60) we find

9eo=6ed+A9e:6e1+nl Aee (3 71)
A6_=0_ Ax/x, (3. 72)
= * 7
0,7V /)(1 (3 73)
h - ~2 - 2 4
)<1=N+1n—6—-(l-l.l4§; 1+ > i (3. 74)
' d ! 2 E '
and 3¢ \1/2 n% (8 . +6,)
N = 1n ‘ rl 1 il
L2 ] meq Beytf0)
__1n(2 72 meG—ﬁ\% 3/2 (mn 0.4 “1/2 i}
- 2 ! 2 ; - m 6 /
m 3 ‘ e 1 !
3mB ., (8 + 6 )2
rl ed C (3. 75)
= ; .
32 cin Ced (1 + €el) 9C (eel + 9'11’
For our reference conditions, 6% ~ BeIN Ged~1. 5 6E~4BC~2800 K.
N~ 7 8, (3.76)

We now observe that by means of the equations developed in this section
all quantities in (3. 65) can be found as functions of I"E/I"eo and éd. Thus
given I‘E/Teo we can solve (3. 65) either graphically or numerically to

obtain 6d which in turn determines all other variables
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e. Current- Voltage Characteristics

Using (3.6), (3.66) and (3.70), the ratio of the total current to the

emitter electron current is found to be
= - - 1 -
T/T, =(-¢€ )/l-¢ (1-T )] (3 77)

The arc drop may be determined from (2.28) and (3. 65) and is given
by

Vb= Ve - Ve ¥y

=2 _ _
(T/T )6, - 05) - 246 (3.78)

+ (Vi + Zeeo + VE) €. (1 - I‘io).

4. Graphical Solution and Illustration Results

To obtain a graphical solution for the equations of the previous
section, we substitute (3.67) - (3. 73) into (3.65) and solve for Ay .

This gives

Ax=x, [Q - (xl/xE)PJ/(l tR-mn Q) (3. 79)
where ) » —1
Q——EE—+11n B (1 red)l-r’” (1-—D—

T 2 T 2R 2R B

eo eo ed eo

- Isech § -

I d + 1

'z( D(+e_) Jln(l-c} (3-80)
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2
- ey tanh” by ) (E+ 1 )
) n

P= (/T )-xg€, 1 -T )- ‘CE‘\ DUve. T-C

Gei cothéo\
In . (3.81)

(B-D) (1 +e) coth ed}

1 1), (d+1!
R‘2{1+51;1“‘1-c;’ (3 82)
and

S ~ 3,83
Xg = V*/9g (3 83)

In deriving (3. 79) - (3. 82) we have used (3.26), (3.28) and (3.41) to
eliminate rio in certain terms. We have also assumed AGe<<Oeo << V,1
and dropped several terms which are small as a consequence.

Equation (3. 79) may now be solved simultaneous with (3.37) by
plotting them both as a function of 6d‘ This is illustrated in Figure I-2
for the case JE/J = 2. The curves 1dentified by the parameters "/Er d
(d + 1) were obtained from (3.37) while those identified by (d + 1) were
obtained from (3. 79). For given €. and d, the value of éd is determined
by the intersection of the corresponding pair of curves. The root of
interest is the largest one. The other roots correspond to a possible
relative minimum in the electron production in the center of the con-
verter and a second maximum in the production near the collector. Due
to the form of the production term assumed, the present analysis is
limited to cases where the subsidiary maximum and minimum are un-
important. This is the case for a wide range of conditions. Once éd

is determined, all other variables may be obtained from the equations

of the preceding section.
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Figure I-2. Illustration of Graphical Solution of Equations (3. 37)
and (3.79) for JE/J = 2. See text for discussion.
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Figure I-3a shows curves for the Saha electron concentration ng,
the actual electron concentration ne, the ion current Ji as a function of
position in the converter for typical operating conditions. All these
quantities exhibit the characteristic shapes found in previous numerical
solui:ions6 of the problem. The two expressions S and S* for the net
electron production are compared in Figure I-3b and it can be seen that

the fit is very satisfactory.

Figure I-4 shows the electron and ion temperatures as a function
of position in the converter for the same conditions as Figure [-3. Note
that the electron temperature is a linear function of x/d because the
gradient was assumed constant in the analysis. The ion temperature,
however, was obtained by integration of the neutral heat flux equation
and is not linear due to variations in the thermal conductivity and
temperature. The electric field is essentially the product of the ion
current density and the electrical resistivity. It rises rapidly in the
vicinity of the collector because the low electron density in this region
results in a high effective resistivity. A similar effect of opposite sign

occurs at the emitter.

The emitter and collector electron temperatures are shown in
Figure I-5a as a function of the pd product for .]'E/J' = 2. It can be seen
that the emitter electron temperature has a minimum in the neighbor-
hood of pd = 20 and rises for both smaller and larger pd. The physical
reason for this is that for small pd electron loss by ambipolar diffusion
to the walls is large and consequently the temperature must rise to
maintain the ionization required to carry the prescribed current. On
the other hand, for large pd a higher electron temperature is required

at the emitter to provide the electron concentration gradient necessary

I-26




. THERMO ELECTRON
CORPORATIAON

-/ Vi /i -
-'o i | l 1 l L 1 A I ]
(o] 2 49 6 .8 .0
0 2 4 x/d 6 8 l
40 T 'l T 1 Y '| T 'l T 0
b 2
Jg =20 a/cm
30 Jg/d=2 ]
¢ = 1800 °K -
20 8¢c=620°K _|
p = 2 torr
[~ pd =15 rail~torr
10— Sd/Jiq =
Sd/J;q )
o L l 1

Figure 1I-3a. Calculated Distributions for Saha Electron
Concentration ng, Electron Concentration ng,
and ion current ‘Ii'

Figure I-3b. Comparison of Assumed and Calculated
Expressions for the Net Electron Production.
The conditions for (a) and (b) are the same.
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Figure I-4. Calculated Distributions for Electron, Ion and
Neutral Temperatures Tes» Ti, and T, and Electric
Field Spacing Product ed. Note T; was assumed
equal to T, in the analysis. '

1-28



THERMO ELECTRON
CORPORATION

7012-11
3000
< 2
-]
] -
g i Jg =20amp /cm® i
]
J./J=2
- 25000 E -
§ B 6 =1800°K i
8. =620°K
'5 B Ted ¢ ]
w p=2 torr
- b -
(]
2000~ —
i | | 1 |
10 20 30 40 90
pd-mil - torr
080 10 20 30 40 50 60 70 80 90
: [ T | T b T I I T 7
7 4

ARC DROP Vg volts

Figure I-5a.

Figure I-5b.

Emitter and Collector Temperatures as a Function of pd
for Fixed Current.

Comparison of Calculated and Measured Arc Drop as a
Function of pd for the Same Condition as (a). A contact
potential Vo = 0. 5 v was assumed for calculating Vp
from the experimental results. Note the existence of an
optimum pd in the range 10-20 at which the output voltage
is a maximum.
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to drive the current through a larger effective resistance. For the

same reasons the collector temperatures exhibit a maximum.

The calculated arc drop V__ is compared with experimental

results9 in Figure I-5b for the sfme conditions as those in Figure I-5a.
A value of 0.5 ev was assumed for the contact potential in the experi-
ments. Both the calculated and experimental curves clearly show the
existence of an optimum pd at which the arc drop in the converter
plasma is a minimum. The calculated value of this minimum based
on the cross-sections given in Table I-1 is 0.27 ev which agrees well
with recent experimental estimates‘lo The slopes of the calculated
and experimental curves at large pd are also in good agreement. This
confirms the value of the ion-neutral cross-section which is the most
important parameter for determining the slope. This is a result of
the fact that the diffusion is ambipolar. Thus, the electron and ions
must move together and since the ion-neutral mean free path is
smaller than either the electron-neutral or electron-ion mean free
paths most of the resistance is due to the ions. As a consequence,

accurate values of the ion-neutral mean free path are of considerable

importance in determining converter performance.

Calculations of the current-voltage characteristics can be made
in the same manner. However, due to a tendency for positive and
negative terms to cancel for large and small values of TE/reo they
are somewhat more difficult to carry out graphically and are currently
being programmed for a numerical computer. In this connection we
may note that all the results presented in this paper were obtained

by hand computation using a slide rule.
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5. Concluding Remarks

On the basis of the analysis presented in this paper we conclude
that the approximate analytic technique described can be a very useful
tool for the investigation of thermionic energy converters operating in
the ignited mode. The method is very much simpler and more efficient
than numerical integration and more general and accurate than previous
analytic treatments. It gives considerable qualitative insight into the
importance and effect of the various physical parameters which deter-
mine converter performance and provides the first detailed explanation
of an optimum pd product at which the arc drop in the plasma is a mini-
mum. The quantitative comparisons which have been made show
reasonable agreement with experiments and with further refinement

the method should give results at least as reliable as the input data.

The most questionable approximation‘made in the present treat-
ment is the assumption of a constant electron temperature gradient.
Although this is reasonable for small gradients, its effect is difficult
to estimate for large gradients. The approximation can be removed
by integrating the energy equation and while this would complicate the
analysis somewhat, it should increase the reliability of the results
considerably. This is an important improvement which should be

made before serious quantitative applications of the method are made.

In addition, the present analysis is limited to the case of mono-
tonic emitter and collector sheaths of the type illustrated in Figure I-1,
and the possibility of work function changes due to the Schottky effect
at large negative voltages has not been considered. Finally, we have
neglected radiation losses and diffusion of excited species in the cascade

ionization process. Although the effect of these latter approximations



1s thought to be small in the range of interest for practical converters,

they also need further study.
C IMPROVED TREATMENT OF ELECTRON ENERGY EQUATION

In the analysis presented in the preceding section it was assumed
explicitly that the electron temperature gradient could be approximated
as a constant in order to avoid the necessity for integrating the electron
energy equation. It was also assumed that electronic heat conduction to
the collector was negligible in that the term proportional to dTe/dx
in the collector boundary condition could be dropped. Su-bsequen% .
analysis has shown, however, that while these as sumpti;)ns are rea;on-
able near the maximum power point on the I-V characteristic, they can
be seriously in error at other points. We have therefore improved the
treatment by including an approximate but still reasonably accurate

integration of energy equation (3 59). To do this we first rewrite (3.59)

in the form:

d@e 5 1 Qe \
AR L 1)
e 13
where
( 9'1 l‘ei dm \
p = \]_-4—'5—- E— +del\’ (4 2)
e P

1s the effective thermal resistance due to electron neutral and electron

ion collisions. Equation (4. 1) may now be formally integrated to give
-5/4K

-5/4K R e '
F)ee -eo—-Zg e — -y |p dn (4. 3)
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where

n
K =S pdn’ . (4. 4)

(o]

If we assume Qe/_'v,"e - ¢ is approximately constant across the con-

verter, then we obtain from (4. 3) the result:

/ -5/4 (Kd-K)\ -5/4 Kd
Ge=0ed+(9eo—9ed)\l~e | 1-e (4. 5)
If we further assume that (1 +6./60 ) e .d _and (1 +6.,/6 )d . can be
i’ "e’ "ei in i’ e’ Ted
approximated as constants, then (4.4) can be evaluated using the same
technique employed to evaluate (3 50). This gives
tanh § \*I (Btanh$ - D§ |2 9
K =1n d 2]+ 1=
tanh § Btan § - D§ 6
o d ed
6 - 60
d . (4.6)
(Gd—éo ei
where ec .,
a. = |1+ (4.7)
1 ( 0.q] (1 te,) (B-D)
and
2
( 9C ) €, tanh 6d
a. = |1+ (4. 8)
2 eed (1 + Eei) D

Substituting (4.5) into (3.59) and imposing the boundary condition (2. 26),

we obtain

1 5 _5/4 K )
1 5 _ ] d ‘
c 2 eed * 2 0 eo 6ed)/tl € (4.9)
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This equation, together with (4.5), provides the relations necessary
to replace equations (3.60) and (3.61), which contain the questionable
assumptions in analysis of section B. To obtain an improved solution,
these two new equations must now be solved simultaneously with (3. 33),
(3.37), and (3.65). Since this involves the simultaneous solution of
two transcendental equations, it is most efficient to use a numerical
computer. Unfortunately, the program which has been written to solve
the necessary equations has yet not been fully "debugged", so it is not
possible to include definitive numerical results. Some preliminary
results for the arc drop as a function of pd product are shown in
Figure I-6; however, the results are good and are in accord with
expectations In particular, the minimum in the neighborhood of

pd = 20 is clearly shown.
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Figure 1-6. Arc Drop as a Function of pd.
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II. THEORY OF THE TRANSITION REGIONS OF
THERMIONIC ENERGY CONVERTERS

A. SUMMARY

This work 1s a search for a good method of treating the regions
near the electrodes of a thermionic energy converter theoretically.
The problem is simple in principle: Poisson's eq:J.ation is used to
relate the potential or electric intensity to the difference in electron
and ion densities in the space between the electrodes of the thermionic
energy converter. Two Boltzmann equations, one for i1ons and one for
electrons, may he used to relate the relevant particle densities to the
patential existing. Then, one merely has to solve the three equations

simultaneously together with relevant boundary conditions.

It seemed reasonable to start our search for a method with the
simplest available: that of Wang, Lieb, and Pigford,1 This method
is based on the collisionless, one-dimensional Boltzmann equation.
We had only to satisfy the boundary conditions of zero electric intensity,
and continuity of the potential and densities at the interface with a plasma.
Not all boundary conditions could be satisfied simultaneously; it is
necessary to consider the anisotropies of the distribution functions in
the regions near the electrodes. Next, we considered various improve-
ments based on the magnetohydrodynamic approximation of the Boltz-
mann equation to the diffusion equations. While the lowest order aniso-
tropies, due to the transport of material, could be encompassed by
this method, the resu]ting'equations were nonlinear and required the
application of boundary conditions at beth ends of the region.of integra-
tion to achieve a unique, stable solution. The numerical difficulties

seemed very difficult to circumvent.
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The Sn method was investigated next because it has been very
successfully and extensively applied to neutral particle transport and
because it had a reputation for being accurate and unconditionally
stable - a fact never proved rigorously. The Sn method consists in
quantizing the various independent variables in phase space and in
approximating the distribution functions by continuous straight line
segments between the various subdivisions of each independent variable.
Unfortunately, the particle densities computed by this method, especially
the electron densities, oscillated, becoming negative in the process. In
connection with the investigation of this matter, a proof (the rigor of
which has not been investigated) was found that the Sn method applied
to problems involving charged particles in an electric field are un-
conditionally unstable. It was also found that the particular oscillations
observed had nothing to do with instabilities, contrary to our initial
suspicion, and that conditions could be found to suppress the particular
oscillations observed. Because of the prediction of instabilities, we

looked into other methods.

During the course of the work on the diffusion method and the
Sn methods, it was successively found that the solution for the
potential from Poisson's equation could be cast in integral form
and later that an integral method could be developed for solving the
Boltzmann equations. The integral method for the Boltzmann equations
is based on the observation that there are two constants of motion in
the problem and that, if these constants of motion are used as inde-
pendent variables, the density can be a function of only the one
independent variable that is not a constant of motion. Also, the

resulting, one-dimensional, first order integro-differential equation

II-2




cast in terms of these variables can be solved by Green's functions
technique. A physical interpretation of the integral equations resulting
enables us to circumvent any problem arising from a branch point of
order 1/2 of the kernel. One can easily see that the densities computed
from such a formulation are always positive definite. The integral
method is very accurate in view of the extensive averaging over errors,
and stable. Convergence of this method was ideal in many cases and
extremely good in the other cases when coupled with low-pass filtering.
The low-pass filtering suppressed the need to follow ad infinitum the
plasma oscillations induced by errors of the numerical method (trunca-
tion and round-off) and expedited convergence enormously without
suppressing the static phenomena in which we are interested. Low-pass
filtering was done in the iteration domain itself, instead of the much
more usual conjugate domain, by exploiting the Faltung concept. Much

machine time was saved as a result.

The integral method was programmed and coded for a computer.
Despite the most inelegant, but easy to debug, way in which the integral
method was coded, the program executed with amazing speed and con-
verged extremely well. We had not succeeded in removing all errors
from the program by the time the work was terminated: the current
of each species was not as constant as we would like; the potential
at the plasma did not have zero slope as it must. Otherwise, there
are no known errors in the program. Recoding it somewhat more
elegantly to exploit calculations already made would greatly speed
the execution, probably making each cycle as fast to compute as with
a differencing scheme. In view of the paucity of cycles needed by the
integral method to converge, it would thus converge much faster indeed

than a differential method.



During the course of the work on the Sn method, a method was found
that would provide a stable differencing of the Vlasov terms in the Boltz-
mann equation and that could be extended to several dimensions. While
the problem was completely formulated and some of the coding com-
pleted, the integral method looked so attractive that the work on the

differential method was never completed.
B. INTRODUCTION

For the purposes of this study, a thermionic energy converter
is considered to consist of two plane parallel electrodes of infinite
extent separated from each other with electrons, cesium atoms and
ions inhabiting the intervening space. One of the electrodes, i.e.,
the cathode,is hotter than the other, i.e., the anode. In practice,

the degree of ionization is very small. The geometry is one-dimensional.

The problem is to compute the electron and ion densities, the
potential, the current or drift velocity of the ions and electrons, and
the temperatures of the ions and electrons as a function of position
in the interelectrode space. Knowledge of the directional densities of
the electrons and ions, and of the potential in principle enables us to
compute any other quantity. The primary goal then is to compute
these three quantities. The electrons and ions will have different
drift velocities in general, and different temperatures; further, these
quantities will be functions of position. Ionization and recombination’
take place in the region between the electrodes. Radiation losses will

be neglected.

The space between the electrodes can be divided into three regions:

a cathode sheath adjacent to the cathode, an anode sheath adjacent to
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the anode, and a plasma between the two sheaths. The plasma is char-
acterized by particle distributions that are nearly isotropic, thermo-
dynamic equilibrium among particles of the same species, and zero
electric field. The sheath regions are transition zones between the
plasma and the respective electrodes. In these regions. the particle
distributions are not isotropic, nor are particles, even of one species,
in thermodynamic equilibrium. Further, an electric field exists in
each of these regions. The strength of the field is such that recombina-

tion and ionization are of secondary importance.

The problem is readily formulated: Poisson's equation is used
to relate the electric field or potential to the difference in total ion
and total electron densities. The Boltzmann equation relates the
particle density of one species of particle to the electric field or
potential. There will be a Boltzmann equation for ions and another
one for electrons. Because the masses of cesium atoms and ions
are nearly equal, the energy distributions of the cesium atoms and
ions will be nearly the same where equilibrium exists; i. e., their
temperature distributions will be nearly the same. Because of the
great disparity in the masses of the electrons and cesium atoms or
ions, the electrons will in general have distribution functions rather
different from those of the cesium atoms and ions. In other words,
where equilibrium exists, at any point, the temperature of the electrons

will be different from that of the ions and atoms.

2 )
The plasma region has been treated by a number of authors.’ 34,5

Diffusion theory has been used in a direct manner despite the instabili-
ties in the method. Boundary conditions, vital to these calculations,

are provided by conservation of particles, momentum, and energy

II-5



across the sheath regions near each electrode. The near isotropy of
the distribution functions in the plasma region makes the diffusion
theory results meaningful. The absence of an electric field in these
regions simplifies the treatment considerably, because the results
of Poisson's equation may be incorporated in the statement that the
electron and ion densities are equal; in other words, plasma oscilla-

tions, which are of very high frequency, are neglected.

The sheath regions between the electrodes and the plasma are
much more difficult to treat because §f the electric field that exists.
In principle, Sockol's 13 moment method6 could be applied to this
problem. With this method it is possible to get currents, stresses,
and heat fluxes. Sockol considers the deviation from an equilibrium
distribution, so the method can go farther than the Chapman-Enskog
method. Further, the method permits each component of a mixture
to have its own temperature. The Coulomb interaction is cut off at
a Debye length and a rigid sphere model is used for all other inter-
actions. The method does not, however, take collective phenomena
into account and is very complicated. Wang, Lieb, and Pigford1
have treated the sheath regions by the collisionless Boltzmann
equation (Vlasov equation) and have restricted their charges to move
only along the perpendicular to the plane electrodes. Thus, the effect
of the electric field in changing the angular distribution was neglected
by these authors. They had problems in simultaneously satisfying the
conditions of charge neutrality and zero electric field at some point
which could then be taken to be the plasma-sheath interface and in
joining their solutions to those of Lieb and Bornhorst4 for the plasma.
In their treatment of the sheath, Rush and Wilkins7 also used a Vlasov

equation like Wang, Lieb, and Pigford, and also neglected the term
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in the Vlasov equation describing the change in the angular distribu-
tion caused by the electric field. The three lowest moments in velocity
are used to get conservation equations, half maxwellians being used
for the distribution functions. Thus, this theory is equivalent to
Yvon's lowest order half-range method. Hansen and Warner8 treated
the plasma and based their work on Nighan's formulationg’ 10, 11 which
is based on small departures from equilibrium. Only the lowest order
moments of the distribution were used, thereby making their approach
equivalent to diffusion theory. They used the so-called shooting tech-
nique. Since neither Rush and Wilkins nor Hansen and Warner have

actually integrated the densities through the transition region, troubles

with the boundary conditions remain unknown.

Reasons for the approximate treatments are easy to find. It is
difficult to treat anisotropic transport problems; it is even harder to
treat those in which an electric field is present. Nonlinearities of
the problem preclude the application of most analytical methods and
even some numerical methods, as we shall see. The intercoupling of
the charged particles and electric field lead to instabilities of the

coupled (nonlinear) equations absent in the individual equations.

Despite these difficulties, it behooves us to try to get a theoretical
treatment of the sheath regions. A successful treatment would very
probably lead to a much simplified mathematical representation of
the region, which is one of several ways of generalizing the results
of computer calculations. It could settle the question of whether or
not the potential energy of an electron is a monotonic function or is a
function having a maximum in the sheath regions. If a maximum exists,

it could tell us the height of this maximum. The theory should provide
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an explanation of the reason that ignition mode theory disagrees with
ignition current measurements. Such a theory should explain phenomena
taking place at the collector of a thermionic energy converter that are
not now explained. The theory would be of assistance in diagnostics:
There is now a wealth of information that cannot be associated with
either one electrode or the other. A theory would enable us to meaning-
fully interpolate between data points. Finally, since most of the voltage
drop in a thermionic converter is in the sheath regions, it would behoove
us to understand these regions better and to have an adequate method of
treating them theoretically to determine the effects of various changes

in design parameters.

Essentially, in the present work we attempt to take anisotropies,
differences in the speed distributions of the electrons and ions, and col-
lisions in the sheath regions into account, thereby getting a method

applicable in principle to all three regions of the diode.

Several methods were investigated for treating the sheath region
in a thermionic energy converter between either electrode and the
plasma. The method of Wang, Lieb, and Pigford, which is based on
the one-dimensional, collisionless, Boltzmann equation, was extended
slightly to provide a unique, not over- nor under-determined solution
by the provision of a boundary condition. The result of this very
simple approach indicated that the transition region is decidedly wider
than a Debye length computed in the plasma and that the anisotropic dis-
tributions inherent in this region must be treated in order to get correct

results.

The second method consisted in extending the diffusion equation

essentially by considering the next higher order results of hydromagnetic
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theory so that the next lowest order in the anisotropies could be taken
into account. The next lowest order of anisotropies comprised mass
flow terms in the momentum and energy conservation equations.
Numerical progress with this method was severely limited by the
inherent requirement of any diffusion equation. In order that the
solution of the problem exist, be unique, not over-determined, stable,
nontrivial, Dirichlet or Neumann boundary conditions must be applied
at both ends of the region of integration. If the problem had been
linear, it would have been possible to effect the numerical integration.
However, it is nonlinear and brief numerical examination of the re-
sulting equations with the methods available for nonlinear problems
indicated that we would not be so lucky as to escape instabilities,

so the method was abandoned after only a little numerical work.

The Sn method has been widely applied to problems involving
neutron and gamma ray transport, where it has always exhibited
stability and great utility. The Sn method was extended to apply to
the Boltzmann equation with an electric field and to apply to all
dimensions involved in velocity space and configuration space, instead
of just one-dimension in velocity space. The numerical analysis was
beset with oscillations of the electron density, thereby giving negative
values for this quantity which is inherently positive definite. While
the particular oscillations observed probably could have been eliminated

by appropriate choice of integration increments, the investigation of

these oscillations led to an examination of the stability of the Sn method.
No time was spent in determining the rigor of the method used for
this stability investigation. To our great surprise, the investigation

indicated that the Sn method would be unconditionally unstable when
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applied to problems having an electric field present, while it would

be unconditionally stable if applied to problems having no electric

field present, providing one integrates according to the well-known
rules for this method. Because at this point the integral method had
been developed to the point where it looked very much more promising,
we did not try to improve the rigor of our stability investigation or the

differencing scheme itself.

In connection with the investigation of the stability of the Sn
method, other differencing schemes for the Boltzmann equation were
investigated and another was found that is conditionally stable and
had been used by others for problems involving plasmas in magnetic
fields (but neglecting electrostatic effects that are so important to
us inthe present problem). However, the integral method remained

the most promising, and all work was concentrated on it.

From the inception of this work, it was realized that instabilities
of differencing schemes for solving various equations could cause a
great amount of trouble. While trying to get the diffusion theory
method to work, it was realized that the solution to Poisson's equation
could be cast in integral form, and that such a form would be much
more accurate and stable than the difference equation scheme then
being used. It was also realized that the integral formulation would
contain its own boundary conditions, so that an iterative scheme to
find the correct potential could be avoided. Consequently, when soon
t?‘e‘;:"‘fter the anti¢ipated instabilities in the form of negative densities
were experienced, the integral method for determining the potential

was incorporated into the Sn method.
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During the course of the development of the Sn method, it was
observed that there were certain constants of motion associated with
the transport of the charged particles through the sheath region. (The
writer had found constants of motion many years ago for simpler prob-
lems involving the Boltzmann equation.) These constants of motion
could greatly simplify the form of the Boltzmann equation because,
if the independent variables were expressed in terms of the constants
of motion, there could be no change of a particle density with respect
to some quantity that did not change during the course of motion. Since
there are only three independent variables and since two constants of
motion had been found, it was evident that the Boltzmann equation must
reduce to really only one independent variable. The resulting simplicity
would be so great that the Boltzmann equation could be "solved" by
casting it into the form of an integral equation by exploiting familiar
Green's functions methods. The integral form would then have several
advantages: stability, accuracy (because of the extensive averaging
over errors), and inherent positive definiteness of the particle density
computed. It was further realized that the integral equation had a very
simple physical interpretation, i.e., derivation (as all integral formu-
lations seem to),and that this interpretation would enable us to cope with
troubles expected from the singularity (comprised of a branch point of

order 1/2 in the denominator) of the kernel of the integral equations.
All of the anticipated advantages of the integral method have been
borne out in practice.

Convergence of the problem as a whole, in contrast to convergence
of just the individual equations, was induced by introduction of low-pass

filtering in the real domain. This type of filtering is faster than filtering

II-11



in the conjugate domain, as is usually done, because there is no need
for the double integral transformation required by the Fourier integral
theorem. The convergence was very rapid and often ideal. The low-
pass filtering suppressed the (plasma) oscillations of the plasma and
field, resulting from these two quantities continually trying to re-

adjust to each other.

At the time of termination of the project, the integral method had
been coded and largely debugged. Among the faults noted was the
inconstancy of the electron and ion currents, i.e., lack of particle
conservation, to the tolerance desired. Also, the potential function
did not develop a zero gradient many mean-free paths away from the
nearest electrode and thereby exhibit the presence of a plasma, as it
should have. However, this defect may be related to the lack of

current constancy.

Total electron and total ion densities were computed, spectral
and angular distributions were presented, and electron and ion tempera-
tures were calculated. The present problem was coded so that all
quantities are recomputed for each point calculated. Despite this fact,
the speed of the method is quite amazing. The integral method could
be easily coded as to use all previously calculated information. Very
little calculation per iterate would then be involved and the method

would then run very fast indeed.

The integral method is discussed throughout all of part C. Some
minor improvements in the collisionless sheath method of Wang, Lieb,
and Pigford are discussed in the first section of part C; a diffusion
theory approach is developed in the second section of part C; the Sn

method is applied to our problem in the third section of part C; a
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stable method of differencing the Boltzmann equation is elaborated

in the fourth section of part C.
C. INTEGRAL METHOD

The integral method merely consists of casting the Poisson and
Boltzmann equations into integral form and solving these integral
forms numerically. There are, of course, two Boltzmann equations,
one for electrons and one for ions. The integral form of Poisson's
equation results immediately from straightforward integration thereof.
The integral formulation of the Boltzmann equations derives from
replacement of two of the three original independent variables by
two constants of the motion. Since there is then only one independent
variable left that actually changes during the course of motion of a
particle, the one-dimensional equation is "solved" by Green's function
methods (or otherwise, as by integrating factors), thereby casting
the Boltzmann equation into integral form. Low-pass filtering in
real space, rather than the conjugate space, is introduced to suppress
very high frequency oscillations and, thus, expedite convergence of
the iterative procedure. Low-pass filtering in real space is related
to that in the conjugate space by means of the Faltung theorem in
the theory of Fourier transforms. Alternatively, one may regard
the filtering as a linear superposition of the impulse response of the
filter with the past values of the function being filtered. In other words,
this too may be regarded as a superposition, in the spirit of the Green's
function, of the response of the filter to a unit stimulus weighted with
past values of this stimulus, summed over these weighted products.
Macroscopic quantities are then expressed merely as velocity moments

over the distribution functions found.
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There are very few assumptions made in this approach. The prob-
lem treated has planar symmetry, which makes finding the constants
of the motion easy; yet, this matter is not regarded as intrinsic to the
method. Further, the Boltzmann equation is regarded as a sufficient
approximation and is used with all the assumptions embedded therein:
Collisions are regarded as short-range and involving just two bodies;
long-range effects are separated out into the electric field. Collisions
are assumed to occur instantaneously. Quantum effects are neglected.
So is gravity, although this is not necessary. The formulation is
believed to be quite general otherwise, so long as the constants of the
motion can be found. In multi-dimensional problems, the superposition
of products of eigenfunctions, one having as an argument the source
point, the other having as an argument the field point, might be used
to express the Green's function, although we do not resort to this
device here. It is disadvantageous when the Green's function can be
found, as here, essentially as the product of the solutions of the
differential equation that are, respectively, regular and irregular

at the origin and contain the conditions of causality, all as needed.

1. The Poisson Equation

Poisson's equation relates the electric potential ¢(z) to the net
charge density at a point:1
a®g(2)
¢, —52k = eln(2) - n_(2)], (C. 1)

o d22

where ni(z) is the total density of ions at z, ne(z) is the total density
of electrons at the point z, e is the charge of a positron, and € is

the permittivity of a vacuum.
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If it is presumed that the total net charge density is known, there

are many ways of solving the above equation. For example, the potential

12
is related to the net charge density by:

S eln (r9-n_(zx9]

¢(r) = . dr ]r-r'l . (C.2)

- 4me
o}

Since our present problem is one-dimensional, we may integrate
once to determine the electric intensity and a second time to determine
the potential. We find it more convenient to work in terms of the
potential than in terms of the electric intensity. A double integral
over the net charge density results. It is convenient to integrate this
double integral by parts, so that only single integrals result. The

potentials ¢(z{) and ¢(zr) at the end points, z Zr' are taken to be

,
the boundary conditions, and the two constan:; of integration are
selected to satisfy these boundary conditions, of course. Because
all the operations are rudimentary, we merely cite the results. The
electric intensity €(z) is given by either of two expressions, which

can be easily shown to be equal to each other:

z

¢(ZL) - ¢(Zr) e r ) ,
e(z) = TR + 7 -7 e ydz (z'- zr][ni(z)- ne(z)]
r L r 2" "o zL
z
2 (7 aet (e - n (297, (c.3)
€J, i e
i
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¢(Z ) - ‘P(Z ) L
€(z) = L L4 = 5 4z [z’ -z ][n(z9 - n (z)]
(z_-z,) (z_ -2, € 2774 e
r L T 4 o z,
” ,
+ES dz’ [n (z’)-n (z")]. (C. 4)
€ . 1 e
r

Likewise, the electric potential can be determined from either of two

expressions, which can be easily shown to be equal to each other:

Z-ZL Zo e
¢(z) = (:—j‘r)ﬁb(zr) '{—z___—z—)qﬂz&) + ;‘g dz‘[z’- z][ni(z’)-ne(z')]
r 4 v or 4 z,
z -2z \ .z
e I (e s e - 2], (c.5)
{ r 1) ZL
Z-ZL -z, e (°
= —— - 7 /_ 4 _ ?
p(z) =|— )¢(Zr) -(z S8 (z) 4 €_S'dz [27-2][n (z7) -n_(z7)]
{\ T 1 r 1 z,.
NLELE z
— ] —— / 4 / _ 4
B e(z -z )5 dz’ [z -ZL][ni(z ) ne(z )] (C.6)
r 1 ZL

In summary, both the electric intensity and the potential can be
determined from integrals over the ion and electron density difference

and in terms of the potentials at the boundaries.

2. Derivation of Integral Form of Boltzmann's Equation from Physical

Principles

The integral form of Boltzmann's equation can be derived from the
differential form of this equation, and we shall do this later. However,

the integral form of Boltzmann's equation can also be derived from first
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principles ab initio. This method gives a much clearer physical
picture and, for this reason, will be done first. The number of
particles , N(z), moving with the direction of cosine p with
respect to the z-axis that gets from z ' to z and experiences no

collision between the two points is given by

T = - () N(2) (c.7)
the solution of which is
Z . T(z")
N(z) = N(0) exp - Szgz” Tetz ] (C. 8)

Here ¥ is the brobability a particle experiences a collision in going

a unit distance.

The time taken for a particle travelling with the velocity component
vy ‘2z, E, ¥ ) parallel to the z-axis to cross the element dz ’/v" (z, E, K,).
This time multiplied by the number of particles made per unit time
from one particle is just the number of particles created at z’
in the element dz’. This number times the probability N(z)/N(z )
of getting from z' to z with no collision between the two points is just
the number of particles that arrive at z directly from dz‘at z’ The
total number N(z) of particles at z arising from particles that originate
from a source S(z’, E, K_L) somewhere between z and a bounding sur-

face, which, say, is at 0 is given by:

z, dz’ S(z’, E, K

S: j . | v
0, vy(z7 E, K) ) P (=2 (C.9)
\ 1 f
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We observe that the total energy and the contribution to the kinetic )
energy arising from the motion of the particle perpendicular to the
z-axis will not change for these particles between their last collision

’

at z’ and the point of observation at z; these particles have already

experienced their last collision. Thus, the variables E and K_Lare
constants of the motion and will not change for these particles. The
value of these quantities under the summation (integral) sign will be

the same as outside; they serve as suitable labels for the particles.

We must also remember that it is possible for a particle to arrive

at z directly from the bounding surface at 0 with no collision in between.

Thus, the number of particles at z originating at the boundary at 0

which arrive at z with no collisions between the two points is:

g(0, E, K,, L) P(0, 2), (C. 10)
where L denotes the sense of the direction in which the particles move.

Thus, the total number g(z, E, Kl, L) of particles with coordinates z,

E, K,, and L is given by:

S(z’, E, K, L)
P(z/ z). (C.11)

Z
g(Z, E’ KJ.’ L) = g(O, E’ K.L’ L) P(Or Z) + S’ dZI

0 Vn (ZI, E, K.L)

We observe that this equation is really an integral equation for the
particle density, for the source S(z’, E, KJ_, L) is really a function

of the particle density at z%. Second, we should be able to determine
the density outside the integral to a much higher accuracy than the
density inside the integral because of the summation and averaging
over the density within the integral. Third, as with all integral
equations, we observe that the boundary conditions are already
incorporated in the equation, and no subsidiary conditions are needed
to supplement the equation to impose the condition of particle conserva-

tion in phase space at the boundaries.
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The matter is not yet finished, however It may be that the
denominator v (z”, E, K,) vanishes at some point or that the
denominator p(z” E, K,) vanishes at some point. Physically, these
points correspond to points at which a particle runs out of kinetic
energy; all its energy being potential, it turns around and moves in
the opposite direction. This point can be seen more clearly by re-
ferring to Equation C. 40 or to Equation C.40 and C. 41, from which
it is seen that v| = vp and p vanishes if and only if the total kinetic
energy equals the total energy minus the potential energy As is
physically obvious, certain regions are accessible and others are

not.

This matter is important, for it enables us to avoid divergences
in the numerical analysis, and it leads to an understanding of the
various cases, illustrated in Figure II-1, that can occur. For particles
that are reflected, we must integrate from the boundary to the point of
reflection and back to the field point for certain directions of arrival
of particles at the field point. Again, certain particles are trapped;
they never escape from the potential energy wells in which they find

themselves.

For particles that are trapped, it is impractical to integrate
backwards infinitely far through infinitely many reflections. It is,
however, still possible to consider these particles quite exactly as
follows: Recall that we are interested only in those particles that have
experienced their last collision. The perpendicular component of the
velocity of these particles will not be altered by the reflection process.
The potential is static, so the parallel component of the velocity merely

reverses its temporal history; its path is traced backwards in time.
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Figure II-1. Various Types of Trajectories
That Can Occur.
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In other words, there is a kind of generalized Snell's law at work.
We can handle the case of multiple reflections by integrating
numerically over only one cycle. The remaining reflection cycles
can be handled analytically: Consider the situation shown in Figure

II-2. If we are integrating from z, to z, then the contribution to the

1
density at z from the previous cycle will be equal to the above integral

times
Z
r E(Z”)
P:exp-Zfdz” -, (C.12)
B | u(z" ]
'

because the trajectories are identical from one reflection to the next.

Thus, the total contribution from all reflections is a geometric series:

2 3

1+ P+P +P +. .., (C. 13)

the sum of which is ”

r -1
" Z(Z”)
1 - ex -Z‘Sﬂ dz’ ——— . C. 14)
P ) [n(z”) | (
b2

We are now in a position to itemize the various cases that arise:

a. No reflection at all. Particles arrive at the field point from the

left and move to the right. ] Ul(z)
i 7
, S(z) P (z , Z). z z
Vi (=)

g(z, E, K,, +) =g(z&, E, K, +) Pz, z) +‘Sﬁ dz (C.15)
)
b. No reflection at all Particles arrive at the field point from the

right and move to the left.
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Figure II-2., Trajectories in Successive Reflections.
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gz, E, Kl, -) = g(zr, E, KJ_, -) P (z, zr) + S‘ dz’

g(z, E,

Z

. One reflection. Left-hand boundary. Particles arrive at

the field point from the left and move to the right.

U(z)
3 S(z) P(z,z") z
_ ’ y
K, + =gz, E K,+ P(z),z)+S‘ dz v 2 o
z
1
1

One reflection. Left-hand boundary. Particles arrive at

the field point from the right and move to the left.
z

", S(z) P(z,2)

Ky -)=glzp E, K, ) P(z,2 Y P(z, z), +S;dz Ty
z_ U(z)
+V dZIS(Z')P(Z, zr)P(Zr' ZI). z!
Z£ z{ )

r

One reflection. Right-hand boundary. Particles arrive at

the field point from the left and move to the right.

zYP(z,z)

Z
S(
) ] ’
K. +) = g(zr’ E, K, -)P(z, Zi) P (ZL',_ZI‘) +§ dz vy (29

iy
z

Z

T S(z) P

z

4

Z{ Z

One reflection. Right-hand boundary. Particles arrive at
the field point from the right and move to the left.

Z
r

Kl' ') = g(zr) E) K.L’ —)P(Z, Zr)+S’ dZ

z

, S(z') P (2,2 z 2
v (29
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g. Multiple reflections at both left-hand and right-hand boundaries.

Particles arrive at the field point from the left and move to the right.

Z z

K S(z\ P r S(z\ P
4 — 7 / RS '
SZ dz v“(z' (z', z) + S;,(, dz vy (z) (z,z{)P(zL, z")

1l - P2 (ZL’ zr)

(C 21
3~ 2
h. Multiple reflections at both left-hand and right hand boundar:es.
Particles arrive at the field point from the right and move to
the left.
“r 2y
S(z) P P
y az L2 +y a3 VP, 2
vy (2) a vy (2) r r
g(Z, E: KJ_! ') = 2 {
1-P ,
(Zf, zr)
{C.22)

At this point it is interesting and important to observe that
g(z, E, K,, L) is constant in the absence of scattering, in agreement
with the result (C 45) (differential equation for g in the first place). Thus, we
might expect better numerical accuracy as a result of using g than
some other function, such as n(z, E, KJ_, L) * Indeed, we can formulate
all of our integral equations in terms of this last quantity through the
use of the Jacobian J ‘]::,3_:1%’_' It will then be observed that a number of
singularities (a simple pole and a branch point of order 1/2, which is an

essential singularity) appear. The singularities are more apparent than

real, and, indeed, it can be shown that they do not lead to any real

e
See Q5, for a definition of n(z, E, K,;, L), esp., (C.43) and (C. 44).
The issue is one of normalization
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divergences. Nevertheless, a computer does not know this; presumably,
if our numerical differencing were to be carried out sufficiently finely
and enough digits were carried in each word, a computer would have
no trouble with all these apparent divergences. In practice, both the
word length and the amount of machine time available are seriously
bounded. It has been found that under practical conditions things get
big near apparent singularities and résults are much smoother and
well-behaved if the whole subject is avoided and manifestly convergent
procedures are used. For this reason, wherever possible Jacobians
are avoided, g(z, E, K_L, L)is used and n(z, E, K_L, L) is avoided, even
though from the theoretical point of view the practical procedure is

somewhat less elegant.

Simpson's rule was used to integrate the argument of the exponential
in the optical depth relation and the space integral in the density calcu-
lation, except possibly for the end interval. The end interval is com-

puted by the trapezoidal rule if the number of intervals is even.

3. Boundary Conditions

The plasma forms one of the two boundaries of the sheath region.
The electrons and ions in the plasma are distributed isotropically and
have a Maxwell- Boltzmann speed distribution at any point. The tempera-
tures and, therefore, the speed distributions of the electrons and ions
will be different from each other, in general. Provision for this differ-

ence in temperature has been made in the program.

In a Maxwell-Boltzmann distribution, the number n(v) of particles

moving between speed v and v + dv is

3/2

) exp - (mv /2kT), (C.23)

2
n(v) = 4nv Zn KT
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where m is the mass of the particles, k is Boltzmann's constant,
and T is the temperature. The number of particles moving between

speed v and v + dv and with a direction cosine between p and p + dp is:

3/2

n(v, p) =2n'v2 (-é—i—ni-(—T-lexp - (va/ZkT). (C. 24)

The particle current J(z) at z is defined in terms of the directional

density by:
© 1 2
J(z) = S' dv S‘ du 47 v v n (z, v, p). (C. 25)
0 -1

This current is given by Richardson's equation:

2
J(z) = A—L-E—l-’—n-z—.ﬂ(-’ﬂ— exp - (¢ /kT), (C.26)
h

where h is Planck's constant and y is the work function of the material
from which the electrons are emitted. Thus, we may determine the
distribution function for the electrons emitted from the hot electrode
by multiplying the distribution function by a constant C and determining

this constant C from the relation:

- 3/2
4w m(kT)Z 1 3 ! m mv2
Jz = _:5_—_ exp - (u///kT) = -2— ‘SO dv v yldp. ,.LC(Z“_ KT exp-(m . (C.27

By solving the above expression for C and introducing the expression for

C into the Boltzmann distribution, we find that

2
mv
3 v+ 2
_ m ____&___ _ Km v+ K
ne(z, Vv, ) = 4w v o ) exp - T =2 3 exp - T . (C.28
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The current of 1ons emitted from a hot electrode is governed by

the Saha-Langmuir equation:

P
g (C.29)

J 2w mg k_T.; {1 +2expl(e (Vi-w)/kT]} ’

where p is the pressure of the cesium atom gas, mg is the mass of
the gas riolecules, Tg 1s the temperature of the gas, Vi is the ioniza-
tion potential of cesitum, and ¥ 1s the work function of the material
Again, the ion density corresponding to this current density may be

found exactly as it was for the electrons The 1on density is:

2
mv

|2 kT
ZTTkTg (kT)é {1 + 2 exp [e(\/'i - y)/kT1}

- / 2m pg K exp - (K/kT) (C. 31)
T kTg (kT)2 {1+ 2exp [e(Vi - ¥)/kT]}

2
m mp v exp

ni(z,v, ) (C 30)

4 Derivation of Integral Form of Boltzmann's Equation from
Differential Form

We turn now to a derivation of the integral equation for the
particle density from the differential form of the Boltzmann equation.
We believe there will be enough mathematics to convince one that the

above result derived on the basis of common sense is 1n fact correct.

The Boltzmann equation is merely a statement of particle conserva-
tion in phase space. The net number of particles crossing the boundaries
of an element of volume in configuration and velocity space must equal
the number scattered into or created in that volume element minus the

number scattered out or absorbed in that volume element. Thus, the

fPrlvate communication from V Weisskopf
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Boltzmann equation may be written as follows in the steady-state:

af

at {coll. (C.32)

v -7 n(r,v)+a-v nr,v)=
Y r Ly a v Tl X

Here n (r, v) is the density of particles per unit volume in configuration
space and per unit volume in velocity space, r is the position in con-
figuration space of the field point at which the particle population is
examined, v is the position in velocity space of the field point at which
these particles are examined, a is the acceleration of the particle
cloud, and %{ coll is the rate of change of the distribution due to
collisions.

The electrons will be assumed to be isotropically scattered by

the cesium atoms. Scattering by the ions and by other electrons is

neglected because of the low degree of ionization, i.e., great pre-

ponderance of neutral particles The electrons will lose very, very
little energy in their collisions with the neutrals. The ions are also
assumed to be isotropically scattered. Because the masses of cesium
atoms and ions are so nearly the same, the atoms and ions will come
into equilibrium with each other very rapidly. Thus, we assume that
the ions have the same temperature as the atoms. Any departure of
the ions from an equilibrium distribution will strongly urge this dis-

tribution toward the equilibrium distribution.

We can write the Boltzmann equation as applied to our present

problem:
2
L. _ep(2¢|2n ce [2e|l-p 2nf _Bf (C. 33)
I~‘Lazv}L ml|adz BVHZ midz v apzvatcoll" '

where ¢ is the potential, z is the coordinate of the field point
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perpendicular to the plane of the electrodes, v is the speed of the
particles, and p is the direction cosine of the velocity with respect

to the z-axis.

5. Transformation of Independent Variables

Consider now the following: The left-hand side of the conserva-
tion equation must be the same whether or not there is scattering in
the problem, regardless of the transformation used to transform the
independent variables. Let us consider the special case in which
there is no collision in the problem. In this case, the total energy E
of the particles and the contribution K_Lto the kinetic energy arising
from the component of the motion of the particle parallel to the
electrodes and perpendicular to the z-axis are constants of the motion.
The contribution K, to the kinetic energy will be referred to as the
perpendicular kinetic energy, for reasons of convenience, even

though the term is somewhat inapt.

In the collisionless case, and, therefore, the case with collisions
also, the left-hand side of the Boltzmann equation must reduce to one
term when the independent variables z, v, and p are re-expressed in
terms of z, E, K-L and L as the new independent variables, for the
reason that a function of something that does not change, e.g., a
constant of the motion, is not really a function at all of that some-
thing. It is a function of whatever independent variables still remain

in the problem, the values of which change as the particles move about.

Be this as it may, one is usually much more convinced by a great
amount of algebra, rather than mere abstract argument.-‘. The old

and new variables are related by the following expressions:

TWeisskopf, V., Private Communication.
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z = z,

E = K+ V(z),

2
K..L= K(l - M ),
L. = sense of particle direction,
where
2
K = mv /2.

It is necessary to introduce a variable, here called L, describing the
sense in which the particle moves, i.e., whether it moves right or
left, because this information is not carried by the new independent
variables z, E, K,, but is carried by the original independent
variable p. This information is lost because of the squaring process,

as can be most easily seen from the inverse transformations, which

are:
Z = z
v = f\/Z [E - V(z)]/m,
K
- ] o —=
. *\/ E- V()

The Jacobian of the transformation will be of future use to us:

-1

AN

NE K,

- - ({ﬂ/zlrn [E- V(z) -KLT}{E— V(z)}:!

Before proceeding further, we need to consider another point of
mathematics relating to the directional density. Originally, the
directional density is some function n of z, v, and pn. These variables

are replaced by z, E, K, and L:
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gz, E, K,, L) =n(z, v, p. ~(C. 43)

The original directional density n 1s normalized per unit volume, per
unit speed v, and per unit p; 1.e., this directional density is the
number of particles per unit volume near z, per unit speed near v,

per unit p near p. The normalization of the g function is exactly the
same, even though it 15 a function of the variables z, E, K, and L.
Since it is convenient to denote the normalization of a function with the
arguments of that function, we introduce the new function n(z, E, K, L)
of the new variables, which will turn out to be more useful conceptually

than practically.

n(z, E, K;, L) = lJ’(L—L) n(z, v, p). . (C. 44)

E K,

6. Transformation of Boltzmann Equation

If, now, the old variables are replaced by the new ones and the
partial derivatives carried out, a glorious amount of elementary
mathematics results that ought to convince anyone that the Boltzmann

equation reduces to:

4/1 [E - V(z) - K ] e B R L)=§—f— (C. 45)
m L dz 3t |coll
Note that
2 \
vy o= )\/r—n [E - V(z) - K] (C. 46)

1s merely the component of the velocity parallel to the z-axis. No cross
section enters into the derivation of the above result; no mention was
made of the presence or absence of collisions in this derivation There-

fore, it must hold whether or not there are collisions in the problem
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7. Collision Terms in Boltzmann Equation

We now consider the collision terms. These terms may be

E

written in many ways. One way is as follows:

,—.
+y dX,SI d_Y_” F (X v, Q_) C(VI) T (E’X,’ X”) fV'*X”'n(E_:X')- (C. 47)

Here, Z(r,v,v") is the macroscopic cross section, i.e., the proba-
bility that a collision will take place at r with a particle of velocity

X” when a particle of velocity v moves a unit distance, f(z' - v, )

is the probability that in a collision a particle of velocity X' disappears
and is replaced by a particle of speed v and direction £}, and c(v y is
the probable number of particles emerging from a collision induced
by a particle of speed v’. The first term represents the number of
particles leaving the phase volume of interest as a result of collisions;
the second term represents the number of particles entering the phase
volume of interest as a result of collisions. Unfortunately, these terms
are very complicated; among other things, they are nonlinear; some

approximations are required.
The approximations we make are as follows:

(1) Electrons experience only scattering collisions with neutral

cesium atoms.

(2) In these scattering collisions, the electrons are scattered
isotropically and lose no energy. The energy change is
negligible because of the great disparity in masses of the

electrons and cesium atoms.
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(3) Ions experience only scattering collisions with neutral

cesium atoms.

(4) The neutral cesium atoms are in thermodynamic equilibrium,
i.e., in a Maxwell-Boltzmann distribution, which is charac-

terized by some temperature.

(5) In a collision, the ions will on the average tend to the
equilibrium distribution of the neutral atoms, because
of the substantial equality of the masses of cesium ions
and cesium atoms. The collision integrals for the ions
will then be represented in the Krook approximation by the
collision frequency times the difference between the equili-
brium distribution function and the actual distribution function.
The collision frequency is merely the macroscopic cross

section times the speed of the particles.

Thus, the principal difference between electrons and ions is that
the electrons do not and the ions do exchange energy with the neutrals,
with the result that the ions do and the electrons do not tend to the
distribution function of the neutrals. The interaction of electrons and

ions with each other is neglected.

Ionization and recombination are not incorporated into the theory
at this point, although they could very easily be, since we are primarily
interested in sheath phenomena and since the probability of ionization
or recombination is small over the short distances involved and com-

pared with scattering collisions with neutrals.

The collision integrals are then represented in the Boltzmann

equation for the electrons by:
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-Z(z)vn(z, v, p + Se (z, V), . (C. 48)

where 1
rv

S, (z, v) = 5= 5.1 du’ n (z, v, p’), (C.49)

and in the Boltzmann equation for cesium ions by

-¥(z) vn (z, v, W+ Si (z, v), (C.50)
where
S, (z, V) =Z(z) vn (2, v, p (C.51)
and
n(z, v, p =2 nvz [m/2m kT(z)]3/2 exp - [rnvz/Z kT(z)] (C.52)

is the equilibrium distribution at temperature T.

8. Reduction of Boltzmann Equation to Integral Equation

We are now ready to solve the Boltzmann equation. We have an

equation for either electrons or ions of the form:

VE - Vi) - Kl‘% +T(z) va = S (C. 53)

to solve, where S is a source function representing the collision
integral in which particles are made in the phase element of interest.
Solution proceeds by finding the Green's function G(x, x/) for the

problem, i.e., the solution for the following equation:

dG (x, x)

aIn +g(x)G(x, x)=6(x-x. (C.54)

The Green's function is:

Gix, x=P(x, x)U (x-x9, (C. 55)
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where
X

P (x,x) = exp -y dx” g(x"),
PR

X

and U is zero if its argument is negative and 1 if it is positive,
We wish, then, to solve an equation of the form:

df (x)

. + g(x) f(x) = h(x) .

The solution of this equation is:
o) = £, () + ydx'G (x, x9h () + L (o),

where fH(x) is a solution of the homogeneous part of the original

equation. Thus, the solution is:

x
f(x) = C1 P (-, x) +S' dx'h(x’) P (x', x),

-0
where C1 is chosen so that the solution satisfies the boundary
conditions. Let us apply these techniques to the present problem.
The Boltzmann equation then has the solution:

dz’ S(z’ E, K,)
V'|| (Z': E’ :K_Lj

Z
g(z, E, K,, L) =g(0, E, K,, L) P(0, z) +§
0

where

dz” ¥ (z”)
P z',z = ex -S) 7
( ) P ZI IH(Z’Ey K,L)’

9. Drift Velocity, Current, and Temperature

The drift velocity can be readily computed from the directional

density. The drift velocity —X. (z) is defined to be:13
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® 1

v (z) = ydvy dpvn (z, v, p)/n(z). (C. 62)
0 -1

As applied to the present problem, the drift velocity is computed

from:

o 1
;z(z) =ES; de‘1 dp K”(z, E,K,) {glz E(z, v), K,(z, v, p), +] +

- g [z, E(z, v), K, (2, v, u), -1} /n(2), (C. 63)

-

where
K“(z,E,K_L)=E-U(z)-K_Le (C. 64)

The integrals are carried out numerically, as follows:

~ , NL : (IL+1)/2 VKn TN D
v, ()= - Z > Z 5 (g(T, N, I+)-g(J,N, L -)] +
N=2 I=2
\/K” (J, N, I-1)"
> (g(T, N, I-1, +)-g(J, N, I-1, -) ]} | (T, N, D-p(T, N, I-1) | +
JK“ (3, N-1, 1)
+ 2 [g(J’ N'l; I: +) 'g(J: N‘]-r Iy ')]+
,JKH (J, N-1, I-1)
5 (g(3, N-1,1-1, 4) -g(J, N-1,1-1, )]} [w(J, N-1), I)

-p (J,N-1,I-1) | +,JK“ (J, N, (IL+1)/‘2—)\ (g(J, N, (IL+1)/2, +)+

-g(J, N, (IL+1)/2, -)]|(J, N, (IL/2) +1) - u(J, N, (IL+1)/2)]| +

+1/K” (J, N-1, (IL+1)/2‘)[g(J,N—1, (IL+1)/2, +) -g(J, N-1, (IL+1)/2, -)]

# |w (3, N-1, (IL/2) 1) -p (J, N-1, (IL+1)/2) |

(VK (J,N)\-’\/K(J, N-l)\ /n(J)|. (C. 65)
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P Here J represents the quantized variable correlated to z, N to energy,
I to perpendicular kinetic energy; NL is the limit of N, IL is the limit
of I, + refers to directions in the positive sense, - refers to directions
in the negative sense, and Ky is the contribution to the kinetic energy
resulting from the parallel component of the velocity (parallel kinetic
energy for short) The quantized variables are integer constants and
are processed according to the rules of integer arithmetic. For ex-
ample, 1/2 =0, 3.9999999/2 = 1, 4.000001/2 =2, 2/2=1, 3/2=1,

4/2 = 2, and so on. The result is always the greatest integer less

than or equal to the actual result.

The electric current then follows immediately and is:
i) =qn(@) v (2), (C. 66)

where q is the charge of the particles and n(z) is their total density.

The temperature can also be readily computed from the directional

density. It is defined by:

G 1
dey du = (v —v)2 n(z, v, p)
3 o -1 2 =X
EkT:

n (2 , (C.67)
and applied to the present problem as:
® ! mv2
2 & dv S‘l dI-L [_—2'_“ [g(Z, E (z, v), K.L (z,v, IJ-): +) +g(Z, E(z, v), K_L(Z, v, IJ'): ')]
kT(z) = 3 n(z) +
m 2
- ? V(z) . (C.68)
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The integrals are carried out numerically, as follows:

NL+1 2 (IL+1)/2

kT(J) "!\/—2—- 1 — L
"V 9m n(z)

E(K (7, N)[g(J, N, I, L)+g(J, N, I-1, L)]*
H(J: N’ I’ L) - H(J’ Nr I'ly L) l+K (J! N'l)[g(‘]—’ N-]" I: L)+g(J’ N'lr I'lx L)] *

N=2 L=1" I=2

ot
b4

*|w(J, N-1, L L) - u(J, N-l,I—l,L)[}+K (J, N)g(J, N, (I—Lz‘t—l),L)*
% |u(J, N, (IL/2)+1, L) - p(J, N, (IL+1)/2, L)| + K (J, N-1)g(J, N-1 ,M, L) *

2

* | w(J, N-1, (IL/2) + 1, L)-u(J, N-1, (1L+1)/2, L) || [¥K (7, N) -¥K (I, N-1) | *

2 (IL+1)/2
Y ) <K (g, 8L L DL L L DIy oy 1 py o, 1, 141, L) |
L=1

I=2 2
[K G, 1)
Ak @ [g(J, NL+1, L, L2)+g(J,NL+l,LI—1,L)] (7, NL+1, T, 1) +
2
1 \
-p (3, NL+1, I-1,.L) > (VK (J, NL+2) -4/K (J, NL+1)‘) —3”-1 viz) (C. 6¢

It is necessary to compute the spectral distribution of electrons

for the source term in the integral equation that determines the electron
density. This can be easily done by noting from Equations C. 39 through
C. 41 that the speed v is fixed if the indices N and J are fixed. Thus, if
we sum over I and L, all values of u will be spanned, and both the

position and the speed will be constant, which is the meaning of integration

over p to determine the density for a particular position and speed:

1

n(z ) =§ dp g [z, E(z, v), K (2, v, p), LW], (C. 7
-1
2 (IL/2)+1
= Zl zl AHl gz, E(z, v), K, 1 (2, V), L]} (C. 7]
L= I:
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Likewise, the total density may also be found as:

NL+1 (IL+1)/2

2

® 1 - \

1(z) = S‘ dv‘g‘ d|..L g [Z, E(z, v), K_L(Z, Vv, |J')’ L(}J.)] = Z Z 24
0 N=2 I=2 L=

-1 1

[gN, I, L% ' N, 1 LM N, 141, L' teN-1, T, L% l“N-l, I, L YN-1, 1-1, Ll +

&N, I-1, Lil N1 LN, 141, L' *EBN-1, 141, L% I“N-I, L LMN-1, 1-1, Ll] *

2
€ >fv v )+g | e - | +e *
2\ N 'N-1 N, (IL+1)/2, L'"N, (IL/2)+1, L "N, (IL+1)/2, L' "°N-1, (IL+1)/2, L
P " | 5 v vy )]
N-1, (IL/2)+1, L "N-1, (IL +1)/2, L'2 “'"N 'N-1-/. (C-72)

However, the angular distribution at a fixed point cannot be determined
in this manner, for one must sum over speed v, and if we vary N to
accomplish this, p will also vary. Therefore, the angular distribution
must still be found through the use of the Jacobian and by integrating

over the variables K, and L. See Appendix A for the details.

10. Convergence Procedures

To summarize the previous sections, we determine the potential
in terms of the density difference between ions and electrons, and we
determine the densities of ions and electrons in terms of the potential.
Thus, an iterative procedure is required according to which we guess
initially one of the quantities and compute the other, and then iterate.
Although plasma problems, such as this one, are notorious for their
instabilities, the integral formulation for all quantities to be deter-

mined does much to tame these problems.
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Nevertheless, the mathematics, if correct, must reflect all of
the physics inherent in the problem. Usually, the mathematics intro-
duces additional special problems all of its own. We would expect then
to see plasma oscillations, which involve the interplay of electrostatic
fields and charged particles, if time dependence of the density distribu-
tions had been included in the problem, which it has not. Be this as it
may, the iterative process introduces a kind of pseudo time dependence,
not involving the masses of the particles. Thus, as a result of the
iterative process we might expect to see oscillations in the iterations
corresponding to plasma oscillations. Now, these oscillations occur
at very high frequencies and with very short wavelengths. If we were
to follow them with the computer, we would have to choose distance
increments short compared with these wavelengths, and we would have
to laboriously follow, again with short increments, these oscillations
up and down in time. An enormous amount of computer timre would be
involved; further, these oscillations are of no particular interest. We

are interested only in the static behavior of the system.

To side-step the problem of following all these oscillations, low-
pass filtering is introduced. In fact, the results of both the Poisson
and Boltzmann equations are so filtered. Now, filtering in the normal
sense would consume a great amount of computer time, which we are
hoping to economize. For this reason, we introduce the concept of
filtering in the real domain instead of the conjugate domain. 16 Let us
say we have a quantity f(s), where s is the iteration index that we
wish to low-pass filter. This implies normally that the Fourier trans-

form F(w) of f(s) is computed:
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@

1 R
F(w) =,\/—é'——w-—-\‘§‘ ds e

WSt sy, (C. 73)
and then the result F(w) is multiplied by a function G(w) corresponding
to a low-pass filter, as shown in Figure II-3 . The output f‘(s) of the

low-pass filter in the real domain will then be:

o]

) _ ___1__ ‘ iws
f7 (s) —,\/ﬂ_‘ S\ dw e Flw) Glw) (C. 74)

by the Fourier inversion theorem.

The same result can be achieved by operation in the real domain;
there is no need to transform to the conjugate domain and transform
back again to the real domain. This result follows from the Faltung

theorem for Fourier transforms:
"

1 " y 'iws” n® ’ ’ ’
e 3 ds’f(s’) g(s-s"). (C. 75)
0

F(w) Glw) e ds

By the inversion theorem (C. 74) for Fourier transforms:

s
£/ (s) = (‘ ds’ f(s”) g (s-s’). (C.76)

0

This result states that the low-pass filtered version f’(s) of f(s) is
given by a kind of weighted average of past values f(s’) of f(s) (acting
as a source function), multiplied by the Green's function g(s-s ’y (or
impulse response, as it is called by some) of the low-pass filter. The
Green's function can also be found from the Fourier inversion theorem

(C. 74):
iws

g(s) :d'zl? y dwe G(w). (C. 77)

The trick then is to so choose G(w) or g(s) that the high frequency

plasma oscillations are rejected by the filtering process, yet such
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that the low-frequency phenomena of interest are passed. Fortunately,

we are only interested in truly static phenomena, so there is no real

problem of choosing the filter.

A simple filtering scheme has proven very satisfactory for the

present problem. For the potential ¢(z), the following scheme was

used; N Bs-l
o(z,N) = ) “Z— ¢ (z,8), (C. 78)
s=1 N
where N N
' s-1 (1-87)
Sy = = e, C.79)
N sE::l ° (1-B) (

(We are using the equality sign here in the sense in which it is always
used with computers of "replaces," not "equals.")

Thus, the coefficients are a measure of the fraction to which a past
iteration contributes to the present result. This scheme works very

well indeed for N =4 and B = . 75.

For the filtering of the directional densities of the particles, a
further development of the filtering process was used since it was

impractical to store much past history of these densities in view of

the huge amount of storage re quired to store these arrays for even
the present values. With regard to the sums in Equation C. 78 we

note the following:

N+1
=7 Z 8% n(z, E, K, L, s)| = - BN n(z, E, K,, L,N+1) +
N+1 N+1
1-8 =1 1-8 )
N
1- 1- -1
+ N8+1} 'BN Z Bs n(Z, E: K-L’ L) S) . (C- 80)
1-8 1-8 s=1
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In words, the new weighted average, which is in brackets on the left-
hand side of the equation, can be computed from a suitable fractional
multiple of the new density plus a suitable fractional multiple of the

old weighted average, which the new weighted average upon calculation
replaces, and, in turn, becomes the old weighted average for the next
cycle. This method of weighting proved very effective. Here 8= .75 and
N, of course, kept going up with iterations, being, in fact, the iteration
counter or index Thus, with this scheme one uses all past iterations

1n contrast to the previous one where one used only the past N iterations.

As a result of this filtering or averaging, convergence was never
a problem Convergence is very rapid, usually occurring in just
a few cycles, even with tight convergence criterion. Repeated iteration,
after convergence has occurred, does not cause the solutions to change
or move (In other words, the convergence is more than just apparent;

it is real.)
The weighting coefficients for a few simple are listed in Table II-1
11 Results

The results may be briefly summarized before getting into the
details. Plots of the potential and densities versus position will be

presented momentarily. From these plots we find the following:

(1) The densities of electrons and ions are smaller near the

collector than in the plasma.

(2) The densities of ions at the plasma-transition-region
interface is approximately one-half that of the electrons,
in keeping with the approximate result found by diffusion

theory.
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TABLE II-1

-1
WEIGHTING COEFFICIENTS g° /Sy

[ S VAR W

[$ SR VST o)

oWy

B

= .25

p/s

= .50

%/s

.533333 ...

B/ .75

1.
0.
0.
0.

0
g/S

B/S

. 000000 ...
. 800000 ..
. 76190476
. 75294118

0.200000 ...
0.19047619
0.1882353

B/S

. 000000 ...
. 666666 ..
. 57142857

.333333 ...
.28571428
. 266666 ...

B/S

000000 ...

57142857

432432 ..

36571428

.42857143
. 324324 ...
. 2742857

2
g /S

. 047619048
. 04705882

2
B /s

. 14285714
. 133333 ...

8 /s

. 243243 ...

. 20571428

.01176471

53/8

. 066666 ..

p’/s

. 1542857

1II-45




(3)

(4)

(6)

(7)

(8)

(9)

Reflection of particles (electrons in the present case) at
a potential barrier leads to discontinuities in the particle

densities.

These discontinuities are the smaller, the larger the number

of speed groups used.

Convergence was rapid with filtering. In a number of cases
the convergence was ideal in that convergence could have not
occurred with fewer iterations irrespective of the perfection

of the method.

The current for each species was not constant; i.e., particles
were not conserved to the accuracy desired. This matter was

not corrected by the time the project was terminated.

In the case where the regions of integration were several
scattering mean free paths thick, the presence of the plasma
should have made itself manifest by the potential having zero
slope. This phenomenon was not observed and the problem
was not ferreted out by the time the project was terminated.
It is believed that correction of the current inconstancy may

very likely eliminate the problem with the potential.

Convergence was more rapid with potential filtering than

without.

The inner loop would converge without any filtering. The
outer loop would just oscillate, even with potential filtering,
in the absence of particle filtering. (Only a few outer loop
iterations were ever followed, of course, since with filtering

the convergence was so rapid.)
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(10) Convergence of the inner loop is faster, the closer the

outer loop is to convergence.

(11) More iterations are required with problems having scatter-

ing than without scattering.
(12) The heavier the scattering, the more iterations required.

In connection with checking out the program and correcting the
errors, a great many runs were made of a program under more or
less standard conditions. The standard conditions are illustrated by
the example of the input data presented in connection with the program.
With four speed groups, the electron and ion densities with filtering
turned on are displayed on Figure II-4. The discontinuities in the
electron densities correspond to points at which electrons belonging
to a particular speed group were reflected by the potential barrier
and returned to the plasma. These discontinuities can be seen even
more clearly by observation of Figure II-5, which is a plot of the
electron and ion densities with filtering turned off. There is a one-to-
one correspondence between these discontinuities and the reflection
points of electrons in respective speed groups, as can be proved by
examining the directional density arrays for the electrons, not
presented here. Jons are not reflected, and their density experiences
no discontinuities as a result. The result of using eight speed groups,
instead of four, is shown in Figures II-6 and II-7 for the filtered and
unfiltered electron and ion densities. In each case, the problem was
iterated to convergence, as shown in Figures II-8 and II-9, for four
and eight speed groups, and then iterated once more with the filtering
turned off. This had the effect of removing past history from the

directional density arrays, thereby making it much easier to observe
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the constancy of the directional density in these collisionless

cases.

Figures II-8 and II-9 are plots of the potential as a function
of position. Since all printing was suppressed until the time for
the run was nearly up, we can present only the results printed out.
Rates of convergence for the inner and outer loops are displayed in
Table II-2. (The upper limit had been set at 20 iterations of the
inner loop.) Convergence of the inner loop was achieved in each
case. These results are quite representative. Convergence in
either loop is fast, and is faster in the inner loop, the closer the
outer loop is to convergence. The convergence criterion was that
the potential differ from its previous value by less than 0.02 volt
at all points. Figure II-8 is a plot of the potential as a function of
position for the first, second, and third iterates of the outer loop
for four speed groups. Figure II-9'is a plot of the potential as a function
of position for the first, second and third iterates of the outer loop
for eight speed groups. The third iterate is an extra one with the
filtering turned off. One can hardly expect any problem or method
to converge faster than in the two iterations displayed in each case
in Table II-2. The Oth iteration is the user’'s guess, which consisted
of a linear function for the electron and ion directional densities be-
tween their respective values at the plasma-sheath interface and the
corresponding values at the collector and which implies that the
potential changes linearly between its value at the plasma-sheath
interface and its value at the collector; the first iterate is the com-
puter's calculation from the user's guess; the second iterate is needed

to confirm the accuracy and validity of the first iterate.
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TABLE II-2

RATES OF CONVERGENCE UNDER VARIOUS CONDITIONS

Number of | Outer Loop | Number of Number of
Speed Iterate Iterations of | Iterations of Comment
Groups Inner Loop Outer Loop
—t——— e
4 0 4 2
1 2
2 1
3 1 Extra iteration
‘ after convergence
with filtering
turned off
8 0 4 2
I 2
2 1
3 1 Extra iteration

after convergence
with filtering
turned off
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Figures II-10 and II-11 are plots of the electron and ion currents
as a function of position for the 4 and 8 speed group case, respectiveiy.
These results are disturbing: each current should be constant in the
absence of any net production or absorption of particles, as must be
the case in the absence of collis ions.17 If the current is not constant
in the collisionless case, then particles are not being conserved. Since
our current is changing by a factor of about 2, either there must be
some mistake in the current calculation or particles are not being
conserved. Because the directional density is rigorously constant in
the collisionless case (with the filtering turned off, of course, since
the filtering averages over past history), we believe that particles
are conserved, but that the calculation of the current is somehow in
error. We did not have time to check into this question at the time
the project was terminated. It is seen that the current jumps upon
turning off the filtering, whereas the potential, which is an extremely
sensitive function of the net difference between positive and negative
charges, changes hardly at all, again providing further evidence that
there is something peculiar in the calculation of the current. Of
course, the current will be somewhat sensitive to changes in the
directional density in that it involves the difference in the directional

density in different directions.

We have run a large number of other cases before the program
got to its present status, and we now briefly summarize our experience
with these other cases: More iterations were required with problems
involving scattering, especially heavy scattering. Turning off potential
filtering slowed convergence. Turning off particle filtering caused
the potential to oscillate; at the end of six iterations of the outer loop,

no convergence was in sight, even with potential filtering present.
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With a mixture of integration methods, i.e., with some integrals
done using the variables =z, v, and p, and no Jacobian, the inner loop
would converge by itself, but the outer loop would just oscillate using
no filtering of any sort. Even with all integrals done using the
variables, z, E, K,, and L, and the Jacobian, convergence for the
outer loop of the sort shown in Figure II-12 was obtained. Because of
the nonmanifest convergence of the integrals involved (the Jacobian
has both a simple pole and a branch point of order 1/2 for singularities),
the particle densities behaved poorly: At each point of reflection, the
density would have a sharp maximum because of the singularities
in the Jacobian, which define the points of reflection. However, in
this case the inner loops converged poorly, requiring many more
iterations for convergence than was found above with the method that
did all integrals in terms of the variables =z, v and p. Nevertheless,
convergence was obtained With all the integrals done in terms of
the variables, z, E, K_L, and 1, convergence could not be obtained
without filtering. The singularities of the Jacobian seemed to be
just too much; filtering provided a means for smoothing out these
singularities so that the problem had a chance to converge. The prob-
lem with no filtering is that a particle of given energy is either
reflected or it is not. If it is reflected, then the density of particles
of this energy suddenly goes to zero in the inaccessible region. While
this circumstance is true in reality, it is also true in reality that
there are many more energy groups of particles than just the four
usually in most of our runs for reasons of machine time and memory
requirements. Actually, the particle densities change continuously
with energy, instead of being bunched into energy groups, SO that there

is a continuous distribution of rejected particles and consequently a
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continuous density change with distance, instead of the discontinuous
changes modeled here. Filtering helped to smooth out these distribu-
tion functions by introducing enough history into the particle density
that the potential and particle density no longer oscillate from iteration

to iteration in a futile attempt to adjust to each other.

The problems involving heavy scattering did not show evidence
of a plasma being established, i.e., of the potential having zero
slope at the plasma end of the region of integration. We believe
this difficulty may very well be connected with the problem involving

nonconservation of particles mentioned above.

12. Future Work

Future work could extend the realm of applicability of the present

method substantially:

(1) Ionization and recombination might be introduced into the
program so that the entire interelectrode space could be
treated by the method, instead of merely the transition

region near the collector.

(2) Actual scattering laws could be introduced, thereby removing
the assumption of isotropy. It is known, for example, that
Rutherford scattering varies as csc (9/2),4 where 6 is the
scattering angle. This phenomenon would be of primary

importance in the transition region.

Several variants of the mathematical method might also be

examined more closely:
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(1)

(2)

The use of higher order (Adams) integration formulas than
trapezoidal or Simpson's rules should be studied to determine
if any advantages result from their use. One may gain more
accuracy for a given number of mesh points in E or K, . If so,
one could reduce the size of the directional density arrays
n(z, E, K,, L), which now consume large amounts of fast
memory, even with only a few speed groups and directional

groups.

The densities and/or potential could be approximated by
functions having arbitrary parameters in them. These
functions could then be inserted into the integral relations

for the densities and/or potentials. The parameters could
then be adjusted numerically until the error of the solution was
minimized. The error of a solution might be taken as the
magnitude of the difference between the right- and left-hand
sides of an equation. The functions could be taken of such a
form, for example, that they satisfied all the physical require-
ments that one knows ahead of time have to be satisfied by

the solution. The function representing the potential might

be of such a form that at the plasma-sheath interface it always
has zero slope in problems where scattering is present, for
example. Again, the densities might be represented with a
reasonably simple functional form in the sheath region, rather
than merely with a graph or set of numbers. The method has
the d{sadvantage that the accuracy of the results is limited,
but great accuracy in problems of this sort is of little value

anyway. Further, by choosing functions with more and more
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parameters in them, it would be possible to fit the solution as accurately
as desired. Of course, the goal is to achieve the desired accuracy

with as few parameters as possible.
D. OTHER METHODS
1. General

The analyses described below consider the sheath region with
increasing levels of complexity. Starting with the usual collisionless
sheath approximation, integration of this assumption through the
sheath shows there is no solution which satisfies all the boundary
conditions. The next step of working from the physical phenomena
likely in the sheath preserves a good understanding of the relative
importance of the processes involved in the different portions of the
sheath. The resulting analysis resembles diffusion theory. However,
when numerical integration is attempted, the analysis becomes un-
reasonable due to the instabilities encountered. The more direct
approach of the Sn method, which treats the sheath as a whole, like-
wise has instabilities. A study of these instabilities showed that they
are intrinsic to the differencing scheme used in the Sn method when
applied to charged particles moving in an electric field. Investigation
of other differencing arrangements developed a method likely to con-
verge under the sheath conditions. This method was not pursued
numerically because of the progress made with the integral method

described earlier in this report.

2. Collisionless Sheath

Wang, Lieb, and Pigford have treated the problem of the collision-

less sheath in which the electrons and ions are constrained to move
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along the z—a.xis.1 Space charge effects were taken into account by
use of Poisson's equation; electrons and ions are introduced at the
emitter and the plasma boundaries of the sheath as half maxwellian
distributions. Vlasov's equation for one dimension with particles

constrained to move along the z-axis was used to describe the con-

servation of particles in phase space.

The distribution function is as follows for the various cases

listed:
a. Retarding field: See Figure II-13.
(1) Forward-going particles

n(z, v) = n, exp - [Ie(¢-¢0)|/kT]exp - (mvz/ZkT).

(2) Backward-going particles

2
.. mv
0, if > + e(¢-¢0) > e ¢max’
n(z, v) = - 2
[]e( )| /kT] ex (va/ZkT) i o te(p-¢ )<
N &¥P - Lielg-9, P- ah P90 <€®max
b. Accelerating field: See Figure II-14
(1) Forward-going particles
rnv2
0, if > <e(¢-¢0),
n(z, v) = > va
n, exp [|e(¢-¢0)|/kT] exp - (mv /2 kT), if 5— > el¢-9 ).
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Figure II-13. Potential as a Function of Position for Retarding Fields.
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The results of Wang, Lieb, and Pigford may then be found from the

definitions
£ = z/x (D. 6)
Y = e¢/kTE (D. 7
+ (O + )
n = y dv 1 v)/ N_(0), (D. 8

-0

where AD is the Debye length calculated at the electron density at
the electrode of temperature TE, and from the revised form of the

reduced Poisson equation:

2

3—%’-: 1/2 n_ (+) ) -n( (¢)+n(-)(¢) -nf')(w)] : (D. 9)
dE (S 1

Here, n; (¢) is the density of particles of type ¢ moving in the positive

direction at point y(z), and n(; () is the density of particles of type o

moving in the negative direction at point y(z). The definitions
L(y) = exp(y) erf Ji' - 2.4/, (D. 10)
M(y) = exp(y) (1-erf.Ju) +2 Jy/m , (D. 11)
N(p) = exp(y) (1 + erf ) - 2./4/2 ), (D. 12)

were used by these authors, and their last equation (Eq. D. 4) is

correctly given by
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2 N. (o)

f 3] = o W) [My-p_ -1} + N [ exp ~(y ) { N _-¥)
1 Ne(p)
. N(‘Lp-"//rnin)>+ 2 L(_wmin)j * Ne(o) El_ exp [Cl (wmin-wp)]
NP
[N{C1 (w-l//min)> -l} + Ne(P) —C—Z—— [M <C2 (l//p-¢)>+
- M <C2 ((//p- wmin)H , Y =20. (D. 13)

The subscript p or argument p denotes that the associated quantity

is evaluated in the plasma.

= 1
C, TE/Tpe , (D. 14)

c, = TE/Tpi. (D. 15)

In the method of Wang, Lieb, and Pigford, 1 the charged particles

from the emitter are assumed to isotropically distributed over a

hemisphere and to have a Maxwell speed distribution. An exact form
of the solutions of the Boltzmann equations is easily found, and a first
integral can be found analytically for Poisson's equation. The second
integral must be found by numerical integration. The integration

constant that results can be determined only by a boundary condition.

2-5
The plasma region has been treated by numerous authors by
the diffusion equations for electrons and ions. The nearly isotropic

distribution of the plasma region must then somehow be joined to
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the anisotropic distribution of the sheath region. The problem here
1s that if one requires continuity of the charge density, the potential,
and the electric intens'ty, no solution at all can be found. If only one
or two of these quantitie: are continuous, then a multitude of solutions

exist, and the solution is nonunique.

Now, a plasma 1s generally positive with respect to the electrodes.
Consequently, electrons in the plasma ave reflected for the most part
by the positive sheath potential back into the plasma, whereas 1ons
are expedited out of the plasma by the positive sheath potential. If n
is the density of electrons or :ons in the plasma, n/2 of the ions are
headed out of the plasma and never come back. This is the number
of ions injected into the program at the interface. The emission of
ions from the emitter is neglected. In contrast, of the n/2 electrons
headed into the sheath (and injected into the program), nearly all
come back Thus, near the interface between the sheath and the
plasma, the density of electrons is neariy n, half going one way and
half going the other way; the density of ions is cnly n/2 because none
of those leaving return. There is, therefore, a net charge of n/2

at this interface and a concomitant source of electrical fields.

Next, let us consider the becundary condition on the potential. We
know the collisionless solution must be valid up to the order of at
least )in away from the emitter. Indeed, we can think of the solutions
for the collisionless region extrapolating to a distance beyond xin
before the collisionless solution meets the plasma potential. The
positive and negative charge densities and the potential energy of
electrons as a function of distance for a typical case are shown in

Figure II-15, where it has been assumed that there is zero electric
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field at the emitter. The plasma conditions were adapted from results
of Wilkins and Mc Candless2 for one of their cases. Under our present
criterion, a solution is valid if and only if the computed potential equals
the plasma potential at a distance Xin away from the emitter. In the
present case, the solution is not valid because the potential energy of
an electron in the collisionless region becomes equal to that of an
electron in the plasma at a distance closer to the emitter than Ain .

At such shert distances, charges, on the average, will not have ex-
perienced a collision, and diffusion processes, which are character-
istic of a blasma, cannot be said to have begun. A more negative
slope near the emitter of the potential energy would have put the
equality point even closer to the emitter. A more positive slope
would imply a maximum of the potential energy of the electrons in

the co lisionless region, as shown in Figure II-16. This figure
displays the positive and negative charge densities, and the potential
ene 'gy of electrons as a function of distance. The solution obtained

is valid under the present criteria, for the potential energy of an
eiectron becomes equal to that of an electron in the plasma at the
distance Ain away from the emitter. It is observed that the slope

of the potential energy is positive at the emitter and that a maximum

of the potential energy function occurs.

Despite the assumption by Wilkins and McCandless of monotonic
sheaths for all the cases they treated, it is possible to apply their
results to situations where sheaths possess a potential minimum by
imagining a virtual emitter with the properties of their emitter for
the corresponding case. The potential of the plasma was found

by requiring that our electron current density, the random electron
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current density, and the saturation current density be the same as
those of a corresponding case of theirs at the plasma-sheath interface.
Thus, the saturation currents are related by

e Esat - Je sat, monotonic eXPp + lq’rnin/k TEl

Their values for the Schottky correction and the work function were
used also The work function and the potential of the plasma used
1n our calculation was then related to the corresponding quantities

used by them, as shown in Figure II-17.

It is impossible to avoid a minimum of the potential for this case.
If a longer collision distance is assumed, then the minimum potential
required for a solution will be even deeper. Therefore, if a minimum
of the potential is to be avoided, the distance at which collisions occur
must be made shorter. But we have already picked the shortest
collision distance that occurs in the problem as the point at which
the potential of an electron is to equal the potential of an electron
in the plasma. For the electrons we probably should have picked
>‘en as the distance at which the potential of the electrons in the
collisionless region equals the potential in the plasma. Again, the
true solution will smoothly joint the potential function of the plasma,
a matter that will somewhat round the corner in the present very
approximate theory. To the first order, the effect of such smoothing
is represented by the extrapolated boundary. It is readily seen that
the extrapolated boundary is further from the emitter than the boundary
chosen; therefore, rounding will not diminish the distance at which
the collisionless theory stops and diffusion theory begins. In the just
limiting case for the present problem, where a potential minimum

just fails to occur, the crossing occurs at 2.2 p, whereas )tin =2.8 p.
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It is obvious that a negative charge density is a necessary but
insufficient condition for the existence of a minimum of the potential.
A sufficient condition for the existence o’f a minimum of the potential
requires that the necessary condition be supplemented by some other
conditions, such as the distance from the emitter at which the solutions

for the collisionless and plasma regions join.

The existence of a minimum in the potential implies that not all
electrons originating from the emitter will get to the plasma. Since
it is necessary to know the fraction of electrons getting to the plasma
in order to perform plasma calculations, it appears necessary to

compute the potential function in the collisionless and transition regions.

Again, the electric intensity computed from the potential across
the collisionless region and the Debye length in the plasma is 11,400
volts/cm, and from the Debye length at the emitter is 7, 400 volts/cm.
The electric field computed from the collisionless theory is 1, 540
volts/cm. Thus, because the collisionless region appears to be sub-
stantially wider than a Debye length, the electric intensity at the

emitter is lower than that computed from either Debye length.

Figure II-18 displays the density of positive and negative charges,
and the potential for a higher temperature case. A solution can be
obtained in which the potential of an electron in the collisionless
region is equal to that in the plasma without using a minimum in the
potential. .The reversal of the sign of the net charge density is
interesting. The electric intensity computed from the potential across
the collisionless region and the Debye length in the plasma is 47, 000
volts/cm, and from the Debye length at the emitter is 12, 000 volts/cm.
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The electric intensity computed from the collisionless theory is 4, 100
volts/cm. Again, because the collisionless region appears to be sub-
stantially wider than the Debye length, the electric intensity at the
emitter is rather lower than that computed from the Debye length.
Thus, even in the case of the monotonic accelerating sheath, the
present result reduces the magnitude of the correction to the work
function resulting from the Schottky effect and will, thus, reduce

the saturation current somewhat.

It is very interesting to note the decidedly constant behavior of
the ion density as a function of distance away from the electrode in all
the cases presented here, as well as many others computed, but not

presented.

3. Diffusion Theory Approach to a Thermionic Energy Converter

In a thermionic diode, the interelectrode gas is only slightly
ionized. The temperature and density of the neutral cesium atoms
are determined quite independently of the temperatures and densities

of the ions and electrons.

The masses of the ions and neutral atoms are very nearly equal.
For this reason, several consequences follow: First, the temperature
of the ions will be nearly equal to that of the neutral atoms. Second,
the ion distributions can become maxwellian isotropic by collisions

with neutrals or with themselves.

Several conclusions follow from the fact that the electrons are
very much less massive than the neutrals or ions. First, the tempera-
ture distribution of the electrons will be entirely independent of that

of the ions or neutral atoms. Second, the electrons may exchange
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momentum with the ions or neutrals, but not energy. The electron
distributions can become isotropic by collisions with neutrals or ions,
or with themselves. Third, the electron distributions may become

maxwellian by collisions with themselves.

The electric fields created by a very slight inequality of electron
and ion densities are very intense. For this reason, the densities
of electrons and ions will be equal to a very good approximation

everywhere outside a Debye sphere around these ions.

The electrons or ions emitted from an electrode are isotropically
distributed over a hemisphere in a maxwellian distribution over the
hemisphere. The electron distributions can become maxwellian by
momentum-only-changing collisions with ions or neutrals. The
temperature of the maxwellian distribution will be the same as the

temperature parameter characterizing the half maxwellian.

There are a number of characteristic lengths associated with
this problem. The Debye length is always much shorter than any
mean free path for parameters of interest in thermionic diodes.
The Debye length )Lo is given by

, &

>‘o = (eo kTe/ne e ) . (D-16)

If the electron and ion temperatures are equal, then the mean free
path for electron-electron collisions equals the mean free path for
ion-ion collisions, and the mean free path for electron-electron
collisions equals to a good approximation the mean free path for
electron-ion collisions. The ion-neutral mean free path is shorter

than the electron-neutral mean free path. The mean free paths for
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the electron-electron, ion-ion, and the electron-ion collisions are as

follows:
2
103. 62 (kT )
\ - 0 e
ee e4 n In A
103 €2 (kTi)2
0
A T ’
e n, ln A
103. 52 (kTe)2
) U
et e4 n In A

(D.17)

(D. 18&)

(D. 19

Here )\ is the mean free path for the interaction denoted by the sub-

scripts, e being for an electron and i for an ion,

€
o]

is the permittivity

of the vacuum, e is the charge of an electron, n is the density of

particles denoted by the subscript, k is Boltzmann's constant, T is

the temperature of the particles, and

127 (e kT/ez) 3/2
A= 2

0

e

Except within a Debye distance (where applicable),

(D. 20)

(D.21)

to a very good approximation. If Te = Ti' then we observe that

A .= X.= .805 A .
el 11 el

(D. 22)

For our discussion of the diffusion approximation, we take the

electron-electron, electron-ion, and ion-ion mean free paths

all equal. Three cases of interest occur as shown in Figure II-19,

and the properties of the particles are summarized in Tables II-3,

II-4 and II-5.
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Case A

Electrons

Class

Ions

Class

Maxwellian
# 1sotropic

No collisions

1
Free molecu-
lar flow

Maxwellian
% 1sotropic
No collisions

1
Free molecu
lar flow

TABLE II-3

< A
1n en

el

Maxwellian
Isotropic
ec etcollisions

3
Diffusion

Maxwellian
Isotropic
11, 1e collisions

2
Inertial
flow
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in

Maxwellian
Isotropic
ee, el 1n
collisions

3
Diffusion

Maxwellian
Isotropic
11, te, tn
collisions

3.
Diffusion

en

Masxwellian
Isotropic
All collistions

3
Diffusion

Maxwellian
Isotropic
All collisions

3
Dhffusion




Case B. ).
n

Electrons

Class

Ions

Class

< A
ee

Maxwellian
% isotropic
No collisions

1
Free molecu-
lar flow

Maxwellian
% isotropic
No collisions

1
Free molecuH
lar flow

TABLE II-4

= h..mA . < A
11 e

1 en

Maxwellian
% isotropic
No collisions

1
Free molecu-
lar flow

Maxwellian
Isotropic
in collisions

3
Diffusion
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Maxwellian
Isotropic
ee, ei
collisions

3
Diffusion

Maxwellian
Isotropic
ii. ie, in
collisions

3
Diffusion

en

Maxwellian
Isotropic
All collisions

3
Diffusion

Maxwellian
Isotropic
All collisions

3
Diffusion




TABLE II-5

Case C )\. <A <A = A, & A
in en ee ii el
>\ee - )\'u
AL A
in en ~
ei
Electrons| Maxwellhan Maxwellian Maxwellian Maxwellian
% isotropic % isotropic Isotropic Isotropic
No collisions | No collisions encollisions All collisions
Class 1 1 3 3
Free molecu-| Free molecu- Diffusion Diffusion
lar flow lar flow
Jons Maxwellikn Maxwellian Maxwellian Maxwellian
% isotropic Isotropic Isotropic Isotropic
No collisions in collisions in collisions All collisions
Class 1 3 3 3
Free molecu- Dhiffusion Diffusion Diffusion
lar flow
?
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Three classes of particle transport may be identified:

a. Free Molecular Flow

There are no collisions of charged particles. Particles are
accelerated by the electric field present. The charged particle

distribution is half isotropic.

b. Inertial Flow

The rate of change of kinetic energy (or inertia) dominates greatly

any collisional drag. There is no energy exchange among the particles.
c. Diffusion

Collisional drag dominates the rate of change of kinetic energy

(or inertia)

In formulating the problem we would like to find the electron density
ne(z, v), the ion density n, (z,v), the average drift speed ;e(z) of the
electrons, the average drift speed vi (z) of the ions, the electric
current je(z) created by the electrons, the electric current ji (z)
created by the ions, the temperature Te(z) of the electrons, the
temperature Ti(z) of the ions,and the potential energy U(z) allas a function
of position. The equations involved will be listed by class and the
equations must be selected from the class appropriate to the type
of charged particle being described: In general, the class of
equations for electrons is different ;'rom that for ions. Poisson's

equation is always used in the diffusion approximation:

2 2
d T.;-(z) = : 5\ dv [ni(z, v) - ne(z, v)] . (D. 23)

dz o
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Case A occurs quite infrequently because a high degree of ioniza-
tion is required. Cases B and C occur more frequently. In case C,
which is probably the most frequently occurring case, an ion starting
from the emitter will, on the average, make its first collision at the
distance xin . Collisions of the charged and neutral particles among
themselves will make the distribution functions isotropic; collisions
of the electrons with the ions or neutrals will have essentially no
influence on the re spective speed distributions. Thus, in this case,
ions become isotropic nearer the emitter than the electrons, and
we can think of treating the ions by diffusion theory in the transition
region and the electrons by the collisionless Boltzmann equation for

part of the transition region.

The equations for particle conservation in each of the three cases

are as follows:

a. Free Molecular Flow

Case 1 Conservation of particles in phase in which the particles

are restricted to move only along the z-axis:

an(z, v) ) 1
dZ m

—r

{df} i—;‘f—fz-'—"-)z 0. (D. 24

b. Inertial Flow

Case 2.

(a). Conservation of particles: Current defined: For each species

of particles

T = n(z) v (z) = const. (D. 25)
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(b) Conservation of momentum: For each species of particles

n(z) ad; {-r—;— 32(2)] + U(z) + ad; [n(z) kT(z)] =0. (D. 26)

(c) Conservation of energy: For each species of particles

d 5 m — 2 dT(z) o
P (1"[2 kT(z) + > Vv (z )] - n(z) iz >-—I'qk'— Q. (D.27)
Diffusion
Case 3.
(a) Conservation of particles:
ar
—2_- eS =e8 n |n n -n2~0 (D. 28)
dz €S ﬁr e es is e|” ' '
dI"i 2
el eS1 = eﬁr n, [nes n.oo- ne}m 0. (D. 29
r v
1 1 dp d Ine v e
+ —iT = - +en €+ R, +n — ‘, (D. 30)
e 78 e dz e ie e dz 2 j!
ei en L b
1 1 de d [‘ m,—‘;.z \
—_— ¢+ — i T.= - —-en, €-R, +n ( L ) (D.3D
[T b i d i ie i dz 2
ie in . L !
(b) Conservation of energy:
dqe
- = -j &-Q , (D. 32)
dz e e
where
e e, a1 52 (. 33)
e e | 2 e "e dz 2 e e ’
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Here, T is the particle current of the subscripted particle (not
electric current created by the particles), n(z, v} is the number of
particles per unit volume and per unit speed, of mass m and charge q,
T(z) is their temperature, h(z) is the thermal conductivity of the
subscripted particle, Q is the rate of energy transfer from one species
of particles to the other, Rie is the rate of transfer of momentum,
i.e., force, to ions from electrons as a result of collisions between
these two species. € 1is the electric intensity and ¢ is the electric
potential, S is the number of particles created per unit volume, nes
and n. . are the electron and ion equilibrium particle densities, Br is
the recombination coefficient, p is the mobility of the first subscripted
particle as a result of collisions with the second subscripted particle,
p is the pressure of the subscripted particle, q is the kinetic energy
flux of the subscripted particle, e as a subscript refers to electrons,

and i as a subscript refers to ions.

The various equations in the above theory are readily derived in

several different ways. One method consists in noting that they are
physically obvious, which is one of the pleasant things about this
theory. Perhaps it should be mentioned that the effects of the drift
velocity of either species are taken into account by the mv 2/2 term,
which represents the kinetic energy of macroscopic motion of the
relevant species. The terms involving the mobility describe the
effects of drag on the movement of the related species. The enthalpy
of a perfect gas is (5/2) kT and is the energy transported across a
surface by a unit mass. 22 The equations for inertial flow describe
the anisotropic distribution in the transition region only to the lowest

order. It is to be hoped that this accuracy is sufficient. The hope of
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the theory is that it will successfully join the answer fromthe Vlasov
equation for the collisionless region to the answer from diffusion

theory for the plasma region.

The various equations in the above theory can also be readily
derived by taking corresponding velocity moments of the Boltzmann
- . . /
equation. The resulting equations are really those of magnetohydro-
dynamics. The collisionless equation D. 24 for the sheath region is
just the collisionless Boltzmann equation where the charges are
constrained to move along the z-axis in an electric field of intensity

. th
- V¢ . The particle conservation equation is really just the zero

velocity moment of the time-independent Boltzmann equation:

3 f(r, v)
v, moyml=fa ——| | (D. 34)

coll

the right-hand side of which is the case of no net production or
absorption reduces immediately to Eq. D.25. The momentum con-
servation equation (D.26) is almost as immediate and follows by
taking the first velocity moment of the time-independent Boltzmann

equation in an electrostatic force field:

mn(r) v(r) - vv(r)=-n(r) v fe¢(3)+‘7-_1?_ (g)] +

—_— fis
- mz(g_)S‘ dv M +\ dv mv E.-::',.X_) ' (D. 35)
at 11 3t lcoll
where
g(_)=m5‘ dvvyvi(r, v) (D. 36)

The above equation is simplified by approximating the kinetic stress

tensor with an isotropic velocity Maxwell-Boltzmann distribution
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functions and by neglecting any collisions. The energy conservation
equation (D. 27) is found by computing the second velocity moments
of the time-independent Boltzmann equation. After some algebraic

5
reduction one finds that

1/2 mv2v. (nv) +1/2 nmy - v;2+5/2§_~ vp+5/2pv.v

=-j- V¢+S\dz

To apply this result to the present problem, we use the result from

af

dt

2
mv
2

(D. 37)

coll

Eq. D.25, and approximate the integral involving the collisions

solely by a heat conduction term:

fe

The result (Eq. D.27) immediately follows.

mv?“) af

_ d
> 5t = u (z) i T(z) . (D. 38)

coll

The derivation of the source and sink terms describing ionization
and recombination follows from the law of detailed balance: The rate

of increase of a population of electrons is given by

dn

e 2
% - on n - ﬁnine , (D. 39)

where a is the proportionality factor for the ionization process

o - .- -
Cs +e - Cs++e +e (D. 40)

and B is the proportionality factor for the recombination process

csT rete = cs® e, (D. 41)
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At equilibrium dne/dt = 0, so that

the subscript s denoting the equilibrium condition. Thus,

dn, dne
——1 — -
dt ~ dt ~ ﬁne[nes Mis ne] ’ (D 42)
2 2
= Bn_ [nes - ne] . (D. 43)

The equations valid for the diffusion regime can be derived in a
variety of ways. We refrain from repeating these derivations which

23,24 Again, one starts from the

are readily available elsewhere.
Boltzmann equation, defines the current as a first velocity moment

of the distribution function, approximates the actual distribution
function by the Maxwell-Boltzmann distribution that is isotropic plus

a small perturbation that is not, in general, isotropic, defines the
mobility as the proportionality factor between the particle current

per unit particle density and the electric intensity, and defines the
diffusion coefficient as the second velocity moment over the distribution
function divided by 3 times the collision frequency.

The mobilities, collision frequency, and thermal conductivity are

23, 25,26

taken from the literature. The mobility Mo of electrons is

W= .98 e _ .521 e ’ (D. 44)

e m v
e en 4/m kT N o
e e o en
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and By of ions is

0.90e” 677 e

M, =
i m, V¥
3 W/ N
i in mi kTi o 0‘in

The collision frequency Ven of electrons against neutrals is

wkT
e

Z2m o en
e

<
i
N lw

en

and Vin of ions against neutrals is

m, o %n"
The thermal conductivity of the plasma ia
2

n p k Te

O €
e

w = 1.92
e

The vapor pressure PCS of Cs is given by

exp - 8910/T
p =3.27x10" R newtons/m2

- VTr

The electron cesium recombination coefficient B is given by:

g = 5.6x10 2" (k*re)'4'5.

The electron-ion mobility i is given by
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2 3/2
93.0 - € (kTe) /

3 3 [12w kT}3/2]
e meln —

me e

. (D.51)
ei

The following procedure was used to solve these equations numeri-
cally: In the absence of any ionization and recombination, the current
of electrons and the current of ions are constant. These facts may be
used to eliminate the average drift speeds of ions and electrons from
their respective equations in terms of the electron and ion densities
and the constant electron and ion currents. The perfect gas law is used
to eliminate the electronand ion partial pressures from their respective
equations. The ion temperature is taken to be constant, equal to the
arithmetic average of the emitter and collector temperatures. The
ion temperature is, therefore, constant. Poisson's equation D.23,
the diffusion equation (D. 31) for the ion density, and the diffusion
equation for the electron density (D. 30) are differenced. The electric

intensity is determined from

= - 5 .52
8_]+1 8_]-1 c ntj nej) (D )
o
the ion density is determined from
Te it riz
= - _ ; .5
nij+1 nij_1+2Az o |e|{-3j nij 5 kTi (D. 53)
inj nij

and the electron density and temperature are determined by the simul-

taneous solution of
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In the practical case tried by this method, the integration pro-
ceeded outward from the plasma, starting at a point in the plasma

where the electric field was zero, and the electron and ion densities

(D.

(D.

(D.

(D.

(D.

(D.

(D.

(D.

were equal to each other and to the plasma particle density. The region
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of interest was taken near the collector so the source could be taken-

to be zero, at least for our initial attempts.

A flow diagram of the program is presented in Fig. II-20. In

view of the very elementary character of the logic, it is believed that

the flow diagram is self explanatory.

The method was abandoned, despite its simplicity and intuitive
physical nature, because it appeared to be afflicted with instabilities,
i.e., we found negative electron or ion densities on occasion. If this
diffusion type of equation were linear, then there is a simple method
of getting around the instabilities using recurrence relations. Unfor-
tunately, the present problem is nonlinear, and the method is not
applicable to nonlinear problems. No method is known by the writer
for suppressing the undesired, divergent, second solution for the
nonlinear problem. Problems of this sort inherently involve the
application of a boundary condition at both ends of the region of
interest The problem is either undetermined or unstable by the
application of boundary conditions at only one end of the region of
interest.27 For this reason, the method was abandoned in favor
of the Sn method, which appeared to and had the reputation for
avoiding all these difficulties. Further, the Sn method is intrinsically

more accurate

4. S Method
L

The Sn method has been widely applied to the treatment of prob-
lems involving neutron transport in reactive assemblies. Although no
proof of the stability of the Sn difference method seems to have been

found, many experiments seem to indicate that it is stable. The
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method in essence consists in subdividing p-space usually in equal
subdivisions, and then approximating the directional density at inter-
mediate points in p space by straight lines drawn between the discrete
points. 18 We extended the method here to approximate the speed
dependence in a similar manner in order to get more accuracy in

the speed dependencé than is provided by the usual multigroup step.
Likewise, the spatial dependence is similarly approximated. We
must also extend the Sn method to incorporate the acceleration terms
in the Boltzmann equation in order to describe the crossing of bounding
surfaces in velocity space; in particular, the effects of the electric
field must be incorporated into the Sn method. All this is quite easy

to do and very straightforward. The details are given in Appendix C.

The essential trouble with the Sn method was that we obtained
negative electron densities frequently and occasionally even negative
ion densities. Since this was thought to be caused by instabilities,
we investigated this problem. It was decided that the phenomena
which had been observed were not instabilities, but were rather the
consequence of choosing speed or increments too large, compared
with the increments in z, so that the densities oscillated. Be this as
it may, we seemed to find from the instability investigation that the
Sn method was unconditionally unstable. This investigation was,
however, more characterized by its vigor than rigor. For this
reason, further work on the Sn method was abandoned in favor of the

much more promising integral technique discussed elsewhere.

It is to be hoped that a mathematician will rigorously investigate
the stability of the Sn method with an electric field present. Our

vigorous, nonrigorous treatment of this point follows: As is the custom
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in the study of complicated equations involving a number of independent
variables, we start with an equation involving just two independent
variables that has the form of several terms of the original equation.
Further, we regard the equation to have constant coefficients. Third,
we observe that the time independent Boltzmann equation may be
likened to a time dependent Boltzmann equation in that the derivative
with respect to z may be thought of as corresponding, insofar as any
mathematics is concerned, to t, the time, in a time dependent equation.
Our problem is then really reduced to an initial value problem. Thus,
we shall be studying the following equation, when treated by the Sn
approach, with respect to stability along the z axis, which is the

axis that has been causing the trouble:

2 1
on(z, u) €€ (1-p ) 3n(z p) _y_Z_S‘ , )
M Y” m v . ap tvIn(z, p) = 3 Idpt n(z, u’) . (D.62)

Stability is usually examined by the von Neumann method. 19,21 The

Sn equation relating the densities at various points in the position-speed

(say) mesh is

IL
00 "1 T 10 P51 T o1 Mji-1 T 11 Pyetio ”Z “i0 (D-83)
i=1
the €0’ €10’ c01’ ¢ and €11 being rather complicated coefftcwx.)ts. The
densities at the various points are Fourier transformed to yield:
IL ,
c..e LklA“+c e Lk(l-l)A“-sZe LkiAp n
00 01 ~ji
i'=1
IL
ki . v}
[ eL IA,.L_C e(k(1 I)A“+s Z elklAp. LI (D. 64)
10 11
i'=1
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From this result, we can deduce the amplification matrix G(4Ap, k)

immediately:
ol CsBb_q) 4 c”(e'“km‘-e “lkApy | UR(IL-D Ap - (kidp)
= -(k -(k 2(k - (ki k (IL-i '
00 (1-e { Au) +eg, (e ( Au_e ( AH))+s(eL lAp._eL ( I)Am)

From this, we see the condition for stability is that

2
sinz(k%-ﬁj[z —c2 -c2 +2

€00 ¥ 01 " €10 ~ 11 (clo €11 ~ 0100

kAp
2

. IL+1
+ {CIO_COO] cos kA {1- 2+ ’} z 0.

+ s sin sin

&ZA_E) [CII_COI] cos kAp (i - IL+3 )

coskAp.]

!

2

To simplify our considerations, we take the case in which there is no

source, i.e., s = 0. In this case, the stability condition becomes:

4
+ la. e’ +a, d
i1 i3

la. a’ +a, e
}1 1 1 1 i

cos (kAp) =z 0.

(See Appendix 2 and below for the definition of various quantities.)

The left-hand side of this expression has no maximum or minimum.

For cos (kAu) = -1, we find that

_ 't > )
[Hi “‘i-l][di ei] 0

Since B > CH this condition requires that

1’
df = ef
i i
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For cos (kpAp) =1, we find that

d’ 1 = o.
”i“‘i-l) ( i T8 0
We conclude that if By + o =z 0,
el < +4d
i i
hat if =
and that i My + B g 0,
_dl < e/ < dl
i 1 i
Here, el b,
dl - _Z_ _ 1
i 2 ’
2 mv
e€b,
of =2 4 -
i 2 2
2 mv

If R < 0, stability requires that

r = -3z,

which is obviously impossible unless the cross section is zero.

Stability also requires that

elb, efb.
i i

mv mv

which is true only if € < 0. If B toB z 0.
stability requires that
el bi elb,
-vI + = vI+4
mv
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and that
elhb, elb.
i i

= -
mv mv

(D.79)

The first condition is automatically true; the second is true if €< 0.
Thus, we conclude that the method is unconditionally unstable, since
there is no increment which if chosen properly would enable us to
satisfy the various stability conditions. Of course, we have only

shown that instability occurs with no source, and we have only shown
that local instability occurs, since we have assumed various coefficients
to be independent of our independent variables. However, stability in
the large can hardly occur if there is instability locally; further, it is

not likely that appending source terms will help matters.

In the above tests it was assumed that integration was always carried
out in a particular direction. Let us now choose our direction of in-

tegration in accord with the dictates of the usual Sn procedure: In this

case, n, is determined fromn, ., and p, >0 . d’ = e’ and -4’ < &’
=j —j-1 i i i i i
are required:
ef b1 e{'lbi
vE- < v+ , (D. 80)
mv mv
efb e€b
-Vt —— = vE 4 (D. 81)
mv
The first condition is true only if € < 0; the second condition is auto-
matically satisfied. If p.i < 0, Ej 1’ is determined from nj, then the
amplification matrix is just the inverse of that written above. In this
case, the stability requirements become
d < e, 4, 5 ef (D. 82)
i i i
elb, elb,
VY - —— < vE 4 Lo (D. 83)
mv mv



mv

The first condition is satisfied only if € > 0; the second condition is

automatically satisfied.

Unlike the usual situation, there is no increment or ratio of in-
crements we can adjust to achieve stability. For each directional
sense, we can find a direction of integration in which to integrate that
will give us unconditional stability insofar as the increment sizes are
concerned, but which is conditioned upon the sign of the electric in-
tensity, and the requirement is just the opposite for each sense of
the direction. Thus, there is no choice of the sense of the electric
intensity that will make stability possible. The method seems to be
unconditionally unstable. (Even if there were a sense of the electric
field making stability possible, the fact would not help much, because
reversals of the direction are almost bound to occur during the course

of the numerical calculation.)

While we have been neither careful nor rigorous, the picture for
the Sn method was sufficiently discouraging and the picture for the
integral method was by this time so bright that no more time was
spent trying to get the Sn method to work, even though the original
difficulties that lead to the investigation of the stability were probably
not due to instabilities in retrospect and could have been cured. To
cure these difficulties with instabilities looming over the horizon

made the method unattractive for further work.

It is interesting to note that the method used presently for studying
the stability of a numerical process gives the correct results when
applied to the Sn method for neutral particles, viz., when one integrates
in the direction in which particles flow, the method is unconditionally

stable for neutral particles.
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Nevertheless, a number of cases did run without any particle
density becoming negative. These are listed in Table II-6. In a large
number of other cases, the density of the electrons became negative
at some point during the integration in phase space, at which point
the integration was stopped. Although it is believed that the particular
source of these oscillations could be corrected, the spectre of instabili-
ties and the virtues of the integral method appear so great that we
believe our efforts will be much better invested by improvements in

the integral method.

The details of the program for the Sn method will be found in
Appendix 4 .

5. A Stable Differencing of the Boltzmann Equation

Some effort was made to find methods of differencing the Boltzmann
equation that are stable, especially those that had already been used
elsewhere. Such a method has been developed by Killeen21 and Killeen
and Rornpel,28 based, in part, on the work of Leith,29 which, in turn,
is based on the work of Marchuk,30 Pagrinovsky22 and Godunov,31 and
D'yakonov.32 Killeen treated the time-dependent buildup of a cylindrical
layer of relativistic electrons for the Astron in a static magnetic induction
where the azimuthal current created by the electrons creates a magnetic
induction larger than that applied. This problem requires the use of
Vlasov's and Maxwell's equations. (Space charge effects, i.e.,
Poisson's equation, were neglected.) It is Killeen's treatment of the

Vlasov equation that interests us.
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723-10

TABLE 1II-6
CASES TREATED BY THE Sn METHOD IN WHICH THE
DENSITY DID NOT BECOME NEGATIVE

Direction of Integration

Number of Speed
Groups

Electric Field Scattering

rmea——

——

Present 4 Collector to plasma and
back

ON Absent 1 Collector to plasma and
back

OFF Absent Plasma to collector and
back

OFF Present Plasma to collector and
back
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The essence of the method is that to solve

ap 3p
=L % = 0 D. 85
or * an ( )

one uses the differencing scheme
2

v+1,8 _ pv,B ‘% (Bl pv’ﬁ_l)+ gé_(pv,ﬁ+1_2PU:B +p” B-ly, (D. 86)
This scheme is stable if |a|=|, wherea = yAT/An, is accurate
to second order in yAT and An, and is a two level formula, so that
the step size is easy to change, as may be required by stability con-
ditions, as compared with a three or more level formula. Instabilities
result if the method is directly extended to another dimension. However,
the method of Leith, Marchuk, Pagrinovsky, Godunov, and D'yakonov
can be used to extend the method to more dimensions. The essence
of the idea is that, if a differencing scheme is stable with respect to
either of two sets of two independent variables, to increment forward
first with respect to one set, then with respect to the second set to
complete a full cycle In other words, a complete iteration cycle
is subdivided into two subcycles, each of which is stable. Extensions

to more sets of independent variables are obvious and valid. Thus, if

we write the differencing algorithm in matrix form,

oV Tk ) (D. 87)
and
s w2 (D. 88)
then
o = (L+ B)I+A)p" (D. 89)

for two sets of two independent variables.
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To apply the above method to the present problem let

_ -~qE Az

4 mvAv (D. 99)
and
-q & (1- 2) Az
= 4 =t . (D. 91)
mv ulpu

The particle density of either charge is then determined from the three

equations

n i+1/2c

Me1/2, ni T, n, (n,

. . ,=n .
jyo,i " j,n+1,1{ myn-1,i

]+

2 1
v 128, [“j,n+1,i’znj,n,i+“j, n-1,i) (D-92)
N+ln, i Bj+1/2,n, 4 +1/2 € n, i [nj+1/2,n, i+1" % +1/2,n, 1-1]
v 1/2 ¢° {n _2n “n, ] . (D.93)
j,n, it j+1/2, n, i+l j+1/2, n, i j+1/2, n, i-1
o N A o N A
n - Lo n "z 0 _h nz .
j+1,n,i j+1l,n,i 2 p, L+l o, i M, j+1,n,i (D. 94)
i
All three equations for each charge species (here electrons and Cs+)
must be processed for each cycle of iteration. Further, to insure
stability one must satisfy both
< E}.‘_’ D. 95
AZ—IqelAv (D. 95)
and
mv VU
<
Az Iq&.ll1 5 | Aw (D. 96)
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for both electrons and ions. However, if the speeds for electrons and

ions are chosen to equate their kinetic energies, then

rne Ve 1’1’11 V,l2
2 — (D.97)
so that
le_1 =1e] (D. 98)
and
le | =1¢,1 - (D. 99)

Thus, the same upper limit exists for both electrons and ions. Further,
in a system there is a tendency for the electrons and ions to have very
approximately the same energies, so that both species will be well

described by choosing the respective energies according to Eq. D.97.

The inequalities above and the practicalities of running a program
imply that the space increment Az changes from time to time. This
fact means that variables computed for a particular choice of space
increment must be related to those referring to a subsequent space
increment. Coding for this method was about half completed when it
was decided to concentrate all our energy on the integral method,
because of its greater promise. At least, even in principle the
integral method could never give a negative density of any sort (a prob-
lem that haunted the Sn method), whereas it appeared that the above

method could give negative densities.
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APPENDIX 1

CALCULATION
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COLLISION INTEGRAL
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The integral

= YE— d un(z, v, p) (1. D
2
-1
is needed in the calculation of the source term for electrons. If one

desires to write this integral in terms of the variables z, E, K.L’

and L (as we do not) then the following method may be used:

® 1
1=X§S‘dv'y dp 8 (v-v) n (z, v, W, (1.2)
2 0 -1

"

2 © o
2 ’ .
zvr_r.l[E_U(z)] Z SﬁdES‘ dz{ln(z,E,Kl,L)
L=1%v0 0

8 Qf% (E-U(z))+ - \/%n [E-U(z)] } (1. 3)

This result can now be trivially integrated to yield:

2 [ee)
I=Z(E-U(z) z YdK_L n(z, E, K,, L) . (1. 4)
L=1 "o

Of course, normally in these variables one will want to normalize
the result per unit volume, per unit total energy, and per unit per-
pendicular kinetic energy. The present result is the number of
particles created per unit time, per unit volume, per unit speed,
and per unit p. The Jacobian provides us with the necessary trans-

formation to change the normalization:
2

2
24/ 2m [E-U(z) -K,] I;I S.dK.Ln(z. E, K, L). (1. 5)
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The angular distribution, spectral distribution, and total density can

be easily expressed in terms of the variables z, E, KL, and L:

2
n(z, K ) = Z y dE glz B Ky 1) (1.6
Yorm1 Yo

2 Jfom [E -U(2) JE-U(2) - K,

2 ©
Az E) = ) f dK | gz 5 Ky D) ,
L=1%Y0 2 J/2m [E-U(2)/E-U(2) - K]
2 © ©
n(z) = Z y dEy dK, gz E K, D) (1. 8)
L=1 Yo 0 2[E-U(2)]/2m[E-U(2) - K, ]
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APPENDIX 2

THE COMPUTER PROGRAM
FOR THE
INTEGRAL METHOD
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In this appendix several of the details of the computer program -
for the integral method are discussed. For the most part, the program

is entirely straightforward.

a. Genealogy Chart

Figure 2.1 is a genealogy chart for the program. It shows the
relation of one program to another; in other words, it shows which
programs call which other programs and, in turn, are called by
which programs. Control flows generally from top to bottom and

from left to right.

We now list the various functions of the program:

Program Name Function
MAIN Controls everything.
BILLOCK DATA Initializes various variables and asserts the

values of various constants.

BOUCON Calculates the boundary conditions at the
electrodes.

DEBUG A service program generally used to debug all
other programs, usually by printing out various
arrays, such as the density and potential arrays.

DENSIT Computes the particle densities.

DEPTH Computes the optical depth.

DETEJL Determines the grid point of the left boundary or
left reflection point.

DETEJR Determines the grid point of the right boundary
or right reflection point.

ELIODE Controls the calculation of particle densities.

INITIA Initializes all variables not initialized by Block

Data, esp. arrays.
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Program Name

INTEGRAL
INTERP
KEPARA

KET
KPARN
MU

NOKEPA

OUTPOT
OUTPUT
P

PLASMA

POTENT
READIN
RJACOB

SOUREL
SOURIN
SPECTRA

SPEED
STIMER
TEM
TEMPER

TTIMER
VDRIFT

Function

Integrates over z by Simpson's rule.
Interpolates initial charge distribution.

Calculates the component of the kinetic energy
resulting from the parallel component of the
velocity.

Calculates the total kinetic energy.
Calculates particle flux along axis.

Calculates the direction cosine with respect to
the z-axis.

Calculates the integrand for the temperature
calculation.

Writes potential out.
Writes out all results.

Computes the probability of not scattering
between two points.

Computes the boundary condition in the plasma,
if required.

Computes the potential.
Reads in all data.

Computes the reciprocal of the Jacobian of the
transformation from z, v, u, to z, E, K, L.

Calculates the source of electrons.
Computes the source of ions.

Computes the spectral distribution of electron
density and ion density.

Calculates the speed spectrum.
Initializes the clock.
Calculates the temperature.

Controls the calculation of the drift velocity and
the temperature.

Reads out the time elapsed since initialization.
Calculates the drift velocity.
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b. Flow Diagrams

Figures 2.2, 2.3 and 2.4 are flow diagrams of the MAIN
program, a program that controls the calculation of particle densities
(ELIODE), and a program that determines the grid point of the right
boundary or right reflection point (DETEJR). The logic of other
programs, except that for DETEJL, is trivial.

The MAIN program consists of an inner iterative loop and an
outer iterative loop. In the collisionless case, the directional den-
sities are independent of position, although dependent on both the total
energy and perpendicular kinetic energy. Nevertheless, the total
densities are dependent on position because the elements of integration
are. Additionally, the limits of integration will be dependent on the
potential, because the potential defines the accessible and inaccessible
regions. It is the purpose of the inner loop to make the potential and
total electron and ion density difference self-consistent. The outer
loop makes the calculation of the electron and ion directional densities
consistent with the potential computed from the inner loop. The total
densities are, of course, computed from the directional densities,

and these must be used, in turn, to compute the potential.

At present the program may stop because the maximum number
of iterations of the outer loop have been carried out, the maximum
allotted time has elapsed, or the problem has converged and the
specified number of extra ("superconvergence") iterations, if any,
have been carried out. Unless the maximum allotted time has elapsed,
the program looks for the next case in the data stack. If none is present,
the problem is finished, and the computer goes on to the next job.

Printing out of results, both formal and informal, of each individual
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iteration is suppressed now until the maximum amount of time for

the particular case (which may be different from the job time) has
nearly elapsed. Thus, one can get more iterations done in the allotted
time since printing out does cost machine time. There is also a
maximum number of inner loop iterations permitted to prevent the
machine from looping endlessly in case convergence does not occur.

It has been found repeatedly that the closer the outer loop is to con-

vergence, the more rapidly the inner loop converges.

The convergence criterion is adjustable at object time. Con-
vergence is reckoned by the agreement of the new potential with the
old potential. The potential is presumably a very sensitive function
of the density difference between the electrons and.ions34 and should

form a sensitive test of convergence.

Only a quarter of ELIODE is flow diagrammed because the other
parts are substantially identical to the part drawn. Two of the parts
relate to electrons and two of the parts relate to ions. One part
processes electrons moving to the right (this is the part diagrammed);
a second part processes electrons moving to the left. Third and
fourth parts process ions moving to the right and left, respectively.
These parts are logically identical to the corresponding parts for the
electrons. The corresponding parts differ only in the sign of the
charge of the particle, the source term, and the scattering cross
section. The first and second parts differ from each other only in
the interchange of the words (and corresponding symbols) "right"
and "left", and the values of the position index denoted the limits
of integration are interchanged. Consequently, there is no need to

flow diagram these other three parts of ELIODE.
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The program DETEJL is logically complex, but it is substan-
tially identical to DETEJR, which is diagrammed. As with ELIODE,
only "right" and "left" and the associated end points along the z-axis

are interchanged. The logic is otherwise identical to that for DETEJR.

The other logic is relatively trivial, so no flow diagrams of the
other subroutines are presented. Such logic as this is usually con-
cerned with calculating the value of some quantity for all spatial zones,
all speed groups, or all direction cosines. Tests appear with some
frequency for not allowed values of some quantity being evaluated; if
the value is not allowed, some value is assigned or some course of

action is taken to bypass a calculation as irrelevant for such a case.

c. The Program

Much of the program is believed to be self-explanatory in view
of the numerous comments made throughout it and in view of the
material already presented concerning the basis for the program.
There are also numerous checks throughout the program; these are
identified by an X in column 1. These checks may be suppressed by
deleting an X on the FORTRAN run card. The checks generally seek
to determine if a quantity is unreasonably small, unreasonably large,
or absurd for some other reason, or if there has been any overflow
in the calculation. There were originally many more checking features
in the program, but these have been removed gradually as we gained

confidence with the program.

Generally symbols are mnemonic and stored in labelled COMMON

(really GLOBAL) for transmission to other programs. Occasionally

variables are put into argument lists for transmission to subroutines,
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where it seemed convenient or advantageous. The program has been
constructed solely with the thought of quick debugging in mind. It is
obvious that it could be enormously speeded up by a different scheme.
Basically, to do this one observes that the densities and potentials are
computed at all space points, and that the value of the respective
quantity at a subsequent space point can be easily related to that at the
previously calculated space point, thereby obviating the need to re-
compute all the relevant integrals for the new space point, as is now
done. It was felt that this better method was fancier and, therefore,
would be harder to debug, so no effort was expended on it, other than

working out the analytical relations needed.

The program prints out all input data immediately after it is
read in so that one may check to determine that all data have been
entered correctly and to permanently label the case run. Inputis
further facilitated greatly by use of NAMELIST. The variables may
be written in any order, without regard to the field in which they
appear, and without justification of any sort. The formal output con-
sists of four tables. The first table lists the position, potential,
electric intensity, electron density, ion density, electron current,
ion current, electron kinetic energy, and ion kinetic energy. The
second table lists the electron speed spectrum as a function of position.
The third table lists the ion speed spectrum as a function of position.
The fourth table lists the angular distribution of electrons and the
angular distribution of ions as functions of position. Output for
checking purposes consists of various tables. One table lists the
potential of the previous major loop iteration, and the last four

potentials of the minor loop iteration (if that many exist), the electron
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density, the ion density, and the net charge as a function of position.
Another form of output lists the complete electron and ion directional
density arrays as functions of perpendicular kiretic energy, energy
group, and position. The times at which the various points in the
program are passed are printed out too. Another table lists the
electric potential, the electron density in double precision, the ion
density in double precision, the electron temperatures, and the ion
temperatures, all as a function of position. All of these nonformal
outputs are very useful for debugging, especially the directional
density arrays, which give one a feeling that one really knows what is

going on.

The program automatically chooses the energy groups consistent
with the total number of groups such that approximately equal numbers
of particles occur in each group, be they electrons or ions, in the

plasma where a Maxwell- Boltzmann distribution obtains.

The program was compiled and run on XDS Sigma 5 computer
having 65, 586 words of memory, using XDS extended Fortran IV.
Words are either 32 bits or 64 bits long. In floating point numbers
the characteristic consumes 8 bits, leaving 24 bits for single precision
and 56 bits for double precision words, corresponding to 7 and 15
digits of precision, respectively. The program was coded in double
precision throughout because of the need to know the ion-electron den-
sity difference very accurately in order to compute the scalar potential
with some significance. There seemed to be no trouble whatever from
loss of significance in calculating this density difference in double
precision. Single precision was never tried, although the program

would occupy substantially less fast memory and would run significantly
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79 {other than 0 itself) and as

faster. Numbers as small as 5. x 10
large as 7. x 10'75 can be represented as a result. Integer constants
may be as large as 2, 147,483, 647 or as small as -2, 147, 483, 648.

The principal extended Fortran features found to be of use were
GLOBAL, REPEAT, and compound statements. GLOBAL can be
replaced by labelled common statements in which the label is the same
as the variable name stored in the concommitant control section.
REPEAT triple statements cannot be replaced by DO statements, but
can only be replaced by the appropriate control-variable initialization
and IF statements at the beginning, and arithmetic statement for
updating the control variable, GO TO, and CONTINUATION statements
at the end of the nest of statements enclosed within the loop. It isL
frequently important that the nest of statements be NOT executed even
once if the condition for execution of the nest is NOT satisfied initially.
Approximately 49, 000 words were available to the user for his program
and library routines, However, by limiting the number of spatial
points, angular subdivisions, and speed groups rather severely, it
was possible to keep the arrays for the electron and ion directional
densities sufficiently small to be able to fit into fast memory for
testing purposes. For the actual execution of programs, it would be
highly desirable to have at least 8192 more words of fast memory.
Removal of the checking features, which may be accomplished by not
specifying "X" on the FORTRAN control card, is also quite effective
in reducing the demands for fast memory and in speeding up the
program. However, the checks were invaluable in quickly isolating
errors (which is by far the chief problem in debugging), so the writer
was very reluctant to suppress them. The character representation

is hexadecimal within the machine.
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The input data that must be specified in order to run the program

are as follows, together with typical data:

CASE =2

EPS = .02

IL =4

JL = 50

ML = 4

NEP=1.1x 1019

NIP=1.1x 1019
NL = 4

PHIR = 1. 711

PHIL = 2.798
SIGMAE = . 0

SIGMALI = 0.

A label for the case being run.

The maximum potential in volts by which
the potential of the previous major iteration
may differ from that of the present major

iteration after convergence.

The number of angular subdivisions,
counting the perpendicular as one if IL is

even, and not counting this line if IL is odd.
The number of spatial zones.

The number of historical values used in
filtering the potential, including the present
value as 1.

The density of electrons in the plasma, m
The density of ions in the plasma, m-3,

The number of speed groups.

The work function of the right electrode,

volts.
The work function of the left electrode, volts.
The electron-neutral cross section, m_

The ion-neutral cross section, m
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SPACIN = 5. x 10

TL = 1920.
TR = 910.
TEMRES = 614.

TPLE = 2300.

TG = 1415.
TYPE = 2
VL = -1.922
VR = -2.237

6

The distance over which the integration
occurs, such as the distance from the

plasma to the collector, m.

The temperature of the left electrode, °K.
The temperature of the right electrode, °K.
The temperature of the Cs reservoir, °K.

The temperature of electrons in the plasma,

°K.

The temperature of the neutral gas in the

plasma, °K.

The type of problem being run. If TYPE =1,
integration is from one electrode to the
other. If TYPE = 2, integration is from

the plasma to the right electrode. If TYPE =
3, integration is from the plasma to the

left electrode. If TYPE = 4, integration is
only along the z axis from the right-electrode
to the left one. If TYPE = 5, integration is
only along the z axis from the right electrode
to the plasma. If TYPE = 6, integration is
only along the z axis from the plasma to the

left electrode.
The potential of the left electrode, volts.

The potential of the right electrode, volts.
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VI= 3 893

ITL = 30

TLEL = 2500

TREL = 2000

BETA = .75

56

BIGNO =1. x 10

JMIN = 1

BBIGNO = 1. x lO7

GAMMA = .75

IMMAX = 20

ITIMPR = 120

4

The ionization potential of Cs, volts.

The maximum number of major loop

iterations permitted.

Temperature of electrons at left electrode,
K.

Temperature of electrons at right elec-

trode, °K.

Filter function weighting parameter for

low-pass filtering of potential.

A big number of intermediate size used to

check variables for unreasonably big size.

A parameter that defines the width of a
potential minimum as being trivial, z-axis

mesh points.

A big number of the biggest size used to

check variables for unreasonably big size.

Filter function weighting parameter for

low-pass filtering of the particle density.

The maximum number of inner loop
iterations permitted before an outer loop

iteration is performed.

The time associated with the printing of

output, seconds.

I1I-130




ITIMAX =

IEXTRA =

1000 ® The maximum time the program is to run
with suppression of the printing of the output

results (to save time), seconds.

1 ® The number of iterations to be performed
over and above those needed for convergence

of the outer loop.

All units in the program are MKS. The data may be entered in any

order, in any column on a card, providing the last datum is followed

with *,

d. Program Improvements

There are several ways in which the present program could be

improved with future work also:

1.

2.

The checking should be completed.

The calculation of the potential itself and the particle density
should be recorded so that results already computed are
used for the next integration, instead of starting all over
again ab initio as done in the present program. Some work
has already been done on this subject; it is easy to accom-
plish; it should greatly speed up the program, which is
already running amazingly fast. It is thought that with such
reprogramming, each iteration would run as fast as an
iteration of the corresponding differential equation. (It is
iteresting to observe that integral equations have been used
very, very little for the numerical solution of problems, and

that books on numerical analysis seldom discuss integral

II-131



equations. The writer has never understood this, because
integral equations offer many advantages, as mentioned
elsewhere in this report. Sometimes the objection is men-
tioned that the integral equation will take a lot longer for
each iterate. It is usually not mentioned that it will converge
in far fewer iterates. Certainly, as far as the present
integral equation goes, the objection is not well taken. )

The integral formulation has proved that it will converge

in just a few iterations for many problems, and will probably
be much faster indeed, for this reason, than the solution

of the corresponding problem by differencing of the related
differential equations. Possibly this reprogramming should
be done before item 1 is accomplished because some of the
checking runs get to be longer than desired, since some of
them involve running many speed groups or many angular
groups to determine the effects of numerical accuracy, or
iterations many times after convergence to determine if the

problem has really converged.

The total density should be perturbed away from neutrality
in such a way that the resulting potential can be computed
analytically. This result should then be compared with

that computed numerically to ascertain that the numerical
calculation of the potential-is correct. Preferably, the
perturbation should be made in the directional densities so
that one also checks the validity of the numerical calculation

of the spectrum and total density.
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It will be observed in some parts of the program, such as
PLASMA, RJACOB, SPEED, TEM, VDRIFT, decisions

are made as to whether or not a particular zone is accessible,
depending upon the sign of the kinetic energy or the perpen-
dicular kinetic energy, rather than going through the com-
plicated logic of DETEJL or DETEJR. As it were, a
decision can be made on the spot at the instant needed as to
whether a particular zone is or is not accessible. This
technique could be employed in ELIODE to simplify this
program considerably and to get rid of DETEJL and DETEJR.
The parallel kinetic energy (KEPARA) would be used to make
this particular decision. The program would run somewhat

faster and take somewhat less space too.
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DETAILS OF THE Sn METHOD
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In this appendix the details of the Sn method used in the present

work are presented.

18
Since expositions of the Sn method are readily available, we
limit ourselves to an outline of the method followed:
The operation
8. .
8 _An j Vi
A A. A. y dv S‘ dz y dp (Boltzmann equation) 3.1
I SV z. o,
n-1 j-1 i-1
is performed. Here,
- - , 3.2)
By =Bt H (
A =2z -2, _, (3.3
N BN
A =v -v . (3.4
n n n-1
To this end, the approximation
i M- M
n(z, v, p) ={—— In(z, v, p.} H ———|n(z, v, p. ) (3.5)
Ko~ Mg oMM i-1

is used, and likewise for the dependences on z and v. The result of

these operations is
[dn ¢y - Tcl] njni‘+ [En Cy - I"cz]njn_ i +
[dn €4~ ‘rcl] nj-lni+[an €4 " 1-.Cz] ™11t
* [dn cg+ T °7] Mni-1 +[ * rcs] n
[

dy S 7 TC?] nj-lni-l+[dn €T rcs] Moln-1i-1

oA

n s in-1i-1 "

<+

- ,fn[sjn P81 TS5t Sj-ln-l] ‘
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d == [2v +v 71, (3. 19
n -1
d == [v +2v ], (3. 20)
n -1
£ =1 3.21
0 ’ ( )
f = 2, nz1l, (3.22)
n
v -fvn 1
(v ) = —= -, (3.23)
n 2
r - & (3. 24)
m
In integrating from right to left, one solves for nj 1 ni in terms
of everything else In integrating from left to right, one solves for
), i in terms of all else. Various other quantities are needed in
the calculation. These are as follows:
z
J A,
\Sﬂ dz €(z) n(z) = - (2 €. n +8& n, + &, n +2¢&, n, , (3.25)
.. 6 AN R BN SN S j-1 j-1
j-1
NL+1 - -2
m gn vdn v
T = — —
(2) k n(z) An [36 3 + 6 } nn(z)+
n=2
g va v’
n
+[36 T3t g }“n-l(z’ (3. 26)
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where

2 2
gn = 3vn+2vn vn-l +Vn-1 ) (3.27)
- 2 2
g, = vn+2vrl Vool +3Vn_1 . (3.28)

The electric intensity is determined from the following expressions,
which are immediately derivable from those given in connection with

the all integral method: For integration from left to right:

JL+1
¢(ZL) - ¢(z )\ .
e. = <3 = : Z A, 4{h [n_ -n ]
j z_ - z* I 2¢€ (zr - Z,f,') ) k]l 2rk ik ek
RELTISE [nik-l - nek-l]} *
eA )
t Ze 2:2 [nik " Pek t Mik-1 T nek-l] (3-29)
and for integration from right to left
JL+1
¢(z&) - ¢(z ) o { [
€ = + Z h n_ -n ] +
j (zr - ZL) 2 e(zr - ZL) = rik t ik ek
JL+1
- e
Rk [ k-1 nek-l] Ao L [y
k=j+1
T Pek T Mkl T nek-l] By (3.30)

where
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where

h :éz +-1—z -z ,
Lrk 3 k 3 k-1 r

E&rk=% Zk+%zk—1-zr’
hrLk=§_zk+§ o1 T %1
Er{,k=%zk+§.zk-l—zl

In the calculation, it proved desirable to keep the calculation of
the electric intensity up to date to the extent that its value was only
one space step behind the calculation of the particle densities. (To
keep the electric intensity up to date to the extent that its value was
actually at the space step being computed for the particle densities
involved solving an array of quadratic equations, which did not seem
worth the effort.) It would be very expensive in machine time if the
electric intensity were calculated completely anew for each mesh
point. Fortunately, the value at the new mesh point is easily
related to the value at the previously calculated mesh point. Let
SLRT represent the sum over all j in Eq. 3.29 and let SLRj
represent the sum up to j in Eq. 3.29. Then, it is easy to show

that

SLRT new - SLRT old ' [(ﬁj.d)“‘ 5,0 Hhy 17908 'JL+1?}

- - - < i<
[(nij nej)new (nij nej) old]’ 1= JL+1

SLRj T SLRj-1 P T e T Migo1 T Mego1

(3.31)

(3.32)

(3. 33)

(3. 34)

(3.35)

(3. 36)




Likewise, for integrating from right to left, let S represent

RLT
the sum over all j in Eq. 3.30 and let SRLj represent the sum down

toj+1in Eq. 3.30. Itis easy to show that

SRLT new -~ SRLT old +[hj-1 (1-8,

3-1,1) +hj (1-86

j-1, TL+ 1‘]

* - - - <3< )
[(nij-l nej-l)new (nij-l “ej-l’om]’ 1=j=JL+1 (3.37)

S (3.38)

RLj-1 - SRLj [“ij'“ej Mt “ej-l] '
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In this appendix we discuss several of the details of the program
evolved for the Sn method describing the motion of charged particles

in an electric field.

A flow diagram of the main program is shown in Figure 4. 1.
The logic is very primitive; the logic of the subroutines is even more
elementary, so no flow diagram is presented of these subroutines.
No explanation of the flow diagram is believed needed other than the
remark that the Sn method requires integration in two directions
according to the sign of p and this fact must be taken into account in
the logic, as it is. Figure 4.2 is a genealogy chart of the Sn program;
it is most elementary. The functions of the various subprograms are

listed.in Table 4. 1.
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TABLE 4.1

FUNCTIONS OF VARIOUS SUBROUTINES IN Sn PROGRAM

Program Name Function
BOLZEL Calculates electron density from source and electric field.
BOLZIO Calculates ion density from source and electric field.
BOUCON Calculates boundary conditions at electrodes.
ELEINI Calculates the bounding values of the electric field.
INITIA Initializes all variables.
INTERP Interpolates initial charge distribution.
MAIN Controls everything.
OUTPUT Writes out all results.
PLASMA Calculates boundary conditions at plasma-sheath interface.
POTENT Calculates the potential.
READIN Reads in all data.
SPECTRA Calculates the spectral and angular distribution of the

electron and ion densities.

SUM Calculates sums needed for source terms in the equations
for the electron and ion densities.

TEMPER Calculates the temperatures and drift velocities of the
electrons and ions.
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JAR TFCA,4137,A
LIMIT (TIME,30),(UP,B00),(H,2)
FARTRAN <1,0R,0LS%,X

MFLVILLE CLAPK

PRAGRAM NUMIFRS ARF AS FALLAWS?

MAIN, KiRBUCAN, 3;CAFFELSPSICREFIN, 263CERBUG, 123DENSIT, PIDFPTH, 27;
DETFJL, 1635 DFTCJIR, 153 FLIADF, 45 INITIA, 53 INTFGRAL, 113

INTFRP, 14; KFPARA, 17; KFT, 18; KPARN, 30; SLTPUT, 73 P, 213

PLASMA, R;PATENT, 4;REAPIN, 103 RJACAB, 223 SBLRFL, 733 SAURIN, P&:
SPFCTRA, 9; TFM, P9; TEMPER, 1335 VCRIFT: 285 NOKFPA, 19

PRAGEAM NUMRFR 4
THIS PRABRA~ JSFS MKG RATIANALIZEN UNITS INTFRNALLY

OO N OO N

CANTRBLS FVFRYTHING
IF TYPE = 1, INTEGRATF FREM RIGHY FLFCTRADE TA LFFT ANE AND 3ACK T®
RIGHT ELECTRANE. IF TYPF a2 o, I[NTFGRATF FROM FLASMA T8 RIGHT FLFrTReNF
AND RACK TR PLASMA, IF TYPF = 3, INTFGRATE FRAM PLASMA TA LFFY
FLECTRBDE AND BACK TA PLASMA., IF TYPF 2 4, INTEGRATE BNLY ALSNG aX1©
FRAM™ RIGKT FLECTRRADC TH LFFT ANF, IF TyPE = &, INTEGRATFE ANLY ALANG
AX1S FRAM RIGHT FLECTRANE TA PLASMA. IF TYPE = 4, INTFGRATF ALY ALAAT
AX1S FRAM P| ASMA TR LFFTY FLECTRANE,
2-AXIS 1S PASITIVE TA THF RIGHY AND NEGATIVE T8 THE LFFT,

IMPLICIT RFAL %R (Awh, R=27)

REAL#R NETT,NITT

INTEGFR#*4 TYPE

GLBBAY LI, TL, PrIL, JlLs TR, PHIR, JLP, LIP, ITs ITL,PBTI(NS1s4),

NOMNMDONOO NN

A CPADEN, ML, FPS,NL,TYPF,CSLF,CSLER,CSLFL,CANDEN,GAMMA, IMMAX, 1M,
R PATPINS1)SNETTIOS1INITT(ORT) L ITIMPR,ITIMAXL IEXTRA, ITIMR,
COITIMI,ITIMCY

X 1F FLAATING AVFRFLAW 500,500

X500 CANTINUE

CALL STIMER
CALL TTIMER(ITI™I)
C RETURN PAINT T8 FXFCUTE ThE NEXT JAB IN THE STACK
? CANT INLE
ITALLY = Q3 ITI¥“CY = O
C REAT IN THE INPUT NATA
CALL RFADIN
WRITE(108,403) ITIMAXHITIMPR, TEXTRA
403 FARMAT(' ',V ITIMAXZ ', T4, X, VITIMPREY , 14, X, 'TEXTRAR,14)
C CALCULATE THE INITIAL VALUFS 8F ALL VARIABLES PASSIRLE
CALL INITIA
™ = 9
C INTFGRATE FRAM LEFT FLECTRBNDF TR RIGHT ELECTRACF
IF(TYPE +FQe 1 oBRe TYPE +FQe 4), L! s 13 CSLE = CSLELS
A CALL RAUCANI(TL,PRIL)s LI = JL+1s CSLE = CSLER:;
B CALL RRUCAN(TR,PHIR); GBS TR 8
C INTEGRATE FrBM PLASMA T8 RINMKT ELFECTROBNE
IF(TYPE +FQe P «BRe TYPE oFfe 5), LI = JL+13CSLE = CSLFRJ
A CALL RBUCANI(TR,PHIR):; JLP = 13 LIP s 2; CALL PLAGMA; GB T8 8
C INTEGRATE FrAM LEFT FLECTRAME TA PLASMA
IF(TYPE oFfe I oBRe TYPE «FRe 6), LI = 13 CSLE = CSLFEL3}
A CALL RPBUCAN(TL,PWIL)s JLP s JL+1; LIP = 1;CALL PLASMA; GB T8 R
RUTPUT, 'YMAIN3', TYPF
CANTINUE
INTERPBLATE THE ELECTRABN ANP I8N DPENSITIES BETWFEN THEIR RBUNDIMG
VALUES TO GFT INITIAL TRIAL VALUFS AT VARIBUS PASITIANS
CALL INTERP
CALL TTIMER(ITIMA)
G/ T8 22
3 CANTINUE
CMDEN = (1.0DC = GAMMA)/Z(1,0D0 = GAMMAw##(17+1))
CADEN = (140DC = GAMMAX#IT)INGAMMA/ (1000 o GAMMAS#(1T+1))
C CALCULATE TwE PARTICLE TFNSITIES AT ALL POBINTS
CALL FLIBPE
22 CANT INUE

MO
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C CALCULATFE TuF SPECTRIIM
CALL QRFCTRA
IF(I™ «GTe 1), GB TR A
C CALCLLATE THE ELFCTRAN AND 18N TEMPERATURES AS A FUNCTIAMN BF PRSITIAN
CALL TFMPFR
€ SAVF Thf ALN PRTFNTTAL
REPEAT 5, FRR P = (2,JdL,1)
& PaTR{ jP) = PAT(JP,1)
£ CANTINUF
C CALCLLATE TwE PARTENTITAL
CALL oaTE* T
CALL TTIMER(TITIMC)
WSITF (108,402) TNV T T ITIMALTITIMB,ITIMCHITIMILITIMCY,ITALLY
477 FORMAT (Y 1,1 M) T14,%, IT=t,T4,X,'ITIMAR! , IR, X, " ITIMR=!,1R,X,
A VITIME=!Y T, X, ' ITIMI= 1R, X, PITIMCY=, 15,%, ' ITALLY=?,14)
INKFR LRAR 1 TFRATIAN CANVERAFNCFE TEST
REPEAT 4, FAR JP1 = (2,JdL,1)
4 [F(MARS(PAT(JF1,1)=PIT(JP1,2)) oGTe FPS «ANDe TM LLFe IMMAY),
A 1" = 1M4+1; GR T 2P
T = 9
C CHUNT THE ITFRATIAND AND TA NAT eXCCFD ITERATIAN LIMIT
IFCIT «n5Te ITL)Y BLTRPUT, "™AIN1'HPATP, PAT: GA T8 13
C MAXIMUM NUMaFR AF JTEFRATIANS TRLFRATED RAVE REEN EXHAUSTEDee EXIT
C MAXIMIM NUMREFR AF JTERATIANS IS NAT YET EXRAUSTFD.
C TFST TA OrTERMINE IF CBNVERAFNCF HAS REFN ACHIEVED
na 11 UR = 2, JLat
11 TE{DARG(PAT(JT21) o PRATP(JP)) «GTe FPS «8Ra IT «LFec 1)y GA T 7
C 1TEFRATE AGAINe CANVFRIFNCE AT ACKIFVEDR
C CANVERGED e IPDATFE CO*VERGENCFE TAL LY.
ITALLY = ITALLY + 1
TFCTTALLY 3T« JTEXTRAY, GA T8 13

)

C FXTRA CONVERAENCFS AVE REFM DRMF.

C FXTRA CANVFRAFNCFS HAVE NAT RFFM PANF .

C PRINT BT RFSULTS. FLEAN LP PENSTITY ARRAYS IN NFXT ITERATION.
GAMMA = QeND; AUTFEIIT, SAMMA, TTALLY

1 CAONTINUF

C PRIMNT PATENTIAL

CALL AUTPRT
C PRINT ALL RFSULTS
CALL AUTPHT
a CONTINGF,
C KFFP GRING A GFT AS MUCK TANE AR PASSIRLE BEFORE TIMFE 1S UP.
IT = 17 + 1
G® T4 1
CANTIVLF
UPDATE THFE MAXIMUM CYCLF TIMFe
CALL TTIMER(ITIMR)
TTIMPAY = MAXC(ITIVCY,TABS(ITIMA=TTIVR))
ITIMA = [TIMR
TF(TARS(ITIVRAITIVT) oL Te TTIMAX<(ITINPR+ITIMCY)),GR TA 9
C PLENTY AF TIME BEMATNS, RYPASS REQLLT BUTPUT.
C TIMF 1S NFARLY LP, PRINT BUT RESULTS.
Gn TA Y

M ~d
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13
C

X X X ™

CoNT INHIF

PRINT AL T AL RFSULTS
ralt avTRPAT
CALL »~"ITPULIT

CANTINLE RPAMINSG NATA LATIL ALL ARF FXHAUSTFD
B TRUT,IEND AF PREGFNT CASFEY; 0B 18 2
FAT

MELVILLY ClLARK

Rt ACK "ATA

' ITTTALIZES VARTAIIS VARTARLES AP ASSERTS VALLFS BF CANSTANTS
I"TEGeR%h TL/4/7, TTL/10/5 ML /47 NL/<4/s TYPEZ1/, JMIN/P/,
4 T“™AX/4/
INTERER 29/1/072/7°/7023/3/024/74/
REAL*2 T/1e6C7P1Na10/, FPS/.01/
REAL %2 FPaTL A/248G4MN e 12/)H/ ke APON=34/2K/13804n=23/
REAL #2 ME/Q 4102021/, M1 /24P06927N=25/2NEF/02/ 2 NTF/0e/sRETA/D e/
REAL%x Pl1/3¢141RGPABIRRIT7923/,VI/3e833/5TLEL/2500e/2»TRIL/2000/
REAL*¥Q CAPEN/0eNO/sCANPEN/L PO/ ,GAMMA/ D0/
REAL*3 RIANA/L1«F74/,BRIGRNR /1 ,F74/
GLARA F, FPR,EPSTILAHIKIME,MT,
A NFPy, 1P, BFETA, P11, V1, TLFL, TRFLAML, NL,JMINGILLTYPF,IT!,
R CODEN,TNDEN, TMMAX, GAMMA
GLARAL 71,727,735, 7423150N8,RRIANA
FrD
MELVILLE CLafK

SURRATING BALCAN(TEME,PHIW)

PRAGTRAM ANUMOFR R
CALCLLATES qflNMARY FANSITIONS AT FLECTRADES
IMPLICTT RFAL¥R (Awh,Ral)
REAL®x NESKTT,KFPARA,* T
CrRMMAL NE(NR1,09,C2,02),N1("51,0042C2,02)
CGLARAL LI,CRFE,TL,NL,CELE,D,F, 1"
ZERD FMISSTIAN PRESCRIRFN FRAM FMITTRER AR CALLFECTAR
FEPEAT 10, FRD N = (1,NL+1,1)
CEPEAT 10, FRE T = (1,(1L+1)/2,1)
RCPEAT 1C, FRR L = 1,7
C 5 =»F
TEMPEL = KET(LTAN)
TFLTEMPEL oLLFe D«CYs NE(LTSNSTI21) = O0«C0;3 GB 7B 1
NELLTsN2TLL) = CRE#TEMPE| «NFXP{=(PHIW+TEMPFL)/TEMP)
CANTINYF
T o= F
TOMPCa = KET(LT,M)
IC(TE RS wLFe NalfCYy NI(I ToNsTsl ) 3 JeCC; GB THA 2
NT(LT, N Tl ) = CSLF#TEMPCCrEXP(-TEMPCS/TEMP)Y
CANTINLF
TEIPMININECLI 210 aNT LTI M2 Tal) ) ol T Qe o8R,
A DMAXNE (LT N Ty o NT L TaN T L) YeGTe 14E21) BUTPUT, 'BAUCHBNY!?,
2

ToLToNaNE(LTI M 5oL ) s NTALT, M, Tl aGoNs ToKFTILILNYSCRESTEMPFL, ‘
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DEXPLa (PHIWHTIMOEL Y /TEMP ) ,NEXP (= TEVMPCS/TEMP) ,CSLE, TEMPCS, TFMVP,
PHTW; CALL FXIT
1 CANT INIIE
X 1° FLAATING AVERFL 94w AC2s RO2
X507 CANTINUF
RETURA

XANP ALTRHTy tayFRFLAan IN BALCRY I N ML, T Tl s LaL Y, TEMP,PRIW,CRFELCSLE,
X A TEMPCA, TEVPOL,"FXF (e« (PRIWH+TIMPELY/TFNMP) ,OFXP(«TEMPCR/TEMP) ;1922
X R CalLl nFRUN('RALCBNG Y)Y CALL FXIT

FAl
MELVILLFT CLaAPK

>
J M

S1RRAHTINE NERIG(NAME)

PREGRAM NUMFR 12
NERLAS ALL aTHER SURRALTINFS UPAN CALL
IVPLICIT PEAL*R (A=hyRel)
INTERER 21, 22, 7230 7hs 17
REAL#R NFANTHANETTINTITT,KaM TTANFTLNENGNIN
DIMENAQTAN NAME(?2)
oMMy, NE(NS1,0%:072:02) 2N (0815082025024 FN(DRL1,02.02)0
A NIN(D81,07,02) ) NEFTE081,09,n2)aN11(051,C9,22)
GLEORA TE(CR1IYIL,TI(Q51 ),
A NFTTUORIILNITT(D51),PPT(CH1),X
BLRRAY 71,722,773, 724,18
TE(1a «FQe 1) WRITE(12R,40N) (NAME(KI), KT = 1,2); A TR 1
WRTTE (108,401 (NAME(KIY, KT = 1,72)
X400 FRAQJIMAT(IH »2A4572Xs TINPUTH)
X401 FARMAT(1H 2PA4,2X, 'ALTPUT!')
X1 ALTPRT, PNF MATRIX, NFT MATRIX, NFETT VFCTHBRS
X WETTEL1D8,B0C) ((KNp (KUJp INFUKIIKN,L 121 sNE(KIIKNS,PH 1),
X A NE(KUIKNS 2,2) s NE(KJ2aKNI122) 0
X ROONFI{K KNS IYHNF LUK UIK* b P2Y ) RFTTUKU) ) s KUs1051),KN21,9))
X5C0 FORMAT(( "™V, "N, Th,X, ' et , 140 1PAET11e3/,50(8X2 " Js' 14,
A 1PEEL143/)))
BUTPLT, '™NT MATRIX, NIT MATRIXs NYTT VECTAR!
WEITE(LI0R,ROCYLIKN S IKIp INTIKUSKN, 1,1 INT(KJIKN, P51,
A NI UK UsKNS 222) s NIIKUIKNS122) s
AOONTTUK MNP LY HNTT U Ja KN 2 NTTT UK ) ) pKU21051)sKNE1,9))
RUTPUTY 'NFN MATRIXY, NIN MATRIX!
WRTITF (108,502 (KUSNENIKIN1, 1) NENIKIS2,1),
NEN (K UpPsPYIaNFRN(KUS 1,2 aNIN(K U 101 NIN(KUS2s1) s
NIN(KJIZ2,2)aNIN(KU»L122)0KJ=1,5F1)
FARMAT('C'y 1('J="5 14, X2 1P0RFEL10en/)250(Xa'J="'s14,X1PO0RF10472/))
BUTPHT, YILFECTRIL PRTENTIAl , FLFCTRAN DENSITY, IAN NENSITY, ',
A 'TLFCTRAN TFMPFERATURF, 18N TEMPERATURFE!
WRITE(108,501) (Ku,PRT(KJ)Y, NFTT(KJ), NITT(KJ), TEI(KJ)/K,
A TH(KIY/K, K =1,51)
FRRMAT (M1, '] =' 5 T4,Xs1P1EL11¢3,1P2D073e15,1PPE11e3/,50(X,
AV =, TA,XalPIF1143,102023415,1P2F1143/))
RFETUR
E‘Mn
C MFLVTLLE CLARK

M XK DI NI KX NI YD

n >

N
O
g

b 4 A 4 4 4B 4 b db g db 4 db b ab db b b ¢
Ji
]
-
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SURRAYTINF NENCIT (I, NNy 10, LD, SAUPR1, SBUPR2, CAFF, NN)

PLAGRAM NUMRFG 7

C CAMPILTES The PARTICLE RENSITIES

T“PLIFIT FEAL®R(A=H, A=2)

RECAL#2 ‘N, IMTFARRAL

TIMFNQIPN MN{LR1,C9,0°,02)

GLARAL NCASE,CNPEN,  JLL, JPL, LnL, LDR, Uu3,CROEN,BRRIGNR
FXTFRVAL SRUPRY, SRUPR?

GO TR (1572154527575 R)s NCASE

C PARTICLr GAFS FFAM [ LcFT RAUMNDARY T8 RIGHT B3ULNDARY

C PARTICLE GREFS FKA | FET RHIIMNDARY T8 RIGHT REFLFCTIAN PAINT
1

3

M X X X X MW X

501

™NEOODOINYN

MW X XK XX X X XK

oy

o}

= Mamn

Fe3

>

27D L

Jt = gtlks LhL = 25 LB~ = 2

TEMPD =2 NMN(J1,NDHIDL,LPR) P (UL, JDWND,IC) + CREF*INTFGRAL (J1,dD,
SAUPRIHND, IN)

NANLUD L NDLINENT Y = ONOFN®#TEMPDYL ¢ CACEN®AN(JRHND, IT,LDL)
TF(NN(AD, NPy IN, LOL) oLTe0aN"enRe NN{LCH» NC» IR, LDL) ofT.
REIGCNA) ,BLTPUT, '"MENSTII', AN(JIR, NCy ID, LDLY, Jis NDy 1D, LDL,
RRTIGNANNN(J1, Ny ID, LDRY, LDRy JC, CBCEN,CNOEN, TEMPMY,

P(Jls JNy NN, IDY, CAFF,

INTEGRAL(JY s, UMy SBLPRL, NP, IN),NCASE; CaALL ExIY

TF FLAATING AVFRFLAW AN1, 801

CANTINUF

G5 T4 100

PARTICLF GAFS FRAM RIGKT TR LFFT FRAIM ANE RALNDARY TA TkE BTHER

J1 = RL3 LBR = 1 LD = 13 G8 Tp 3

PARTICLT GRFS FRAM |LFFT RAUMNARY TA RIGHT WRERF IT IS RFFLECTFD
RY THE PATENTTAL AND THFN MPVES TR TKFE LFFT

Jt o= gLb: J3 = JRL: LNL = 13 LPR = 2

TEMPOY = NN(J1)ND, ID,LPRY*P (U1, JRAND,IC) #P(J32UDKNC, IT) + CAFFx
(INTFGRAL (JD, U3, SAUPRILNE, ID) + TNTEGRAL(J12J3,S8UPR2,NM, TN ) »
PUJ3s DaNDSIM))

NACJD AN, IR LPL) = CANREN®TEMPDNA + CHNEN*AN(JNDAND, 1D,LDL)
TFINNCUD, NN, TN, LDLY oLT40e00eBRe NN(JCs ND» 1D, LDL) WGT,
RERIGNS),BL.TPUT, tNENST4Y, NN(UDs ND, I, LDLY, JD, ND, 10, LDL,
LR, P(J1, J3, ND, ID), P(J3, JD, ND, IC), CNDFN,CANEN,TEMPD4,
COFF, INTFSRAL (UD, U3, 87UPRY,

NPs 10)s INTEARAL (J1, J3» SALPR2, NDs ID), P(J3s JD, MDY, IN),
J1s U35 JlLe JRPLIRRIGHRHINCASFI CalL EXIT

1T FLRATING RVERFLAW £02, 502

CANTINUE

e TR 100

PARTICLF GAFS FRAM RIGKT BRLADARY T4 LeFT WHERF 1T 18 RFFLFCTFD
RY THE PRTENTTAL AND THEN M3VFS TR THE RIGKT

JU = RL; J3 = JLL3 L"L = P LDR = 15 GO T8 6

PARTICLE GAFS TR THE RIAHT AFTFR EXPFRIFNCING MULTIPLE RFFLECTIPNS

J1 = RL; )3 = JLL: L°L = ?

TEMPR7 = (INTEGRAIL(J3,JDasRUPRINND,ID) +
INTEFRRAL(UZ,J12GBLPRP,ND, 1M %P (J3,JD,NC, I )

TEMPRE =2 P(J3,01,8D,1M)

IF(1an0 » TEMENE olFa CeDNY»TEMPR7 = AN(JNINDLID,LEL)Y
G2 TR @
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XX XXX XM WK XX D

X503
100

DTN DD >

- T

TEMPR7? = (CAEF#TEMPDZ)Y /(1.0 = (TEMPDE#%2))
NSCUNLNDL INLLTLY = CNPEN®TEMPY7 + CAOFNSNN(JNINDL ID, LD
CANT INUF
TEANN(JNDS NPy IR, LPL)Y oLTeNeDNeARe NN(UDs NCs» IDs EDL) AT
RITANA) »BLUTPUT, 'DENSIS!', NN(JN, KB, IC, LDLY, JE, ND, 1T, LOL,
1" TEGRAL(J3» U GBLPRIANDLIM) U3 SALPRIILUDIND, IM) L INTEGRAL (U329
SAUPRDH)ND S INY,SALPR2(UNIND L IR 2P (J32JDaND, IT) 2 CBFF,
J1s TEMPDF,TFMODT, J1IaLOL JLNRGNNCGLAND L IC, LD Y s U1t D, 1D,
NNCAN S ND S INLLRL )Y s ONBFNS CANEN, CREFR

J3INNCUL1ANNIID,LDR)Y, RRIGHNA,
PUJTISUNANE ) IM)Y L INTFGRAL (J1,JCs SBUPRLLNE LI,
INTEGRAL (UDSJR,SBLPRLMADSIN) yINTFGRAL (U1 J32SBUPRPH,MND, IM) »MCASF S
CaLL FXIT
IF FLAATING AVERFLAW 403, &0N3
CHANTINUE
CANTINLF
RETURN

C PARTICLF GAFS TR ThF LEFT AFTERP FXPERIFNCING MULTIPLF RFEFLFCTYIBMNS

8
X601

»
o
A M)

X X X X X X XX XXX X
N
o
w

c
c
C
C
C

> X

39D 0> @}

D I e

J1 = Ll J3 = JRL: LPL = 15 5P T8 10
RLTPIT, 'AVERFLAW IN NENSTIT FAR NCASF = 1,72,35 BR &' ,NCASF,JD,
NS IR, LDl J1s LR JLL» URLANN(UDISND R IDLLECL) A NNIJLAND L, ID,LER),
CNDEN,CADEN, TEMPLL ,P(J12JD,ND, ID)Y ,CHEF,
INTERRAL (J1,UM,SBLPR1LND, 1M CALL EXIT
BUTPUT» "OVFRFLRWY TN DRFEASIT FAR NCASE = 4 8BR BY,NCASF,UNIND,ID,
LOLaLnPR,J15J3,P U1, U35 ND,IR) ,PUU3,JDNDS IT)IANNIJIE NN, I, L0,
NANEJL,ND, IDLLNR) ,CNCFEN,CBOFN,TEMPL 4, COEF,

INTEGRAL (UD,J3»SBUPRLILNG,ID)
INTEFARAL(J12J32SBUPRP,NDLINYILP(J3,JUNANES IR CALL EXIT
ALUTPRIT, '"BVERFLAW IN DFASIT FBR NCASF =2 7 AR &' ,NCASF,J1sJRL s
JR2JL DL, UDNDL IN,CREF,TEMPN 7, NN, NC, TRLLEL) ,CNDEN,CPDFEN,
PUJ3s 1 aNTHIN)LINTEGRAL(UR,JC»SBLPRIMNE,IT)I AP (I3, JDHND,ID),
IMTESRAL (JU3,J1,SOLRR2,ND,IM); CALL EXIT
EAD

MELVILLE CLARK

FUNCTIAN TEPTH(JCP, NP, INP)

PRAGRAM NUMRBFR 27

CAMPUTES THF APTICAL DFFTH

IMPLICTT REAL*R (Awh,RaZ)

REAL#g MU,KERP,KFT

GLABAl BIGNA, SIGMA,KFR{10,04)

TF(KET(JDPANNFE) oL Te NeDO +8Re KFP(NDP,IDP) oLTe CeDO), QUTPUT,
INFPTIG ') JDP,IDPONDPI,KET(UNPLNDP) ,KEP(NCP,IDP)Y; CALL FXIT

TEMP =100~ (KEP(ANDP, INPY/KET(IDP,NDF))

TF(TEMPeLTea0e0)s RUTPUT, 1PFPTH4',) NDPS ITPIJCPIKEP(NDP,IMP),
KFET(JNP,NPP) 3 CALL FXIT

M) = NARS(NSART(TEMPY)

IF(M) «6GTel1eDNeARe MUsLTeQsMNCYs» RUTPUT, 'NFPTHR!', NDP, 1DP, JNP,
KEP(INNP,INP), KET(JEP,NDP)Y, TEMP, MU; CALL EXIT

DFRTH = SIGMA/MU

TFIDFPTH oL TeCeN0eBRe TEPTH «GTe BIGNH), ARUTPUT, 'DEPTHI!,
SIGMA, JDP, KNP, INP, MU, PFPTH; CALL FXIT
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RETURN

Fr N0
MELVILLE CLaARK

G )

SURRATINE DETFJL (JDTL,NDT,INT)

PEAGRAM NLMRER 14
NETERMINES THE ARIN PAINT AF THF LFFT BAULNDARY AR LFFT
A REFLFCTING PRINT
T"PLICTT SFAL®R (Aek, 0=7)
Rt AL»R KFPARA
GLARAL JLL,JRL S JLINCASFE pJMIN, ITIME, ITIMI, ITIMAX, ITIMPR, ITIMCY
TF(KFPARA(JLL=12N"TLI™T)elLFeCaN0Ys GB T8 10
INAPMISSIRLE RECTIAN, FIND THE NEW JRI. AND oLL
ANMIGS TP LF REGIAN
REPEAT &, FOR JT4 = (JbLbL ,JdL+1, 1)
IFIKFPARA(UT4ANDTHINT)Y o LFeroaBDYs URL 3 UT4-13 GR TR 4
New JRL IS A RIGHT REFLECTTIAN PRINT
CANTINUE
MW JRL IS THF RIGHT FLECTRADE
JRL = JL+1
CaNTINUF
FINT ThE NEAN TINADMISATIRLF RFGIBN, FIND JLL
REPEAT 11, FAR JT3 = (JLL=Ps»1s -1)
TF(KEFRPARA(ITILANNT L INTYWLELQeDDY, JLL = UT3+1; NTASE =243 GR TR 4
C INAPMIGSSIRL e RFEGIPN AND JLL FApNP

R REale!

O N

[ B

11 CONT IR

C N8 NEw ATMIGSIBLE RFAIABY FXISTS
NCAGF = 2
Jito= 9
G TR 20

19 CAMT INUF

C FIND TE NEW JRL e
REPEAT 1, FAR JT1 = (JLLe?, 25 =1)
IF(KFPARA(JUTLI,NNTLICT) «GTeNelIYs JRL = T13G8 TR 2
THF NEFw JRLL HAS REFN FBULNC
CENT INUF
cAr TINUE
THE CASE MNUHMRER IS KRAT KFEDFD ANN MAKFES NB DIFFFRFNCE
JRL o= 0 JLL = 93 /AR TR 20
CANTIN''C
FIND TRF NFu JLL
REPEAT 3, FAR JT2 = (JTlel, 1, =1)
IF(KERPARA(ITZ2ANDTHIDTYaLE«Qel)) s JLL = LT2+13 NCASF = 83 GR TR 4
C THE NEW JLL HAS BFFN FBULNM
3 CANTINUE
C THF LEFT RAINDARY 1§ TwE LFFT ELFCTRRNDE .
NCASE = 4
JLb o= 1
G T8 20
1S THE MFW APMISSIRLE RFGIANY TRIVIAL 1F SA, FIND A NFW REGTAN.
CANT INUE
IFC(JR=JMIN o]l Te 1) oBRe (URL=JMIN oLTe JLL eANDaJLL oLE. 2)),.

O +—= 0N

[\

O
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A GR TR 7

IF G «GTe JRL=JMIN)Y, Ge 78 10
' C THE CASE IS TRIVIAL
£ CANTINUF
C THF CASF IS NPT TRIVTIAL
X TF(JRE oL Te JLL o AR« MIN(JLLIJRL) oL Te 0O o8Rs MAX (JURL,JLL)
X 4 e Te 1 +1 +BRs NCASF oL Te 1 o9Re NCASE +GTe R), BLTPUT,
X ROWNETE L3, URT JRL2JLL,JLANCASE» UMINIANT L IDTHJT1,JT2,UT3)
X r KFPARA(JLL=1sNDTHINT) ,KFPARA(UTIHNDTLIDTY,
X S OKFPARA(GJTIHLANRT,LIDTY, KEPARA(UTPAINDTLIDT); CALL EXIT

IF(TARS(ITIMB=TITIVI) «LTe TTIMAX&(ITIMPR+TITIMCY)),GR T9 8
WRITE (108,400 UCTHNDT, IDT,NCASE, JLL s JRL
4CC FORMAT (! "0 nTet, 14, 'MDT =, T4, ICT=1 214, 'NCASF=Y, 14, JLL=Y 14,
A YURL=s',T4)
g CONT T IR
RETURNY
Ene
MELVILLF CLARK

M

GiL,REANTING PETFUR(JINT, NDT, I0T)

PAGRAM NILMAFD 15
DETERMILES THE A2IN PATNT AF THF FIGHT RAUNDARY AR RIGHT RFFLFCTIAN
POINT

aEalaEe

IYPLIFIT RFAL #R(A=H, A=Z)
ROAL¥Q KFPARA
GLARAL JRL,JLL aNCASE,JLyJMIM, ITIMR,ITIMIL ITIMAX, TTIMPR, ITIMCY
[F(KEDARA(CIRL+1, NDT, IDT)W4LFe0enQ), GA TA 10
THE NEw REGIAN TG TMATMISSIRLE .
THF ANFWw REGTAN 1S APMTSSTIBLF
RCPEAT 5, FAR JT4 = (JSL  ,1,=1)
TFAKEPARA(IT4,ANTHINT)ILF« Qe JLL = JT4+15 G2 7B 6
TWE NFW Ol 1S A LFFT RFFLFCTIBM PARINT
CONT InHIF
THFE NEW JLL 1S THE I FFT ELECTREBNF .
JLL = 1
CANTINUFE
FIND THE NE. INADMISSIBLE RFGIBAN AND JRL
REPFAT 11, FRRP JTR = (JRL+P,JL+1,1)
JFAIKFRARA(JTR,) NOCTy, I7T)elFeQeN0)y» JRL = JT3<1; NCASE = 3
A GP TR 4
C THRF \Fw INANMISSIRLF REGIAN AND JRPL KAVE BEFN FAUND

NN mn N

I e

11 CANTINUF

C N8 ANFW INADMISSIRLF RFGIAN FXISTS.
NCASE = 1
JeLo o= JL o+ 1
GR TR 20

10 CONT INUE

C FIND THE "Fu LFFT RFFLECTINTS RAUNPARY,

RCPEAT 1, FBR JT1 = (JRL+?, UL » 1)

IF(KFPARA(ITYI, NETs INT)eGTeCeDNYy, JLL = JT13 GR TA »
C ThF MFW LEFT REFLFCTING RAUNDPARY AND JLL HAVE BFFN FARUND,

b 1 CANTINUF
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7 CANTINUF
C THF CASE NUMRER 1S NART NFERFD AMP MAKES NO DIFFFRENCE
JEL = JL+2; UL = JL+7s GA TA PO
z FANTINUF
C FIND TwhEe NFw RIAGHT RAINTARY.,
RFPFAT 3, FRR JT2 = (JT1 + 1, JL + 1, 1)
IF(KFPARA(JT2, DT, INT)elFeCePNO )y JRL s JT2=1; NCAGF 3 7;
A G TA 4
C THE NFw RIGRT REFLFECTING RAUNDARY AND JURL KAVFE ABFEN FAUND,
] CAONT INUF
C TiF RIGRT RalINDARY 1& ThFf RINHT FLFCTRADE,
NCASF = §
JTL o= JbL+
GP T8 20
C 1S ThE "EWw ADMISSIRLFE RFGIAY TRIVIAL TF S8, FIND A NEW RFGIAN,
4 CeNT IV UF
TFOCH L+AIMIN «BTe JL+1)Y B8Ry (JLIE+UMIN oGTe JRI «ANDe JRL oGF
A JlU)), 8 TR 7
[FIJRE oL Te JLL+JMINY, G8 18 10
C THE CASF IS TRIVIAL
C Ti-F CASFT IS ANAY TRIVIAL
29 CONTINIUIF
X IF(JRI oL Te JLL eARe MIN(JLLS JRL) oLTe 1 oRRe MAX(JRL, JLL)
X A e Te JL+2 «B8Re NCASF oL Te 1 «9R. NCASFE «GTs R), BUTPUT,
X Q tRETE (R3Y, JURTLDT, JrLy Jhis JLa NCASE, JMIN, JTY,
X C JT2s T3, INT, KEPARA(JRL+1s NNT, IDT)s KFPARA(JTZ, NDT, INTH,
X NOKFPARA(JITL, NPT, INDTY, KEPARA(JIT?, NDT» IDT): CALL FXIT
TFLTARS(ITIMRATITIMIY oL Te ITIMAX{ITIMPR+ITIMCY)),GR TR R
ARTTE (108,40C) JCTHINDT,IPT,NCASE,JLL,»JRL
410 FOARMAT (! ', v T, 14, ADT =, 14, 10Tz, 14, 'NCASF=', 14, JLL=,14,
A 'URL=1t,14)
R CANTINUFP
FTURN
E‘\’\
C MELVILLE ClLaRK
o
SLRRAYTINF FLIAD
C
C PRBGRAY ANUMRFR 1
C CANTRBLS Twhp CALCULATIBN AF PARTICLF DENSITIES

IMPLICTIT REAL#R (Amp,R«7)

REAL#R NE,NT1,1QRPRYL, 1CRAPR?

gaMMay NE(0B1,79,22,0”2),N1(051,09,02,02)

GLBRA| E,T SICMAE,SIGMAT, TLaJL,NLAJRL,JLLS,J3s SIGMA,CARDEN,

A CREFEL,S2M1BP

FXTEeNAL 18APR1, ISAPRZ,FSAPRL,ESHPR?

EQAPRYI(JTIXNTI1LIT1)Y = SOURFL(JILILNTILLITL)#P(JI1sdaNIL, 111

ESAPRI(IIPHNIZLIIP) = SAURFL(JIZINIZHTII2I#P(JI2,u3,N12,112)

1SAPRI(JIRNNIR,TI3)Y =2 SAURINIJIZNIZIIZNI*P(JI3,UsNI3,TI3)

1G8PR2( J14,NTa,]l4) = SOURIN(JTGNTS, TT4)Y P (JT4,Ud3aNT4,]1T4)
C CALCLLATE FIFECTRAN "ENSITIFR FOBR FLECTRONG MAVING TB THE RIGHT

STGMA = SINBMAF; G = «£3 L = 2

REPEAT 1, FRR N = (NL+1, 1, =1)
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RFPFAT 2, FAR T = (1,(1L+1)/2,1)
JPL = 0
CALL NFTEJR(Js 1)
REPEAT 3, FAR J = (2, JL+1, 1)
IF(J JLTe JLLY, GA TR 15
IT(J JLFe JRLY, G® TH 31
C FIND TRE NPy RIGHT RAINMARY AND JRL
CALL NETEUR(UIN,T)
C SFT TRF PARTICLF NFEASITY cRUAL TR 2rRB BETWEFN THF BLD RIGHT RAUNDARY
C AND THF AEW4 LFFT RBAINDARY
15 CAONT IaF
RfEPEAT 16, FPR JF1 = (J H»JLL=1s1)
NECJP1aN, T,L) = CRNDENSNE(JFRI,N,T,L)

1A CONT INF
Jd o= MAX(ULLS2)
31 CENTINF

[FOJILl «GTe Ji+1), 5 TA 3
CALL NFNSIT(UINITSLiFRPPRY,ESAPRR,CREFELINF)
CANTINLF
CANTINHE
CONT I UF
IT FIl aATING AVFRFLAW AN1, &N1
=C1 CANT INUF
CALCILATE FIFCTRRR NFNSITIFR FRP FLECTRANS MBVING TB TWF LEFT
L o= 1
REPEAT 4, FAR N = (NL+1, 1, =1)
REPFAT 5, FAR 1 = (1,(I1L+1Y/2:1)
JLL = UL + 7
CALL NETEJL(Jsrs 1)
RIPFAT 6, FAR J = (JL s 1, =1)
1IF(J +7Te JRL)Y, GR TA 14
1F(Jd +GE« JLLY, GB TA 33
C FIND The NE, LEFT RAUNDARY aND JiL
CALL NFTEJLGJINS 1)
C SET THF PARTICLF DPFASITY LQUAL TR ZERA RETWEFN THE BLD LFFT BAUNNDARY
C AND THE NE'Ww RIGWT RAUNMDARY
14 CONT IR
REPFAT 13, FOAR JF2 = (JsJRL+1,=1)
NFCJF2,M 1,L) = CROENSNE(JFP,N, 1, 1L)

M X X == N) (W)

13 CANTIMHIE
Jo= MIMOJRL,JL)
33 CANTINLE

ITUGJRE oL Te 1), GR TA A
CALL NFNSTIT(JsNs1,L,FSBPR1,FSIPR2,CREFELINF)
& CANT TNUE
g CANTIF
4 CANT INUF
X IF FLaATING PVFRFLAW A072, B8NP
X502 CRNT IMUF
C CALCULATF Jax DFNSITIFS FOGR TANS MAVING T8 ThE RIGKHT
SIGMA = SIGMATI; Q@ = F3 L = ?
RCPEAT 7, FPR N 3 (NL+1» 1, =1)
REPFAT 2, FAR 1 s (1,(1L+1)/2,1)
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JRPL = 0

CALL AETEJR(JIN, 1)

REPFAT 9, FAR J = (2, JL+1, 1)

IF(J «LTe JLL)» GR TH 17

1F(J o+LEs JRL)s GP T8 41 ‘
C FINR THF NEw RIGHT RAUNTARY AND JRL

CALL NFTEJR(JINN )
C SET THE PARTICLFE NFASITY FOQUAL TA ZERB BETWEEN THE 9LD RIGHT RAUNDACY
C AND THF ANFW LEFT BAUNDARY
17 CENTINUE

REPEAT 26, FBR JE3 = (J sJLL=1s1)

NTCJER,N, ToL) = CADEN#NTC(JF3,N,1,0)

24 CAONT INUE
J o= oMAX(ALL,2)
41 CANTINUE

IF(JLE oGTe JL+1), GBH TH 9
CALL NENSIT(JsN,I1,L,T1S8PR1,IS9PR2,S2MIBP,NT)
9 CAONTINUF
R CANT INUE
7 CANTINUE
X 1 FLRATING RVFRFLAW 403, &03
X503 CANT INUE
C CALCLLATE !aN DENSITIES FAR TONS MBVING T8 TRE LFFY
L =1
REPFAT 10s FBR N = (NL+1, 1, =1)
REPEAT 11, FAR I = (1,(1L+1)/7,1)
JLL = JL + ?
CALL nETEJL(Jara 1)
RFPEAT 12, FBF J = (4L s 1, 1)
IF(J +GTes JRL), GR TH 1R
IF(J «GCe JLL)Ys GPA TR 43
C FIND THE NFw LEFT RAUNCARY AND JLL
CALL NETEJL(JsN, D)
C SET THE PARTICLF DENQITY FRUAL TR ZERA RBETWEEN THE BLD LFFT 38UNNARY
C AND THE NEW RIGHT RA{NDARY
1R CANTINUF
RFPEAT 53, FOAR JE4 = (JsJRl +1s=1)
NICGJEG4 N, T,L) = CADEN*NT{JF4,N,I,L)

g3 CANTINUE
JoEOMIN(IRL,JL)
43 CANTINUE

IF(JRI +LTe 1), GB TH 12
CALL NENSIT(JsN»1,L,1%8PR1,1S9PRP,S2MIBP,ANT)

12 CANTINUE
11 CONTINUE
10 CRNTINUE
X IF FLRATING BVERFLAW AQ4, 8504
X504 CANT INUF
RFETURN

X601 BUTPUYT, '"6VERFLAW IN ELIBDF AFTFR STATEMENT 1'3 CALL EXIT
X602 AUTPUT, "BVERFLAW IN FL I8DF AFTFR STATEMENT 4'; CALL EXIT
X603 BUTPUT, '8VFRFLAW IN FLIBNE AFTFR STATEMENT 7'; CALL FXIT
X604 BUTPUT, '"BVERFLSW IN EILLIANF AFTFR STATEMFAT 10!
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EAD

. C MELVILLF CLaARK
C

C

SLBRANTINF INITIA

C PREBARAM NUMRFR K
INITIALIZES ALL VARTARLES

C

n

TTMIOND B>

>

I"PLICTIT REAL*Q (Aek, A=7)

INTFRFR TYPF

REAL#R KEP,K,¥F,MT)NCS,NEP,NIP,MRDIST

51 ARAI P1,SRR]MF, SPSRO,ME,MI,SRRMI,R2ME, VL, VR, ILsJL,NL,
FAL,NELPAS,BFEL1,“FL2,Ky T3 TI 5 TLEL, TPLF2 TR, TREL, Z(051),NCS,

PA,OEI MU, F UL, FIL,SIGMAE,SIGMAT,CIMB(011),T1(051),RETA,CKE,PHIL,

£r (10, KFP(10,06)sTYRPF, TE(051),PRIR,CRE, F,EPRILS,

NEPSIRNTO, TEMREG, M ,PAT(C51,4),  SPACINSRENCRESRENCRT, ITL,EPS,

VIsH,rSLEL,CSLFR,S2M1,S2MFAP, 52MT1AP, SRAME, GR2MT, SRROME, S2PAY],

CAFFE| ,PRTP(0S1), 1T,RE2ME, RS2M]

MRDTST(ENFRAY, TEMPF) = S4APT#DS0RT (ENERGY/TEMPF ) #DFXP(=ENFRGY/

TEMPE ) /TEMPF

FTL = IL
FJL = JL
FAL s NL

DFLPRG = CRACTIN/F UL )
P32 (3+42AA39RRN1C/DSART(TFMRES) Y #DEXP (=851 0+/TFMRFQ)
NCS = PR/(K#TE)

CWF = 15T0/F

CREFEL = 1D0/20C0

CTE = (Re™O%PT/H)*((ME/H)%%2)
NELMU = 2.D0/F 1L

NFL1 = NELPAS/3.CC

CFLZ = NDELPAS/2.DC

EN(1l)Y = FMIN

1T =0

RFPEATYT 5, FAR M =z (1,"L,1)
PAT(1,M) = Da.0N

PAT(JI +1,%) = VR VL

CHANTINIE

PRATP (1) = Q.DC

PRTP (. jL+1) = VReVL

RZ2ME 1emD/ (P eNCHME)

R2MI 1eDO/(PeNCxM])

RS2MF = DSIRT(RAPME)

RA2M! = DQAIRT(R2AMT)

RPSPPT = 14NC/(2"C#DSART(PI))
SIGMAF = NCS#SIGMAF
SIGMAT = ACS#SIGMAL

STRRME =z DRORT(R.C*MF)

SPRMI DSNRT(R.CCHMI)

SZMEAP = MSNRT(P«TCxMF/PI)
S2MI1Ap = FSART(P"CxMI/PI)
SP9QME = NSIRT(2eNC/(9eND0%MEY)
SPAgMY 2 NGORT(P«T0/(FeN0O#MIY)

S4fRPT1 = NIRRT (4.DC/P1)
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O b b b b A A b G A b I S S 4

ZXT XL ~THNTM 30 UL

]

= «*T(H
TL = «<*TL

TIFL = K#*TI_FL

TRPLE = K#TPLF

R = #*TR

TEEL e TRFI.
CSLFL = PO#NSART(PeNO#MIZ(PI#TGIY/((TL##2)#(1eN0+P e NO*DIFXC(F*(V]
=PRTIY/TL YY)
CALFR = PR#NGORT(2.NO*MI/Z(PI#TG) I/ {{(TR#%#2) 4 (1 "0+2NO*NFXP(E*(V]
«PRIRY/TRY DY)
PTlL = F*PHIL
PWIR 2 F#lHIR
201) =2 0¢70

TFADMIN(FTIL,FJL,FNL,NFLPAS,PG,NCS,RS2ME, DFLMU,NFLEN,TFL1,NEL?,
EN{1)Y,]T,S1GMAF,STGMAL,RS8pV], RASRPILNTAH,TL,TLF! ,TRLC,
CRLEL ,CSLFR,SAMERAP,SReME,SRRMT ,SpMIAP,S209MF ,528aM 1 ,R2ME, RaMT,
TT)TQFLIZ(i)ICVE)cLTopoDOoﬁponMAX(FILlFuL:FNL)oGTol?OOooﬁpv
NDFLPAG «GTe SPACIN oA e NCS 25T e 1eF29 oARe REMF e GTaheFPQ AR,
DEILEN 25T FMANX oNRs NELL «AQTo DELPAS «BRe CEL? «FGTe
DFLPQQ;HR.F\(l)'GT.FMAX.QQ.IT.GT.ITL.GR.Q?MIQGT040F96-QR.Q?89“F
0 T e e 14 ePReTAPMTI aiT o2 eF13¢0ReSRAME e GT e3eF*15H5¢AR«SRRAMT «GT,
PeFE=110NR«eS2MIAP 4T absF 1P e PReS2MEAPeGTeRF=16

PR NMAX(TAR,TLLTLE L, TPLESTR, TREL) oGTe 2eF =19 +BFse Z(1)
2+1Te QPACTIN «QRs kS2MF oGTe 8eFli ofRs RS2MI +G5Te 2.E13),RHUTPYT,
CINTITIA Il JUANLSSPACINGFULSFIL,FNL,LPG,

TEMREG,NCS,TH,K, PL,OFLMUSRELENS,EMAXLEMINSDFL1,"FLP,CKF,
DFLPRG,FN(1),STGMAF,SINRMAT, ME, R2ZSRPILTLLTLFL,
TRPLE s TR, TRELSZ (1) 21T, ITLICSLEL,CSLER)R2ME,R2M ], SPAGME,S2ROM T,
SHRME,SREMI ,SPAMIAP,S2MERP, M1 CALL FXIT
RFPFAT 19, FOeR J = (2,JL,1)
RFPFAT 19, FAR M = (1,ML ,1)
FaT(J,M) = Q0
CANTINUF
RFFFAT 10, FAR U = (1,JL+1,1)
RFPEAT 10, FBAR M = (1,ML, 1)
IF(PARS(PAT(JyM) ) eGTo10e),AUTRPUT, YINITRY,U,FRT(J,™)CALL FXIT
CANTINIIE
REPEAT 162 FAR M = (1,ML,1)
CIMR(M) 21eNCe RETA#xM

[F(CIMR(M) «LTeQelFCeBRe CIMR(M)aGTe14NC)y AUTPUT, 'INITIO', ML,
RETA,riMB(M),Mp CALL FXIT
CANTINUF
RFNCRF = SISMAF/4.D0
RENCRT = SIGMAT/Z(2eD0*(2eN0%%0.5n0))

C CALCULATE TwF CANSTANTS FAR INTFGRATIBN OVER SPACE VARTABLFES

DFLEN = DMIMN(TG,TRLE)/P5.D0

FYFR 2 0el0; N = 03 FIMAL = 2oNO/(FNL+24C00)

CONTINUF

NoE N+

SIM1 =2 Q."0O

CANTINUF

ENER = ENFR + PELFN

SHUM1 = SUML + (MBPIST(ENFR,TPLF) + MBDIST(FNER,TG) ) «NrLFM
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[F(SUMT oLEs FINALY, AR TR 1

F' (N) = FMNFR

TEA(N JLTe NLL#+1)Y, =R T2 2

FNANL4P) = PaPNuFINAL/(MRTICY(FNFR,TPLF) + MRCIST(FNFR,THR)) +
A FN(MNL+1)

WEITF(108,401)

471 FrRrMaT (1, tEYFRGY ARAUIPQ!)
AMTTF(108,40C0) (N aEN(NYaNEL NL+2)
47¢ FarMar (! 1, 1CU13,X,1PF11.3))
RFEPEAT 6, FAT N = (1,ML+7,1)
KFP(N,1) = 0.0
REPEAT 12, FAR ] (2, (TL/2)+1, 1)

KEP(N,T) = (1400 (100 = (I=1)#DELMUL)*%Z)*EN(N)

gy 1 om

X TF(KERP(N,T) o T oMYy BUTPLT " INTITOY ,KEP(NS IV AN, T4 DFLMUSEMINY
X &  call F¥IT

1" FAONTINIIF

X TE(KFEO (N, 1Y oL Te TaDNY, RUTPLT, "1 ITRY,KEP(N,1)2Ns CALL EXIT

¢ CONTINUF

C CAICLLATF TwF CANGTANTS FAR INTEARATIAN BVER SPEEDS wWITk WHICH A
C PARTICLF ™MAyrSg

TRl J o= 2, Ul +11

7(d) = 2(U=1) + DEL PRS2
X TELZ0 1) alTe0eNNeRRa7(J)eGTSPACIN*(1.N0+EPS) ) ,AUTPUT,"INITIARY,
X A MRELPAQ, UL, a7 (J),SPACTIN, Z(JlL+1): CALL EX]T
14 CONTINUF

C CAMPLTE THE TFEMEFRATURES RF TANS AND E{ ECTRHNS AT ALL SFACFE PRIMTS
TELTYPE oF el eAReaTYPFeFENe4) ,TF{ 1)Y= TLFL; TRIFFL=2TREL=TLFL
TElJL+1) = TREL; TI(1)=TL3TCIFIASTRTLS Tr(JL+1)=
AT fa TR 17
TF(TYPF oFNe 7P +A&e TYPF F7e RY, TE(1) = TPLE;
A TOIFF TRFL=-TPLE;  TF(JL+1) = TREL; TIt(1) = TG;
R T~IF1- TR«TE; TI(uL+1) = TR G9 T8 17
[F(TYPF oF7e 3 «8Fe TYPF «F"e &), TE(1) = TLEL:
A TNIFET = TPLF-TLEL:  TF(JL+1) = TPLE; TI1(1) = TL3

pogd

[ ]

ROTIPIFTA TG=TL3 TIH(JL+1) = T5
17 CANTINUF
oA 18 J = 2, U,
TE(CSY = TF(1) + TCIFFL*Z(JY/SPACTIN

TICJ)Y = TIC1)Y + TOIFIexZ(J)y/SPACTIN

X TFC TECL) oLEe  TI(J)Y o3Re  TE(J) oLTe CMIN(TRFL,TPLELTLEL)
X A +9Re TP (Y) o”Te "MAX(TREL,TPLESTLEL) «BRe TI(J) «LTe DMIN
X R (TR2T32TL) eARe  TI(J) oGTe CYAX(TR,TGHTIYIBUTPUT, 'INITIARY,
X C T<aTA, TLaTLEL,TRLFLTREL L TDIFFLL,TNIFIB, TE(J)s T1(J)sdsdlLaZ(J)y
X r SRACTIN: CALL FXIT
1R CANT INLIF
IF(NTIDelE«QeNC)Y NIP = ANFP
X IF FLAATING BVFRFLAwW A01, &I
X5C1 CAONT INUF
RETURN
X601 ALTPUT, '"AVFRFLAW TN TMNITIAY G TL,FILaJdlaFoulaFNLaNLIEMAXLEMIY ,F,
X A DELPRG,SPACTIN,PG,TFMRFS,NCQ, T43,K, P1,CKE,CRF,MF,-H,NELMUY,
X B DFLEN,DELL DELP,EN2 ITa MM, VRO VL, SIGMAF »S2ROME, SPROM] ,R2MF,R2M],
T SICGMAT,SREMF,QR2MT, FPGPRP T, T, T ELsTPLE)TRITRFLICSLFEFLSVIAPHIL,
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X ™ CALFR,PHIR, 7,JsPRT,CIMR,OCTA,RFNCRE,,RENCRILKEP,FPS,TYPF,
X FooTr(1)Y , TOIFFL , TR UL+ 1) TI(1), TI(JL +1),TCIF IR, NIP,NFP;
X Foooalll mXIT
¢
C MELVvILLE ClLaRK
C

FONCTION INTETRAL (LA DLRI ,TLANT T, NIZK1T)

¢ PEACRAM b ML 1
C INTFORATES aVFR 7 RY SIMPGANIS 2| F
IVPLIATIT FrAL %9 (Ambk,"=])
REAL wR INTEGRAL
nILARAY DEL Y ,PEL 2
FATFR AL "UANTY
C Makr LA TEr SMALLCST ANT IR THE [ ARGFST LIMITS
Ir(LAI oGTe 1Y, LA = LRL; L83 = LAL; GB TA 2
PA = AL LT = LR
CONTINLE
I"TEGRAL = 060Ny Ul = | A=D
C CALCLLATE An MUrk AF TRt INTEGRAL AS PASSIBLE BY SIMPSANIS RJLF
REPFAT 1, FRR T = (LA, (LNRa?)s?)
JI = 7
1 INTFARAL = INTEORALDFLI#{TUANTI(JTAINTIZ,11) + 4.N0#
A RUANTIOITH+1aNTI7,10) + QUANTI(JUT+2,N1Z,11))
C CALCLLATE TuF FINAL STFF IF NFLFQSARY
TFAMAN((LR=LAY, P) +GTe C)y INTFGRAL 3 INTFGRAL+TDFLP#
A {TUANTTI(UTI+2,0T17,101) + QUANTTI(JT+3,NTIZLII )

™)

X 1F FLAATI'" S AVEFRFLAW A01, =01

X501 CAONT I P
Rr TUDJ\

XACT ALTPI T, 'gVERFLAY TN TNTEGRALYS CallL EXIT
A

C MELVILLF CLARK

C

SIRRATINE INTIRP
PRAECKANM NUMAFR 14
INTERPARLATFG INTTTAL CRHARGE PNISTRIRIUTIAN
TMPLICTT FRAL#R (A=, Re7)
REAL#x NE,MT
CMMAas NE(D51,79,22,02),N1(051,08,02,32)
61 AR A SPACIN,IL,NLNZ(NR1),
A LLaPAT(NR1,4),1R
C INTERPRLATE AVER ALL TATAL FNERNMIES, ANC AVER ALL PFRPEANDTICULAR
C KINFTIC FMERAGTES
REPFAT 11, FAR N
REPEAT 11, FPE 7
REPCAT 11, FAR | 1,72
TIFFE = (NE(JL+1,N5 1,01 = ME(1,N,1,L))/SPACIN
DIFFT = (MIGUL+1a 51,00 = ANT(1,N,T5L))/SPACIN
C INTERPALATE RETyFEN RALNNDARY VALLFS
REFFAT 11, FPR J = (Psdlasl)
NECdaNaTal) = NE(1aN, T,0) + DIFFF*Z(J)
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NTCJaNaTol ) = NTU1aN,T,L) 4 RIFFT*Z(0)
TEANF(UsNS Tl ) aLF aCem0eBRe NI (JaN2TaL)elLFoOe0) AUTPUT,
VINTERPRY, “F UM L) aNTCUaNa T ol Yo T dsNsSPACINSCIFFFLDIFFT, 1L,
oL 70U s L anFUdl 1,8 To LY NTCJE+1aNs T L) aNEG1 NS TS ),
NTCL,nT) CALL FXIT
1 CONTINUIE

QRIEFFAT 10, FPr 1 = (2.JL0 1)

PAT(4,1) = PRT(JL+1,1¥Y%2(J)/SPACIN
X [F(PARS(PAT (U, 1)) oGTe 10e)s8UTPUT, VINTERG 1 HPAT(U,1),0ds7(J),
X A SPACTA,PRT(UL +1,1)5 0L CALLL FXTT
17 CANT YN HIE
X 1€ FLAATING AVERFLAL 403, &03
X503 CONTIRUF

RE TURN,

XAC03 AL TPT,, 1gVEREL AW TN INTERPILAL, I 2L laNsSPACIN ,DIFFF,NIFFL, 22003
X A 1022 CALL DFREGEYINTERPY 3y CALL EXIT

FA7
MELVILLE CLAaRK

— 3 X X
[ T -2

I Ne]

FINCTTAN KFRPARA( IV AV, 1V)

PRAGCRAM N RFR 17

CALCULATES THC CBMPAAFAT AF THFE KINETIC ENERGY SFSULTING FRAM THF
A PERPESPICILLAR CAMEANENT AF TR VFLACITY

IMPLICIT CFAL*R (A=, R=/)

RFAL®RI KEP, KFT, KFPARA

GLARAl KFEP(10,"4),RIGNNS

KEPARA = KFET(JY, “V)=KFP( Y, V)

IF FLAATING AVIRFL AW A01, 801

CANT INUF

TE(DARS(KFPARA) o=Te RIGANAY, AUTPLT, 'KEPARA3Z', KET(JVs NV),
A KFPARA, JV, NV, KFPI(NV, IV)Y,IVs CALL EXIT

RE TURN
XA01 ALTPRUT, "ABVFRFL AW 1IN KFPARAY,KET(JVANY I s UVad Vo KFP(NV, IV, 1V
X A GR TR K01

FAD
MELVTILLE CLaRK

X X X X O MD
"
&)
—

N0

FINCTIAN YFT (UK, X))

PRAGRAM NI "RFFR 18
CALCLLATFS THF TBTAL KINFTIC FAFRGY

IMPLICIT PLAL*R(A=H, A=7)

RFEAL*2 KFTY

GLARAL P8T(OS1,04), L, FN(10),BIGNA

KFET = FN(MNK)="#PAT(UK,1)
X [F(NARS(KFT) efiTe SBIGNA)Y, ALTPLT, 'WKET3', VK,
X A FY(NKY, Qs KFT,PAT(UK,1), JKi CALL FXIT
X
X

OoMNN

IF FLAATING AVFRFLRN AD1, 501

501 CANT INLT
RETURN

xX~01 QUTPIHT, "BVFRELAN IN KFT',FAN(NKIANK,G)PHT(UKS 1), JKiGR TR K01
Fai
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C MELVILLF CLamx

FINET IR KPARK ( JKP,AKP, TKP,NA)

C PKROTLAM ALMarn 39
C CAICLLATOS pARTICIF FLLX ALANG AXIS

A

T"PLICIT RCAL#2 (Awkh,%aZ)
FEAL%<x MASKFEDADA,KPARY ,KPARMNY

NIMENGQIAN MA(TR1,7%9,07,02)

GlLARAI RICHA

KDARNY = ‘(ET’AFA(JKD,NL(D,IKQ)

TE(KPARNT sLFe Na™l)) KPARN = 0eN0s GH TO 1

KPARN =2 (MA(UKP,NKP,1<P,2) o VA(UKP I NKP,IKP, 1) ) *#CSART(KPARNT)

( hT‘K\‘ r

IF(PACS{KFATN) «GTe RIGNRY), ARUTPT, 'KFARNT', KPARKN ,JKP,NKP, [KP,
Kr PARA(JKPHNKEZTIKP Y, M A(IKP G AKP, 1KP,2), NA(JKP,NKP, 1KP,1),
KOARN s Cal L FYIT

TF FLAIATING SVERFLAW AC1, 8N

rQNTI e

R™TUR

AITRIT, "AVECFL AW TN KPARN! ,KFARN ,KPARN1,

NA{JKR, MK, TR, 2) ) NA{JKP )Y KP, TKP, 1), uKPyNKP, IKP} GR THA BO1

Fro

C MPLVILLE CLark
c

[ e N

501

X501

M

ale!

A

FOANCT AN MM )N M, TMUL M)

CAlLCLLATES THE NIRFCOTIAN CAGTINME
PRAGRAM NU¥aFR 20

I"PLICIT RFAL*¥R (Awh,9=7)

RFEAL®2 KEP MU, KkET

GLARAL KEP(1C,N4)

TEMM 2 KER(NM,IMUY/KFT (UM, M)

TRATEMM oL Te CaDC PR TEMM 41GTe 14D00)s ML = 0.DD3 G TR 1
IF{DAIS(TEMM) oNTe 1eMNN) )AL TP AT A tMUS S KEP(NMLIMUY Q) KFT (UM MMy,
TEMM, MuNM ITML LM CALL FXIT

M= mQORT(1«™T « TEM4)

CANT I L,F

TEF{L™ «aFQe 1), MU =2 « MU

TFACAIGIME )Y o7 Te 1eMN), BYTPLT "ML, MU, TEMM,KEP(NM, 1M,
GUANMIMUPLM,KET(UMHNM) 2 CALL FXIT

IF FLaATING AVFRFLAY AN1, "1

CONTINUF

RETUHRN

QUATPLT, "ML ,KET (UMHNM), TEMM, MU, UM, NM, TMU, LM,
caLl e¥IT

F\ﬁ

MELVILLFE Cl.arK

FNCTIOY KNAKERPA(UNBINNA, I A, LNRANFLIA)

FRAGRAM NlMARER 14
CALCULLATYFES INTFCRAND FA7T TFEMPFRATURE CALCULATIAN

IMPLTAIT RFAL*2 (Awhk,9«7)
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1
X

X501

X
X

A

XaC1

X

A

REAL*e NFLIASNAKFPA,KET

PIMENGTAN NOLIS(C%1,07,02,07)

Gl RRA; RIFNA

NOKEPA = “FLIACINASNNG) INALL N *KET (UNRIAND)

CANT TN

IF FLAATING AVFRFLAW ACLls 501

CANT INUIE

TCIMARS(NAKIPAY ofTe TIGAR) »RUTPLT ) 'NOKEPAI' ) AKFEPA,KET (JMA, NN

ANTLIACINGSNNB, INALL AR ZNNP L, UNI L INRLLING; CaALL EXIT

RETURN

AUTPUT 'AVERFLAW T NAKEPAT )NAKEPARKET (WLNA,NNA ),
NTLIARCUNALNNA, INBSLNAY , UNA NN, INA,LNY CaLL EXIT
N

C MELVILLE CLAPK

C

)

SURRAYTINE AUTPAT

C wRITES PRTFNTIAL AUT

[M“PLICTIT FRAIL*R (Awk,"=Z)

REAL®2 NETTLNTTT

GLOBAI PBT(OS1,N4e),PATP(0R1),MLANETT{OS1) NITT{OS1) UL
WRITF (108,401)
WRITF(10R,40C)Y(JsPRTP(JIS(PATIJaMY s Ml aMLYZNETT I ANITT (),
NITTC Y =NFTT () s d=l,Jl+1)

FARMAT (V v, 00z ', 14,1PRF11+3/7:,50(Xs'J= ', 14,1PRF11.3/))
FRRMAT (10, T1N,'PATPIU) "2 TP, 'PAT(Us1) ', T32,'PAT(U,2) "2 T43,
TDART (1 3) s TEL LI PRT (s )t TASs "NETT(UY ' 2 T762'NITT(U)Y 1, TR,
INET rHARGE ')

RETURY

FNe

MELVILLE CLARK

SUBRANTINE RUTPUT

PRAGRAM NUMRFR 7

A
Loe
401
A
3
C
c
c
c
C

N0

= % X X

WRITES PUT ALL FFSULTS

A

ol
-

I“PLICIT RFAL*R (A=ph, A=7)

REAL#R NENSNTIN gNESNT o KFP A NF T NI A NETTANITTSKELSKFFEL»JFJaJTJ
DIMENGQIAN KFE(NR1), KF1(0%1)

COMMAN NE(DS1,0%552,0RP)YaNT(N51,09,02,02)sN\FN(0K1,02,0?),
NIN(NS1,0P:02)sNET(051,09,02),M11(05%1,08,07)

GLBRAL DFILPAS,KFP{10,0N4) ,rPSILASFsPATI0S1,4)aNLaTLsJLS TR,
TE(OS1Y, TI(CS1),CKF,,JTJ(OR1Y,JEJ(OS1),Z(0851),NETT(OB1),
NITT(NS1)Y, 1T, RBIGANRA

CALCULATF TWFE KINETIC FAFRGY AF FLECTRANS ANDC IANS AS A FUNCTIEBN AF
PRSITIA
R 14 J o= 1, J +1,1
KFE(JY = CKE+Tr({J)
KFT(JY = CKF#=TI(J)
IF(DMAX(DARSIKFEE (J)),TABS(KET(UJ) Y)Y o ATRRIGNE)Y AUTPUY, '8UTPUTS!,
A JrJI s KEF (UYAKET(U), NaNt » TI(J)»
RO TE(UY,CKE; CALL FEXIT
CANT INUF
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C PUSLISH ALL RFESLLTS

X

14

170

177

17¢

173

CALL NFRUG({'BLTPLTAR!')

WOITFE (10%,104) 1T '

FARMAT (1HN,T1,'RFRLLTS ARFE AS FALLAWS! ThF ITERATIAN NUMECR T1Q1°

21 4)

WRTTE (108,100

FARMAT (11, TR, 'PASITIAN! ,, T19, 'PATENTIAL', T31,'ELFCTYRIC FIFLNY,

TaZ7s'FLECTRAN',T60» ' 19N PENQITY !, T7S, 'ELECTRANY , TRR, 11N 1,

POURRENT Y, TI03,'ELFECTHRANTY , T114, ' 1AN KINETIC'/T47,'DFENSITY!, T75,

VOLRRENT Y, TIC1,'KINETIC FNEFRGY 'S T119, 'FNERGY )

AEITE (105,101) (Z(D)aPATL U 1) (PRAT(Ls1)=FAT(J+1,1))/TFLP"R,

NETTO Y ANTTT U JFJ (D) 2 JTI DD EF (U)o KET (Y adetscl+1)

FaRMAT (Xs1PE 14662716, 1PE1406sT30s1PF 14060 Th4,1PF1446,T18R8,

1PF 14 araT 7P 1P 14 0AsTRAIIPF 1462 T1I0021PEL14e62T11451PFE14064)

WTITFE (10¢,102)

FORMAT (1HN, TS, 1IPYSTITIANI ,,TRG,'FILCTRAN SPFEN QPELTR{MNY)

WRITF (108106 Y (Z () s (NFI(UANSLYSNETI(JaNS2YaNal ,NL+1 Yy Jde1,d +1)

WCTITEF (108,107

FARMAT('0', X, 'PASITIANI,TR2, VIAN SPEFD SPFCTRUMY)

NDYTE(1ORr106)(7(J))(UTI(JlNll)*NII(J:NIE))NlliNL*l)l~=11JL*1)

FARMAT(Y ', 1P17F113)

WRITF (108,1C)

FARMAT (1O, TR, 'PRSITIANT, T26, L1 FCTRON ANGULAR DISTRIRIITIANY,

TR,y ' 1AN ANSULAR TISTRIRUTIAN')

WOITE(INRIIOSI (7 () arFN(Us 121 YaNFR(J22s1),

NENCU, P2 )NFN (s 102, TR sl a V) LNIN(U, 2,51 )0
NIN(UsPaP o NIN(U»122) ,dz1,,JL+1)

FARMAT (X, 1RPNOEQ,.2)

17 FLeATING RVYERFL AW &M7, &N7

CANT I E

RE TUR:,

AUTPUT, "AVFRFLOW TN aLTPUT y dsJdb s TallablaNstils C<E

CALL £XIT

Fe

C “ELVILLE CLARK

C
c
c

FONCTIAN BLJALLJRLAAP, TIP)

PraGRAM NHIMRER P4

CALCLLATES Thi{ PRARARTLITY AF N7 SCATTFRING RETWEFN ThA PRINTS

IMPLICIT RFAL*? (Aeap,?=7)

GLRRAL NDEL1, NFIL2,RI1GA

TFOJAL oL Te JURL), JA = JRL;3 JR = JALS GA 719 2

JACE AL JR = JRL

CANTINUF

SUM = DeDC; JIP 32 JAe?

REPFAT 1, FAR JTP = (JA,(JR=2),2)

JIP = TP

SUM3SUMHDFL1# (PEPTH(JTPINP, IRP) +4 DO*BEPTH(JTP+1,\P, 1P) +
PERTHIJTP+2,NP,IP))

TEMMAN((JR=JAY2) «GTe 0 ), SM 3 SLM + CFL2#(DFFTH(JIP+2.NP, 1P)
+ TEFPTHIJIP+3,NP, IP))

TF(SU «GTs RINBNA «HR«QUMMLTDeDO) BUTFLT, 'P4 ' ) DFEL1»SIM, JTP, '
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X A DFPTR(JIP,NG, D), PFRTHL(JIRPH1,NPT1P), JAL IR,
X ONP,IP,JIP
P =z " xXP(=SlM)
X IF(P LTe%eN0e9R¢ PalGTe1eMN0),UTPLT,'P3,P,SUM,JTP,JIP,DELT,
X A JASIR,NEPTHJTIP,NF,IP) ,NFPTHJTP NP, IP) NP, IP,IEL?,
X R ONFPTR(JIP+1,AP, IRy CFPTH(JTF+1,NP IP),DEPTH(JTP+2,NP, 1P}
X r CAaLL rXIT
RETUR:,
NI p)
C MopvrLLs cLark
C
S RESITINE PLAGSMA
C
C PRANDAM NI MRER R
C CALCLLATES THF RAYMNPARY CANTITIAY TN TRF PLASMA

IYPLICTT REAL#R (Aambk, RaZ)
REAL #8 NFo NTa NP, P IR KFT A NFTTHONITTANENSNINGKFT2,KFTR,AF 1,0 11
CAMMAN NE(ODS51,79,02,CP )0 NT(NPEL1,08,02,02)2NFN(051,02,02),
A NIN(IRT1,07,02)NETICS1,09,02),N]11{C51,09,C7)
GLARAI JLF, NFP,NIP,
A [s» TI(CS1),TE(051),
1 PATI081,4), GaNLY) ILANFTT(ORLI)ILNTITT(051),
€ SPMFAD,SPVIAP,GQRRVF ,SNeMI, PSP F,RSAMILBIGNA,RRIGNS, 18
REPCAT 15 FAR AP = (1, NL + 1, 1)
RFPFAT 2, FnaR 1P = (1,{(IL+1)/7,1)
C CALCLLATFE THF ELFCTRAN DIRFCATIANAL DENQITY
o 3 «F
KFT? = KET(JLP,NP)
TF( KET2 oLTe ColCls NE(JLPINP,IP,1) =
A CeNC; 1A T8 31
NE(JLPa NP, IP, 1) = SPAMFAPRPANEP#KFTARDEXP (=KFT2/TFIULP))/Z(TE(JILP Y #&
A 1.RDY
31 CANTINIIF
NECJILPINP, TP, 2) = NE(JLPINP,TIR, 1)
4 CANTINUE
C CALCLLATE T~F 18N DIRFCTIBNAL DFENSITY
T = E
KFT3 = KET(J! P,NP)
15 ¢ KFET3 oLTe GeDCYs NI(JILPINP,IP,1) =
A CeCQ3 5P TA 32
NTOJLPANP,IP,1) = S2MIPP XN IPaXFTR*#CFXP(=KFTI/TI(JLPYY/Z(TI(JLP )%

A 1.5P0)
37 CONTINUF
NTGALPANPLIP,2) = NI(JIPINP,IP, 1)
5 CONTINUF
X IF(PDMININF(JLP, NPy 1P, 1), NICJLPs NPy IPs 1)) «LTe0eD0eBRe
X A DRUAX(NF(JLP, NP, 1P, 1P), NT(JLP, NP, IP, LP)).GT+BRRIGNR) ,
X R B8UTPUTs 'PLASMATZ', NF(JLP, NPy IPy 1), NITCUJLF, NPy 1P, 1),00E,
X C JIPs NPy, 1P, NFP, NIP, FaPRT(JLP, 1), TE(JLP), TI(JLP),
X " KFT(JLPaAPYANFTTIJLPIANTITT(JLP),
X F KET?2,wFT3; CALL FXIT
? CAONTINLF
1 CANT INUE
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C RENAEMAL [Z4T TN RF QALRCE 1+ Pl AacMa

C CALCLLATE TwE TATAL clgrTRAY AN™ 198% Dp*SITY ‘
s «f
CALL aPFET LI DUNTGNETANFTT,REAME)
[T
Call QPFFT(ULE " T, TIL,NTITT,R00M ]
Brros SER/METT(JLPY) RT = NIE/NITY(LLR)
WOITE(108,40C)Y "F,R1

450 FARMAY (1 ', 12021 ,1PF11.3,7%,'RIz',1FF11.73)
REPOAT Sy FAR MNP = (1, N +1,1)
RTPFAaT A, FAR 1P (1. (IL+1)/7,1)
RFPFAT 10, FRZLP = 1,7
NECAL s P, TR, P NFLULPr 2, 1Py F)#*RF
\I(\JLT,’\J'D:YD,!"\ '\I(J’.nlkplYDl’F)'RI

nu

1 C-NTIMviC
o C NTI~F
8 CONTINNE
X 17 Fe2TING AVERF S 40D, an»
Xnr2 CONT I LF
ROTLR
Xer ()P AITPLT, "AVFRFLAW [N PLASMATY, MU TP, E S Ca<F T2, EF, TR (JILP),
X A SPMEAD,NPMTAP,KITR, NIF, TI(JLPYSLaN,TL, T, RESRISIP,NE,
X r VGPFEI,VelPER],RE2ME,
X S0 IR = 2y CALL RERLA('PLASGMAAYY; CALL EXIT
Fr o
C MeELvILLE 7TLasX
r
SURRANTINE  PRTONT
C
C PAnGAM N MRED 4

C CALC!ILATFS THE PATENTIAY
["PLIATT “FAL*2 (Lak, =)
REAL¥a INTFORAL, TNTFRR1, INTEARP. NITT, NFTT
SLERAL NETT(CR1)Y, ML, ERSI 9, JLLE,CIMR(011),RFTA,
LI S 17, NITTUOS1),CPACINGZ(051),PRT(051,74),R1GNA
FYTE=y AL INTF=R1, INTFGR2
T TESRUCJIRLNIR,ITP)Y) = (Z(JIR) = SPACTN)Y#(NITT(JIR) « NETT(JI7?))
TETEG220417%00 17110 = (Z2(410) = Z(JFAN)*(NITT(JIN) « NETT(JIT))
AT = 1 APRT = 1y 1FRT =
REFPEAT 1, F2n PR = (2, JL o, 1)
REPEAT 2, FAR M = (MAX(P,™IN('LsTT+1))02s-1)
PET(JRA,M) = AT (UPA,Yal)
2 CHR TTKJ' r
PATEINR,1Y = (7UJFA)/QPACTMI#PAT (UL+1,1)=((Z2(JPA)/SPACIN) =1.0C)
A #PARTLY,1)=E%((7(JFPR)/QPACTINI#INTFGRAL(JPBT,JL+1,INTFGR1,NPAT,
TIFNTY - INTERRAL(UPHT,JPS, INTERRD,LNPRT, IPAT) ) /FPSILA

X IT(TARS(PRT(UPA, 1)) oATRIGAA)AITRLT, 'PETENR ! ,PAT (UPA, 1), PR,

X A 7(dP®Yy, SPACTN, PAT(JL+1,1),dLsPBT(1,1)s INTEGRI( JIK,NIR,11P)Y,
X A P TFGRPA(JININT N, 110 FE s JIR,FPSILAINFTTLINITT, NIR,TIP,UTRINTS,
X C TIN,INTRGRAL(LPAT,JL+1, INTFARLLNPET, IPAT), INTFAGRAL(JUPPT, PR,

X N TEARR,NFAT,IPATY; CcalL FXIT

1 CENT IR

C | 3w=TASS F1y TERING OF PATFATTAL '
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X M X X X X )

2 Y 3

REPEAT By, FAR J = (2,JLs1)

ML o= 1

RERPFAT 3, FAP M = (2,ML,1)

IT(IT< oL Te =1), GA TR 4

PAT(J,1) & PRT(J,1) +(RETA#%{Mel))#PAT(,,")

MLL = M

CANTINUF

PAT(J,1) = (CIMR(1)Y/CIMBIMLI)I*PART (U1
IFINARS(PAT (U, 1)) eAT+RIGNS), AUTPUT, 'PATFENE', PAT(J,1),J,RIGNA,
CIMR I ,ML L CIMRIMLL ) DML LI T, M RFTA,JL: I18=2;CALL RFRUG
('PETENREY CALL FXIT

CANTINIIE

17 FLaATING PVIFRFLAW K05, RNB

CONT I~ UF

RFETURAN

AUTPUT, "AVERF] Aax IN PRTENT ,CIMBI1) s CINMB(MLLYSPRTLITHOMLIBRFTAS 7,
SPACTINGJLIFE L JTR, INTEGRI(JUIRLNIR,TIP) L INTEGR2(JIN,NIR, TINY,
NETTCO IR SMNITTIJIR) L INTEGRAL (JPATH,JL+1, INTFGR],NPAT,IPAT),

I" TFARAL (JPAT,JUPB, INTFGR2,NPAT L IPBT),,ERPSILA,JPR,MLL,JPAT,MPAT,
PAT, M CALL FXIT

Fr T

MELVILLE CLaARK

SURRAITINE RFARTN

PRA/GRAM NUMaFR 10
READ

RF A

DN 3D

JDY D>

S

WRITF

TN AL DATA

IMPLICIT SFAL %2 (Awk, A=7)

I*TEAFR TYPr, CASE

ROALwa NEF, NIP

GLARA FPS,TLaJdlaMls NFPINIPHNL,PHIR,PHIL,SIGMAF,

SIGMAT,QPACIN,TL, TR, TEMRFS, TPLF, TG TYPESVL, VR, VI, ITL,

TILFL,TRFL ) RETA»GAMMAS UMIN, CASE,IMMAX,RBIGNBA,RIGVE,

ITIMPR, ITIMAX, TEXTRA

NAMFL1ST CASE, EPS,TLsdl aNEPSNIPINLSPHIR,PHIL,

STGMAF,SIGMAT,SPACIN, TLaML, TR,TGSTYPE,VL,VR,VI,ITL,TPLF,
BETA,TLFL,TRFL)TEMRFS,JMIN2BIGNBsBRIGNR, GAMMA, IMMAX,

ITIMPL, TTIMAX, TFXTRA

IN ALL NATA

INPUT

AT A1 L DATA

ALTPYT, 'INPUT NATA', CASF

AUTRPUT, FPSsTLaJLl s MLy NEPINIPINLIPHIRIPHIL,SIGMAR,

SIGMAT , QPACIN,TL, TR, TFMRES, TPLF TG TYPESVL,VRLVI,LITL,

TLEL,»TRELIRETALRIANAIJMINS,BBIGNB)GAMMA, TMMAX,

ITIMP,, ITIVAX, TEXTRA

THE TNPUT DATA

IF(NL oLTe 1 «fARe JL oLTe 1 ¢9Re IL oLTa 1

'ﬁR' FPS .LT‘O.DO.HQO EF";

e 3T e1,P0ePRy TTL oL Te O oRRe BIGNB «LEeQel0*8Re ANFP oLT204N0s"R,

NIP i TeOeNOeARe PHIR oL Te =17% +%Re PRIR «GTe 10e¢ «ARe PHIL

eL.Te alfNe oPRe PHIL «flTe 106 +BRy SIGMAE +LTs0eN0+BRe SIGMAL

LT NNAR, SPACIN oL FeQeMPNeARe SPACIN ¢GTe 01 ¢BRe TG +GTo
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M O¥ X X Y XK X XX

M

i)

DM

m YD

b g

>

y

L

4

”

D )

MopVIL

NAX(ITE ST ) et R e TG o Te TMIN(TL,TR) ofRe TYPF o Te 0 FR. TPIF
P Te Fu oFf, TFLF OIT. 70C R T;VREQ .LT. ?CO' P TFM‘FQ‘
e Te 3770¢ «f74 OMIN(VLIVT) oL Te «130e o8Re DMAXIVL,VR) «GTy 1 &
efFRe Ul 4l Te o1 834 V]I ofiTe PDe ofiR

CMAX(ITLFL)TREL) o7Te 1eE4 oBRe PMIN(TRFL,TLFLY oL T,
A 0 e PR, RTTA .GT.l."O.PQ. M .GT. &4 s HK o ML LTe O e PR
u‘Yb o Te ™ IR JMY\ FEC JL+1 eARRa GAVVA 'LT. A'mo 'Qp.
SUMA WGF . TaTY GR, TMMAXY (| Te o) ALTRLT,'RFANTINAY,
FRES, T S ITL 0 NP ONTR AL, PETRIBETA)PRIL,SIGMAF ,CTTMAT,QPAC T,

T OEL, T ALy TEMIra, T2, T, TL,TOLF, TYEE VL, VR, VI,
JMIN G RATOND, TAVMA, IMIIAX Y AL EXTT

R-T

r‘ hl

L (‘| ,\r W

FENCTro L JAmARR (L, NP N

PrmAart a1 a3 P

CALTI LATES vh0o L I0RACALL AF THr JACARTAN BF Thi TRANSFAGYATITAN

I"PLICTIT RFAL 2 (A=p, A«

FUAL %7 WEL A~A,WET

ALATRA)Y WRTI5hA

TIARKETCULAN ) ol Te Co™C ofRe KFPARA(_UINISTY) oLTe De™),
SJACA~ =z TAapaNe; TA TAa

PUACA L = (WET( ] N QNRT(KFPARACLI, NI, T U ))

CONTIsHF

TEURJACHAR 4 TeNeT Lol Re RJACPR oGTe Pe*RBIANR)»UTPL T, 'RJACSRTIY,
RIACAR, wEPACSC Iy, Ndy TU), Gy Nws KET(Jdo, Nd)SRRIANS, 105
call oX1T

I[F FLIATING AUFRFLAn 471, &M

CONT e F

R TURA

RLTPI T, 'p\VECE LAY TN RUACAR Y TAl] EXIT

crn

LE LA™K

£ \r"ryq\ (o g S Y P A (VC:;‘ \C;F" 1TQ7™)

F:"n’?;\" \l Ar‘rﬁ ')—5

CALTHLATES 1hp 7AURTE FAR pLFCTRANG

JORN

TYPLICTT SFAL*R (lak, A=7)

RUEAL %2 KFT, NPT KFRPARAINESNTHININGNTINGNTL

FaMMaL M E (DG, N0, 02,02 N1 I081,09,C2,02),\FN(CR1,"2,07),

NI UNS150%5 020 NET("R1,09,02) 2 [1(05%15039,02)

ALONAL SIAMAF,NIGHA

TE(KOTIUSESNSETY ol Ta "eN0 oARe KFPARA{JSELASFIISF) «LTe 0+M0),
AL TRILT, 1eaiRry!, QE,NGE ) 1QF ,KFT(JSF,NSFE) ,KEPARA(JSF )y GF,1aF);
Call ¢XIT

SAHURFI = QIAMACH (N (JSFHNGF,1) + NET(USELNSESP) ) *
NANRTYUKET( JSFLNSF Y /LKFPARA(JSFHINSFL ISED))

TE(GD JBEL 4LTeMNeDTefAR, SOURFL «GTe R12\B), ALTPUT, 182 JRFL Y,
SR LTI AR, JSFHNGE)NET(LSELNSF, 1),
NETUURFANCT »P) ,KEFARA(JUSELNTF,ISF) , I8 CALL EXIT '
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X IF FLaATING BVERFLAW #01, 501

X501 CONTINUIF
RE TURN,

X601 AUTPIT, YAVIRFLAaW IN SAUREL'; CALL EXIT
E‘\lh

C MELVILLE CLARK

e

FINCTTIAN SRAURIN(JST, "SI, T1S1)

PRAGRIAM NULMBER 24
CALCULATES THF SRUIRCF FAR 1ANS
ITMPLICIT FEAL*R(A=-H, f=7)
REAL®R NITT,KFTAT],KFPARA,KFT
SLARAL TI(0S51), SIGMAL, E, MNITY(NS51),BIGNA
IF(KFT(JSTIIMGSTY oL Tae aD0 «BRoe KFPARA(USTIINSTIZIST) oLTe CeND)o
A AYUTPHT, 'SAURIEY, ST, ST IS8T, KFT(JST,NSI)KEPARA(USTI,NCT,]181);;
R CcALL FYIT
CALTLLATE Tom RATIA PF TWE TRTAL KINFTIC ENFRGY TA TRF TEMPERATURF
IFC Tr(JST)Y oLFe CeNOY, SSLRIN = DeNO; CA TH 1
KETERTYT = KFT(JRTIHNNSIY/TI(UST)

(e Ea R

X X X

X IF(KETATIeLTe0eN0ePRRy KFTATT 4T, BIGNA), ARUTPLT, 'SAIRIN4!,
X A KFTATI, JSTIH)NMETRTICJST),KET(JSTANGQTI) s CALL FXIT

SALRTIN = QIGMAT*(KFTATI*%1 (REN)#NITT(JS]) »

A DEXP(KETATIYI/NSORT(KEPARA(JSIHNST,LISIY)

1 CANT INUF
X IF(SARIN oL TeNeN"ePRe SBIIRTIN «GTe RIGANA), BUTPUT, 15RJRINRY,
X A SAURTIN, KFRARA (JS1, *C1, T121), JST1, NSI» 1S1, SIGMAL,
X ROKFTRTIONITT(JSY); CALL EXIT
X IT FLRATING RVFRFI "W ACl, =01
X501 CONT T IR

RIETURA
X401 AUTPH T, "AVFRFLAA IN SaURINTY; CALI EXIT

FAD
C MELVILLF ClLaRK
C

SHRRA{TINF SPECTRA
c
C PRANRAM ANUMAFR 9
C CALCLLATF TufF SPECTRAL TISTRIRUTIAN AF FLFCTRIN DENSITY AND 16N
C DENSITY

IMPLICIT RFAL#R (A=k, A=7)

REAL #1 NFE T ANTTIANFANT S FTTANITTONERSNIRP,NEN,NIN

CAMMALY NE(OB1,09,5,02,0R2) N1 (N81,09,C2,02)NFN(081,02,02),
A NIN(DST1202s02),MFLI(051,09,02)2N11(051,09,922)
GLARAL NEP, Nt 211 sNLaIBINIPL,EN(10), NETT(OR1)Y.NITT(OS1Y,E,
A SRRME ,QRRM1,PAT(C51,04)»RSPME,RSPAMI,LRIGND
C CALCULATE TwF SPATIAL DISTRIRUTIAN AF FLECTRAN CFNSITY AAD 19N DENSITY
C = =r
RFPFAT 164 FAR J s (1,JL+1,1)
CALL SPEFT(UINFANFIANFTT,,RQANMF)
16 CANT INHIE
L = F
REPFAT P&s FRAE J = (1,dL+1,1)
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CALL SPFER( JaNTANTILNITT,RG2MT)
FA CANT INUF
C CALCULATE Tur ACGULA® CISTRIRUTIAN AT ALL F9INTS BF SPACF ‘
KEPFAT 17, FeR {(1,JL+1,1)
RPCPEAT 17, FRR I (1,(IL+1)/2,1)
STPEAT 17, FAR L = 1,7
NEN(JsTal ) = CeC
ANIM(JeTal) = Ce™C
RTPFAT 11, FAR N = (2, L4+1,1)
~ 2z af
NONCAL, TalY 2 MEMN (LTl Y +(NFULNLTHL)Y + NF(JaN=T, 120 ) )
A (FRNA{NY = FA(N=1) )/ (SRIMF &R JACAR( jaNs 1))
NI
NINC,To0) = NINLL 1LY +(NTOUN,TLL) + N1 (JaNal, 1,10 )
A PN INY) e TAN(NS1 )Y /ZUSRARVIHRJACAR( oA, I
TEUONMININFN (U Tl Y2 NIN(JsTsl)) oLTeQeCCePRe DMAXINFEN(JNT2L) )
A NINC I, ToL) Yo GTRICNRAY L AUTSIT, 'SPFCRS Y HJNEN (U2 1 2] ) s GR]IME ,SRRM],
NINCD, T Yo ds T alls NEFCUXNIT LY NTCUANI TS Y NoarLalloJdl 2FNIN) Y
C Fr(Ne1 ) CALL EXIT
1 CAONTINLE
CSENC ), Tl
NINCL, T

[ ]

Lol i G i ¢
~

NFrM(Jals L) /2eD)
NIN{(Ja 1) /2400

17 CANT I MLE
X 1 FLRATING RVERFL AA AQ4, &N4
XS4 CAONTINUF
RF THIRN
XAC4 R TRIT, YAVFRFL 9w IN @PECTRAY ) Jodl sLaNsNLaTLs I sRIGNP,,EN,QRAME,
X A QRRMI LVAPFND,VGPFMN] ,RGPME,,RS21MTSQsE
X R = 23 CALL PFRLEZ('SPFCTRARY) CALL EXITY
grn
C MR VILLS CLAFRK
C

SURPAGTING SPEFN(JSINTHINST ,NSTTL,RS2M)
C
C PRANPAM CA_CILATFS THWF SPEF™ SPICTR!'/Me
I"PLICIT RFFAL*R (Awk,"al)
REAL#Q NGONGSTINSTT,KFT,MU
NPIMFANGTAN NS(151,79,02,02),MS1(0R1,09,02),NSTT(051)
GLLARAL NLsIL,RTIS3NS
NETT( 19 Yy =2 Ce™N
RTPEAT 13, FAR * = (1,NL+1,1)
REPEAT 6y, FAR |I_ = 1,2
NRT(JS oNsL) = Ne™C
C suv AVFR AlL PERPFANICULAR KINFTIC ENERGIES
RFPFAT 12, FAR 1 = (2,(1L+1)/2,1)
NALOJa SNHL) 2 MSTLUS LNHL)Y + (NS(JUS »Ns,T1,L) + NS(JS ,N,T1=1,L))e
A DARS(MII(JR ZN,ToL) = MUUOJS HN»T=1,0))

X IFINST(US sNhsl ) oLTe "eD0 +ARe NST(JS sNsL) «GTe BIGNR),RUTPUT,
X A YERESI Y ANST (IS aNsL) s IS aNGLaNSUUS AN 1LY aNS(JS sNsle1sL),

X MG AN TaL)MIILS s Tet, L) CALL EXIT

12 CENTINGF

\QI(\Jq 'NIL)
NET O] ANy L)

NGST(JS sNaLY /2P0
MSTLUS aNHL Y + NS(JS s s (IL+1)/250 )
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A PMARSIMI(US NS (TL/2)+1,L) « MU(JS sNp (TL+1)7250))

X [FU(NSTIJS aNSL) oLTe 0D0 oRRe NSI(JS sNsL) «GTe RIGNP)Y,BUTPUT,
X A PAPEND2 T ONCSTUS aNsL Y dS aMaLlaNSUS sNs (IL+1)/72,L)0(1L+1)/2,

X BOMLAS aNS CTL/ZP2Y+1 L) aMULUS aNa (1 +1) /200 Yo (IL+1Y /2, (1L/2)+1 3

X C CaALL eXIT

¢ CANT INHIE

13 CANT 1 LUF

REPFAT 2, FAR N = (2,"L+1,1)

REPEAT 11, FAR L = 1,7

VAPER Y = KFT(JS ,N)3 VSPERY = KET(US »Ne=1)

TE(VSPFND oLTe 7e=C), VSPFND 3 0,0C

IF(VSDENL oL Te Ne"0), VSPFNR1 = 0,00

NGSTTEUS ) = NSTT(JS ) +(NST{US sNsL)NSI(US sNel,L))#
A (TSURT(VSPFNC) = TSORIT(VSPEN]) ) #RS2M

X IFANSTT(JRYallTe CeNO oARe NSTT(JS)eGTe BIGNB)»RUTRUT, tCPENRY,
X & VRPENIKET(JS »N)Y»JS s N»VEBFR1,KFT(JS sNe1)sNSTT(JS ),
X TONSI(da ANSLY AL aRS2M pacl (e ,N=1,0L)3 CALL FXIT
11 CONTINLE
3 CQ\TI\:II!’
VIPFNY = wFT(US,1)3 VSPFP1 = KET(JS,INL+1); VSPED2 = KET(JS,NL+2)
TFIVSREND +LTe Oe™C), VSPEMrD = 0,N0
IFIVSPET] +LTe Je™C), VSPER1 = 0.CC
IF(VSPFEN? +LTe NeTCY, VSPFEPr2 = 0,00
RFPEFAT 7, FRAR | =21,7
NSTT( 1S ) = NSTT(.S ) + (NSI(JS ,1,L)*CSERT(VSPERO)Y+
A MNSTOJR oNL+1, 1 Y% (TRCRT(VEPFN2) e NSCRTIVSPENL) ) ) *#RSPM
7 CONTINLE
RETURN
F N
C ™MFEI VILLY ClaRK
c
FUMCTIAN TEMIJTE AT HNTTIT,VTY)
C
C PRANRQAM NILMRID P9
C CALCU) ATES THFE TEMPFRATURF
I"PLTIECIT RFAL#R (Aek, A=7)
REAL#Q NTHNTTT,MLs MAGS,KEP,NAKFEPA,,KET
CIMENQIRAN NT(CS1,29,02,02),VTJIOR1),NTTT(OST)
DIMENGTAN MT(081,5,29,02,02),VTJ(08L1),NTTT(I51)
DIMENQIAN NT(CB1209,02,02),VTJI0R1)IHNTTT(O51)
GLARA| NL,“ASS, KEP(10s24),1L »SPBOM,RIGNA
TFM s 0eDC
NTEM = 1
REPEAT 165 FAR N 2 (P,NL+1,1)
ND = v NT = Ned
1 CANTIVLIF

TEMI = NeMN
RFPEAT 17, FAR L = 1,2
CFPFAT 15, FORP T = (2,(1L+1)/2,1)
TEMT =2 TEMI + NABS(MUL(JTE SN 1oL ) =MU(UTEIN, T=1sL) )
A (NOKEPACUTFLNS TSLoNTY + NBKFPA(JTEIN,T=12LsNT))
X 1F FLLAATING AVFRFLAW 401,801
' XS0 1 CAaNTIMUFE
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= 3 X X X

14~

L)

[

5

TE(PARR(TEM) ofTe BIGNA) ,PUTPUTHYTEMI! , TEMMMUGUTEL 1,0,

N"‘F‘”A(JTC,N,T,L,’T), r\lIlLlTrMI)

MAKECACITE , p T=1,0sNT), STESNL T+ ) /T ‘
CALL £Xx17

CONTIVE

CANT I &

TrMD =2 TEMI/2.00

REPFAT 14, FAR | & 1,7

TEMT 2 TEMT] 4 PARSUMUCYTE Ny (1172 4150) = MUGITER N2 (1L +1) /2, ) )%

NAKFPACUTF N (TL+1 Y /2012 NT)

1F FLARATING AVERFLAW 503, 503

CAONTIGUF

[FIPAS(TEMT)enRTe RIGLE), AUTPUT ,VTEMG Y )N MUCJTE SN (IL/2)Y+1400 )

(172941, (00 +1) /20 TFTaMLUTE AN, (IL+1)/241 )

NAKERACITE s N (T2 ) /7240 BNTY

Call eXIT

CONTINUIE

G2 T (B5,354,8),\TFM

CAONT I UE

TEMN = WET(JTELZNOY) TFM1 = KET(JTFANT)

IF(TEAN oLTe CeNOYy TEMO = CWaN0

[F(TCY ol Te CoeMC)ly TEMI =z 0400

TeEM =2 TEM & TrMIf(NSQRT(TEMD) o NSERTITEMLY)

CH® TA (162R¢8,7I,\NTFM

CONTINNIE

ANTEM = 4

REPEAT 7, FAR M= (1,NL,1)

NT o= N+l N = N

GA Ta 1

CANTINUF

NTEM = 23 M =2 13 RAR TA 1

CAONT IR

TFC = TEMT; NTFM = 3; N s N +13 GO T8 1

CRNTINUE

TE1 = TEM]

TEMO = KET(JTE,1): TEMY1 =2 KET(JTFEANL+1)3 TEM2 = KET(JTF,NL+2)

TFLTEMDY olLTe 0WNC)s TEMD = NeNC

IF(TFE1 oL Te 2eN0C)s TFMI 3 NNC

TF(TEMD o Te CeN0Ys» TEMP2 = QN0

TEM = TEM + (TEN#NSORT(TEYMO) + TF1#(DSGRT(TEM2) « CSQRTITEM1)))

TEINTTT(UTE) «FQe Qef0Yy TEM = 0,C0; G8 TR 2

TEM = (TEM#SPRAMI/NTTT(JITE) = MASS#(VTU(JTF)#e2)/3.DD

IF FLRATING AVFRFLAW ADP, RN?

CONT I}

CONTINUF

RETUR:Yy

AUTPUT, "AVFRFLSW IN TFM JHST RFFARARE STATEMFNT 15!',TFM,
WQKCDA(JTF,N)IprNr))NﬁKEpA(vTF)N'I'I)LJNT)IJTFJMIII

NAKFRACUTE NI Tl gL aNT) oNPKFRPACUTE IN=1, 1 =1,LaNT ), L, TFMT,

MUOCITE O NS T L) pMUCUTFE ) s T LY s MUGUTE ) Nw 1 T L) 2 MU(JTF ) Nwl1s1eisl )

catl rXxIT

T TPUTH'BVERFLAW N TEM) yTEM TEMISKET(JTESN) o KFT(JTE)N=1),52909V,

NACERALITE NS T La b Ty AKERPA(JTESN=L, 1, LaNTY 2 JTFIN, 1, 1L,

I1-176



X RONPKERPACITF ANy Tl s LaNTYANBKFRPA(JTF N1, 1=1,LaNT)
X C NTTT(TEYSVTILITEY »MASSHNL ,L; CALL EXIT
X523 ALTPUT, "BVFRFLAW IN TV AFTEFR TEM CALCULLATIAGN',TEM,TEMI,
X A MIGUTEINS (CTL/Z2)Y+ 10 L) s MLLUTFE AN (L1 + 1) /72, L) s MUGJUTE A=, (1L /2)+1,0)
X N L (JTEAN=12 (1L +1)/251 Yo NAKEPACUTEAINZ(IL+1)/P,LaNT )2 JTF,
X T ONAKERPA(ITE N1, (TL+1) /2L, NTY L LI +1) /20Ny 105
X m o CALL £XIT
X ] RUTPUTy "TEMS Y N TENM UTE G NS T, Lo NCaNLIANLL 1L, TFMOLTEMILTECHKTEL,TEML,
X A TFEM2,TFM
EUQ
C MELVILLF CLARK
e
SURRATINF TFMPFR
C

C PRARRAM 13
C CALCULATES ThF TIFMPErRATLRF
I“err‘YT DFAI-‘R (A-H‘ n'Z)

REFAL*= NESNETTL,NTILNITT, JFJs Ul UKy MASS,ME, MY
CaMMAaN NE(051,79,0P,07)sN1(051,09,C2,02)
GLIRAL A,FEHVFJ(DB1), NFTTI0S1),dL, THFLOB1) N,

A TT(OS1)sK»MASS,MENMT,S2A9M,299MF »S209M],
POCATEN,CHDFA,VTU(CST),
~Jdhdnsly, NITT(051), JEJ(OF1)
C CALCLLATF TwF DRIFT VELSCITY AF rLECTRANS AND TANS AGS A FUNCTIAr AF
C pPasiTIAn
L = ef) MASS = MF
REPEAT 15, FAR J = (1,JL+1,1)
ved(dy = VORIFTOJ,NEZNETT)

X 1F FLLRATING RVFRFLAW 601, 501
X501 CANTINLIF
1= CANT IMUF

T o= 0 MAGS = MT
REPFAY 16, FAS J = (1,JL+1,1)
VIJOJY = VDRIFT(JINTLNITT)
C CALCULLATE THF FLFCT=RIC FURRFNT AF FILFCTRANS AND 18NS AS A FUNCTIRN AF
C PAGTITIAN
JEJ(JY =mF#VE S J)Y¥NETT ()
JUTJUJY = FeVIU(I*NITT(J)
X IF FLRATING AVFRFLBW AC?2, 802
X502 CANT INUFP
16 CAONTINHIE
C CALCULLATF TuF ELFCTRAN TFMPERATURFE AND IBN TEMPFRATURE AT ALL SPATIAL
C PAINTS
S = =r} MASS = ME; SPRAM = Qp9AGMrp
REPEAT 11, FB% J = (1,JlL+1,1)
TFINETT(J) olLFe QeDNCYHTE(J)Y = NeND; G T8 21
TO(J)Y = TFM{JNNF HNFTTLVED)

21 CANTINUE
X I FLARATING RVFRFLAW AN3, &N3
X503 CANTINLF
11 CAONTINUE

L = F; MASS = M]; S2RA9M =3 g2A89V]
RCPFAT 13, FAS J = (1,JL+1,1)
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TEANTTT(U)Y oLFa CeDNCYy TICJ) = 0,005 38 T 22
TIOY & TEMUJHNT HONITT,VIN

‘?\ C-)\T‘.Jur
X I[F FLAATING AVERFLAW AN4, 504
X0y CONTINUF
13 CoNTINUPM
Re TURN
X=~("1 A TPUTH,'AVERFL AW TN TAMPER AFTEFR STATEMENT 18, U, VEILJYLNETT Y,
X A MASS, T,F,JdL GROTA RN
X2 RUITPUT,'BVERFL AW IN TIMPER  AFTFR STATEMFAT 1A', U VI JLd),
X A NTTT O Y b s dFJCY pJT U aVEULU) DNFTTUU) G, MASS,MF,M13 1R 1A
XA 2 A" TPT,TOVFRFLAW IN TIMPF? AFTEFR STATEMENT 11, TE ()2 JaNFTT (),
X & i JU )y aat s MARR,S2AQME,SpqaM; A TH 503
X9 QL TPIT,IBVERELPAW T8 TEMPER ARTIR STATEMEAT 13, TI(), 1T U )0,
X A VIJOUY»,F ,MACE, MY, S2naMT Q2RI GO T4 S04
AN

O Mipvielr CLark

FENCTIAN VNRTIFT (JUVINVLNVTT)

[ R

PRAGRAM NLMAFT 28
C CALCUI ATFS PRIFT VFLACITY
TMPLICTIT FFAL®R (A=h, R=7)
REAL®R MASG, M| ,KET,KPARN,NV,\VTT
NIMFNGIPAN NV(C51539,02,02),MVTT(051)
GLARA MASS, TLANL,RTGAR
LY = 1
VRRIFT = JeNC
NDRTFY =
REPEAT 16, FAR N = (2,NL+1,1)
NT 3 NG NT = Ned
1 CONTINUF
VOIRIFT = CeNC
RFPFAT 15, FAR 1 = (2,(1L+1)/2,1)
VORIET 2 VORIFL + (KPARN(UVINS TONVIHKPARN(JVIN, Tal)NV))#
A PABS(MUCJIVINS THLV)Y = MUIJV,N,T=1,LV))
IF FLRATING AVFRFLAW A01, &N
CONT INUE
IF(DARS(VNRIFT ) «GTe RIGNAR), RUTPUT, 'VERIFT4', VBRIFT,
JVs KPARN(JVaNI1aNV),
KPARN (JVahs 1=1,NV ) LVaNs1aTLaNLs
MULJV N 1oLV ) MUCJVAN, T, 1L V)
CaLL ¢&XIT
CONTINUF
VARIFT 3 VDNGIF1/2.NC
VORIEY = VRBIFT + KPARN(JV,N, {IL+1)/2,NV)»
A TARSEMUN(JVaN, (TL/2)+1,LV) o MUGJVAN, (1L +1)/2,LV))
1€ FLaATING AVFRFLAW 603, &N3
CONTINUF
IF(DARS(VPRIFT ) «53T, RIG NA), AUTPUT, 'VCRIFT3',

X X X XX X
n
D
-
207 3 »

A

Ul
@]
w

X X X X X X
\).D

]

CALL FXIT
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VRRIEY HGNSRIGNA, TL,MUGUVIN, (TL/Z2V+1,LVYaMLIUVAN2 (TL+1)/2,L V),
KPARN (VRN (1L+1)/72aNV ) JVANVTT (V)



1A
7
=
n

A
X
XHCe
2
XAC1
X A
X n
X C
X602
X A
XAC3
X A
X n
X
X A

GO TR (RpR,45R)H)N\NTRIFT

CANT INIE

VRRTIFEAY = KET(JVHANT)Y YRRIFY =2 KET(JUVeANY)

IF(VTRIFO «LTe Nel0), VOBRIFN 0,0C

TF(VRETFL oL Te De"CH,y, VDRIFA 0.N0C

VARIFT = VDRIFT + VORIFT#(RSCRT(VDORIFD) « NSART(VORIF1))
GR TR (1652,8,7),"DRIFT

CONT INUE

CNRIFT = 4

RCPEAT 75, FAR N = (1,'L,1)
N = el M o= N

re T8 9

CONT I E

MORIFT = 25 N =z 1 (A TE 4
CONT I UiF

VPRTY = VIRTIFY

NORIFT = ;0N = NL+13 GR TR 1
Cmr\ryu;r

VhR T VARIF T

VOIFO = KFT(JV,1); VUNPIFL = KFET(JVANL+1)2 VDRIF2 = KET(JV,VL+2)
IF(VIRTIFO «LLTe DeMN), VDRIFO = 0,0C

IF(VIRIFL oLTs NeT0Y, VDRIF1 3 0,C0

TFIVRRIF2 «LTe Ne™CY, VNRIF? = 0L.0C

VORICT = VRRIFT 4+ (VDRT0#PQART(VARIFO) + VORILI#(NSGRT(VRARIF?) -
NCART(VORIF1) )Y

IF(ANVTT(JY) oF e ZeNN), VORIFT = 04205 GO TA 2

VORTIFT = VORIFT/(NVTT(JV)*MASS)

10 FLAATIYN AVFRFI AL AQP, &R02

CANT T IIE

CANT I UF

RFETURN

ALTPUT, 'AVFRFILAWN IN VPRIFT REFARF STATEMEAT 15',VTRIFT,
\) Il KPAQV\(JV)R) Y"\V)l\)v) KPARR(JV)N-].J IJNV);

KPARN (JV Ny 1ot aNV) ) KPARN( UV aRN=12T=1sNVI oMU UVINST2LV)

MUY o N Tm 1L VIa MU GOV N =1 T LYY s MU(UVAN=1,T1=12LV); 138 TR 601
ALTPUT, '"AVFRFLAW IN YPRIFT AFTER STATFMENT 16',VCRIFT,MASS,
NVTIT (V) UV A TA 8507

B JTPLT, 'BVERFLAW IN VPRIFT ',VPRIFT, N» (TL/P)+1,
(TL+1)/2,KPARNIJIVIN, (IL+1)/2,N V) 4 UV,
KPARN(JVah w1, (TL+1)/2,NV) ;5 GAR T9 6013

ALTPUT, tWRRIFEI ,NPRIFT, TLoNL,JVINI TaNGINTL L VDRIFD,VERIFL,VIRIC,
VORI ,VPRIFP,VNRIFT

METASYNM S1aLashB

STIMFR

TT14ER

Fan

QYQTpEM SI6R

SYSTE™ Rpv

NFF STIMCR

nCF TTIMFR
YIQTIVER (GFr,17000N0C)
R *|&

MITTIMIR  SFC

L weR *1 R

ST, 9 *2
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1 T013 1

IR
r\ﬁ
LA (A, (P QATL,(FaL T M)t M\ "LASKL ) s LFF ™M)
LN (P ME LAY
ATA
TAcE =2, FPG=,02,171 =33, owl=57s NFP=1.1F19,
STzt G bl s 24, DL zPa70R, PHIR=14711. SIGMAF=: 0,070,
STTMATECLON Y, TPAr It =R .Ceg, TEMDRFCzAl4e, TYRPE=2, IlL=4,
vl oz PE00., TREI = 20 Ves TLEL s 2RNCes RFTA = 77,
Tz = oe A7, L = =14822, L1 = 4273, TR = G1Ce, TL 2 19320, TC = 14154,
121, «I7NH = 1 4FRA,CAMMA = 475, IMMAXY = 20,

g
=1, [TTvAY=1C W
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